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Abstract

We introduce a mathematical model based on mixture theory intended to
describe the tumor-immune system interactions within the tumor microen-
vironment. The equations account for the geometry of the tumor expansion,
and the displacement of the immune cells, driven by diffusion and chemo-
tactic mechanisms. They also take into account the constraints in terms of
nutrient and oxygen supply. The numerical investigations analyze the im-
pact of the different modeling assumptions and parameters. Depending on
the parameters, the model can reproduce elimination, equilibrium or escape
phases and it identifies a critical role of oxygen/nutrient supply in shaping
the tumor growth. In addition, antitumor immune cells are key factors in
controlling tumor growth, maintaining an equilibrium while protumor cells
favor escape and tumor expansion.
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1. Introduction

The tumor microenvironment (TME) is a central dynamic and complex
cellular and acellular milieu that influences tumor growth kinetics. Within
the TME, it is well established that the immune system plays a central role in
the maintenance of the organisms integrity by continuously eliminating newly
produced transformed cells, a concept called cancer immunosurveillance com-
posed of three phases: Elimination – tumor cells are simply destroyed by the
immune response –, Equilibrium – the immune system maintains and con-
trols the tumor in a viable state – and Escape – with the unlimited growth
of the tumor –. This last phase results from a cancer immunoediting exerted
by the immune system and from the establishment of immune suppression
mechanisms [28, 29, 34]. Indeed, cancer cells can also turn immune responses
at their own advantage, transforming immune cells to protumoral cells stim-
ulating tumor development. The success of immunotherapies is based on
the attempt to maintain or reverse this balance towards the “Equilibrium”
and “Elimination” phases [10]. Unfortunately, these approaches show clini-
cal efficacy with durable responses in only 15-20% of all cancer patients so
far. Despite intense research, these treatment failures are currently poorly
explained.

Technological developments at the single cell level have helped to better
understand the complexity of the TME. Tumor cells lay in a microenviron-
ment composed of immune cells, cancer-associated fibroblasts (CAF), extra-
cellular matrix proteins that form the stroma, blood and lymphatic vessels
and nerve fibers [4]. The composition and spatial organization of the TME
can vary greatly between tumors and even within a given lesion. In invasive
cutaneous squamous cell carcinoma (cSCC), the second deadliest skin can-
cer with no curative therapy available following successive relapses, a strong
immune infiltrate has been detected [12, 37, 42]. To better visualize all the
components of the cSCC TME, new imaging mass cytometry techniques have
been developed that allowed the simultaneous detection of up to 40 markers
[32]. The obtained images show tumor islets surrounded by stroma rich in
ECM proteins and immune cells. Mathematical models and numerical simu-
lations can provide relevant information, complementary to experimental and
clinical observations, that can help to understand the underlying biological
mechanisms within the TME.

Many mathematical models have been introduced so far with quite elab-
orate descriptions of the tumor-immune interactions based on systems of
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ordinary differential equations, see for instance [25, 26, 30, 31, 38, 39]. How-
ever, the spatial repartition of the tumor and immune cells seems to play
a crucial role [27] and cannot be easily taken into account by such ODE
systems. For instance, this observation has motivated the work detailed in
[1, 5, 6, 7]. Therefore, we adopt a different viewpoint and we are going to
set up a continuous model based on partial differential equations, describing
the tumor growth and the immune response by considering the cell densities,
and unknowns that depend on both the time t and the position x. To this
end, we shall describe the tumor and immune cell interactions by means of
fluid mechanic principles, appealing to methods of mixture theory [49] and
their application to biological flows [20, 46]. This approach, which takes in-
spiration from [3, 11, 13, 14, 17, 21, 22, 35, 47, 48] for applications to tumor
growth, is intended to consider more precisely the tumor microenvironment
geometry, and the infiltration of the tumor by the immune cells. The fluid
mechanic principles will be combined with the interaction mechanisms with
immune cells identified in our previous works1 [5, 6, 7] namely:

• Recruitment and activation of immune cells, from a bath and sources
of “naive” immune cells, are governed by the tumor growth;

• Chemotactic effects drive the immune cells towards the tumor microen-
vironment;

• Tumor cells are destroyed by antitumor immune cells (NK and CD8+
T cells);

• antitumor functions can be inhibited by protumor immune cells and
shifted from antitumoral to protumoral activities;

• The tumor growth rate can be enhanced by activated protumor immune
cells.

Furthermore, these mechanisms have to be coupled with the description of
how the tumor grows at the expense of its environment (fluids, fibers, extra-
cellular matrix), and the complex mechanisms relying on the activation of
cancer associated fibroblasts. The model should take into account the access

1Even though [5, 6, 7] are concerned with completely different models, of more micro-
scopic nature, more adapted to the earliest stages of the tumor growth. In the same vein,
we also refer the reader to [1].
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to nutrient and oxygen, that determines the proliferation rate, and can even
lead to necrosis when it becomes insufficient. Therefore, the equations are
established through the combination of mechanical and biological effects that
govern the competition for space and resources between different species of
cells. In particular, the coupling between the different constituents of the
TME not only arises through the mass exchange dynamics, but also in the
momentum balance, that involves a description of the mechanical forces on
a given phase (viscosity, pressure, friction between the phases). Finally, the
model is closed by an algebraic constraint, which enters into the definition of
the pressure field. In order to ease the access to the equations, a schematic
view of the main principles at the basis of the proposed model is offered in
Figure 1 and 2, whereas Table 1 collects the definition of the unknowns.

Immune cells Tumor cells

Environment

Dissolved substances

attraction of

oxygen/nutrient

oxygen/nutrient supply,

activation by cytokines oxygen/nutrient supply,

degradation by cytokines

activation/chemoattraction

anti- and protumor effects

mass/momentum

exchanges

Figure 1: Competition for space and resources, a schematic view of the main mechanisms

Having set up the model, the aim of this preliminary study is to discuss
the influence of the modeling assumptions and try to hierarchize through
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Tumor cells

antitumor immune cells protumor immune cells

Chemotactic potential Cytokines

PIC suppress AIC

shift of AIC into PIC

AIC destroy TC

activation of AIC

PIC enhance
TC growth rate

directed motion

promote
shift/activation

TC enhance
chemotactic
potential and
release of cy-
tokines

Figure 2: Tumor and immune cells interactions. AIC: antitumor cells, PIC: protumor
cells, TC: tumor cells. See Table 1 for definition and notation of the associated unknowns

simulations the effects of the biological and mechanical mechanisms, to as-
sess whether or not the model is able to reproduce equilibrium and escape
phases, and to shed some light on the critical phenomena that shape the
space organization of the TME. The paper is organized as follows. In Sec-
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tion 2 we introduce in details the system of equations that is intended to
describe the interactions between the tumor growth, the immune response,
and the environment. In Section 3, we discuss several simplified versions
of this complex system and, based on numerical experiments, the role of
the modeling assumptions and parameters. Our main conclusions are the
following. Firstly, oxygen/nutrient supply is critical for shaping the tumor
development. Secondly, the various versions of the model are able to repro-
duce the “3E” phases; in particular equilibrium phases with a residual tumor
remaining under the control of the immune system can be observed. Thirdly,
taking into account protumoral effects of the immune response dramatically
changes the dynamic and might lead to the unlimited tumor expansion.

2. Model description

We adopt a modeling where we distinguish two types of populations:

• the “constituents”, a set which contains the tumor, the (anti- and pro-
tumor) immune cells and at least another population describing the
“environment” (other cells and tissues, extracellular matrix and inter-
stitial fluid...). These interacting phases are described by their volume
fractions, hereafter denoted φj for j ∈ {1, ..., J}. Quoting [3], In a
continuum description, the “number of cells” of a given species is prob-
ably not a suitable candidate: it seems more appropriate to introduce
the volume fraction concept, straightforwardly inherited from the the-
ory of multicomponent continua, so that “balance equations” for the
components are to be read as “mass balance equations”. Such a set of
equations obviously calls for velocity (or displacement) fields that are
to be enforced somehow. The concept of mixture flows precisely means
that at each space point, a fraction (given by φj) of each phase can be
encountered. The general form of the mass balance equations is

∂t(ρjφj) +∇x ·Jj = Γj, (1)

where ρj is the typical mass density of the phase j. It is assumed to
be a positive constant (incompressibility assumption for each phase).
Very likely these positive quantities have similar values, which would
allow us to simplify the equations: quite often it is assumed that all
ρj’s are given by the mass density of water, see [3] for instance. The
modeling issue relies in finding a relevant expression for
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– the mass exchange term Γj, which can naturally be split into gain
and loss terms

Γj = Qj − ρjφjLj
where Qj and Lj are non negative functions of the physical quan-
tities of the model (this formulation is related to the preservation
of the natural property φj ≥ 0);

– the mass fluxes Jj can be written as

Jj = ρjφjVj (2)

and we shall derive a relevant expression for the velocity field Vj.
As we shall see below it might induce a combination of convection
and diffusion effects.

• the “substances” like nutrient , oxygen, cytokines and chemokines...
which are described by their concentration αk, k ∈ {1, ...., K}. They are
considered as components dissolved in the mixture. The concentrations
obey convection-diffusion equations, with reaction terms accounting for
gain and loss processes.

Such a distinction appears for instance in [3, 48, 52], or, in different contexts,
in [40, 46]. Simplifying assumptions can be used to reduce the model, skip-
ping difficulties related to determining the displacement of the cells in terms
of the other unknowns and reducing the description to a mere ODE for the
radius of a radially symmetric tumor [3, 41]. A crucial feature of the model
is that, according to the definition of the unknowns as volume fractions, the
relation

J∑
j=1

φj = 1 (3)

holds. This property has two important consequences for the derivation of
the equations. First of all, summing all mass balance equations (1), one is
led to a constraint on the mean volume velocity

∇x ·

(
J∑
j=1

Jj

ρj

)
= ∇x ·

(
J∑
j=1

φjVj

)
=

J∑
j=1

Γj
ρj
. (4)

This constraint implicitly defines a Lagrange multiplier, which induces a
pressure field Π. Second of all, this constraint has to be taken into account
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for the set up of the boundary conditions, which should be consistent with
(4) in the sense that∫

∂Ω

J∑
j=1

Jj

ρj
· νx dσx =

∫
Ω

J∑
j=1

Γj
ρj

dx, (5)

holds, with νx the outward unit normal at x ∈ ∂Ω.

2.1. Mass exchange terms and constituents’ equations

2.1.1. Mass exchange for the immune cells

We denote with a subscript a, resp. p, physical quantities associated to
the antitumor immune cells (like NK and CD8+ T cells, tumor-associated
neutrophils TAN-N1, tumor-associated macrophages M1), resp. protumor
immune cells (like Treg, MDSCs, TAN-N2 and TAM-M2); similarly we refer
to the tumor and the environment with the subscripts n and m, respectively.
For the mass exchange terms, the following actions are retained from [5]

• both anti and protumor cells are subjected to natural death, with rates
(homogeneous to the inverse of a time) γa, γp respectively;

• antitumor cells are activated from a source Sa, at a rate that depends
on the total tumor mass

µn =

∫
ρnφn dx; (6)

• cytokines, or more generally protumoral factors, are characterized by
a concentration denoted by I; they promote the shift of antitumor
cells into protumor cells in the vicinity of the tumor2, as well as the
activation of protumor cells from a source Sp;

• protumor cells annihilate antitumor cells.

Note that the sources of antitumor Sa and protumor Sp immune cells can be
space dependent, and different both in amplitude and localization, describing
specific sites of recruitment (like the lymph nodes for T cells, or the bone
marrow for protumor cells), see [6].

2There are also cytokines with antitumor effects, but they are not considered as such
in the model.
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Hence, the mass exchanges terms for the antitumor and protumor immune
cells are given by

Γa = ρa

(
g(µn)Sa − φa

(
γa + kIaI +

φp
τap

))
, (7)

and
Γp = kIpIρpSp + ρaφakIaI − γpρpφp, (8)

respectively. In these expressions, all coefficients γa, γp, 1/τap, kIaI, kIpI are
homogeneous to the inverse of a time. The function g : [0,∞) → [0,∞),
which equally has the homogeneity of the inverse of a time, is the tumor mass
dependent activation rate of effector cells from the bath of resting immune
cells; the activation law can incorporate relevant limitation mechanisms, for
instance based on Michaelis-Menten kinetics. In what follows we adopt a
simple linear relation g(µn) = g0µn, with g0 > 0.

Protumoral effects involve the action of cytokines/protumoral factors;
according to [5], the evolution of cytokine concentration is driven by a mere
ODE

d

dt
I = ψ − I

τ
, (9)

with τ > 0 a relaxation time and ψ a threshold function (for instance pro-
portional to (φn − φc)+ for some φc ≥ 0). Here, the concentration I can
describe further protumor signals, immunosuppressive cytokines and Cancer
Associated Fibroblasts (CAF). In this case, we slightly modify the model-
ing by assuming that ψ depends on the tumor volume fraction φn and the
environment volume fraction φm, with

ψ(φn = 0, φm) = 0, ψ(φn, φm = 0) = 0.

For instance, we can set

ψ(φn, φm) =
[φn − φnI,s

]+[φm − φmI,s
]+

τ

with some thresholds φnI,s
, φmI,s

. It means that the production of cytokines/protumoral
factors need a sufficiently large presence of both tumor cells and environ-
mental cells to be triggered. This simple ODE is a simplified modeling that
neglects convection and diffusion effects.
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2.1.2. Mass exchange for the tumor

Cell proliferation is limited by the competition for space, which is de-
scribed through the homeostatic pressure, [8]. This effect is taken into ac-
count through a (non negative and increasing) function P of the tumor
volume fraction φn, and a threshold φ∗. A typical choice is

P =
νp∗
ν − 1

(φn
φ∗

)ν−1

, ν > 1, 0 < φ∗ < 1, p∗ > 0, (10)

see [23, 45]. Here, p∗ is a reference pressure, which has the homogeneity

of
(
length
time

)2
, while the threshold φ∗ represents a maximum packing density.

The function P is intended to account for the mechanical stress exerted by
the surrounding cells in a population of tumor cells: the higher the density,
the higher the stress. The stress induces a motion of the cell, see [15, 43,
44], with a velocity proportional to the pressure gradient, in the spirit of
Darcy’s law. As the exponent ν increases, the effect of the threshold becomes
more sensitive, since gradients are very stiff for densities above the threshold.
Therefore, the regime ν → ∞ makes a connection with models describing
tumor growth by means of free boundary problems [23, 45], where the tumor
is described as a moving domain of constant density. For the tumor cells,
the source terms account for the proliferation/necrosis of the cells, as well
as for the action of the immune cells. Proliferation/necrosis are driven by
the availability of nutrient and the homeostatic pressure, while antitumor
immune cells kill tumor cells and protumor cells enhance the proliferation.
Moreover, cell proliferation is governed by a biomechanical form of contact
inhibition, that prevents cell division when the total cell density exceeds a
critical threshold. This effect is accounted for again by using the function
P, [15, 23, 45]. We thus get

Γn =
ρnφn
τn

(Υ(P, O, φp)− Aaφa).

In this expression O stands for the oxygen and nutrient concentration, τn
can be interpreted as a relaxation time and Aa describes the strength of the
antitumor immune cells on tumor cells. The coupling function Υ fulfils the
following assumptions

∂PΥ < 0, ∂OΥ ≥ 0, ∂φpΥ ≥ 0.

Proliferation is indeed more effective when the pressure is low and nutrient
availability is high; it is enhanced under the action of protumor immune cells.
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It might be relevant to assume that Υ vanishes when O ∈ [O∗, O
∗] (quiescent

phase) and Υ < 0 when O ∈ [0, O∗[: when the oxygen concentration falls
below the critical threshold O∗, then the tumor cells are unable to survive
and undergo necrotic cell death. In the latter case, Υ does not correspond
to a gain term and, for further purposes, it is convenient to decompose Υ =
[Υ]+ − [Υ]−, with [Υ]± = max(0,±Υ) ≥ 0). A possible expression, inspired
from the standard logistic law, leads to

Γn =
ρnφn
τn

(
k+O[O −O∗]+(1 + φp)−

(
k−O[O −O∗]− +

P

p∗

)
− Aaφa

)
,

with k±O > 0 appropriate dimensionalizing constants. Quite similar coupling
accounting for close-packing effects, and coupling with oxygen/nutriments
supply can be found in [11, Eq. (15)]. As far as we know, there is no estab-
lished model for the expression of the source term Γn, beyond the natural
monotonicity properties stated above. For φa = φp = 0, O > O∗, the pro-
posed formula behaves like the logistic law. It also combines several mech-
anisms, considered as independent, that lead to the elimination of tumor
cells: the action of immune cells (φa), the lack of oxygen-nutrients (O < O∗),
and the compression effects that restrict the tumor development [15]. As we
shall see below, the pressure term P can be significant only when the tumor
volume fraction approaches a threshold (see (10) with ν � 1); however, even
when the tumor volume fraction is small, the lack of oxygen leads to the
necrosis of the tumor cells.

2.1.3. Mass exchange for the environment

Loss terms for the other constituents become gain terms for the environ-
ment, while the protumor reactions, in particular through CAF and MMP
enzymes, promote the degradation of the environment. We otherwise con-
sider that healthy cells are not dividing relatively to the proliferative cells
and that they do not die from environmental conditions (or, maybe more
appropriately, that the two effects balance). We are thus led to

Γm = γaρaφa + γpρpφp +
ρaφaφp
τap

+
ρn
τn
φnφa +

ρn
τn
φn[Υ]− − ρmφmf(I).

The function f : [0,∞) → [0,∞) describes the degradation of the healthy
environment by the action of cytokines and CAF; possible expressions are
f(I) = f∗I or f(I) = f∗I

1+I/I∗
in order to take into account some limitation

mechanisms. (For the simulations we only use the linear law.)
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We remark that the total mass balance is given by

Γa + Γp + Γn + Γm = ρag(µn)Sa + kIpIρpSp +
ρn
τn
φn[Υ]+ − ρmφmf(I).

The total mass increases due to the tumor proliferation and the sources of
anti- and protumor cells; it decreases due to the degradation of the envi-
ronment. In particular if the source of immune cells vanish (Sp = Sa = 0),
if there are no cytokines degrading the environment (I = 0) and no supply
of nutrient (O < O∗ implies [Υ]+ = 0), then the mass balance vanishes.
Another quantity of interest is the total volume balance

Γa
ρa

+
Γp
ρp

+
Γn
ρn

+
Γm
ρm

=
(
g(µn)Sa − φa

(
γa + kIaI +

φp
τap

))
+kIpISp +

ρa
ρp
φakIaI − γpφp +

φn
τn

(Υ(P, O, φp)− Aaφa)

+γa
ρa
ρm

φa + γp
ρp
ρm

φp +
ρa

τapρm
φaφp +

ρn
τnρm

φnφa +
ρn
τnρm

φn[Υ]− − φmf(I)

6= 0

which could be non-zero, even when the mass balance vanishes. In [21, 46]
such a non zero volume contribution appear. This quantity is involved in the
boundary condition through (5).

2.2. Oxygen and nutrient

Concentrations of oxygen and nutrients are diffused rapidly: we apply
the adiabatic approximation which assumes that the diffusion process occurs
on much smaller time scales that the cell motion and divisions [13, 19, 43].
Therefore we suppose that the equilibrium is reached instantaneously: the
concentration O satisfies the Poisson equation

∇x·(OχO∇xφn)−∇x·(DO∇xO) = SO−O(rnρnφn+raρaφa+rpρpφp+rmρmφm).
(11)

This equation incorporates a drift term directed towards higher gradients
of the tumor volume fraction, with a chemotactic coefficient χO which can
be defined as a function of φn, typically with a sigmoidal shape. The right
hand side describes the consumption of nutrient from a given source SO, say
strongly located next to the vessels. It involves rates rj that can differ de-
pending on the considered component. In particular, the consumption rate
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of the tumor rn can be substantially greater than the other rates ra, rp, rm
(Warburg effect), [36]. The equation is endowed with a (possibly non homo-
geneous) Dirichlet boundary condition.

The critical role of the access to nutrients and oxygen in sustaining tu-
mor’s development has been reported in many experiments [2, 17]. This
should be reflected in the coupling between (11) and the proliferation/necrosis
terms in the mass balance equation for the tumor, as described in Sec-
tion 2.1.2. To proliferate, cells need nutrient and oxygen coming from existing
vascular vessels surrounding the tissue where the tumor grows. As the tu-
mor develops, in regions of high volume fraction, tumor cells are progressively
starved of oxygen and nutrient (locally the oxygen concentration falls below
the threshold O∗ due to the consumption by a large number of tumor cells)
and, in consequence, their proliferation rate and the tumor’s overall growth
rate decline (see the definition of Υ in Section 2.1.2). However, starving cells
have the ability to secrete factors and chemoattractants in order to induce
the formation of new blood vessels towards the tumor. This is called the pro-
cess of angiogenesis, which can be roughly taken into account through the
coefficient χO in (11). Note also that a more complicated consumption term
for the tumor can be considered as well, replacing rnρnφn by a function U
which can depend on the homeostatic pressure P and O such that ∂PU ≤ 0,
∂OU ≥ 0, U(P, 0) = 0, see [23, 45]. Moreover, immune cells, once activated,
have also a substantial demand in oxygen and nutrients and the competition
for the resources is also a key factor in the efficacy of the immune response
[36]. Note that, here, we neglect the effect of oxygen availability on the im-
mune cells; however the consumption due to the immune cells impacts the
resources remaining for the tumor development.

2.3. Momentum fluxes

There is a huge variety of closure relations for defining the mass fluxes
(2). According to [49], and the applications of mixture theory for cancer
growth modeling [3, 11, 14, 17, 35, 47, 48], or biofilm formation [46], we
follow a mechanical approach: we consider momentum equations satisfied
by the velocities Vj, with force terms depending on each phase. The latter
incorporate chemotactic effects, homeostatic pressure and drag forces. The
momentum equations have the general formulation

∂

∂t
(ρjφjVj) + div (ρjφjVj ⊗ Vj) = div(σj) + Fj

13



Neglecting convective effects in the left hand side, the equations reduce to

−div(σj) = Fj

with σj the stress tensor, and Fj the applied force. All constituents are
subjected to a common “hydrostatic” pressure Π, which can be interpreted
as the Lagrange multiplier associated to the constraint (3), the analog of the
usual pressure field for solenoidal flows. Then, we split the stress tensor into
several contributions

σj = −ρjφjΠI− ρjφjPjI +
$j

2
(∇Vj +∇V ᵀ

j ).

In the last two terms, we recognize:

• the viscous term, where the dynamic viscosity $j is supposed to be
constant,

• an additional, isotropic, pressure field Pj which is specific to the con-
sidered phase [11, 14, 35, 46], taking into account interactions between
cells of the same constituent. We adopt the following definition:

– tumor cells are sensitive to close-packing effects: as the tumor
volume fraction increases, tumor cell membrane deforms, inducing
a stress. This is described by the homeostatic pressure term P,
which becomes large as the tumor volume fraction approaches the
threshold φ∗ [14].

– the presence of immune cells induces a compression effect, which
is assumed to grow linearly with the volume fraction: Pa = Da,
Pp = Dp, with Da, Dp > 0, [35, 46].

– the environment is considered as a carrying fluid, and does not
support additional pressure Pm = 0.

We turn to the description of the forces:

• the motion of immune cells is driven by chemotaxis, defined through a
common potential Φ, activated by the tumor. We have

−∇x · (DΦ∇xΦ) = ρn

(
φn −

1

|Ω|

∫
φn dx

)
, (12)

endowed with Neumann boundary conditions. The chemotactic coeffi-
cients χa, χp are positive constants with the appropriate dimension.
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• the constituent labelled by j is subjected to drag forces exerted by the
other constituents

dragj = ρjφj
∑
` 6=j

λj`φ`(V` − Vj),

where the coefficients λj` are homogeneous to the inverse of a time.

• the co-occupancy of the domain by several constituents induce interfa-
cial forces, orthogonal to the level curve of the volume fraction, namely
ρjΠ∇φj.

• the momentum supply associated to the mass exchanges ΓjVj.

Summing up these contributions yields

Fj = ΓjVj + dragj + ρjΠ∇φj + ρaφaχa∇xΦ + ρpφpχp∇xΦ.

By using the identity div(φjΠI) = ∇(φjΠ) = Π∇φj + φj∇Π, we arrive at

−$j∆xVj + ρjφj∇xΠ + ρjΠ∇xφj + ρjφj∇xPj + ρjPj∇xφj = ΓjVj + dragj

+ρjΠ∇xφj + ρaφaχa∇xΦ + ρpφpχp∇xΦ,

and then
−$j∆xVj + ρjφj∇xΠ = ΓjVj + dragj + Fj,

where all terms in this relation are homogeneous to mass
length2time2

. In this mo-
mentum balance, the force terms are given by

Fn = −ρn∇x(φnP), Fm = 0,
Fa = ρa(φaχa∇xΦ−Da∇xφa), Fp = ρp(φpχp∇xΦ−Dp∇xφp).

The model can be simplified by

• neglecting all drag terms but with the environment,

• neglecting a part or all the viscous terms so that momentum equations
reduce to force balance [19, 35],

• neglecting the contribution of the momentum associated to the mass
exchanges [47].

Based on such assumptions (with $a, $p, $n � $m) we get
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• For the tumor

ρnφnφmλnm(Vm − Vn)− ρn∇x(φnP) = ρnφn∇xΠ,

• For the antitumor immune cells

ρaφaφmλam(Vm − Va) + ρa(φaχa∇xΦ−Da∇xφa) = ρaφa∇xΠ,

• For the protumor immune cells

ρpφpφmλpm(Vm − Vp) + ρp(φpχp∇xΦ−Dp∇xφp) = ρpφp∇xΠ,

• For the environment

−$m∆xVm+ρmφm∇xΠ = ρmφm(φnλnm(Vn−Vm)+φaλam(Va−Vm)+φpλpm(Vp−Vm)).

We divide by the mass densities and we sum up to obtain

−$m

ρm
∆xVm+∇xΠ = −∇x(φnP)+(φaχa∇xΦ−Da∇xφa)+(φpχp∇xΦ−Dp∇xφp),

and the other velocities are deduced form (Vm,Π) by

Vn = Vm −
1

φmλnm
(∇xΠ +∇x(φnP)),

Va = Vm −
1

φmλam

(
∇xΠ− χa∇xΦ +

Da

φa
∇xφa

)
,

Vp = Vm −
1

φmλpm

(
∇xΠ− χp∇xΦ +

Dp

φp
∇xφp

)
.

In other words, the mass fluxes read

Jn = ρnφn

(
Vm −

1

φmλnm
∇xΠ

)
− ρn
φmλnm

∇x(φnP)

Ja = ρaφa

(
Vm −

1

φmλam
(∇xΠ− χa∇xΦ)

)
− ρa
φmλam

Da∇xφa,

Jp = ρpφp

(
Vm −

1

φmλpm
(∇xΠ− χp∇xΦ)

)
− ρp
φmλpm

Dp∇xφp,

which make convection and diffusion effects appear. In particular, it can be
convenient to rewrite the homeostatic pressure gradient as follows

∇x(φnP) = (P(φn)+φnP
′(φn))∇xφn = ∇xQ(φn), Q′(z) = zP ′(z)+P(z).
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The system is closed by coming back to the saturation constraint (4) which
becomes

∇x · (φnVn + φaVa + φpVp + φmVm) =
Γa
ρa

+
Γp
ρp

+
Γn
ρn

+
Γm
ρm

= ∇x ·
(
Vm −

( φn
φmλnm

+
φa

φmλam
+

φp
φmλpm

)
∇xΠ−

∇x(φnP)

φmλnm

+
( φaχa
φmλam

+
φpχp
φmλpm

)
∇xΦ−

Da

φmλam
∇xφa −

Dp

φmλpm
∇xφp

)
.

Note the structure of the Stokes-like equation for (Vm,Π)(
−$m

ρm
∆x ∇x

∇x· −∇x · (α∇x)

)(
Vm
Π

)
= RHS

with α positively valued. As for the usual Stokes problem, the pressure is
defined up to a constant. Accordingly, when multiplying the LHS by (Vm,Π),
we get (neglecting boundary terms)

$m

ρm

∫
|∇Vm|2 dx−

∫
Π∇x · Vm dx+

∫
∇x · VmΠ dx+

∫
α|∇xΠ|2 dx

=
$m

ρm

∫
|∇Vm|2 dx+

∫
α|∇xΠ|2 dx

which is a good indication for well posedness of the linearized problem. We
also remark that the healthy state φm = 1, φa = φp = φn = 0 with (Vm,Π)
solution of the standard Stokes equation is solution of the system.

2.4. Boundary conditions

We expect that the tumor, and thus the anti- and protumor activities,
are located far from the boundaries of the domain and do not substantially
interact with the external domains. Bearing in mind the convection-diffusion
nature of the corresponding mass fluxes, it thus makes sense to assume

• either the homogeneous Dirichlet boundary conditions for these volume
fractions:

φn, φa, φp
∣∣
∂Ω

= 0. (13)

• or the zero-flux conditions

(Jn, Ja, Jp) · νx
∣∣
∂Ω

= 0. (14)
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It is also possible to mix these conditions, depending on the considered
type of cells. The Dirichlet condition (13) is certainly relevant for the
tumor cells, which can be supposed located far from the boundaries of
the computational domain, but it might be questionable for the immune
cells: biologically, the spatial distribution of the source of immune cells
and the boundary conditions can be related to the type of cytotoxic
cells considered in the modeling. Indeed, the immune response com-
bines different type of cells, typically NK cells and T cells, which here
are all considered as making a single species, described by the volume
fraction φa (and φp). On the one hand, NK cells are patrolling in the
body, their source could be assumed to be homogeneously distributed
and (14) makes sense for such cells. On the other hand, T cells need
to be activated by an efficient priming process which occurs in the
draining lymph nodes; their sources are therefore non-homogeneously
distributed and (13) is relevant for such cells, meaning that the immune
cells far from the tumor are in their naive state. We refer the reader
to [6] for further comment on the influence of the space organization
of the sources of immune cells. We made computations with the two
types of boundary conditions and the presented conclusions are not
substantially impacted by the choice of the boundary condition for the
immune cells.

The boundary conditions for φm and Vm are more intricate and should be
consistent with (5). We distinguish the design of the boundary condition,
depending whether we use (13) or (14). Assuming (13), we can impose that
the tangential velocity vanishes

Vm · τx
∣∣
∂Ω

= 0,

and for the normal coordinates, we remind the reader that

(φnVn + φaVa + φpVp + φmVm) · νx
= Vm · νx −

( φn
φmλnm

+
φa

φmλam
+

φp
φmλpm

)
∇xΠ · νx −

1

φmλnm
∇x(φnP) · νx

+
( φaχa
φmλam

+
φpχp
φmλpm

)
∇xΦ · νx −

Da

φmλam
∇xφa · νx −

Dp

φmλpm
∇xφp · νx

= Vm · νx −
1

φm

(
1

λnm
∇xQ +

Da

λam
∇xφa +

Dp

λpm
∇xφp

)
· νx

where
Q′(z) = zP ′(z) + P(z).
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Bearing in mind that φm = 1− φa− φp− φn = 1 on ∂Ω due to (13), we thus
decide to impose on ∂Ω

Vm·νx =
( 1

λnm
∇xQ+

Da

λam
∇xφa+

Dp

λpm
∇xφp

)
·νx+

1

|∂Ω|

∫
Ω

(Γa
ρa

+
Γp
ρp

+
Γn
ρn

+
Γm
ρm

)
dx.

(15)
Assuming (14), we can use the following definition for the normal and

tangential components of the velocity field Vm

Vm · νx
∣∣
∂Ω

=
1

|∂Ω|

∫
Ω

(Γa
ρa

+
Γp
ρp

+
Γn
ρn

+
Γm
ρm

)
dx,

Vm · τx
∣∣
∂Ω

= 0.
(16)

Namely, we impose the constant flux which is compatible with the relation
(5).

2.5. One dimensional case

In order to guide the intuition and to assess the qualitative properties
of the model, we shall perform a series of numerical simulations, restricting
ourselves to the one-dimensional framework. Let us collect the equations in
this specific context. The unknowns are the volume fractions φn, φa, φp, φm,
the concentrations O, I, the chemotactic potential Φ, the velocity field Vm
and the hydrostatic pressure Π.

The mass balance equations for φn, φa, φp, φm read

∂t(ρnφn) + ∂x

(
ρnφn

(
Vm −

∂xΠ

λnmφm

))
− ∂x

(ρnQ′(φn)

λnmφm
∂xφn

)
=
ρnφn
τn

(Υ(P, O, φp)− Aaφa),

∂t(ρaφa) + ∂x

(
ρaφa

(
Vm −

∂xΠ

λamφm
+

χa
λamφm

∂xΦ
))
− ∂x

( ρaDa

λamφm
∂xφa

)
= ρag

(∫
ρnφn dx

)
Sa − ρaφa

(
γa + kIaI +

φp
τap

)
,

∂t(ρpφp) + ∂x

(
ρpφp

(
Vm −

∂xΠ

λpmφm
+

χp
λpmφm

∂xΦ
))
− ∂x

( ρpDp

λpmφm
∂xφp

)
= kIpIρpSp + ρaφakIaI − γpρpφp,

∂t(ρmφm) + ∂x(ρmφmVm)

= γaρaφa + γpρpφp +
ρaφaφp
τap

+
ρn
τn
φnφa +

ρn
τn
φn[Υ]− − ρmφmf(I),

(Full)
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together with the constraint

φn + φa + φp + φm = 1.

Here, we set

Υ(P, O, φp) = k+O[O −O∗]+(1 + φp)−
(
k−O[O −O∗]− +

P

p∗

)
.

This set of equations will be referred to as the “Full” model, in contrast with
reduced models where some effects and couplings will be neglected. The
equations for the oxygen-nutrient concentration, chemotaxis potential, and
protumor cytokine signal read

∂x (OχO∂xφn)− ∂x(DO∂xO) = SO −O(rnρnφn + raρaφa + rpρpφp + rmρmφm)
O
∣∣
x=0,L

= Obd,

−∂x(DΦ∂xΦ) = ρn

(
φn −

1

|Ω|

∫
φn dx

)
,

∂xΦ
∣∣
x=0,L

= 0,
d

dt
I = ψ(φn, φm)− I

τ
.

(17)
Finally, the velocity Vm and pressure Π satisfy

−$m

ρm
∂2
xxVm + ∂xΠ = −∂x(φnP) + (φaχa∂xΦ−Da∂xφa) + (φpχp∂xΦ−Dp∂xφp),

∂x

(
Vm −

( φn
φmλnm

+
φa

φmλam
+

φp
φmλpm

)
∂xΠ−

1

φmλnm
∂x(φnP)

+
( φaχa
φmλam

+
φpχp
φmλpm

)
∂xΦ−

Da

φmλam
∂xφa −

Dp

φmλpm
∂xφp

)
=

Γa
ρa

+
Γp
ρp

+
Γn
ρn

+
Γm
ρm

.

(18)
The system is completed with the following boundary conditions: we impose
the Dirichlet conditions

φa, φp, φn
∣∣
x=0,L

= 0, φm
∣∣
x=0,L

= 1,

together with

Vmνx
∣∣
x=0,L

= +

∫ L

0

(Γa
ρa

+
Γp
ρp

+
Γn
ρn

+
Γm
ρm

)
dx

(with the convention ν0 = −1, νL = +1).
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3. Numerical investigations: reduced models and role of the pa-
rameters

We are going to investigate numerically the proposed system of equations.
It is worthwhile to make a hierarchy of models appear, with the freedom to
disregard a part of the phenomena. The interest of this approach is two-fold.
On the one hand, these reduced equations can be relevant for describing
different stages of the tumor evolution. On the other hand, it will permit
us to discuss more clearly the role and influence of the different modeling
assumptions.

The numerical treatment of such a complicated system of partial dif-
ferential equations raises several delicate issues. In particular, one should
pay attention to preserve the positivity of the volume fractions and concen-
trations, which requires to identify suitable stability conditions. Next, the
constraint (3) has several formulations and consequences, which are not ob-
viously conserved when discretizing the equations. Finally, the Stokes-like
system for the pair (Vm,Π) has a structure which deserves a specific treat-
ment. These issues will be analyzed elsewhere [51]; they definitely require
the design of a dedicated scheme, see also the attempt in [9].

For the simulations, we restrict to the one-dimensional framework: the
computational domain is the slab [−1.5, 1.5]. Table 1 collects the definition
of the unknowns. Otherwise explicitly stated, the simulations are performed
with the parameters collected in Table 2. We start with a small tumor located
at the center of the computational domain, namely the initial volume fraction
of tumor cells is given by

φn(0, x) = 0.1× exp−40x2

. (19)

The numerical parameters have been chosen so that positivity of the un-
knowns and numerical convergence have been fairly observed; namely we
have set δt = 10−3, h = 0.015.

Focusing on the one dimensional framework is only a step towards more
ambitious and realistic simulations. The advantage is to have a simple frame-
work, where the code development is not too demanding and many simula-
tions are affordable, in order to push forward the analysis of the behavior of
the model and the role of the parameters. This is a preliminary, but essen-
tial, step before working on 2D or starting a sensitivity analysis concentrated
on a few key parameters. Similarly, we assign quite arbitrary and academic
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Variable Description
φn volume fraction of tumor cells
φa volume fraction of antitumor immune cells
φp volume fraction of protumor immune cells
φm volume fraction of the environment
I cytokine concentration
O concentration of oxygen/nutrient
Φ chemotactic potential for immune cells

Table 1: Definition of the unknowns

values of the parameters, which are often not accessible to experiments3: our
goal here is rather to assess qualitatively their relative influence, more than
claiming quantitative conclusions. The parameters are chosen in order to
explore on numerical grounds the consequences of the modeling assumptions
and to identify what are the main drivers of the tumor growth, and what
effects could be activated to boost efficiently the immune response.

We are going to discuss reduced models of variable complexity in order
to clarify on numerical grounds the role of the modeling assumptions and
parameters. In order to ease the identification of the tested models, we shall
use acronyms, recapped in Table 3:

• The (T) model neglects all interactions and consists in a mere scalar
diffusion-reaction equation for the tumor cells. We will discuss the
influence of the exponent ν in the homeostatic pressure law in shaping
propagation fronts.

• The (T.A.) model restricts to the coupling between the tumor and the
antitumor immune response, in a given environment.

• The (T.E.O.) model focuses on the interaction between the tumor
and the environment, accounting for the oxygen and nutrient supply.
In particular, we discuss how the necrotic/proliferation thresholds, the
localization of the oxygen and nutrient sources and the attracting ca-
pabilities of the tumor cells shape the tumor development.

3An important difficulty relies on the lack of the time evolution of the data on the
TME, for a given individual, which makes identification methods inoperative
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Variable Description Value
φn(0, x) initial condition for the volume fraction of tumor cells Eq. (19)
φa(0, x) initial condition for the volume fraction of antitumor immune cells 0
φp(0, x) initial condition for the volume fraction of protumor immune cells 0
I(0, x) initial condition for the cytokine concentration 0
ρn mass density of tumor cells 1
ρa mass density of antitumor immune cells 1
ρp mass density of protumor immune cells 1
ρm mass density of the environment 1
p∗ reference (homeostatic) pressure 1
φ∗ threshold for the tumor volume fraction (maximum packing density) .7
ν exponent for the packing (homeostatic) pressure 5–50
Da diffusion coefficient of antitumor immune cells 1/40
Dp diffusion coefficient of protumor immune cells 1/40
DΦ diffusion coefficient of the chemotactic signal 1
DO diffusion coefficient of the oxygen/nutrient .5
χa chemotactic coefficient of antitumor immune cells .864
χp chemotactic coefficient of protumor immune cells .864
χO chemotactic coefficient of oxygen concentration 1
γa death rate of the antitumor immune cells .18
γp death rate of the protumor immune cells .2
Aa strength of the antitumor immune cells on tumor cells 5
Sa source of antitumor immune cells 3
Sp source of protumor immune cells 3
SO source of oxygen/nutrient (20a)-(20c)
g0 activation rate of effector immune cells 1
O∗ hypoxia threshold for the oxygen concentration .1
O∗ tumor proliferation threshold for the oxygen concentration .3
k+O appropriate dimensionalizing constant of oxygen concentration 1
k−O appropriate dimensionalizing constant of oxygen concentration 1
rn consumption rate of oxygen/nutrient by tumor cells .3
ra consumption rate of oxygen/nutrient by antitumor immune cells .1
rp consumption rate of oxygen/nutrient by protumor immune cells .1
rm consumption rate of oxygen/nutrient by the environment .1
f∗ enhanced environment degradation rate due to CAF and cytokines 0-1
φnI,s

threshold related to the tumor volume fraction
for cytokine production 0

φmI,s
threshold related to the environment volume fraction
for cytokine production 0

kIa conversion rate of antitumor immune cells into protumor cells 1
kIp rate of activation of naive cells into protumor immune cells by cytokines 1
τn relaxation time for tumor cells 1
τap relaxation time of the annihilation

of antitumor immune cells by the protumor immune cells 1
τ relaxation time for cytokines 1
λnm drag coefficient between tumor cells and the environment 1
λam drag coefficient between antitumor immune cells and the environment 1
λpm drag coefficient between protumor immune cells and the environment 1
$m dynamic viscosity of the environment .1

Table 2: Definitions and values of the parameters used for the simulations
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• The (T.A.E.O.) model couples the tumor growth, the antitumor im-
mune response, and the environment, showing how the competition for
space and resources organizes the TME.

• The (Full) model that additionally incorporates the protumor immune
cells and their actions promoting the tumor growth.

Models Description
(T) Tumor growth model

(T.A.) Tumor-antitumor immune cells model
(T.E.O.) Tumor-Environment and Oxygen model

(T.A.E.O.) Tumor-antitumor immune cells-Environment and Oxygen model
(Full) Tumor-anti and protumor immune cells-Environment

and Oxygen model

Table 3: Reduced models

3.1. Evolution of an immune-free small tumor volume fraction (model (T))

The simplest situation is obtained by completely neglecting the immune
response, which means imposing φa = φp = 0. Moreover, we suppose that
the tumor volume fraction is very small φn � φm ' 1. It turn, the velocity-
pressure pair (Vm,Π) can be assumed to satisfy the free Stokes equation,
which yields Vm = 0 and Π is constant. This set of assumptions might
correspond to the earliest stages of the tumor growth. In this regime we also
neglect the influence of the nutrient supply: it is supposed to be constant,
space homogeneous and sufficient to sustain tumor proliferation. The model
then reduces to a mere scalar equation

∂t(ρnφn)− ∂x
( ρnQ′(φn)

λnm(1− φn)
∂xφn

)
=
ρnφn
τn

Υ(P), φn
∣∣
x=0,L

= 0, (T)

where Υ(P) = 1 − P
p∗ , P(φn) = ν

ν−1

(
φn
φ∗

)ν−1

and Q′(φn) = ν2

ν−1

(
φn
φ∗

)ν−1

.

We recover the equation investigated in [45]. In particular, analyzing the
regime where ν tends to ∞ makes a connection appear with models based
on free boundary problems. We also refer to [23] for an extension of this
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analysis when nutrient are taken into account.

Figure 3 shows the evolution of the tumor volume fraction driven by
(T), set on the computational domain [−1.5, 1.5]. We discuss the role of
the exponent ν for the packing (homeostatic) pressure, by comparing the
profile of the solutions obtained with ν = 5 (panel (a)), ν = 20 (panel (b))
and ν = 50 (panel (c)) for the common threshold φ∗ = .7. We remind the
reader that the biomechanical mechanisms acting on the tumor growth are
embodied in these two parameters: they describe how the increase of the
tumor volume fraction acts on the motion and the proliferation of the tumor
cells. A further strain-stress analysis in the TME can be found in [44]. On
Fig. 3-(a), the value ν = 5 reflects a low stress on the tumor; we observe a
growth of the volume fraction of the tumor φn with a smooth front which
extends progressively as time increases, reaching saturation on the whole
domain [−1.5, 1.5] at t = 6. Fig. 3-(b), ν is moderately large (ν = 20), and
the stress exerted on the tumor becomes higher. The volume fraction of the
tumor grows and reaches the saturation threshold at the centre of the domain
quite rapidly compared to the previous case (ν = 5): at t = 4, a saturated
plateau has appeared. This saturation forms a steep front that propagates
into the computational domain. Fig. 3-(c), ν is large (ν = 50), and high
tumor cells concentrations appear more rapidly: at t = 2 the tumor volume
fraction φn is already close to the threshold φ∗ with a steep front. This steep
front reaches saturation at t = 4. However, the front propagates less rapidly
into the computational domain compared to the case ν = 20. Hence, the
choice of a higher ν leads to higher tumor cell concentrations with sharp
fronts. These observations are in line with the conclusions of [45].

3.2. Tumor cells subjected to the antitumor immune response in a passive
environment (model (T.A.))

We add to the previous model the action of the antitumor immune cells.
Protumoral immune activities are neglected (φp = 0) and we still assume
φn, φa � φm ' 1, so that the environment is supposed to be in a constant
homogeneous state. Similarly, the nutrient supply is considered as given.
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Figure 3: Simulation of the scalar equation (T): evolution of the tumor volume fraction
φn on a domain [−1.5, 1.5]. Profiles at times t = 2, 4, 6, 10, with several exponents for
the pressure law ν = 5 (a), ν = 20 (b) and ν = 50 (c). Choosing large ν’s leads to tumors
with a saturated volume fraction and the formation of a neat propagating front

Therefore, the dynamic is governed by the following coupled system for φn, φa

∂t(ρnφn)− ∂x
( ρn
λnm

Q′(φn)∂xφn

)
=
ρnφn
τn

(Υ(P)− Aaφa),

∂t(ρaφa) + ∂x

( χa
λam

ρaφa∂xΦ−
ρaDa

λam
∂xφa

)
= ρag

(∫
ρnφn dx

)
Sa − γaρaφa,

φn
∣∣
x=0,L

= 0, φa
∣∣
x=0,L

= 0.

(T.A.)
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We remind the reader that P = νp∗
ν−1

(
φn
φ∗

)ν−1

, Υ(P) = 1 − P
p∗

and Q′(z) =

zP ′(z) + P(z). The chemotaxis potential is defined by

−∂x(DΦ∂xΦ) = ρn

(
φn −

1

|Ω|

∫
φn dx

)
, ∂xΦ

∣∣
x=0,L

= 0.

Here, we consider only space homogeneous sources of immune cells (being
aware that space organization can be influential in shaping the immune re-
sponse [5]), while we will discuss the role of space inhomogeneities for nutri-
ent/oxygen. The evolution of the volume fractions of the tumor φn and of the
antitumor immune cells φa is plotted in Figure 4. The antitumor response
rapidly reduces the tumor volume fraction, which then forms two symmetric
peaks. These peaks are pushed towards the edges of the domain, which, in
turn, attract immune cells. Eventually, with some slight oscillations (see Fig-
ure 4), plateaus appear, with a non zero tumor volume fraction kept under
control by the immune cells. This indicates the ability of the model in re-
producing elimination/equilibrium phases. Here, the formation of peaks and
their displacement towards the boundaries is not limited since the interaction
with the environment is poorly described in the reduced model (T.A.).

3.3. Tumor-environment coupling and role of nutrient supply (model (T.E.O.))

We go back to the situation where the immune response is disregarded
(φa = φp = 0), but now we take into account the coupling with the envi-
ronment. On the one hand, we work with the two volume fractions φn and
φm = 1− φn, and the velocity-pressure pair (Vm,Π). On the other hand, we
take into account the oxygen/nutrient supply. Namely, we are dealing with
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Figure 4: Simulations of the coupled tumor-antitumor immune cells system model
(T.A.). Evolution of the tumor volume fraction φn (a-c) and the antitumor immune
cells volume fraction φa (d-f), represented at several times: t = 2, 4, 6, 10 (a,d),
t = 20, 30, 40, 50 (b,e), t = 60, 65, 70, 80 (c,f) with ν = 50. Space repartition at
time t = 10 (g), t = 50 (h) and t = 80 (i) of the tumor and immune cells. The tumor cells
are eliminated and pushed away by the action of the immune cells (mind that scale are
different as time evolves)

the following system:

∂t(ρnφn) + ∂x

(
ρnφn

(
Vm −

∂xΠ

λnm(1− φn)

))
− ∂x

( ρnQ′(φn)

λnm(1− φn)
∂xφn

)
=
ρnφn
τn

Υ(P, O),

−$m

ρm
∂2
xxVm + ∂xΠ + ∂x(φnP) = 0,

∂x

(
Vm −

φn∂xΠ + ∂x(φnP)

λnm(1− φn)

)
=
φn
τn

[Υ]+ −
(

1− ρn
ρm

)φn
τn

[Υ]−,

−∂x(DO∂xO) + ∂x (OχO∂xφn) = SO −O(rnρnφn + rmρm(1− φn)),

φn
∣∣
x=0,L

= 0, Vm · νx
∣∣
x=0,L

=

∫ L

0

(Γa
ρa

+
Γp
ρp

+
Γn
ρn

+
Γm
ρm

)
dx,

O
∣∣
x=0,L

= Obd.

(T.E.O.)

28



The functions P and Q are defined as before, and, in the right hand side,

Υ(P, O) = k+O[O −O∗]+ −
(
k−O[O −O∗]− +

P

p∗

)
.

In order to assess the influence of the source of the oxygen-nutrient supply,
we perform simulations with the source SO given by one of the following
formula:

homogeneous source: SO(x) =
1

3
, (20a)

inhomogeneous source centered at the hotbed of the tumor:

SO(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
, (20b)

inhomogeneous source centered far from the hotbed of the tumor:

SO(x) =
R(x)∫ L

0

R(x)dx

, (20c)

R(x) =
2∑
j=1

kj

σj
√

2π
exp

(
−1

2

(
x−mj

σj

)2
)
,

with k1, k2, σ, σ1, σ2 positive numbers and m1, m2 given locations in the
computational domain. For the simulations, we set σ1 = σ2 = 0.4, k1 = k2 =
1, m1 = −1, and m2 = +1. Note that these data are normalized so that
they provide the same total amount of nutrient. Therefore, we are going to
discuss the influence of

• the thresholds O∗ (necrotic threshold) and O∗ (proliferation threshold),
together with the role of the stress exerted on the tumor described by
the parameter ν;

• the ability of the tumor in attracting oxygen-nutrient supplies, embod-
ied into the strength of the parameter χO, and the role of the parameter
f∗ describing the degradation of the environment by cytokines;

• the location of the oxygen-nutrient sources compared to the initial lo-
cation of the tumor,
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In Figure 5, we compare two types of environment which are not very
favorable to the tumor development: we set O∗ = .8 (proliferation thresh-
old), χO = .5 (chemotactic coefficient) and the delocalized source (20c); we
represent both the tumor volume fraction (a, b, e, f, i, j) and the nutrients
concentration (c, d, g, h, k, l). Figures (a, c, e, g, i , k) correspond to a
moderately oxygenated environment, with necrotic threshold O∗ = 0, while
figures (b, d, f, h, j, l) correspond to a hypoxic environment with a positive
necrotic threshold O∗ = .6. In order to make the effects more visible, we
have multiplied for this simulation the initial volume fraction of tumor cells
(19) by a factor of 5: this leads to a higher tumor volume fraction. Moreover,
we make the exponent ν increase. On figures (a,b,c,d), ν = 5 corresponds
to a low stress on the tumor. The tumor volume fraction decreases due to
the combined effects of the homeostatic pressure, the diffusion and the lack
of oxygen and nutrients to sustain its development: the concentration O
remains below the proliferation threshold O∗. In the hypoxic environment,
this effect is even more sensitive since the concentration O is also below the
necrotic threshold O∗, despite the sensitive attraction exerted by the tumor.
This has to be compared to Figure 3-(a) where a constant supply boosts
the tumor development. Increasing ν (ν = 7 for figures (e, f, g, h)) damps
these effects. When ν is large (ν = 50 for figures (i, j, k, l)), the tumor
volume fraction becomes stationary. This is due to the fact that the home-
ostatic terms P takes very small values when φn is below the threshold φ∗,
so that the death term in the equation for φn almost vanishes. Note that
it might occur, in the hypoxic environment, see Figure (l), that the tumor
volume fraction becomes high enough to attract oxygen and nutrients above
the necrotic threshold at the center of the domain.

These effects are confirmed in Figure 6 which represents the evolution
of the total mass in these configurations (a, b), and for the initial volume
fraction of tumor cells (19) (c, d). In the latter case, the tumor volume
fraction is too low to attract oxygen and the tumor remains in a hypoxic
environment.

Next, we discuss how certain mechanisms can help the tumor in devel-
oping despite the environment is not favorable to its expansion, either by
attracting oxygen and nutrient (effect of the chemotactic coefficient χO) or
through the degradation of the environment by proteases/cytokines (effect
of the parameter f∗).

In Figure 7, we set O∗ = .8 (proliferation threshold), O∗ = .6 (necrotic
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Figure 5: Simulation of the coupled model (T.E.O.): profile of the tumor volume fraction
φn and the oxygen concentration O. Proliferation threshold O∗ = .8, χO = .5 and SO

given by (20c), (a-c-e-g-i-k): the case where necrotic threshold O∗ = 0, (b-d-f-h-j-l): the
case where necrotic threshold O∗ = .6. The initial data (19) is multiplied by 5. Figures
(a-b-c-d) correspond to the case ν = 5, (e-f-g-h) to ν = 7 and (i-j-k-l) to ν = 50

threshold), f∗ = 0 and SO is given by (20c). On figures (a, c, e), we have
χO = .5 and the tumor extincts due to a lack of supplies, the concentration
O being below the necrotic threshold on the whole domain. On figures (b,
d, f), we have χO = 3.4 which allows the tumor to attract oxygen-nutrient
towards the center of the domain; the oxygen concentration passes above the
proliferation threshold O∗ so that the tumor can grow (at t = 2), eventually
reaching saturation, and it expands, with the formation of a steep front
(at t = 10). The observations are confirmed by the velocity profiles on
the Figure 7-(e, f): the velocity field Vn vanishes in the situation of low
attractiveness while it reveals the tumor expansion towards the edges of the
domain when χO is larger. This example shows that the ability of the tumor
in developing access to nutrient and oxygen is a key feature of tumor growth
reproduced by the model.
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Figure 6: Simulation of the coupled model (T.E.O.), evolution of the total tumor mass
φn for several values of ν. Proliferation threshold O∗ = .8, χO = .5 and SO given by (20c);
(a-c): necrotic threshold O∗ = 0, (b-d): necrotic threshold O∗ = .6; (a-b): initial data
5×(19), (c-d): initial data (19)

Figure 8 illustrates that the degradation of the environment equally fos-
ters the development of the tumor, despite an environment lacking of oxygen
and nutrient supply. The parameters are the same as in Figure 7, with
χO = .5 on (a, c, e), and χO = 3.4 on (b, d, f), but now we have set f∗ = .1.
In Figure 8-(a, c, e) we see that the degradation of the environment by pro-
teases/cytokines leaves room for the tumor and the oxygen concentration
slightly overtakes the proliferation threshold in the center of the domain.
This effect is limited and the tumor stabilizes (from t = 4) because its at-
tractiveness χO is not high enough. The representation of the total mass
of the tumor in Figure 8-(e) shows that the tumor remains under control.
Figure 8-(b, d) has to be compared to Figure 7-(b, d): the saturation of
the tumor volume fraction holds more rapidly as it can be also seen on the
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Figure 7: Simulation of the coupled model (T.E.O.): profile of the tumor volume fraction
φn, the oxygen concentration O and velocity of tumor cells Vn. Proliferation threshold
O∗ = .8, necrotic threshold O∗ = .6, f∗ = 0 and SO given by (20c); (a-c-e): χO = .5
(controlled tumor), (b-d-f): χO = 3.4 (uncontrolled tumor); with a stress on tumor ν = 50.

evolution of the total tumor mass in (f).
Finally, in Figure 9, we consider different types of sources: (20c) in (a, d,

g, j), (20b) in (b, e, h, k) or (20a) in (c, f, i, l). We compare the case where
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Figure 8: Simulation of the coupled model (T.E.O.): profile of the tumor volume fraction
φn, the oxygen concentration O and time evolution of total tumor mass µn for different
values of χO. Proliferation threshold O∗ = .8, necrotic threshold O∗ = .6, f∗ = .1 and
SO given by (20c); (a-c-e): χO = .5 (controlled tumor), (b-d-f): χO = 3.4 (uncontrolled
tumor); with a stress on tumor ν = 50
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we neglect the effect of proteases/cytokines on the environment (f∗ = 0)
and the case where we consider environment degradation (f∗ = .1). We
can see that a source of nutrient close to the tumor provides much more
favorable conditions for the tumor to grow than sources situated a little far
away, for a given attraction capacity (χO = .5 on (a-f), or χO = 3.4 on
(g-l)). We also confirm the influence of the degradation of the environment:
this is sensitive for instance when comparing a homogeneous source, where
taking into account the degrading action of proteases/cytokines produces a
dramatic increase of the tumor mass, see Figure 9-(c). The worst situation is
illustrated in Figure 9-(j, k, l): the high chemotactic coefficient χO, combined
to the action of the cytokines, always leads to a growth of the tumor mass,
no matter where the source is located.
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Figure 9: Simulation of the coupled model (T.E.O.): time evolution of total tumor mass
µn and profile of oxygen concentration at time t = 10 for different choices of χO and SO.
Proliferation threshold O∗ = .8, necrotic threshold O∗ = .6. (a-d-g-j): inhomogeneous
delocalized source (20c), (b-e-h-k): inhomogeneous source located next to the original
tumor (20b), (c-f-i-l): homogeneous source (20a); (a) to (f): χO = .5, (g) to (l): χO = 3.4;
with a stress on tumor ν = 50

3.4. Antitumor immune response in a complex environment: equilibrium
phases (model (T.A.E.O.))

We now take into account the antitumor action of the immune system:
this corresponds to our goal to simulate the dynamics of “hot” tumors, char-
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acterized by an infiltration of the TME by immune cells. Therefore, the
model reads

∂t(ρnφn) + ∂x

(
ρnφn

(
Vm −

∂xΠ

λnmφm

))
− ∂x

(ρnQ′(φn)

λnmφm
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)
=
ρnφn
τn
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∣∣
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= Obd.

(T.A.E.O.)
Note that oxygen/nutrient consumption arises from tumor cells and antitu-
mor immune cells as well as the environment. Hence there is both a competi-
tion for space and a competition for resources. We consider an environment
where oxygen and nutrient are available, in order to assess whether or not the
antitumor response is able to control the tumor growth in such a favorable
situation. For the simulation, we have chosen a substantially higher uptake
from the tumor cells, since they are known to be highly glycolytic [36], due
to their proliferation activity.

We are also going to discuss the effect of the degradation of the environ-
ment, which can be an important ingredient in the quest for space.

We start by assuming f∗ = 0 (no degradation). Results are displayed in
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Figure 10, with χO = .5 (low chemotactic coefficient, (a, c, e)) and χO = 3.4
(high chemotactic coefficient, (b, d, f)). The tumor is rapidly eliminated,
especially for delocalized (20c) and homogeneous (20a) sources. This is co-
herent with Figure 9-(a, b, c): in such conditions, the growth of the tumor
is already difficult without immune response. With a high chemotactic coef-
ficient, we observe an important elimination of the tumor cells in the center
of the domain, when the source itself is centered, see Figure 10-(b, d, f).
This is because the strength of the antitumor immune cells on the tumor is
quite high (Aa = 5) and the intensity of the antitumor source is also high
(Sa = 3). This situation, where the tumor is thus controlled has to be com-
pared to Figure 9-(j, k, l) where, in absence of antitumor action, the tumor
was able to escape.

In Figure 11, we add the action of proteases/cytokines on the environment
(f∗ = .1). In the tested configuration, it does not modify substantially the
evolution of the total tumor mass, which is eventually eliminated (whatever
the value of χO), showing the strength of the antitumor immune response
is a dominant parameter. The profile for the oxygen/nutrient concentration
does not significantly differ from Figure 10. The main effect however is to
impact the space repartition of the tumor, which is more localized, with
more peaked values of the volume fraction when the proteases/cytokines are
activated. The degradation of the environment produces sharper profiles of
the tumor concentration.

It is also worth investigating the large time behavior of the system, to
study whether the tumor is completely eliminated or remains in a residual
equilibrium state. This is the object of Figure 12 and 13, the latter taking into
account the possible degradation of the environment by proteases/cytokines.
In cases where the source of oxygen is localized in the vicinity of the tumor,
such an equilibrium forms. But for delocalized and homogeneous sources,
the nutrient supply is too low to sustain the presence of tumor cells and all
populations (tumor and immune cells) eventually disappear.

3.5. Simulation of the full model: from equilibrium to escape

Eventually, we perform simulation of the full model defined in Section 2.5,
with both anti- and protumor immune responses. As in [5], we see that the
intensity of the source of the antitumor immune cells is critical to determine
whether the tumor is controlled or escape.

We compare in Figure 14 the behavior obtained for several values of a
(homogeneous) source of antitumor immune cells Sa = 3, Sa = 3/10(a, c,
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Figure 10: Simulation of the coupled model (T.A.E.O.): profile of the tumor and
antitumor cells volume fraction φn and φa, the oxygen concentration O and time evolution
of the total mass of the tumor µn and antitumor cells µa for different choices of χO and
SO. Proliferation threshold O∗ = .8, necrotic threshold O∗ = .6, f∗ = 0. We make the
chemotactic coefficient χO vary: (a-c-e) χO = .5, (b-d-f): χO = 3.4; with ν = 50, Aa = 5,
rn = .9, rm = ra = rn/10. Evolution in short time (t = 10)
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Figure 11: Simulation of the coupled model (T.A.E.O.): profile of the tumor and
antitumor cells volume fraction φn and φa and time evolution of the total mass of the
tumor µn and antitumor cells µa for different choices of χO and SO with positive f∗ = .1.
Proliferation threshold O∗ = .8, necrotic threshold O∗ = .6. We make the chemotactic
coefficient χO vary : (a-c): χO = .5, (b-d) χO = 3.4; with ν = 50, Aa = 5, rn = .9,
rm = ra = rn/10. Evolution in short time (t = 10)

e, g) and Sa = 3, Sa = 3/1000 (b, d, f, h), all the other parameters be-
ing unchanged. With Sa = 3, the tumor is controlled by the antitumor
immune response, despite the presence of protumor immune cells which are
not sufficient to help the tumor to grow. When Sa = 3/10, see Figure 14-
(a, c, e, g), we observe a higher volume fraction of protumor immune cells,
and thus a higher tumor volume fraction too, in the transient states. When
Sa = 3/1000, see Figure 14-(b, d, f, h) (mind the change of scale for the
tumor volume fraction), we observe that the tumor escapes: its volume frac-
tion reaches saturation and forms a steep front. Note that both anti- and
protumor immune cells remain concentrated at the center of the domain.

3.6. How changes of key parameters select tumor-immune system scenario

Having set up through numerical experiments the role of the parameters
of the model, we now wish to provide a more in-depth discussion on the
selection between different scenarios. To this end, we limit the discussion
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Figure 12: Simulation of the coupled model (T.A.E.O.): profile of the tumor and
antitumor cells volume fraction φn and φa and time evolution of the total mass of the
tumor µn and antitumor cells µa for different choices of χO and SO. Proliferation threshold
O∗ = .8, necrotic threshold O∗ = .6, f∗ = 0. We make the chemotactic coefficient χO

vary: (a-c) χO = .5, (b-d): χO = 3.4; with ν = 50, Aa = 5, rn = .9, rm = ra = rn/10.
Evolution in long time (t = 100)

to the modulation of two parameters only: the chemotactic coefficient χO,
that is the ability of tumor cells to attract nutrients, and the amplitude of
the source Sa of antitumor immune cells, This choice is motivated by our
preliminary investigations that confirm the intuition that these parameters
are likely the most influential in driving efficient control of tumor growth.
It is also consistent with clinical observations; indeed, the mode of action of
certain treatments can be translated as a modification of these parameters.
For instance, increasing the concentration of some interleukins (like IL-2) is
a strategy used to strengthen the immune response by stimulating the pro-
liferation of effector cells, a strategy efficient but with a scope limited by
a significant toxicity. Therapeutic vaccination or administration of immune
checkpoint inhibitors are other ways to stimulate the antitumor immune re-
sponse. These actions are reflected in the equations by a strengthening of
the terms of activation and recruitment of effector immune cells. Similarly,
the reduction of the nutrients attraction capability of tumor cells can also
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Figure 13: Simulation of the coupled model (T.A.E.O.): profile of the tumor and
antitumor cells volume fraction φn and φa and time evolution of the total mass of the
tumor µn and antitumor cells µa for different choices of χO and SO with positive f∗ = .1.
Proliferation threshold O∗ = .8, necrotic threshold O∗ = .6. We make the chemotactic
coefficient χO vary: (a-c): χO = .5, (b-d): χO = 3.4; with ν = 50, Aa = 5, rn = .9,
rm = ra = rn/10. Evolution in long time (t = 100)

be the result of treatments, like anti-VEGF that reduce angiogenesis at the
expense of tumor growth.

To discuss parameters influence, we construct “heat maps” in the (χO, Sa)-
plane according to the mean value of the total tumor mass µn, see (6), on a
given observation time T , chosen sufficiently large

1

T

∫ T

0

µn(t) dt.

This criterion allows us to discriminate between scenario where the tumor
growth is damped by the immune response, or where the tumor proliferates.
Nevertheless, while the obtained representations are quite suggestive, a finer
analysis of the time evolution of the tumor mass reveals that oscillations can
occur, with possibly quite high peaks between relapse episodes (see Figures
16 to 25). In order to evaluate the immune response, we similarly define
µa =

∫
ρaφa dx and we will construct heat map of the antitumor reaction
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from the mean value 1
T

∫ T
0
µa(t) dt.

We start with the model (T.A.E.O.). Simulations are performed with
SO given by (20b) and O∗ = .8, O∗ = .6, f∗ = 0, ν = 50, Aa = 5, rn = .9,
rm = ra = rn/10. Of course, the choice of the final time T is not harmless:
Figures 15 are obtained for T = 100 (a) and T = 200 (b), and we do not see
significant difference at this level. According to the intuition, low Sa and large
χO are favorable to the tumor; increasing Sa or reducing χO reduce the mean
tumor mass. Next, we make more details appear by zooming on different
regions of the parameters. Spots on the heat maps indicate parameters for
which the time evolution of the tumor mass and antitumor immune cells mass
are displayed; the selection represents quite typical graphs in the considered
domain. In Figure 16, we focus on .001 ≤ Sa ≤ .1 and .5 ≤ χO ≤ 2. The
extreme case, Figure 16-(b), can be considered as an escape phase, where the
tumor has fully developed, since with these parameters the final situation is
very close to the one obtained without immune response (model (T.E.O.),
not represented: a stationary state is sharply reached with a final value
µn ' 1.2). In contrast, Figure 16-(d) corresponds to an equilibrium phase
where the tumor mass is maintained at a low level. In Figure 17, we increase
the range .5 ≤ χO ≤ 2: for low values of Sa, of course, we still observe a fully
developed tumor in Figure 17-(b). For higher values of Sa, like in Figure 17,
the tumor is still controlled by the immune response, but there are oscillations
of significant amplitude, slightly damped. In Figures 18 and 19 the range for
Sa is quite high and we observe an equilibrium phase, possibly with small
amplitude oscillations of the tumor mass.

Figure 20 shows the impact of the degradation of the environment with
f∗ 6= 0: escape holds faster and equilibrium can be perturbed, either reaching
a higher final mass or by making peaked oscillations appear.

Next, we turn to the full model where protumor reactions are taken into
account. We keep the parameters as above, except f∗ = 1 in order to inves-
tigate the most favorable environment to the tumor and we have set Sp = 3
which means a significant activation of protumor immune cells. At first
sight, the global landscape is similar to the one obtained with (T.A.E.O.):
see Figure 21 at the final time T = 100 or T = 200; but we see a less effective
effect of the increase of Sa, and a significantly higher presence of antitumor
immune cells. In fact, the details of the time evolution of the tumor mass
clearly reveal the dramatic effect of the protumor mechanisms, with marked
oscillations, even in situations which were controlled with (T.A.E.O.), and
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alternance of high peaks, the amplitude of which might increase, and relapse,
with quite short periods: see Figures 22-25. These examples indicate that it
is likely important to design treatments that target the protumor effects of
the immune response, which can be obtained by blocking the MDSC (anti-
CXCR2, cMet) and Tregs (anti-CD25) infiltration or by acting on cytokine
signals.

4. Conclusion

We have set up a hydrodynamic model, inspired from mixture theory,
describing the complex interactions in the TME, between tumor cells, im-
mune cells, and the surrounding tissues. Beyond the elimination or enhanced
proliferation mechanisms by the immune system, the equations describe the
competition for space and the access to nutrient and oxygen. The model is
challenged on numerical grounds, restricting to a simple one-dimensional ge-
ometry. The simulations bring out several key mechanisms, that are critical
in shaping the tumor development and the efficacy of the immune response.
The simplified framework discussed here already shows relevant effects re-
lated to the space organization of the TME, motivating a modeling based
on PDEs. This preliminary attempt opens perspectives for a thorough dis-
cussion based on clinical data obtained by modern imagery techniques, that
provide a quite precise description, at a given time, of the TME.

For the time being, the objectives of this work remain essentially qual-
itative rather than quantitative. An important issue is the calibration of
the numerous parameters of the equations, which faces the fact that, while
quite precise images of the TME are available, the temporal evolution is
lacking. For this reason, we think that it is more important to extract the
main drivers of the observed phenomena, with a reduced set of equations and
parameters, than to incorporate further terms and species in the equations.
Nevertheless, the study can shed some light on the key factors of the tumor
growth and the immune response. It is indeed remarkable that the model
reproduces behaviors coherent with the 3E’s observations, while such trend
have not been built-in a priori. Moreover, in the spirit of [5], it will be pos-
sible to identify on numerical grounds the role of treatments, how the doses,
time of administration and combination impact the tumor development, for
instance by reactivating hyporesponsive antitumor immune cells (by using
Immune Checkpoint Inhibitors like anti-PD-1 or anti-CTLA4 antibodies) or
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reducing the recruitment of protumor cells (by blocking Tregs infiltration
with anti-CD25 or targeting MDSCs).

Appendix A. Numerical methods

The discretization of the equations is based on the Finite Volume frame-
work, which is intended to mimic at the discrete level the balance relations
over a fixed domain that lead to the derivation of the fluid mechanics equa-
tions. We are going to use staggered discretizations where the discrete un-
knowns can be stored at different locations, depending on their physical
meaning. This allows us to handle appropriately the incompressibility con-
straint, in the spirit of the MAC scheme [33]. The scheme we present here is
inspired from [20, 46] and it is implemented in Python.

We introduce the following tessellations of the computational domain
[−L,L], see Figure A.26:

• we consider a set of (N+1) points x0 = −L < x1 < · · · < xN−1 < xN =
L. Let Mi+ 1

2
= [xi, xi+1], i ∈ {0, · · · , N − 1}, stand for the associated

cells. It defines the primal mesh.

• let xi+ 1
2

= (xi+xi+1)
2

, i ∈ {0, N − 1} be the centers of the mesh. These

points define the dual mesh made of the cells Mi = [xi− 1
2
, xi+ 1

2
], i ∈

{1, · · · , N − 1};

• the mesh sizes are thus given by

hi+ 1
2

= xi+1 − xi, i ∈ {0, ..., N − 1},

hi =
hi− 1

2
+ hi+ 1

2

2
= xi+ 1

2
− xi− 1

2
, i ∈ {1, ..., N − 1},

(with the specific definition for the end-mesh: h0 = 1
2
h 1

2
and hN =

1
2
hN− 1

2
).

Volume fractions and concentrations satisfy reaction-convection-diffusion equa-
tion that generically read

∂tX + ∂xJ = R.

45



The discrete volume fractions and concentrations are stored on the primal
mesh: given the time step δt, the Xi+ 1

2
’s are updated by

Xn+1
i+ 1

2

= Xn
i+ 1

2
− δt

hi+ 1
2

(Ji+1 −Ji) + δtRi+ 1
2
,

for i ∈ {0..., N − 1}. The reaction term is a function of the unknowns X;
hence we simply use Ri+ 1

2
= R(Xn

i+ 1
2

) and it remains to define the numerical

fluxes Ji,Ji+1 at the interfaces of the cell Mi+ 1
2
. To this end, velocity fields

are stored on the dual grid, and the corresponding convection fluxes are based
on the upwinding principles. Therefore, the convection flux J c = ηX at the
interface xi is approached by

J c
i = −[ηni ]−X

n+1
i+ 1

2

+ [ηni ]+X
n+1
i− 1

2

, [η]± = max(0,±η) ≥ 0.

The diffusion flux J d = −ν∂xX at the interface xi is approached by using
a centered approximation for the derivative; namely, we get

J d
i = −νni

Xn+1
i+ 1

2

−Xn=1
i− 1

2

hi
.

For the sake of readability, from now on we focus on the (T.E.O.) model
for which the coupling is simpler. The adaptation to the more complete
systems is straightforward. The diffusion coefficient ν depends non linearly
on the unknown X, and we set

νni = ν(Xn
i ), Xn

i =
Xn
i+ 1

2

+Xn
i− 1

2

2
.

For stability reasons, we use a semi-implicit scheme: the field X is updated
by solving a linear system, which has a reasonable numerical cost, and we can
use larger time steps. Note that the preservation of the positivity of the Xi+ 1

2

might impact the choice of the time step due to the explicit discretization of
the reaction term.

We turn to the discretization of the system for the velocity-pressure pair
(V , Π), which reads 

−$∂2
xxV + ∂xΠ = F1,

∂xV − ∂x (ψ∂xΠ) = F2.
(A.1)
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The system is completed by the boundary conditions

∂xΠ(t, 0) = ∂xΠ(t, L) = 0,

V (t, 0) = −V (t, L) =
1

2

∫ L

0

R(t, x)dx.

The coefficients and source terms of the system are defined from the volume
fractions:

ψ = ψ(X), R = R(X),
F1 = −∂xQ(X), F2 = R(X) + ∂x (ν(X)∂xX) .

The discrete pressure is stored on the primal mesh, while the discrete velocity,
and thus the pressure gradient, are stored on the dual mesh. In turn, the
convection field η = V − 1

λ(1−X)
∂xΠ is approached on the interface xi by

ηni = V n
i −

Πn
i+ 1

2

− Πn
i+ 1

2

λ(1−Xn
i )hi

.

Finally, the discrete form of (A.1) becomes

−$

(
V n
i+1 − V n

i

hi+ 1
2

−
V n
i − V n

i−1

hi− 1
2

)
+ Πi+ 1

2
− Πi− 1

2
= hiF1,i,

V n
i+1 − V n

i −

(
ψi+1

Πi+ 3
2
− Πi+ 1

2

hi+1

− ψi
Πi+ 1

2
− Πi− 1

2

hi

)
= hi+ 1

2
F2,i+ 1

2
.

Here, we have set ψi =
ψ
i+ 1

2
+ψ

i− 1
2

2
and the system is endowed with the bound-

ary conditions ψ− 1
2

= 0 = ψN+ 1
2
, Π− 1

2
= Π 1

2
, ΠN− 1

2
= ΠN+ 1

2
. The source

terms are defined by

F1,i = −
Q(Xn

i+ 1
2

)−Q(Xn
i− 1

2

)

hi
,

F2,i+ 1
2

= R(Xn
i+ 1

2

) +
1

hi+ 1
2

(
νni+1

Xn
i+ 3

2

−Xn
i+ 1

2

hi+1

− νni
Xn
i+ 1

2

−Xn
i− 1

2

hi

)
.

The boundary conditions for the velocity is defined by using a suitable
quadrature formula (rectangle or trapezoidal rule) for approaching the in-
tegral of the reaction term.
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As said above, the numerical strategy is adapted from [20, 46]. However,
the scheme is based on a specific formulation of the continuous system, and
it is not clear that it preserves the equivalent expressions of the incompress-
ibility constraints. For further details on this issue and on more elaborate
versions of the scheme, we refer the reader to [9, 51].

Appendix B. Dimension of the quantities of interest

Complementing Table 1 and Table 2, we provide below the dimensions of
the quantities involved in the equations, even if the simulations are performed
in dimensionless form.
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Figure 14: Simulation of the model (Full): profile of the tumor, anti- and protumor
cells volume fraction φn, φa and φp, the oxygen concentration O and time evolution of
the total mass of the tumor µn and antitumor cells µa for different values of Sa. (a-c-e-g):
Sa = 3 and Sa = 3/10, (b-d-f-h): Sa = 3 and Sa = 3/1000, with Sp = 3, χO = 1, f∗ = 1,
and τ = 1/1000 (relaxation time for cytokines). The parameters of the simulations are:
O∗ = .8 (proliferation threshold), O∗ = .6 (necrotic threshold), and SO given by (20b),
ν = 50, Aa = 5, rn = .9, rm = ra = rp = rn/10
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Figure 15: Heat map of the mean total tumor mass (a, b) and mean total mass of
antitumor immune cells (c, d) over time, with final time T = 100 (a,c) or T = 200 (b,d),
for the coupled model (T.A.E.O.), depending on the chemotactic coefficient and the
amplitude of the source of antitumor immune cells (χO, Sa). The time evolution of the
marked areas in (b-d) will be displayed below.
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Figure 16: Heat map for the coupled model (T.A.E.O.). In (a) and (c): zoom on the
domain χO ∈ [0.5; 2], Sa ∈ [10−3; 0.1] from Figures 15.b) and 15.d). In (b): time evolution
of the total mass of tumor and antitumor immune cells µn and µa for (χO;Sa) = (2; 10−3),
point spotted in (a), an example of escape, and in (d): (χO;Sa) = (1.5; 0.02), point spotted
in (c), an example of equilibrium with residual tumor
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Figure 17: Heat map for the coupled model (T.A.E.O.). In (a) and (c): zoom on the
domain χO ∈ [2; 3.5], Sa ∈ [10−3; 0.1] from Figures 15.b) and 15.d). In (b): time evolution
of the total mass of tumor and antitumor immune cells µn and µa for (χO;Sa) = (3; 10−3),
point spotted in (a), an example of escape, and in (d): (χO;Sa) = (2.75; 0.03) point spotted
in (c), an example with slightly damped oscillations
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Figure 18: Heat map for the coupled model (T.A.E.O.). In (a) and (c): zoom on the
domain χO ∈ [0.5; 2], Sa ∈ [0.1; 0.7] from Figures 15.b) and 15.d). In (b): time evolution
of the total mass of tumor and antitumor immune cells µn and µa for (χO;Sa) = (2; 0.1)
point spotted in (a), and in (d): (χO;Sa) = (2; 0.7), point spotted in (c): two examples of
equilibrium with a residual tumor
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Figure 19: Heat map for the coupled model (T.A.E.O.). In (a) and (c): zoom on the
domain χO ∈ [2; 3.5], Sa ∈ [0.1; 0.7] from Figures 15.b) and 15.d). In (b): time evolution
of the total mass of tumor and antitumor immune cells µn and µa for (χO;Sa) = (3; 0.1),
point spotted in (a), and in (d): (χO;Sa) = (3.5; 0.7), point spotted in (c): two examples
of equilibrium with a residual tumor
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Figure 20: Simulation of the coupled model (T.A.E.O.), time evolution of total tumor
and antitumor immune cells mass for several pairs of chemotactic coefficient and amplitude
of the source of immune cells: (χO;Sa) = (3.5; 2×10−2) for (a-b), (χO;Sa) = (3.5; 0.7) for
(c-d), (χO;Sa) = (2; 0.1) for (e-f), (χO;Sa) = (1.25; 0.1) for (g-h): with f∗ = 0 for (a, c,
e, g), f∗ = 1 for (b, d, f, h). The degradation of the environment f∗ 6= 0 favors the tumor
development and reduces the antitumor effects of the immune response
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Figure 21: Heat map of the mean total tumor mass (a, b) and mean total mass of
antitumor immune cells (c, d) over time, with final time T = 100 (a,c) or T = 200 (b,d),
for the coupled model (Full), depending on the chemotactic coefficient and the amplitude
of the source of antitumor immune cells (χO, Sa). The time evolution of the marked areas
in (b-d) will be displayed below
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Figure 22: Heat map for the coupled model (Full). In (a) and (c): zoom on the domain
χO ∈ [0.5; 2], Sa ∈ [10−3; 0.1] from Figures 21.b) and 21.d). In (b): time evolution of the
total mass of tumor and antitumor immune cells µn and µa for (χO;Sa) = (2; 10−3), point
spotted in (a), an example of escape, and in (d): (χO;Sa) = (1.75; 0.1), point spotted in
(c), an example of amplified oscillations
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Figure 23: Heat map for the coupled model (Full). In (a) and (c): zoom on the domain
χO ∈ [2; 3.5], Sa ∈ [10−3; 0.1] from Figures 21.b) and 21.d). In (b): time evolution of the
total mass of tumor and antitumor immune cells µn and µa for (χO;Sa) = (3.5; 10−3),
point spotted in (a), and in (d): (χO;Sa) = (3.5; 0.1), point spotted in (c), two examples
of escape
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Figure 24: Heat map for the coupled model (Full). In (a) and (c): zoom on the domain
χO ∈ [0.5; 2], Sa ∈ [0.1; 0.7] from Figures 21.b) and 21.d). In (b): time evolution of the
total mass of tumor and antitumor immune cells µn and µa for (χO;Sa) = (1.25; 0.1),
point spotted in (a), and in (d): (χO;Sa) = (2; 0.6), point spotted in (c): while the mean
tumor mass remains moderate, we observe oscillations of significantly high values for the
tumor mass
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Figure 25: Heat map for the coupled model (Full). In (a) and (c): zoom on the domain
χO ∈ [2; 3.5], Sa ∈ [0.1; 0.7] from Figures 21.b) and 21.d). In (b): time evolution of the
total mass of tumor and antitumor immune cells µn and µa for (χO;Sa) = (3.25; 0.2),
point spotted in (a), and in (d): (χO;Sa) = (3.5; 0.7), point spotted in (c): while the
mean tumor mass remains moderate, we observe oscillations of significantly high values
for the tumor mass
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Figure A.26: Staggered grid in dimension one. In the case of a regular mesh we have:
hi+ 1

2
= h for i ∈ {0, · · · , N − 1}, hi = h for i ∈ {1, · · · , N − 1} and h0 = hN = h

2 .
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