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Ab initio quantum Monte Carlo (QMC) is a state-of-the-art numerical approach for evaluating accurate
expectation values of many-body wave functions. However, one of the major drawbacks that still hinders
widespread QMC applications is the lack of an affordable scheme to compute unbiased atomic forces. In this
study, we propose an efficient method to obtain unbiased atomic forces and pressures in the variational Monte
Carlo (VMC) framework with the Jastrow-correlated Slater determinant ansatz or the Jastrow antisymmetrized
geminal power ansatz, exploiting the gauge-invariant and locality properties of their geminal representation. We
demonstrate the effectiveness of our method for H2 and Cl2 molecules and for the cubic boron nitride crystal.
Our framework has a better algorithmic scaling with the system size than the traditional finite-difference method
and, in practical applications, is as efficient as single-point VMC calculations. Thus, it paves the way to study
dynamical properties of materials, such as phonons, and is beneficial for pursuing more reliable machine-learning
interatomic potentials based on unbiased VMC forces.

DOI: 10.1103/PhysRevB.109.205151

I. INTRODUCTION

Ab initio quantum Monte Carlo (QMC) [1] is a state-of-the-
art numerical approach for evaluating the expectation values
of many-body wave functions. It usually provides extremely
accurate energies. To date, QMC has been successfully
applied to various materials for which other electronic struc-
ture methods, such as the density-functional theory (DFT),
lose predictive power. Examples are molecular crystals [2],
two-dimensional materials [3–5], superconductors [6], and
materials at extreme pressures [7–11]. Despite several suc-
cessful applications done so far and the recent development
of sophisticated QMC packages [12–16], this technique is
not as widely used as other established electronic structure
methods. If compared with DFT [17], one of the main QMC
drawbacks is the lack of an efficient and affordable scheme to
compute atomic forces consistent with the derivatives of the
total energy with respect to atomic positions (a.k.a. unbiased
atomic forces). This problem is relevant in the construction
of machine-learning potentials (MLPs), which need large
datasets, where energy and forces are computed with the
method of choice. Recently, some QMC-driven MLPs have
been reported [18–22], where the availability of unbiased
forces and pressures has been a major concern.
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There are two main real-space QMC frameworks, the vari-
ational Monte Carlo (VMC) and the fixed-node diffusion
Monte Carlo (FN-DMC) methods [1]. In this study, we focus
on VMC because the forces computation within the FN-DMC
framework is much more difficult and it is still a highly
debated topic [23–30]. Let Rα be the atomic position of the
nucleus α. The atomic force acting on α is defined as the
negative gradient of the energy with respect to Rα:

Fα = − dE

dRα

= −
〈

∂

∂Rα

EL

〉
(1a)

− 2

〈
(EL − E )

∂ log �T

∂Rα

〉
(1b)

−
Np∑
i=1

∂E

∂ pi

d pi

dRα

, (1c)

where �T is the variational wave function, 〈A〉 indicates
the quantum average of the local operator A over the
VMC sampling of |�T|2, EL is the so-called local en-
ergy (EL ≡ Ĥ�T/�T), with E ≡ 〈EL〉, and {p1, . . . , pNp} is
the set of Np variational parameters included in the �T

ansatz. Equations (1a)–(1c) are called the Hellmann–Feynman
(HF), Pulay, and variational terms, respectively. One usu-
ally ignores Eq. (1c) when evaluating atomic VMC forces,
resulting in

FVMC
α = −

〈
∂

∂Rα

EL

〉
− 2

〈
(EL − E )

∂ log �T

∂Rα

〉
. (2)

The long-standing problem of obtaining a statistically mean-
ingful FVMC

α value with a finite variance and at the same
cost as the VMC energy evaluation has been solved by the
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FIG. 1. Schematic picture of PESs as a function of the dimer
bond length R. (a) The exact PES, not accessible in practice. (b) The
best possible PES obtained in the VMC framework by minimizing all
variational parameters of �T. (c) The PES obtained with optimized
Jastrow factor and Slater MOs yielded by DFT at each point R, whose
slope at R′ is exactly given by the VMC force F VMC supplemented
by the variational term F c, as proposed in this study. (d) The PES
obtained with frozen DFT orbitals computed at R′, whose slope
corresponds to F VMC without the additional term F c.

zero-variance zero-bias principle [31] together with the
space-warp transformation [32] and reweighting techniques
[24,31,33–36]. Hereafter, we will denote FVMC

α as regular
VMC force [Eq. (2)].

Neglecting Eq. (1c) is justified only when the system is at
its variational minimum for all parameters (i.e., ∂E/∂ pi = 0,
∀i) or when the variational parameters, which are implicitly
dependent on the atomic positions, accidentally or by con-
struction become position independent (i.e., d pi/dRα = 0,
∀i); otherwise, FVMC

α can be biased. This bias is referred to
as self-consistency error [36,37].

In this paper, we propose a method to obtain unbiased
atomic forces and pressures that does not increase the com-
putational complexity of the VMC energy calculation, by
supplementing the regular VMC force with a suitable varia-
tional term, computed by exploiting the gauge-invariant and
locality properties of the antisymmetrized geminal power
(AGP) ansatz [38]. For assessment, we demonstrate that the
potential energy surfaces (PESs) of the H2 and Cl2 molecules,
and the equation of state (EOS) of the cubic boron nitride
(cBN) are consistent with the forces and pressure obtained by
our proposed method.

II. ILLUSTRATING THE PROBLEM

For the sake of clarity, we present the case of the PES of
a dimer expressed as a function of the interatomic distance R,
while the present discussion can be applied for any other sys-
tem. Figure 1 shows a schematic picture of several PESs. Let
E exact [Fig. 1(a)] be the exact PES of the dimer. E exact is the
ultimate goal of any electronic structure calculation, but it is

unknown except for nodeless ground states. The best possible
PES within a given �T ansatz is E fullopt [Fig. 1(b)], yielded
by a VMC calculation with the fully optimized �T. This is
achievable for rather small systems by optimization methods
suitable for noisy data [39,40], but becomes impractical for
larger ones. Therefore, a good compromise between accuracy
and computational efficiency is EJSD [Fig. 1(c)], obtained by
the Jastrow correlated Slater determinant (JSD) ansatz, with
one-body molecular orbitals (MOs) computed by DFT for
each interatomic distance R. The JSD is the most common
VMC ansatz: only the Jastrow factor is optimized at the VMC
level, while the DFT MOs are kept frozen in the Slater deter-
minant (SD). However, in this case, the VMC force F VMC is
not consistent with the slope of EJSD, because the variational
parameters included in the SD are not at their VMC minima.
Instead, F VMC corresponds to the slope of Ebiased

JSD [Fig. 1(d)],
where the DFT MOs obtained at R = R′ are used artificially
for all R, such that d pi/dR = 0, ∀i. In this work, we propose
an efficient method to obtain atomic forces and pressures that
are unbiased, namely consistent with the slope of EJSD(c).

As long as the Jastrow factor is at its variational minimum,
the contribution to the bias comes only from the SD part. This
suggests that a straightforward solution for correcting the bias

is to compute the variational term Fc
α ≡ −∑NSD

p

i=1
∂E

∂ pSD
i

d pSD
i

dRα
,

where pSD
i are SD variational parameters. In the following,

we introduce a method to evaluate these terms by combining
DFT with VMC gradients calculations.

III. METHOD TO OBTAIN UNBIASED ATOMIC FORCES

We begin by introducing the AGP representation [38,41]
of the SD ansatz made of MOs. The general AGP
ansatz for a system of Ne electrons is written as �AGP =
Â[g(x1, x2)g(x3, x4) . . . g(xNe−1, xNe )], where Â is the an-
tisymmetrization operator and g is the so-called geminal
function g(xl , xm) = f (rl , rm)(|↑↓〉 − |↓↑〉)/

√
2. The spatial

part f (r, r′) can be written in terms of MOs, such that
f (r, r′) = ∑M

k �k (r)�k (r′), where �k (x) is the kth MO
expressed as �k (r) = ∑L

i ci,kψi(r), ψi(r) is the ith atomic
orbital (AO), and ci,k are the AO coefficients obtained by
a DFT calculation. If the Hilbert space is restricted to the
occupied states, i.e., M = Ne/2 for spin-unpolarized systems
[42], the resultant AGP is equivalent to the SD ansatz. In other
words, the SD ansatz can be treated as a special case of the
more general AGP wave function. We assume that �T is real
for the sake of conciseness; thus, the variational parameters
are also real. However, our method can be readily generalized
to complex �T [43]. In this work, the geminal function is con-
structed from the MOs obtained from a DFT calculation, and
then converted to the AO representation, namely f (rl , rm) =∑L,L

i, j λi, jψi(rl )ψ j (rm), with λi, j = ∑
k ci,kc j,k . Thus, the vari-

ational term needed for correcting the self-consistency error
reads

Fc
α = −

L,L∑
i, j

∂E

∂λi, j

dλi, j

dRα

, (3)

which is what one should compute to get unbiased atomic
forces in the JSD ansatz, where λi, j are directly obtained by
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DFT calculations. As discussed later, the geminal representa-
tion also allows one to compute unbiased forces and pressures
beyond the JSD ansatz by optimizing a part of λi, j in the JAGP
ansatz at the VMC level.

The first factor in the terms summed in Eq. (3), i.e.,
∂E/∂λi, j , used for optimizing �T and often dubbed as gen-
eralized force, can be efficiently computed by VMC [43]. The
second factor, the total derivative dλi, j/dRα , can be numer-
ically evaluated using the finite-difference method (FDM),
i.e., dλi, j/dRα ∼ (λRα+�Rα

i, j − λ
Rα−�Rα

i, j )/2�Rα , or can be ob-
tained by solving the coupled perturbed Hartree-Fock (CPHF)
or Kohn-Sham (CPKS) equations [44], or the linear response
equations [45]. The second factor is N times more time
consuming than the single-point DFT calculation, and this
is regardless of the number of variational parameters. In-
deed, to compute the correction terms for the geometry R ≡
{R1, . . . , RN }, one needs at least 3N-times HF/DFT calcula-
tions, where 3 is the number of Cartesian components. In this
study, we employed the finite-difference approach because
the gauge-invariant property of the AGP, inherited from its
close relation with the reduced one-body density matrix [46],
allows one to construct a robust workflow to compute the
second factor. Indeed, thanks to the gauge-invariant property
of the AGP, one does not suffer from (i) the global phase
(or sign) indetermination of MOs, nor from (ii) their possible
degeneracy. As for (i), a global phase θ rotating the kth MO
(�k → eiθ�k), which is reduced to a global sign eiθ = ±1 in
case of a real �T, does not affect the total energy, but prevents
the calculation of orbital derivatives dci,k/dRα , based on finite
differences. Indeed, the global phase (or sign) is sometimes
inconsistent between DFT outcomes with different atomic
displacements. Instead, the sign flip is not problematic in the
AGP representation, because the relation λi, j = ∑

k ci,kc j,k

implies that λi, j is invariant under a MO sign change [47].
As for (ii), when two (or more) MOs are degenerate, cRα+�Rα

i,k

and cRα−�Rα

i,k might have very different values due to the
presence of the other degenerate MOs. Nevertheless, it is
straightforward to show that a MOs degeneracy does not
affect the uniqueness of λi, j , making λi, j independent of the
choice of the particular DFT implementation for degenerate
MOs. Thus, by exploiting the AO representation of the AGP
wavefunction, one can always devise a well-defined method to
compute dλi, j/dRα , which will be superior to the calculation
of dci,k/dRα .

By combining the first and second factor in Eq. (3), the
variational term can be cast in a form suitable for a VMC
estimate, as follows [48]:

Fc
α = −2

〈
EL(x)

L,L∑
i, j

[
(Oi, j (x) − Ōi, j )

dλi, j

dRα

]〉
, (4)

where we made apparent the dependence of the local operators
on the total electronic coordinate x, sampled by VMC, to
distinguish them from constant values. In Eq. (4), Oi, j (x) =
∂ ln �T (x)/∂λi, j and Ōi, j ∼ 〈Oi, j (x)〉. We remark that Oi, j (x)
can be efficiently computed in a VMC calculation using the
adjoint algorithmic differentiation [34], and the divergences of
the generalized forces can be cured by reweighting methods
[33,49]. It is extremely important that the variational term

is evaluated in a covariance form of random variables to
reduce its fluctuations [39,50]. In addition, the expression in
Eq. (4) implies that if the variational wave function is an exact
eigenstate of the Hamiltonian, Fc

α vanishes regardless of the
VMC sample, because the local energy coincides with the cor-
responding eigenvalue E . Indeed, the zero-variance property
holds in this expression, which is another way to recover the
Hellmann-Feynman theorem.

IV. APPLICATIONS TO H2 AND Cl2 MOLECULES

We determine the interatomic force of the H2 and Cl2
molecules, taken as first examples to assess the accuracy
of our method. The ccECPs [51–54] accompanied with the
uncontracted cc-pVDZ basis sets were employed for H2 and
Cl2 molecules. For Cl2, the He-core ccECP was employed.
DFT MOs were prepared by PYSCF v2.0.1 [55,56] with the
LDA-PZ exchange-correlation functional [57], and then con-
verted to the TURBORVB wave function format [41] using
the TURBOGENIUS package [58] via TREX-IO files [59]. The
inhomogeneous one-body, the two-body, and the three-body
Jastrow factors [41] were added to the SD with frozen DFT
MOs and optimized using the linear method [39,40] imple-
mented in TURBORVB [41]. The second factor, dλi, j/dRα ,
was numerically evaluated using the displacements �R =
±0.001 Å along the molecular bond direction.

The simple H2 molecule highlights the importance of re-
moving the self-consistency error in the forces calculation by
adding the variational force term to the regular VMC expres-
sion. In H2, the JSD ansatz with DFT MOs is, in principle,
exact if the Jastrow factor is converged in the basis set [60].
Indeed, the wave function is nodeless, so the difficulty of
finding the optimal variational state can be fully transferred
to the Jastrow factor determination. Thus, H2 allows one to
study different situations, from a poor to a refined Jastrow
factor. In this study, we examined a small [1s] and a large
[4s2p1d] basis set expansion, as a poor and refined Jastrow
factor, respectively. For the former, Fig. 2(a) shows that the
DFT parameters are not optimal at the VMC level; thus, the
self-consistency error is present. The equilibrium distance
obtained from the PES [0.7344(2) Å] and the one from regular
VMC forces [0.7392(1) Å] are reported in Table I. Figure 2
and Table I demonstrate that the self-consistency error is
mitigated by the proposed force correction Fc, which gives
a bond distance of 0.7341(1) Å, compatible with the one
derived from the PES. Figure 2(b) shows that in the case of
a refined Jastrow factor, the self-consistency error is instead
negligible, because the larger Jastrow expansion compensates
for the DFT determinant, and all variational parameters are
optimal. Thus, the regular VMC force is already consistent
with the derivative of the PES, and the corresponding force
correction eventually vanishes, as reported in Table I. The H2

example is illustrative of the capability of the variational term
in Eq. (3) to correct the force bias due not only to the frozen
DFT MOs, but also to an underconverged Jastrow factor.

Figure 2(c) shows the PES of the Cl2 molecule, as yielded
by a [3s1p] Jastrow basis set. Table I reports the equilib-
rium geometries obtained from the PES, regular VMC force,
and corrected force. The figure and table show that the self-
consistency error is more significant for Cl2 (Zeff = 15) than
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FIG. 2. (a) and (b): H2 PESs (solid green curves), their numerical derivatives (dashed green curves), regular VMC forces (red diamonds),
and corrected forces (purple squares) obtained with (a) small [1s] and (b) large [4s2p1d] Jastrow basis sets. The PESs and forces are computed
from 0.30 to 2.00 Å with 18 equally spaced datapoints plus 5 additional datapoints (0.55 Å, 0.65 Å, 0.75 Å, 0.85Å, and 0.95 Å). The vertical
dashed lines represent equilibrium bond lengths obtained by fitting the PES (forces) with a polynomial of 11th (10th) order. (c): Cl2 PES (solid
green curve), its numerical derivative (dashed green curve), regular VMC forces (red diamonds), and corrected forces (purple squares). The
PES and forces are computed from 1.50 to 2.80 Å with 14 equally spaced datapoints. The vertical dashed lines represent equilibrium bond
lengths obtained by fitting the PES (forces) with a polynomial of 6th (5th) order for energies (forces). In all panels, only the region in the
vicinity of the equilibrium geometry is drawn. The plotted forces are Fx acting on the left atom of each dimer, where the x axis is aligned with
the direction of the molecular bond.

H2 (Zeff = 1). This is consistent with the seminal work by
Tiihonen et al. [37], reporting that the self-consistency error
increases with the effective nuclear charge. Figure 2 and Ta-
ble I illustrate that the proposed force correction works also
for heavier molecules.

V. APPLICATION TO CUBIC BORON NITRIDE

Not only atomic forces, but also pressures can be corrected
in solids using the same method, just by replacing dλi, j/dRα

with dλi, j/dV . To demonstrate it, we computed the cBN
EOS. The ccECPs [51–54] with accompanying uncontracted
cc-pVDZ basis sets were used for the cBN calculation. The

TABLE I. The equilibrium bond distances req (Å) of the H2 and
Cl2 molecules obtained from the PESs, the regular VMC force, and
the corrected force. The corresponding PESs are shown in Fig. 2.

Dimers Source req (Å)

H2 (Jas. [1s]) PES 0.7344(2)
VMC force 0.7392(1)
Corrected force 0.7341(1)
Experiment 0.741a

H2 (Jas.[4s2p1d]) PES 0.7418(3)
VMC force 0.7408(6)
Corrected force 0.7408(6)
Experiment 0.741a

Cl2 (Jas.[3s1p]) PES 1.987(1)
VMC force 1.9979(1)
Corrected force 1.9864(1)
Experiment 1.987 a

aThese values are taken from Ref. [61].

linear dependency of the basis sets is solved at the DFT level
by cutting basis set elements with exponents smaller than 0.20
a.u. This is crucial to suppress the statistical errors on atomic
forces and pressures for periodic systems in QMC calculations
[62]. The 2×2×2 conventional supercell (256 valence elec-
trons in the simulation cell) with k = 
 was employed. DFT
MOs were prepared by the built-in DFT module implemented
in TURBORVB [41] with the LDA-PZ exchange-correlation
functional [57]. Then, the inhomogeneous one-body, the two-
body, and the three-body Jastrow factors [41] were added to
the SD with frozen DFT molecular orbitals. [3s1p] Jastrow
basis sets were employed for B and N atoms. The Jastrow
factor was optimized using the linear method [39,40] im-
plemented in TURBORVB [41] for each volume. The second
factor, dλi, j/dV , was numerically evaluated using the built-in
DFT module with volume variations �V = ±0.3%. Figure 3
shows the cBN EOS, its volume derivative, the regular VMC
pressures, and the corrected pressures. The obtained equilib-
rium lattice parameters and volumes are reported in Table II.
It is apparent that the self-consistency error in pressure is
∼5 GPa, constant over the whole volume range. Our method
gives corrections that bring the estimated pressures very close
to the exact values for all volumes, as shown in Fig. 3. This
result illustrates the possibility to successfully correct not only
atomic forces but also pressures in large systems with the
explicit evaluation of the variational pressure term.

VI. DISCUSSION

We first compare our method with the FDM, which is the
traditional way to obtain unbiased atomic forces in the VMC
framework. The main drawback of the FDM is that it requires
at least 3N independent VMC runs to compute all 3N force
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FIG. 3. cBN EOS (solid green curve), its volume derivative
(dashed green curve), the regular VMC pressure (red diamonds),
and the corrected pressure (purple squares). The vertical dashed
lines represent equilibrium volumes obtained by fitting the EOS and
pressures with the Vinet forms [63].

components, preventing its use in routine VMC calculations.
Instead, our proposed method requires just a single VMC run
to compute all 3N regular VMC forces, together with all Oi, j

terms that appear in the expression for Fc
α of Eq. (4). This

is thanks to the algorithmic differentiation [34]. As we men-
tioned before, the other terms in Eq. (4), namely dλi, j/dRα ,
are computed by FDM using DFT as the driver, thus leading
to DFT calculations N times more time consuming than a
single DFT run. However, since the DFT cost is negligible
compared to VMC, and it is mainly fast Fourier transform
bound, with a favorable O(N2 log N ) scaling for a single run,
the resulting algorithmic cost of our method is superior to the
FDM evaluation of atomic VMC forces.

Next, we discuss the scaling of the variance of the varia-
tional term Fc

α with respect to N . The variance of the local
energy EL scales with Ne [43], while the variance of the
logarithmic derivatives Oi, j is O(1) [34]. Thus, the variance of
Fc

α is bound by O(L2Ne ), where the factor of L2 comes from
the double summation over the extended basis set elements
[64]. The geminal representation needs the L2 summation
instead of the LNe summation of the SD representation for
the JSD ansatz. However, at variance with the SD represen-

TABLE II. Equilibrium lattice parameters and volumes per atom
obtained by fitting the EOS, and from the regular VMC pressure and
the corrected one. Zero-point energy and temperature effects are not
included.

Source Lattice (Å) Volume (Bohr3)

EOS 3.5962(3) 39.232(9)
VMC pressure 3.5800(1) 38.704(5)
Corrected pressure 3.5943(2) 39.169(5)
Experiment 3.594a 39.160a

aThese values are taken from Ref. [61].

tation, the geminal allows one to exploit the locality of the
λi, j matrix. In other words, one can neglect |dλi, j/dRα| with
small absolute values, obtained deterministically by DFT cal-
culations. For instance, the percentage of elements such that
|dλi, j/dRα|/ max |dλi, j/dRα| � 0.01% is 38.5%, 45.0%, and
66.0% for 1 × 1 × 1 (8 atoms), 2 × 2 × 2 (64 atoms), and 3 ×
3 × 3 (216 atoms) cBN supercells, respectively, demonstrat-
ing that the larger a system becomes, the more terms can be
neglected thanks to the locality. In this way, the summation in
Eq. (4) can be reduced from L2 to L terms, by lowering the size
scaling of the Fc

α variance. Since L and Ne are proportional to
N , the scaling of the variance of our method with respect to N
is bound by O(N2) in the N → ∞ limit, which is just N times
larger than the variance of the regular VMC force calculation
O(N ) [34]. However, in our H2, Cl2, and cBN calculations,
we got the same error bars on the regular VMC forces and
on the corrected ones with the same statistics. This points
to a very small prefactor ε in the O(N2) variance term, such
that in the total variance Var(Fα ) = Var(FVMC

α ) + Var(Fc
α ) ≈

O(N ) + εO(N2), the O(N2) contribution can be neglected for
any affordable N in VMC calculations.

Finally, we emphasize the extensibility of the geminal
representation employed here, which allows one to readily
generalize the method proposed in this work from the JSD to
the more general JAGP ansatz. A practically way to go beyond
the JSD ansatz for a large system is to optimize only a subset
of the variational λi, j parameters. The partially optimized
λi, j matrix will normally have a larger rank than the one
corresponding to the SD wave function, therefore including
AGP correlations. The subset of λi, j is chosen again based on
the AGP locality. Indeed, only the variational parameters λi, j

corresponding to atoms at a distance smaller than a reasonable
cutoff can be optimized, while those with distance larger than
the cutoff are kept fixed [43]. In this situation, only the fixed
λi, j must enter in Eq. (3), thus correcting the force bias in the
JAGP ansatz. In principle, our approach can also be extended
to more general antisymmetric wave functions, with the only
caveat that, in order to compute the d pi/dRα derivatives,
one has to consistently use the same auxiliary framework
employed to initialize the antisymmetric part of the VMC
wave function.

VII. CONCLUDING REMARKS

In this work, we analyzed the bias seriously affecting the
regular VMC expression FVMC

α . We then proposed a method to
efficiently and robustly compute the missing contribution, i.e.,
the variational term Fc

α , to completely remove that bias for a
JSD ansatz with DFT one-body orbitals, the most common
wave function in ab initio VMC calculations, usually the
best compromise between accuracy and computational cost.
We demonstrated that the correction works very well for the
systems that have been tested here, namely the equilibrium
geometry of H2 and Cl2 molecules, and the EOS evaluation
of the cubic boron nitride. Unbiased atomic forces within a
JSD ansatz, which is in general much cheaper to optimize than
more refined �Ts, will be particularly useful to generate VMC
datasets for MLPs construction, which would otherwise be
affected by the self-consistency error. Thus, our approach has
the potential to open up new horizons for VMC applications,
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also in the context of machine learning. Finally, the same
scheme can be extended to more elaborated wave functions,
once a suitable auxiliary method is used to generate their
antisymmetric part.
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