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Romain Taureau1, Marco Cherubini 1, Tommaso Morresi 2 & Michele Casula 1

We study the structural phase transition, originally associated with the highest superconducting
critical temperature Tc measured in high-pressure sulfur hydride. A quantitative description of its
pressure dependence has been elusive for any ab initio theory attempted so far, raising questions on
the actual mechanism leading to the maximum of Tc. Here, we estimate the critical pressure of the
hydrogen bond symmetrization in the Im�3m structure, by combining density functional theory and
quantum Monte Carlo simulations for electrons with path integral molecular dynamics for quantum
nuclei. We find that the Tc maximum corresponds to pressures where local dipole moments
dynamically form on the hydrogen sites, as precursors of the ferroelectric Im�3m-R3m transition,
happening at lower pressures. For comparison, we also apply the self-consistent harmonic
approximation, whose ferroelectric critical pressure lies in between the ferroelectric transition
estimated by path integral molecular dynamics and the local dipole formation. Nuclear quantum
effects play a major role in a significant reduction (≈50 GPa) of the classical ferroelectric transition
pressure at 200 K and in a large isotope shift (≈25 GPa) upon hydrogen-to-deuterium substitution of
the local dipole formation pressure, in agreement with the corresponding change in the Tc maximum
location.

Since its discovery in 19111, superconductivity has been one of the most
investigated topics in both theoretical and experimental physics. While it
was discovered that almost every conductor could reach zero resistance at
low-enough temperatures (T < 10 K)2, the quest for higher critical tem-
perature (Tc) superconductors became the new challenge. Until recently,
cuprates were leading the racewith aTc as large as 133 K forHg-Ba-Ca-Cu-
Osystems3, although thepairingmechanism in thesematerials is considered
unconventional and it is not explained by the standard Bardeen-Cooper-
Schrieffer (BCS) theory4.

In 2015, the discovery of conventional superconductivity inH3Swith a
maximumTc of 203K reachedat a pressurePc as high as 150GPa

5 paved the
way to a new era of high-Tc materials. Indeed, hydrogen (H)-based systems
are nowadays the most promising candidates to achieve room-temperature
superconductivity. As a matter of fact, in 2019, the same team that

discovered H3S claimed to have measured an even higher Tc in LaH10,
superconducting already at 250 K6, later followed by a similar discovery in
the yttrium hydride7. In a rush toward room-temperature super-
conductivity, more recent claims of Tc larger than the one found in LaH10

did not meet the consensus of the whole community8,9. The main issue of
these materials is the extreme pressure conditions, usually larger than
150 GPa, needed to obtain the high-Tc superconducting phase. Indeed,
while all the binary candidates involving hydrogen were theoretically
investigated, none of them seems to sufficiently decrease the pressure of the
superconducting state. Eyes are now turned toward ternary materials10.

In this work, we focus on the prototypical case of H3S and we study its
structural phase transition generally associated with the maximum of the
superconducting critical temperature, located at around 150 GPa11–14.
According to x-ray diffraction data15, at lower pressures the sulfur (S) sites
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are arranged in a geometry that is compatible with the trigonal R3m sym-
metry (Fig. 1b) and, upon compression, the system undergoes a phase
transition toward a body-centered-cubic (bcc) Im�3m structure (Fig. 1a).

After the first theoretical prediction of high-Tc superconductivity in
H3S

16, several works tried to explain the origin of themaximum of Tc found
in experiments as a function of pressure. Even if the magnitude of the
calculated Tc is right, confirming the BCS origin of the superconducting
state, a quantitative disagreement between various theoretical approaches
was found, with estimated Tc values fluctuating over a 50 K range for the
high-pressure phase17. Moreover, theoretical studies more oriented to
understand the underlying structural properties of H3S, revealed a sig-
nificant disagreement in the transition pressures between the predicted
phases. In those works18,19, the structural phase transition is explained by a
quantum proton symmetrization from the R3m phase, with displaced
protons, to the Im�3m one, where every hydrogen lies in themidpoint of the
twoneighboring sulfur atoms (S-Smidpoint). This is also called ferroelectric
transition, because the hydrogen atoms displaced from the S-S midpoint
lead in theR3mphase to a long-rangeorder of local dipolemoments, created
by the H-S bond asymmetry. In that context, the shuttling mode of
hydrogen atoms, namely their vibrational mode along the direction linking
two neighboring sulfur atoms, was thoroughly investigated. The phase
transition was then identified by looking at the dynamical instability of the
symmetric Im�3m phase when the pressure is lowered and the shuttling
mode softens. On general grounds, this reflects the sudden transformation
of the free energy profile, leading to a sign change of its curvature across the
transitionbetween twodifferent crystal structures, onewith lower symmetry
than the other.

These findings were obtained by solving the nuclear Hamiltonian
within the Stochastic Self-Consistent Harmonic Approximation
(SSCHA)20–22, which has proven to be one of the best approximated theories
to deal with nuclear quantum effects (NQE). Within this framework, the
electronic part was solved by Density Functional Theory (DFT) using dif-
ferent parametrizations for the exchange-correlation functional, like the
Perdew-Burke-Ernzerhof (PBE)23 and the Becke-Lee-Yang-Parr (BLYP)24,25

ones. Independently of the DFT functional used, a sizable underestimation
of the experimental critical pressure Pc by ≈40 GPa was always observed,
leaving open the question about the origin of this mismatch, and whether
this should be attributed to the electronic or to the nuclear components.

Here, we go beyond the previous state-of-the-art calculations by
treating the electronic problem not only at the DFT-BLYP, but also at
Quantum Monte Carlo (QMC) level, which provides a benchmark for the
DFT methods. QMC is known to yield very accurate total energies in both
molecules and solids26–28, thanks to its stochastic Green’s function
algorithms29,30, such as the lattice regularized diffusion Monte Carlo31,
projecting any initial trial wavefunction toward the ground state of the
systemwithin thefixednodeapproximation.Moreover,we solve thenuclear

Hamiltonian by using Path Integral Molecular Dynamics (PIMD), which is
in principle exact, outperforming any other approximation for the nuclear
degrees of freedom. Then, we analyze the resulting phase diagram by
looking at the ferroelectric order parameter, at the hydrogen/deuterium
density, focusing on its transformation from the unimodal to bimodal
distribution, and finally at its quantum fluctuations, detecting when the
associated local polarization freezes in a displaced geometry.

In this work, we have been able to track the evolution of the mode
distribution with a high resolution in volume (and pressure), thanks to a
three-dimensional (3D) model of the shuttling mode. The reliability of our
model has been benchmarked using ab initio PIMD simulations with BLYP
electrons, across the local moment formation. The advantage of the 3D
model is that its potential energy surface (PES) can still be derived bymuch
more expensive, althoughmore accurate, QMC calculations, allowing us to
check the impact of the electronic description on the occurrence of a local
polarization.

In the model we developed, all hydrogen atoms in the system are
allowed to move in the same way. However, only the spatial degrees of
freedom of a single H site are retained. This feature induces some limita-
tions, such as the lack of spatially disordered H configurations, and of
correlations beyond a single-site description. In spite of this, we can accu-
rately describe the local path from the symmetric proton arrangement to the
asymmetric one, by detecting the local moment formation in the system,
related to the shuttling mode softening. We have finally performed both
SSCHA and PIMD simulations of the 3D model to investigate how NQE
treated at different levels of approximation affect the final outcome.

Results
Harmonic and anharmonic phonons
At high pressure, above 150 GPa, the H3S crystal is expected to be in
the cubic Im�3m symmetric phase (Fig. 1a), where every hydrogen
atom sits on the midpoint of two neighboring sulfur atoms. Upon
pressure release, the lattice undergoes a trigonal distortion and the
hydrogen atoms leave the aforementioned midpoint to move closer to
one of the two flanking sulfur atoms, leading to the R3m asymmetric
phase, depicted in Fig. 1b. In our description, we introduce a sim-
plification by neglecting the trigonal distortion, which is however
very weak (<0.06°)19. Thus, the R3m phase considered here differs
from the Im�3m one just by the hydrogen positions.

In Fig. 2, we report the analysis of the phonon dispersion for different
volumes of the cubic Im�3m unit cell, obtained at the ab initio level using the
BLYP functional, either through the harmonic approximation via Density
Functional Perturbation Theory (DFPT), or with the inclusion of quantum
anharmonicity via PIMD simulations at the temperature T = 200 K. Here-
after, volumes and energieswill be expressedperH3S unit, while the unit cell
will be taken as cubic with S atoms arranged in a bcc lattice.

Fig. 1 | H3S crystal structures. aCrystal structure of
the Im�3m symmetric phase (smaller volume,
higher-pressure phase). b The R3m asymmetric
phase (larger volume, lower-pressure phase). dSS is
the lattice parameter of the bcc crystal.

https://doi.org/10.1038/s41524-024-01239-0 Article

npj Computational Materials |           (2024) 10:56 2



At this point, it is important to underline that theDFPT and the PIMD
phonons bear different information (see also section “Phonons”). The
PIMD phonons are computed through the quantum displacement-
displacement correlator recently developed in ref. 32. They describe the
lowest vibrational excitations33, that is the energydifferencebetween thefirst
excited state and the ground state of the nuclear Hamiltonian. This is the
quantity normally measured by experimental probes, such as infrared or

Raman spectroscopies. Consequently, phonons computed in this way fully
include anharmonic effects and are always positive definite, meaning that
they cannot describe dynamical instabilities via the appearance of imaginary
phonons. This is at variance with the harmonic case or with approximated
theories devised to deal with NQE, such as the SSCHA20, which instead
provide information about the sign of the free energy curvature at the
reference geometry.

While for V = 83.6 a30 only the harmonic dispersion is reported
in Fig. 2, for larger volumes we compare the PIMD phonons (green
lines) obtained in a 2 × 2 × 2 supercell with the harmonic ones (light-
blue lines). For PIMD phonons, the spatial range of the force con-
stant matrix is such that the 2 × 2 × 2 supercell is large enough to
allow for a q-interpolation of the phonon branches ωm = ωm(q). The
comparison between PIMD and harmonic phonons of Fig. 2 clearly
shows how strong NQE are and how sizable is the softening of the
most energetic phonons due to quantum anharmonicity, particularly
at the largest volumes. In the harmonic framework, for V > 85 a30 (see
Figs. 2 and 3), the appearance of imaginary frequencies indicates the
dynamical instability of the Im�3m structure. More specifically, the
softening of the shuttling hydrogen mode at q = Γ signals the tran-
sition toward the asymmetric R3m phase18. From Fig. 2, one can see
that imaginary frequencies disappear in PIMD phonons and their
evolution as a function of volume is much smoother than in the
harmonic case. As expected from the definition of PIMD phonons,
PIMD simulations never yield imaginary frequencies for the shuttling
mode. In this regard, see also Fig. 3, where we report the shuttling
mode frequency we obtained as a function of volume at different
levels of theory. This analysis shows that the putative transition
implied by the maximum in Tc cannot be determined using solely the
shuttling mode frequency as a proxy, because in the volume range
corresponding to the experimental Tc maximum5, i.e., between 98 a30

Fig. 2 | Phonon dispersion for different volumes of the cubic Im
--
3m unit cell,

whose electronic structure has been computed with the BLYP functional. At
V = 83.6 a30 (volume per H3S unit), only the harmonic dispersion is reported. For all
the other volumes, we compare the harmonic dispersion (light-blue color) with the

PIMD one (green color). Full dispersions are obtained by interpolating harmonic
(anharmonic) dynamical matrices defined on a 6 × 6 × 6 (2 × 2 × 2) q-grid. PIMD
simulations are performed at T = 200 K.

Fig. 3 | Shuttling mode frequencies as a function of volume by different
approaches.At the PIMD level, the phonon frequencies are computed using the S-S
midpoint as reference position for the quantum displacement-displacement
correlator32. Within the SSCHA framework, phonons are computed using the
centroid position obtained through the free energy minimization and the full self-
energy dynamical correction is included20. Imaginary phonon components are
represented with negative values.
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and 100 a30 (see equation of state (EOS) in Fig. 9a), there is no
anomalous behavior of the proton shuttling mode frequency. We
need to rely upon other observables in a framework describing nuclei
as quantum particles.

So far,wehave reported the structural behavior as a functionof volume,
fixed in our simulations. However, we can easily deduce the corresponding
pressure by deriving the EOS P = P(V) using the Vinet relation34 computed
with the same functionals employed to calculate the phonon dispersions.
Nevertheless, our goal is to go beyond DFT and reach a more accurate
electronic description of the system using QMCmethods (the details of our
QMC calculations are reported in the “Electronic structure calculations for
the PESmodel” section). A simple comparison of the EOS produced by the
two approaches, shown in Fig. 9a, reveals visible differences, suggesting that
a description of the electronic structure at the QMC level is crucial to
estimate correctly the critical pressure.Unfortunately,QMCcalculations are
much more expensive than DFT, and coupling them with ab initio PIMD
simulations to study the real crystalline system is out of reach. Therefore, we
need a simplified PES describing the hydrogen shuttling mode that can be
derived, after a fitting procedure, from QMC total energy calculations
performed on a coarse grid of nuclear configurations. This model PES can
then be used to compute the shuttling mode frequencies and to study the
local polarization properties induced by the proton displacement at the
PIMD level.

Classical 3D model
The model PES is derived by considering the collective and coherent
motion of all the hydrogen atoms along the direction connecting the
two S atoms flanking each H (S-S direction), by allowing also
hydrogen out-of-axis mobility, while the S atoms are pinned in their
bcc positions. In this way, we aim at reproducing the shuttling mode
dynamics that takes place at q = Γ, thus having the same modulation
for all hydrogen atoms in the crystal. Therefore, we reduce the 3N
dimensions of the ab initio potential (with N the number of atoms in
the supercell) to only 3 dimensions. The PES is fitted over total
energies generated either by DFT-BLYP or by QMC for nuclear
configurations defined on a cylindrical grid. Further details about the

model description can be found in the “Potential energy surface
parametrization” section.

In Fig. 4, we report the PES profiles obtained by solving the electronic
problem within the DFT-BLYP (first row) and QMC (third row) methods.
At the volumes taken into account here, both DFT-BLYP PES and QMC
PES have two minima connected through the inversion symmetry with
respect to the S-S midpoint ((0.5,0,0) in fractional units). The second row
shows a comparison of both energy profiles cut along the line connecting
these two PES minima, going through the S-S midpoint. For the smallest
volume analyzed, V = 90.9 a30, we found a good agreement between the
DFT-BLYP PES and QMC PES, suggesting that electron correlation effects
are reasonably well described at the DFT level at high-enough pressures.
However, the discrepancy between the two approaches appears when we
increase the volume and it grows continuously upon pressure release. For
the largest volume considered, V = 110.0 a30, the height of the double well
barrier for QMC is ~270meV per H3S unit, 80% larger than the DFT-
BLYP one.

The ferroelectric transition volume for classical nuclei can be estimated
based on the PES by using the Landau theory for continuous phase
transitions35. This method relies on the sign change of the free energy
curvature (the total energy curvature atT = 0 K) at the volumewhen the two
displaced minima merge into a single one, in the symmetric configuration
corresponding to the point (0.5,0,0) in Fig. 4. For DFT-BLYP, we found a
critical volumeVferro around 85 a30 corresponding to a pressure of 263 GPa,
while for QMC we found the same volume (≈85 a30) which corresponds to
238 GPa in this case (seeFig. 9a).Wenote that theVferro yieldedby theBLYP
3D-PES is in nice agreement with the value at which the shuttling mode
frequency vanishes, computed ab initio in the harmonic approximation (see
Fig. 3). This is a signature of our model PES quality.

Quantum 3Dmodel
Inorder tohave a reliabledescriptionof the structural phase transitionbased
on our 3D-PES, we need to include nuclear quantum effects. We add them
by performing PIMD calculations at T = 200 K as implemented in ref. 36.
Numerical details of these simulations can be found in the “PIMD simu-
lations” section.Here, wemention only that in the PIMD simulations of our

Fig. 4 | 3D-PES landscapes (in meV per H3S unit) for different volumes. Top
panel: DFT-BLYP PES computed on the plane containing the S-S direction (x axis)
and bisecting the y–z quadrant (y = zplane). The points on the plane are fully defined
by their x and y coordinates, expressed in fractional units. Middle panel: 1D

projection along the axis connecting the two minima. Bottom panel: same as Top
panel with QMC PES. In the top and bottom panels the zero of energy is the PES
value at (0.5,0,0). In the middle panel, the zero is the PES minimum.
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3Dmodel the hydrogen atom has an effective mass equal to three times the
physical hydrogenmass, owing to the fact that the PES is expressed per H3S
unit and the 3D motion of all hydrogen atoms in the H3S molecule is
concerted by construction.

In Fig. 5, we report the projections of the resulting 3D proton density,
which takes two distinct shapes depending on the volume. The density
exhibits only one peak centered in the middle of the S-S axis for small
volumes and the central peak splits into two lobes for the largest volumes. In
the contour plot of Fig. 5a, one can clearly see that the doubling of the peak
happens inQMCat smaller volumes (higher pressures) than inDFT-BLYP,
as expected from the analysis of the classical PES, which shows deeper
minima in theQMCPES atfixed volume. In Fig. 5b, we plot the distribution
of the hydrogen position projected along the shuttling mode direction, by
including also the data coming from the ab initio PIMD simulations driven
by DFT-BLYP forces. Our 3D model has a similar behavior in comparison
with the full 3N dimensional system. The mode distribution assumes a
double peak shape at approximately the same volume for the model (blue
lines) and the ab initio system (green lines), evaluated for the same BLYP
functional. The main differences are the broadness of the distribution,

underestimated by themodel, and the position of the peak, which lies closer
to the S atoms in the ab initio simulations. These differences can be
understood based on the enhanced quantum-thermal fluctuations of the ab
initio system compared to the one with a reduced number of degrees of
freedom. Nevertheless, as far as the peak splitting is concerned, the ab initio
and the model PIMD calculations are in agreement. This validates the
accuracy of our 3D-PESmodel, which then allows one to compare directly
BLYPandQMCresults. The projected 1Ddistribution inFig. 5b reveals that
the QMC PES leads to a smaller volume for the peak splitting, as shown
already in the contour plot of Fig. 5a.

By fitting the distribution in Fig. 5b and interpolating the para-
meters obtained for several volumes, it is possible to determine pre-
cisely the position of its maximum as a function of volume, and thus
the occurrence of the bimodal distribution. We estimate the peak
splitting to take place inH3S at a volume of 99.6 a30 for DFT-BLYP, and
of 96.3 a30 for QMC. According to the EOS of Fig. 9a, these volumes
correspond to pressures of 153 GPa for DFT-BLYP and of 152 GPa for
QMC. These values, reported in Table 1, are in good agreement with
the position of the maximum Tc measured in experiments5, and they
are strongly affected by NQE. Nevertheless, it is important to
underline that the two similar pressures obtained by BLYP PES and
QMC PES after inclusion of NQE originate from a compensation of
errors in the BLYP values, if we take QMC as reference. Indeed, a
volume overestimation found in the BLYP PES compensates with a
pressure overestimation in the BLYP EOS to yield approximately the
same pressure for the peak splitting as the one found in QMC (see
Fig. 9a).

The occurrence of the bimodal distribution signals the proximity of a
critical region where the quantum proton is more localized, either dyna-
mically or statically, in one of the twowells. However, from amore rigorous
point of view the instantaneous localization of the proton, namely the local
dipole formation, is better characterized by the “local moment” suscept-
ibility, as definedbelow. Indeed, quantumfluctuations are atwork across the
transition tomakehydrogen atoms shuttle between the twoPESminima.As

Fig. 5 | Quantum hydrogen distributions. a Two-dimensional projection on the
y = z plane of hydrogen positions with our 3D model solved by PIMD at 200 K. The
results of BLYP PES calculations are represented in the top panel and the QMC PES
ones in the bottom. b Hydrogen distribution projected along the shuttling mode.

Blue points are for the BLYP 3D-PES; green points for the ab initio BLYP simula-
tions; red points for QMC 3D-PES. Lengths are expressed in Bohr. The origin of the
reference frame is centered at the S-S midpoint. ∣δx∣ is the distance from the origin.

Table 1 | Transition pressures and volumes for the local
moment formation yielded by PIMD

Theory Isotope Probe Vc [a3
0] Pc [GPa]

DFT-BLYP H3S Fluctuations 104.2 130

DFT-BLYP H3S Density 99.6 153

DFT-BLYP D3S Fluctuations 97.6 165

DFT-BLYP D3S Density 96.6 171

QMC H3S Fluctuations 100.9 126

QMC H3S Density 96.3 152

QMC D3S Fluctuations 95.6 156

QMC D3S Density 93.6 169
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the volume increases and the minima deepen, the fluctuations will start
freezing, leading to the creation of a local electric dipolemoment, generated
by the statically displaced proton in the R3m phase, or generated dynami-
cally, by instantaneous configurations where the whole path representing
the quantum proton is fully localized in one of the two wells. PIMD fully
accounts for quantum fluctuations, thanks to its imaginary time resolution.
We can measure them by computing the imaginary time correlator
g(β/2) = 〈δx(0)δx(β/2)〉, with β = 1/(kBT) the inverse temperature used in
the PIMD simulations, and δxðτÞ ¼ xðτÞ � xh i, where xh i is the thermal
quantum average of the x coordinate, corresponding to the symmetric
position in the 3Dmodel. Quantum fluctuations reduce the value of g(β/2).
A non-zero value of g(β/2) can be interpreted by the presence of a finite
moment in the distribution. In our 3D-PES, this moment is by definition
local, because by model construction the hydrogen dynamics is condensed
in a single 3D site. Therefore, the local moment susceptibility χg is the
normalized variance of g(β/2), namely χg =Var[g(β/2)]/Var[g(0)]. Within
the local moment fluctuation picture, the occurrence of local polarization
can then be estimated by evaluating the volume at which χg is maximum, as
shown in Fig. 6a, b. This quantity has already been used in a previouswork37

to identify the transition from a paraelectric phase to a disordered regime in
an anharmonic oscillator chain, characterized by a tunable double well
potential, where the symmetry is locally and instantaneously broken in favor
of displaced configurations. If we describe the change of regime based on
local moment fluctuations, we obtain Vc = 104.2 a30 for DFT-BLYP, corre-
sponding to Pc = 131 GPa, and Vc = 100.9 a30 for QMC, corresponding to
Pc = 126 GPa (Fig. 6a and Table 1). Also in this case, like for the density
probe, cancellation of errors is at play and, by consequence, the two elec-
tronic descriptions provide almost the same critical pressure.

We evaluated g(β/2) also in our ab initio PIMD simulations, and in
Fig. 6c we compare it against the values of g(β/2) coming from the PIMD
solution of the 3D model. The ab initio and model results are in statistical
agreement for this local quantity, confirming that the 3D model correctly
captures the volume evolution of the local polarization.

The two probes we used in this work, the local moment sus-
ceptibility and the peak splitting, allow us to determine a lower and an
upper bound for the pressure where the fluctuating local dipoles
disappear in favor of a paraelectric phase, by squeezing the com-
pound. Notice that this does not correspond to the ferroelectric
transition pressure, associated instead with the global Im�3m-R3m
symmetry breaking, and long-range dipole order, which happens at
lower values. The same analysis is carried out for both the hydrogen
H3S and deuteriumD3S crystals, to estimate the magnitude of isotope
effects (see Fig. 6b). We summarize the results in Table 1, where we
show that the hydrogen-to-deuterium substitution brings about an
increase of the local polarization formation pressure that falls into the
[17–35] GPa range.

Full BLYP-PIMD solution of the H3S phase diagram at 200 K and
comparison with SSCHA
After having analyzed the local moment formation with the help of the 3D
model, we turn now the attention to the ferroelectric transition, associated
with the global R3m→ Im�3m transformation. The suitable order para-
meter to identify this transition is Δ ¼ h 1N

PN
i¼1 δxii, where the sum runs

over all theN hydrogen atoms in the supercell, and δxi is the distance of the
ith proton from the S-S midpoint at a given snapshot. An equivalent order
parameter, showing usually less statistical fluctuations, is Δabs ¼
hj 1N

PN
i¼1 δxiji. The brackets indicate the average over the classical or

quantumnuclear distribution. InPIMDsimulations an additional average is
thendoneover thebeadspositions. Fromthesedefinitions, it is clear that this
order parameter can only be computed in our ab initio simulations, being
the 3D model local.

In Fig. 7, we plot the volume dependence of the order parameterΔ and
Δabs and their susceptibilities. Their peak is located at the ferroelectric
transition, occurring at V ferro ¼ 117a30, Pferro≃ 82 GPa, as found in our
BLYP-PIMD simulations in the 2 × 2 × 2 supercell at T = 200 K. We notice
that the peak location is correlated with the jump in the shuttling mode
frequency, reported in both Figs. 3 and 7. The agreement between theΔ and
Δabs susceptibilities and the shuttlingmode frequency jump strengthens the
reliability of our estimate. Interestingly, at 200 K the ferroelectric transition
takes place at a pressure much lower than the one where the local moments
are suppressed. For quantumnuclei, between these twopressures the system
is in a regime characterized by disordered local moments and Im�3m sym-
metry (see Fig. 8 for the resulting phase diagram). Accounting for thermal
and quantum effects leads to a strong reduction of the critical ferroelectric
pressure observed in the classical framework, which is as large as 263 GPa at
zero temperature. Furthermore, in order to distinguish between anhar-
monicity coming from thermal and NQE, we also performed classical ab
initioMD simulations at the same temperature (see Supplementary Note V
of the Supplementary Information (SI)), which yield a ferroelectric transi-
tion at ≈133 GPa (see Fig. 8). Thus, classical anharmonicity accounts for
about 70% of the total pressure reduction of the ferroelectric transition at
200 K. The remaining 30% is due to NQE at the same temperature.

The ferroelectric transition cannot be estimated at the QMC level, due
to its computational cost when applied to the dynamics of a real extended
system. However, as we have seen, the 3Dmodel, derived at both the DFT-
BLYPandQMClevels, is enough todetermine the formationof local electric
dipole moments, whose pressure Pc matches well the position of the
experimental Tc maximum.

At variance with previous state-of-the-art calculations based on a
combination of DFT-BLYP and SSCHA frameworks, our PIMD results
yield Pc in a substantial agreement with the experimental finding, and this
irrespective of the electronic theory used to generate the PES. One should
notice here that the original SSCHAapproximation is not able to capture the

Fig. 6 | Imaginary time correlator g(β/2) and normalized local moment sus-
ceptibility. Local moment susceptibility for H3S (a) and D3S (b) for quantum nuclei
with the DFT-BLYP (blue) and QMC (red) 3D-PES. The vertical dashed lines
indicates the susceptibility maxima. c Imaginary time correlator g(β/2) for H3S. Blue

circles and green stars are DFT-BLYP results for the 3D-PES and ab initio simula-
tions, respectively. For reference, vertical dashed lines indicate the position of the
local moment susceptibility peak and the ferroelectric transition, as determined in
Fig. 7.
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disordered Im�3m phase, being a mean-field theory with no disordered
configurational entropy and no direct information of imaginary time cor-
relations, key to detect the dynamical local moment formation. Thus, the
critical pressure that SSCHA can normally compute is the ferroelectric one,
Pferro, and not Pc. However, time resolved extensions of SSCHA have been
recently proposed, able in principle to access also retardation effects38.

To investigate more deeply this mismatch, we carry out SSCHA cal-
culationswith ourmodel PES (see section “SSCHAsimulations” for details).
In SSCHA, the occurrence of the asymmetric R3m phase is signaled by a
centroid displaced with respect to the S-S midpoint. The SSCHA critical
values are Vferro = 107.8a30, Pferro = 114 GPa for the DFT-BLYP PES, and
Vferro = 102.4a30, Pferro = 118GPa for theQMCPES. As in PIMD, there is no
significant difference in the transition pressures between the electronic
structure methods used to generate the PES. Our SSCHA results for the
DFT-BLYP PES are in a very good agreement with the outcome of previous

SSCHA simulations for the full ab initio system19, calculated with the same
DFT-BLYP functional. We find that the SSCHA overestimates Pferro with
respect to the one obtained in PIMD for the same BLYP functional, as
expected fromamean-field theory, andunderestimatesPc,which is however
out of reach by the SSCHA, suggesting that the approximated description of
the nuclearHamiltonian is the source of disagreement with both PIMDand
experimental results.

Let us look now at the predictions for the shuttling mode frequencies,
plotted in Fig. 3 for various methods. It has to be noted that, within the
SSCHA, the phonon frequency of the shuttlingmode shows a jumpatVferro.
This is due to the hop of the SSCHAcentroid from its symmetric position to
a different minimum of the free energy, already “preformed”, which breaks
the symmetry andbecomes energeticallymore favorable atVferro.Moreover,
we also observe an increase of the SSCHA phonon line-width across the
transition of the order of 10 cm−1. A similar jump in the shuttling phonon
frequencies is detected by our ab initio BLYP simulations in correspondence
with the ferroelectric transition (see Figs. 3 and 7).

Nevertheless, our PIMD phonon determination shows a progressive
phonon softeningwithout jumps across the volume region of localmoment
formation. This is not only true within our 3D model PES, but also for our
PIMD calculations driven by ab initio forces computed at the DFT-BLYP
level, as shown in Fig. 3. The agreement between shuttlingmode frequencies
yielded by the 3Dmodel and the ones given by ab initio calculations in this
volume region highlights once again the quality of our model PES. This
supports thehypothesis of twodifferent transitions.Thefirst one is a smooth
transition, or crossover, from the paraelectric Im�3m to a phase sharing the
same Im�3m symmetry and characterized by the formation of local and
spatially disordered local moments. This phase cannot be detected by
looking at the phonon frequencies, and it is not accessiblewithin the SSCHA
formulation. The second one is the ferroelectric transition from the dis-
ordered Im�3m to the asymmetric R3m phase, which happens at sig-
nificantly lower pressure than the first one, where the shuttling phonon
frequency shows a jump. The phase diagram deducible from our combined
ab initio and 3D model results is drawn in Fig. 8.

Discussion
In this work, starting from ab initio electronic structure calculations, we
generated a model PES to describe the shuttling mode of hydrogen in H3S,
responsible for the R3m→ Im�3m transition, which was originally asso-
ciated with the Tc maximum as a function of pressure. Despite the fact that
such a hydrogen symmetrization is expected to happen in H3S upon
compression, so far no theoretical method has been able to spot it at pres-
sures near the one that maximizes Tc in experiments. This raised doubts on
the original association between superconductivity and structural
transition39,40, worsened by the fact that other competing symmetries could
be stable in the same pressure range41–44. The mismatch found between
previous theoretical estimates of the critical pressure Pc and the experi-
mental values for the Tc maximum is solved by applying state-of-the-art
computational methods in both the electronic and nuclear Hamiltonians,
namely using QMC calculations for electrons, and the PIMD approach for
nuclei. Within our QMC+PIMD approach, the experimental pressure
where Tc is maximum is bracketed by the Pc value estimated from the local
fluctuations probe and the one determined by the transformation of the
bimodal hydrogen distribution into a unimodal one. Consequently, these
two probes provide a lower and an upper bound for the critical pressure,
with a range between the two of ≈20 GPa. The range of transition pressures
identified is consistent with the available experimental data for the Tc
maximum5,11,13 for both H3S and D3S, as we can see in Fig. 9b.

Wehave thus shown that the occurrence of theTcmaximumshould be
linked with the formation of the phase characterized by disordered local
moments37, and it cannot be associated with the ferroelectric R3m⟶
Im�3m transformation,which takes place at a lower pressurePferro compared
with Pc. According to our outcome,Tc reaches its maximumwhen the local
dipole moments melt upon compression, and protons become fully delo-
calized across the PES barrier.

Fig. 7 | Ferroelectric transition from ab initio BLYP PIMD simulations at 200 K
in a 2 × 2 × 2 supercell. Black (blue) points are values of the ferroelectric order
parameterΔ (Δabs) as a function of volume. The variance (i.e., susceptibility) of these
order parameters is represented by green and red crosses, respectively. We also
report the shuttling mode frequencies (gold pentagons). All quantities are in atomic
units except for the phonon frequencies, expressed in cm−1. The vertical red-dashed
line locates Vferro.

Fig. 8 | Phase diagram at 200 K for classical and quantumnuclei as determined by
BLYP-driven classical and path integral molecular dynamics. Both ferroelectric
transition (black dots) and the region where the local polarization vanishes into a
paraelectric Im�3m phase (bracketed by the blue star and the purple pentagon) are
reported. Between ferro and para, an Im�3m phase with disordered local moments is
expected to take place37. The disordered region is reported only for the quantumcase.
We also report the ferroelectric critical pressures predicted by SSCHA, from both ab
initio19 (white square) and our 3D-PES model (orange diamonds). For comparison,
the pressure of the experimental Tc maximum is shown by a teal diamond.
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Furthermore,wenotice that the ab initio electronic structure computed
at the DFT-BLYP level predicts very good results for the critical pressure,
similar to those obtainedbyQMC.However, it is important to stress that the
DFT-BLYP pressures are affected by error compensation, the over-
estimation of the critical volume being balanced by a different EOS if
comparedagainstQMCcalculations. This aspect underlines the importance
of using an accurate electronic description, beyond the DFT level. The
generation of ourmodelPES, built to describe the hydrogen shuttlingmode,
allowed us to exploit the QMC energies in a PIMD framework, otherwise
unfeasible in the full 3N dimensional system.

We conclude by noting that the R3m→ Im�3m structural phase
transition in sulfur hydride has strong analogies with the hydrogen bond
symmetrization in other compounds such as high-pressure ice, where, upon
compression, phase VII and VIII hosting displaced protons, stable at lower
pressure, are expected to transform into the symmetric phase X45,46. How-
ever, it is still a matter of debate whether the transformation is direct or
whether other intermediate disordered structures appear, with protons only
partially symmetrized. In this respect, further work is needed to extend our
model beyond the collective path dynamics to treat non-local spatial cor-
relations and disordered patterns. Machine learning schemes could then be
useful to generate more extended PES from QMC data47–49 with the aim at
including a larger variety of hydrogen configurations in PIMD calculations
by keeping the same QMC accuracy.

Methods
Electronic structure calculations for the PES model
For the DFT electronic structure calculations, we used the Quantum
Espresso (QE) suite of codes50,51, while for the QMC calculations, we
employed the TurboRVB package52. For sake of consistency, in both DFT
and QMC calculations, we used the same set of pseudopotentials. Namely,
we treated the sulfur atom with the ccECP neon-core pseudopotential53

particularly suited for correlated calculations, available in both the QE-
compatible Unified Pseudopotential Format (UPF) and in the TurboRVB-
compatible Gaussian expansion format. For hydrogen, we used the bare
Coulomb potential, with a very short-range cutoff for aQE usagewithin the
plane-wave framework. In the QMC calculations instead, no short-range
cutoff is needed for the bare Coulomb potential, because the nuclear cusp
conditions are automatically fulfilled by our QMC wave function (see
below). These pseudopotentials have been chosen after performing pre-
liminary calculations at the DFT level to test their accuracy. We also tested
other pseudopotentials (ultrasoft (US), projector augmented wave (PAW),
and a combination of the above), by comparing the total energy profile
obtained by moving the hydrogen atom away from the S-S midpoint, and
constrained to stay on the S-S axis. This leads to a very crude one-
dimensional (1D) PES, which is however useful for testing purposes, with
the advantage that it is easily computable for its simplicity. We took as
reference the total DFT energy computed with the all-electron LAPW

approach, as implemented in Elk54. The ccECP pseudopotential for the
sulfur atom and the bare Coulomb potential with short-range cutoff for the
hydrogen atom turned out to be the most accurate choice (see Supple-
mentary Note I).

For single-point calculations at selected nuclear configurations, we
carried out DFT calculations with the Becke-Lee-Yang-Parr (BLYP)
functional24,25. The cutoff energy for plane waves is set to 200 Ry (due to the
hardness of the HCoulomb pseudopotential), with the smearing parameter
equal to 0.002 Ry and a k-points grid of 32 × 32 × 32.

For the QMC calculations, we used a Slater-Jastrow wavefunction Ψ,
which reads as:

Ψ ¼ ΦS � expðJÞ; ð1Þ

where the term exp Jð Þ is the Jastrow factor, symmetric under electron
exchange, while ΦS is the antisymmetric Slater determinant. The
Slater orbitals in ΦS are generated by DFT calculations within the
Local Density Approximation (LDA)55, performed in a Gaussian basis
set by means of the DFT code built in TurboRVB. For the sulfur atom,
we employed a modified cc-pVTZ primitive basis set with 6s6p2d1f
components, contracted into 11 hybrid orbitals through the Geminal
Embedded Orbitals (GEO) procedure56. For hydrogen, we used a
modified cc-pVTZ primitive basis set with 4s2p1d components
contracted into 6 GEO hybrid orbitals.

The Jastrow exponent J introduces explicitly electronic correlation in
the wavefunction, and it can be decomposed into three terms, such that
J = J1+ J2+ J3.

J1 is the so-called one-body term, which takes into account the inter-
action effects between the electrons i and a nucleus I, and it depends on the
relative electron-nucleus distances riI. J2 is the so-called two-body term,
treating the correlations between electrons i and j, and depending on their
relative distance rij. Both J1 and J2 are designed to fulfill the electron-nucleus
and electron-electron cusp conditions, respectively. They read as
J1 ¼

PNe
i¼1

PN
I¼1 uIðriIÞ, and J2 ¼

PNe
i<j¼1 vðrijÞ, where N (Ne) is the

number of nuclei (electrons) in the supercell, and the functions u and v are
defined as follows:

uIðrÞ ¼
ZI

a
ð1� e�arÞ ð2Þ

vðrÞ ¼ r
2ð1þ brÞ ; ð3Þ

with a and b variational parameters, and ZI the charge of the Ith pseu-
doatom. The coefficients in Eqs. (2) and (3) are set to fulfill the Kato cusp
conditions for electron-nucleus and electron-electron coalescence,
respectively57.

Fig. 9 | Transition values from theory and
experiment. a Equation of state P = P(V) (see sec-
tion “Equation of state” and Eq. (7)) for both DFT-
BLYP (blue color) andQMC (red color) calculations
of H3S in the Im�3m phase. The transition volumes
and the corresponding pressures identified at dif-
ferent levels of theory using the density probe (peak
splitting) are displayed by dashed lines. b Tc as a
function of pressure in H3S and D3S from Drozdov
et al.5, Einaga et al.11 and from Minkov et al.13. The
shaded areas on each data set represent the pressure
range when the transition occurs according to our
PIMD results for the QMC PES, where the lower
limit is based on the local quantum fluctuations
analysis and the upper one on the density evolution
(see Table 1 for the actual values).
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J3 is the three-body term that accounts for the electron-electron-
nucleus interactions. As defined in TurboRVB, it is also intrinsically non-
homogeneous, because it depends on the individual electron positions and
not only on the relative distances, which is less accurate. Being non-
homogeneous, it is expanded on a modified atomic Gaussian basis set of
2s2p1d atomic orbitals, for both sulfur and hydrogen atoms.

The J3 parameters, together with a and b, are optimized byminimizing
the variational energy of themany-body wavefunction in Eq. (1). The Slater
part is instead kept frozen as determined by DFT-LDA. As stochastic
minimization algorithm,we employed the linearmethod58.We then carried
out lattice regularized diffusion Monte Carlo (LRDMC) calculations31, to
stochastically project the initial wavefunction toward the ground state of the
system, within the fixed node approximation. Within this approximation,
the LDA nodes provide accurate results for this system, as verified in Sup-
plementary Note II. In LRDMC, we used a lattice space of 0.25 a0, which is
known to produce converged energy differences. We started the projection
from the best variational state optimized in the previous step, taken as trial
wavefunction. Finite-size scaling has been performed on the 2 × 2 × 1,
2 × 2 × 2, 3 × 2 × 2 and 3 × 3 × 2 real-space supercells in order to extrapolate
the LRDMC total energy to the thermodynamic limit, by also using Kwee-
Zhang-Krakauer (KZK)59 corrections to make its size dependence milder.

This workflow has been repeated for every point in the real-space grid
used to interpolate the PESmodel from ab initio data (see section “Potential
energy surface parametrization”).

Potential energy surface parametrization
To derive an effective low-dimensional PES, we considered the collective
and concerted motion of all the hydrogen atoms of the cubic unit cell, with
sulfur atoms forming a bcc sublattice. The position of a hydrogen atom is
described by the cylindrical coordinates x, r and ϕ, defined along the axis
connecting the two flanking sulfur atoms (S-S axis): r is the position of the
hydrogen atom along the S-S axis, r is the radial distance from the S-S axis,
and ϕ is the azimuthal angle, wrapping around the same axis. We use
fractional coordinates, where the lengths are expressed in dSS units,dSS being
the lattice parameter of the bcc unit cell. Within this reference system, the
S-S midpoint has coordinates (x, r, ϕ)≡ (0.5, 0, 0). We assume that all
hydrogen atoms in the unit cell move in the same way. This fixes the choice
of a collective path connecting the Im�3m symmetry (with all hydrogen
atoms sitting at the S-Smidpoints) to theR3mone (with all hydrogen atoms
coherently displaced from the midpoint). In this way, we apply a dimen-
sionality reduction of the full potential, depending on 3N dimensional
coordinates, where N is the number of atoms in the cell, to a much simpler
3D PES: E = E(x, r, ϕ).

The functional form of our 3D PES is constructed as follows:

Eðx; r; ϕÞ ¼ Aðx; rÞ þ Bðx; rÞ sinðϕþ 5π=4Þ; ð4Þ

with:

Aðx; rÞ ¼ fmaxðx; rÞ þ f minðx; rÞ
2

; Bðx; rÞ ¼ fmaxðx; rÞ � fminðx; rÞ
2

;

ð5Þ

and where fmin and fmax are defined as:

fmin;maxðx; rÞ ¼ aþ 1
2 bðx � 0:5Þ2 þ 1

4 cðx � 0:5Þ4
þ dr þ 1

2 er
2

± f ðx � 0:5Þr ± gðx � 0:5Þr2
± h1ðx � 0:5Þ3r ± h2ðx � 0:5Þ3r2
þ h3ðx � 0:5Þ2r þ h4ðx � 0:5Þ2r2
þ h5ðx � 0:5Þ4r þ h6ðx � 0:5Þ4r2

ð6Þ

The choice of this functional form is motivated by the symmetries of the
system. For a fixed {x, r}, the potential E has an angular dependence that

varies following a sine curve with 2π-periodicity. In particular, for x < 0.5, E
has aminimumgiven by fmin at ϕ = π/4 and themaximum fmax atϕ = 5π/4.
This dependence is built in Eqs. (4) and (5). The ff iðx; rÞgi¼min;max func-
tions in Eq. (6) are a composition of the following terms: a Landau-type
potential that well describes the energy profile for r = 0, a second-order
polynomial function in r for x = 0.5, and mixed terms made of cross
products of factors up to the fourth order in (x− 0.5) and up to the second
order in r, which give enough flexibility in order to well reproduce
the total PES. The signs in ff iðx; rÞgi¼min;max ensure the symmetry:
E(1− x, r, ϕ+ π) = E(x, r, ϕ), fulfilled by the system.

We sampled the PES by discretizing the 3D space according to the
following grid defined in cylindrical coordinates: x ¼
0:42; 0:44; 0:46; 0:48; 0:5½ � (in dSS units), r = [0.00, 0.02, 0.05, 0.08] (in dSS
units) and ϕ = [π/4, 5π/4]. For these points we computed the ab initio total
energies, given either by DFT-BLYP or by QMC calculations. We finally
used the generated datasets to best fit the PES, parametrized according to
Eqs. (4)–(6). The root mean square error of these fits amounts to ≈1meV
per H3S unit.

Equation of state
In order to get the pressure associated to each volume, P = P(V), we use the
Vinet EOS:

PðVÞ ¼ 3B0
1� η

η2
exp � 3

2
ðB0

0 � 1Þð1� ηÞ
� �

: ð7Þ

with η ¼ ðV=V0Þ1=3. In Eq. (7), the parameters V0, B0 and B0
0 are the

equilibrium volume, the isothermal bulkmodulus, and the derivative of bulk
modulus with respect to pressure, respectively. The Vinet EOS34 is empirical
and, despite havingonly a fewparameters, it is very accurate to describe solids
under extreme conditions.We obtainedV0, B0 and B0

0 by fitting the E= E(V)
relation for the Im�3m phase, where the total energy is computed from first
principles, eitherbyDFT-BLYPorbyQMC,onagridof volumes (seeFig. 9a).
In the fit, we disregarded the Zero-Point Energy (ZPE) contribution, because
we verified that the ZPE variation is very small (<1mHa per H3S unit) in the
range of pressures analyzed here within the same Im�3m phase.

PIMD simulations
ThePIMDsimulations are carried out at 200 Kusing 20 beadswith ab initio
DFT forces, while using 40 beads with 3D-PES forces, to take into account
quantum effects. A convergence study of the PIMD results with respect to
the number of beads is reported in Supplementary Note III. Nuclei are
evolved in time using the PIOUD integrator36 with a time step equal to 0.75
fs and a friction parameter of the Langevin thermostat equal to 1.46 ⋅ 10−3

atomic units. The latter value is the same as in ref. 36, where it is found to be
optimal for both stochastic and deterministic forces. Simulations lasted
around 6 ps, until the convergence of the vibrational modes at Γ is reached.
Forces are computed from the Born-Oppenheimer PES evaluated at DFT
levelwithin theQEpackage, or fromthemodelPESdefined in the “Potential
energy surfaceparametrization” section. In case of ab initioPIMD,weused a
BLYP functional for computing the PES. The wavefunction cut-off for the
PES is set to 90Ry (420Ry for the charge density), while the Fermi smearing
is Gaussian and set equal to 0.03 Ry. PIMDsimulations are performed using
2 × 2 × 2 real-space supercells, containing in each case 32 atoms, and the
corresponding reciprocal-spacemesh is always equal to 9 × 9 × 9.Weused a
smaller plane-wave cutoff than the one used in single-point DFT calcula-
tions, because in PIMD we replaced the hard H Coulomb pseudopotential
with a smoother PAW one. This has been necessary to speed up the PIMD
calculations, which would otherwise have been too time consuming.

In our PIMD framework, non-adiabatic effects and permutation
exchanges are not included. However, in this work we focused on the
normal electronic state, where the system is purelymetallic, with no relevant
excitonic effects, and without superconducting gap opened. As far as
quantum statistics is concerned60, exchange effects should not play a major
role in the range of volumes analyzed for H3S. Indeed, by comparing the
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density of hydrogen atoms in the largest volumewe studied (ρH) against the
typical density of pristine hydrogen where exchange effects are significant
(ρ < ρ0 = 0.0435 mol per cm3)61, we find ρH ≥ 3ρ0. Furthermore, the average
distance betweenhydrogen atoms (dHH) in the range of volumes considered
is always such that dHH ≥ 2Å and no pure roto-librations between two
hydrogen atoms are present in the vibrational spectrum.

SSCHA simulations
Besides the exact description of quantum nuclear motion provided by
PIMD, one can also rely on approximated theories like the SSCHA20, based
on a variational principle on the free energy, which allows one to include
quantum nuclear anharmonicity in a non-perturbative way. Here, we per-
formed SSCHA simulations on the 3DH3S (D3S)model using up to 30,000
configurations. The average proton position (centroid) reported in Sup-
plementary Fig. 5 (in Supplementary Note IV) are directly accessible
through the SSCHA free energy minimization.

Phonons
Harmonic phonons are obtained through DFPT simulations62 as imple-
mentedwithinQE51. The same set of DFTparameters and pseudopotentials
employed for PIMD simulations were used to compute harmonic phonon
dispersions, except for the k-space grid that was chosen equal to
18 × 18 × 18, as in this case it is referred to the unit cell. The results of these
calculations are shown in Fig. 2. We specify that the DFPT shuttling mode
frequency at q = Γ, reported in Fig. 3 has been computed with higher pre-
cision by employing the more accurate H Coulomb pseudopotential,
requiring a plane-wave cutoff of 200 Ry.

Anharmonic phonon frequencies at PIMD level are evaluated by
computing the zero frequency component of the phononMatsubaraGreen’s
function from PIMD simulations. This method has been recently imple-
mented in ref. 32 and it has been shown to describe accurately the vibron
frequencies of solid phases of hydrogen. Conversely, within the SSCHA,
auxiliary phonons are a byproduct of the free energyminimization.However,
to get the physical phonons of Fig. 3, probed by spectroscopies, we apply the
full self-energy dynamical corrections to the auxiliary dynamical matrix,
described in detail in ref. 20, including both the third and fourth-order terms.

Data availability
The datasets generated and analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The TurboRVB code52 used to carry out our QMC calculations is available
under the GPLv3 license. It can be downloaded from the following open
source repository: https://github.com/sissaschool/turborvb. In this work we
haveusedSandroSorella’s legacy version (v1.0.0),whichcanbe found at this
link: https://github.com/sissaschool/turborvb/releases/tag/v1.0.0.
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