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On Some Applications of Absolute Differential Calculus to
the Theory of Binary Quadratic Differential Forms and

Systems in Two Variables

Gregorio Ricci [Curbastro]
translated by Edoardo Niccolai

Abstract. The document first appears in Atti del Regio Istituto Veneto, Tomo LI, Serie settima
– Tomo quarto, Dispensa VII, 1892-1893, Venezia, pp. 1336-1364, Adunanza ordinaria del giorno
16 Luglio 1893, with the title Di alcune applicazioni del calcolo differenziale assoluto alla teoria
delle forme differenziali quadratiche binarie e dei sistemi a due variabili.

The mathematical roots of Einstein’s general theory of relativity—along with other sets of
invariant principles with algebraic and geometric pretensions—are here. And here begins the
algebro-geometric fiction that attempts to get Nature (of space-time) talking, which is deaf to
our prayers. But that is another story.a

a The reference is to a sentence by G. Galilei: «[L]a Natura [è] sorda, & inesorabile à nostri preghi», in Istoria e
dimostrazioni intorno alle macchie solari e loro accidenti comprese in tre lettere scritte all’illustrissimo Signor M.
Velseri linceo, G. Mascardi, Roma, mdcxiii (1613), p. 131.
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ON SOME APPLICATIONS
OF ABSOLUTE DIFFERENTIAL CALCULUS

TO THE THEORY OF BINARY QUADRATIC DIFFERENTIAL FORMS
AND SYSTEMS IN TWO VARIABLESa

[1336|1] The results that will be found in this work are, for the most part, not new: what is new
are the methods that lead to them and the form that they assume. After having repeatedly insisted
on the advantages that the methods of absolute differential calculus offer in research in which
properties independent of the choice of coordinates are concerned, I still deem it appropriate to
show some of their fundamental applications in a field that, precisely because it has been explored
in every part by geometers, is better suited to highlighting the advantages mentioned by means
of comparisons. Furthermore, it will be found in this paper an introduction necessary for the
understanding of other advantages that, in due course, will be made public.

For the moment, I shall limit myself to considering the binary positive quadratic differential
forms [1337|2] in themselves, that is, irrespective of their common origin from ternary forms of the
same nature and with constant coefficients, and I will linger mainly over the theory of systems of
lines traced on manifolds represented by them. It will be seen that some concepts, such as that of
geodetic curvature, which have originated from geometric considerations, present themselves under
an analytical aspect, i.e., as the most elementary absolute invariants common to the fundamental
form and to the covariant forms, which we will be gradually led to consider; while other concepts,
such as that of line bundle, which have appeared here and there almost incidentally in the research
of geometers, reveal the necessary constraints with the theory outlined above.

Another concept closely connected with the methods of absolute differential calculus, and which
will be usefully applied here, is that of coordinate systems for the determination of systems of
lines traced on surfaces. It is not new since it consists in making this determination depend
on differential equations rather than on equations in finite terms; the elegant applications given
by Professor Beltrami in his Researches in Analysis Applied to Geometry are well-known. Here,
moreover, the differential equations are chosen in a form, say, canonical, which proves to be very
appropriate, and allows us to establish a univocal correspondence between the systems of lines and
their coordinate systems.

Although, as indicated in the title, this work is essentially analytical, I have not avoided using
a geometric nomenclature, associated with geometric interpretations, which are so conducive to
conciseness and clarity. However, because of the importance of the subject, I have added a hint of an
analytical theory of transformations of binary quadratic differential forms, which does not require
the introduction of special systems of coordinates, but it comes directly from the general theory
of forms and from well-known [1338|3] theorems on the integration of complete or unconditionally
integrable systems.

I will adopt here some notations established in a brief summary of some of my works published
in Bulletin des Sciences Mathématiques, June 1892, by Messrs. Darboux and Tannery. But I
will explicitly recall that, since we have to consider only one fundamental form φ, if a letter with
upper and lower m-indices represents a multiple covariant or contravariant system, the same letter
with an additional index will represent the system derived from it covariantly or contravariantly,
according to φ, and that if a letter with lower m-indices represents a covariant system, the same
letter with upper m-indices will represent its reciprocal with respect to φ and vice versa. I would
add that the summations relating to p-indices are to be understood as always extended to all the
dispositions with repetitions p to p of the indices 1 and 2, and that, when appropriate, it will be
permitted to replace an index r with an index s, provided that r and s are even or odd together.

a For the sake of brevity, I will use the name absolute differential calculus to refer to the set of methods I have
previously called covariant and contravariant derivation, as they are applicable to every fundamental form regardless of the
choice of independent variables and indeed require that these [variables] be completely general and arbitrary.
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1. — Let us assume as a fundamental form a binary quadratic differential form

φ =
∑
rs

arsdxrdxs,

which is irreducible and positive at least in a field, to which the variability of the independent
variables x1 and x2 will be considered limited. Let µr be any simple covariant system in two
variables x1 and x2. Likewise, the same will be true for the system µ̄r; it is defined, regardless of
the sign, by ∑

r

µ(r)µ̄r = 0,

r∑
µ̄(r)µ̄r =

∑
r

µ(r)µr,

which give
µ̄r = (−1)r

√
aµ(r+1). (1)

[1339|4] Assuming that
√
a is positive, the system µ̄r will be completely determined on the basis

of the system µr and the form φ. Now, µ̄r will be called the canonical system orthogonal to the
system itself with respect to this form, and it could be written like this:

µ̄r ≡ Nφ(µr).

Since Eq. (1) is equivalent to

µ̄(r) =
(−1)r√

a
µr + 1, (2)

we can also say that µ̄(r) is the canonical system orthogonal to the system µ(r) with respect to the
form φ, putting

µ̄(r) = Nφ

(
µ(r)

)
.

In this paper we will always consider only one fundamental form φ, so we shall designate by µ̄r
or µ̄(r) the canonical system orthogonal to φ for a system µr or µ(r), respectively. We will then
observe that by Eqq. (1) (2) one gets

−µr ≡ Nφ (µ̄r) , −µ(r) ≡ Nφ

(
µ̄(r)

)
,

to wit, it results that the system µ̄r (or the system µ̄(r), respectively) has as its canonical system
orthogonal to φ the system −µr (−µ(r), respectively).

Let us also recall that, if µr and νr are any two simple covariant systems, then

I =
∑
r

µ(r)νr

is an invariant, and, if

Is =
dI

dxs
,

one hasa the formulas [1340|5]

Is =
∑
r

µ(r)νrs +
∑
r

ν(r)µrs. (3)

For any simple system µr it will be true that

µrs+1s − µrss+1 =
∑
q

aqr,s+1sµ
(q),

or

arr,s+1s = 0, ar+1r,s+1s = (−1)r+saG, (4a)

µrs+1s − µrss+1 = (−1)s
√
aGµ̄r, (4b)

where G is the Gauss invariant relative to the fundamental form.

2. — Consider a simply infinite system of lines drawn on a surface whose linear element is
expressed by √

φ, which we will briefly call surface φ. Once the positive directions for these lines

a See § 2 of the above-mentioned summary.
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are established, let dx1 and dx2 denote the variations that the coordinates of any point undergo
for an infinitesimal [punctual] displacement in the positive direction of a line of the system. Let

λ(r) =
dxr√
φ
, (5)

where √
φ represents an absolute value. The simple contravariant system λ(r) will then satisfy∑

r

λ(r)λr = I. (6)

If a simple contravariant system λ(r) satisfies mutually this equation, then Eq. (5) defines a
system of linesa drawn on a surface [1341|6] φ. If therefore a system of lines drawn on a surface is
considered as fully determined only if its positive directions are fixed, for every system of lines
drawn on certain surfaces φ there exists a system λ(r) defined by Eq. (5) satisfying Eq. (6), and
reciprocally every system λ(r), which satisfies Eq. (6), completely determines on the surfaces φ a
system of lines, of which Eq. (5) can be considered as a differential equation. For this reason I
will call the system λ(r) contravariant coordinate system of the system of lines defined by Eq. (5),
whilst the system λr reciprocal to λ(r) with respect to the fundamental form φ is the covariant
coordinate system. Every system λ(r) (or λr), which satisfies Eq. (6), can be considered as the
contravariant (or covariant) coordinate system of a system of lines—defined by differential Eq.
(5)—drawn on a surface φ. Often, for brevity, the lines appertaining to the covariant coordinate
system will be called lines λr.

3. — If λr is the covariant coordinate system of a system of lines drawn on a surface φ, the
canonical system λ̄r orthogonal to it with respect to φ has the same meaning for the system of
trajectories orthogonal to the lines λr; and it is easy to recognize that the positive directions of the
lines λ̄r are to the lines λr as the positive axis of the ordinates is to the axis of the abscissas.

In accordance with the aforementioned conventions, I will designate by fr the derivatives with
respect to xr of any function f of x1 and x2, and I will put

(∆1f)
2 =

∑
r

f (r)fr.

If µ and ν are any two parameters of the systems [1342|7] of lines λr and λ̄r, and by ds and δs
one designates the linear elements of these lines, then it will be possible to specify

∆1µ =
dµ

δs
, ∆1ν =

dν

ds
. (7)

By means of the same definitions of the systems λr and λ̄r one can write the identity∑
r

µ(r)λr = 0,
∑
r

ν(r)λ̄r = 0,

and
λr =

νr
∆1ν

, λ̄r =
µr
∆1µ

,

taking into account Eq. (7).
The identities

φ =

(
dµ

∆1µ

)2

+

(
dν

∆1ν

)2

,

dµ =
∑
r

µrdxr, dν =
∑
r

νrdxr,

lead to
φ =

∑
rs

(λrλs + λ̄rλ̄s)dxrdxs,

a Unless the contrary is expressly stated, when we talk about systems of lines traced on a surface, we always would
refer to simply infinite systems.
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which is equivalent to
ars = λrλs + λ̄rλ̄s. (8)

From
λ̄r = (−1)r

√
aλ(r+1), (9)

which defines the system λ̄r, it can be easily deduced

λr+1λ̄r − λrλ̄r+1 = (−1)r
√
a. (10)

If now we indicate by µr a simple covariant system, Eqq. (1) and (8), together with [1343|8]

µr =
∑
p

aprµ
(p),

easily lead to the identities 
µr = λr

∑
p

µ(p)λp + λ̄r
∑
p

µ(p)λ̄p,

µ̄r = λ̄r
∑
p

µ(p)λp − λr
∑
p

µ(p)λ̄p.

(11a)

(11b)

If we combine these identities with the expressions relating to a second simple covariant system νr,
we obtain the formulas ∑

r

µ(r)νr =
∑
r

µ̄(r)ν̄r,
∑
r

µ(r)ν̄r = −
∑
r

ν(r)µ̄r. (12)

In particular, if λr and ξr are the covariant coordinate systems of two systems of lines drawn on
the surfaces φ, and if we consider as positive the angles described in the opposite direction to the
movement of clock indices,a we have

cosα =
∑
r

λ(r)ξr =
∑
r

λ̄(r)ξ̄r, sinα =
∑
r

ξ(r)λ̄r = −
∑
r

λ(r)ξ̄r, (13)

where α is the angle that, for positive directions, goes form λr to ξr.

4. — If we differentiate the identity (6) according to the rule contained in formula (3), we arrive
at ∑

r

λ(r)λrs = 0.

It turns out that the double system λrs can be considered as the productb of the simple system
λ̄r by another simple system, which will be designated by φs, so that we have

λrs = λ̄rφs, (14)
[1344|9] and consequently

φs =
∑
r

λ̄(r)λrs. (15)

If in accordance with the rule mentioned above we differentiate the identity∑
r

λ(r)λ̄r = 0,

we obtain the formulas ∑
r

λ(r)λ̄rs = −
∑
r

λ̄(r)λrs = −φs

and thence
λ̄rs = −λrφs. (16)

Via Eq. (14), with a further covariant derivation according to φ, the equalities

λrst = λ̄rφst − λrφsφt,

a TN. The most obvious reference is the clock face, but it is not movable, otherwise a device (for measuring time) could
not indicate hours and minutes.

b See § 1 of the above-mentioned summary.
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and
λrs+1s − λrss+1 = λ̄r (φs+1s − φss+1) ,

are achieved. This last formula, if compared with Eqq. (4), gives

φ12 + φ21 =
√
aG. (17)

As can be seen from the theory of total differential equations, this equation represents the
necessary and sufficient condition for the system of equations resulting from (6) and (14) to be
complete or unconditionally integrable, in which φr is considered as given and λr as unknown.
Once this condition is verified, the general integral system contains an arbitrary constant, to wit,
on the surfaces φ there exists a simply infinite number of systems of lines whose coordinate system
satisfies (14). We will soon recognize the very simple relation that links together all these systems.

[1345|10] 5. — Let λr and ξr be the coordinate systems of two systems of lines drawn on the
surfaces φ, and let

ξrs = ξ̄rψs (18)

be an equation analogous to (14) satisfied by the system ξr. Any ψs and φs will satisfy Eq. (17),
ergo

(φ1 − ψ1)2 = (φ2 − ψ2)1,

which tells us that the system φs − ψs results from the derivatives of a function with respect to xs.
We can arrive at the same result by another way, which will lead us to a very simple geometric
interpretation of this function.

If we differentiate Eq. (13), with the help of Eq. (3), and through Eqq. (14) (16) and (18) we
use Eq. (13) to eliminate sinα and cosα, we arrive at

αs = ψs − φs.

Now it is enough to remember the meaning of α established in § 3 to see that the system ψs−φs
has as elements the derivatives of the angle, which must be described to pass from the positive
directions of the lines λr to those of the lines ξr.

I will call bundle systems the set of systems in an infinite number of lines drawn on the surfaces
φ—note that here two lines belonging to two given systems of the bundle intersect each other at a
constant angle. It turns out then that

φs = ψs

expresses the necessary and sufficient conditions thanks to which the two systems λr and ξr of lines
drawn on the surfaces φ are regarded as belonging to the same bundle. We can therefore conclude
that, if a simple covariant system φs satisfies [1346|11] Eq. (17), then the infinite systems of lines
drawn on the surfaces φ constitute a bundle. In other words, to every system φs, which satisfies
Eq. (17), there corresponds a bundle F resulting from the systems of lines whose coordinate
systems satisfy (14), and to every bundle F of systems of lines there corresponds a simple covariant
system φs satisfying Eq. (17). For this reason the system φs (and its reciprocal φ(s)) will be called
covariant (contravariant) coordinate system of the bundle F . The doubly infinite system, which
results from all lines belonging to the systems of the bundle, will be called bundle of lines.

Summing up, we can state the following theorems:
(1) For a simple system φs to be the covariant coordinate system of a bundle of systems of

lines drawn on the surfaces φ, it is necessary and sufficient that the condition φ12 − φ21 =
√
aG

is verified. Once this condition is verified, the bundle for a coordinate system φs results from the
systems of lines whose covariant coordinate systems λr satisfy the first-order partial differential
equation λrs = λ̄rφs.

(2) If φr and ψr are the coordinate systems of two bundles of systems of lines drawn on the
surfaces φ, the system ψr − φr has as elements the derivatives of the angle, the description of
which is convenient to make around any point of the surfaces on the tangent plane, in order to
pass from the lines of a system of the first bundle to the lines of a system of the second bundles.



7

6. — We must move on to the general theory of absolute invariants,a which can be obtained by
associating one or more covariant systems to a fundamental quadratic [1347|12] differential form,
when this form is applied to a binary form φ with a covariant coordinate system λr of a system of
lines drawn on the surfaces φ. From such a theory it follows that

(1) There is only one absolute invariant
∑
r λ

(r)λr identically equal to unity .
(2) All the absolute invariants of the first order will be obtained by algebraically associating to

the form φ—in addition to the linear form of coefficients λr—the linear form of coefficients φr,
i.e., the coordinate system of the bundle, to which the lines λr belong .

These first-order invariants are thereby

γ =
∑
r

λ(r)φr, (γ) =
∑
r

λ̄(r)φr (19)

ρ2 =
∑
r

φ(r)φr. (20)

These invariants are not independent but, as shown by Eq. (8), related by

ρ2 = γ2 + (γ)2. (21)

(3) We will obtain all the absolute invariants of any order n > 1, by algebraically associating to
φ the two linear forms mentioned above and then all the forms whose coefficients are the elements
of the covariant systems that can be achieved from the system φr with n− 1 successive covariant
derivations according to φ.

From Eq. (17) it appears that in this way the Gauss invariant G is obtained, and the resulting
systems from φr can be replaced by G, with respect to the double symmetric system φrs+φsr

2 and
their systems, for n > 2. Concerning the second-order, as we shall see, the invariant

θ =
1

2

∑
rs

a(rs)φsr (22)

has a notable place.
[1348|13] The invariants with which we are dealing are evidently analytical expressions (i) of the

system of lines λr if they actually contain the elements of the system λr, (ii) of the bundle if they
contain φr or the elements of the system φrs+φsr

2 but without explicitly containing λr, and finally
(iii) of the surfaces φ if, in addition to the coefficients of the fundamental form, they contain only
G. For example, in the first case the invariants are γ and (γ), in the second case ρ and θ.

7. — Let us first propose to determine the geometric nature of the systems of lines characterized
by the differential equation γ = 0. Since Eq. (19) is equivalent to

φr = γλr + (γ)λ̄r, (23)

in this case Eq. (14) will assume the form

λrs = (γ)λ̄rλ̄s,

and consequently the identity
λ12 = λ21.

For Eqq. (14) (23) one arrives at γ = 0. The identity represents the necessary and sufficient
condition that λr is the derivative of a function λ with respect to xr. According to Eq. (6), it
follows (∆1λ)

2 = 1, so (§ 3) λ will be a parameter of the lines λ̄r. We can conclude that
The equation γ = 0 is the characteristic differential equation of systems of geodetic lines,
and consequently
The equation (γ) = 0 is the characteristic differential equation of systems of parallel lines.
[1349|14] Now, let λr be the coordinate system of any system of lines, MH a line of this system,

and MM ′K the geodetic line tangent to it at a point M , which therefore also contains the point
M ′ of MH very close to M . Let us indicate by ξ(r) the contravariant coordinate system of the
geodetic line x1 = cos t. We will then have (§ 2) ξ(1) = 0,

∑
r ψrξ

(r) = ψ2ξ
(2) = 0, namely ψ2 = 0.

a See § 3 of the above-mentioned summary.
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H

K

MM' 

α

Supposing that the line MM ′K belongs to the system ξ(r), at the point M we will also have
λ(1) = 0,

γ = λ(2)φ2.

If we now designate by α the angle that must be described to pass from the lines ξr to λr, one
gets (§ 5) φr = ψr + αr, and φ2 = α2 = dα

dx2
at the point M , and then also

γ =
dα

dx2

dx2
ds

=
dα

ds
.

Since dα is the angle arising from the meeting point M ′ of two lines, MM ′H and the geodetic
MM ′K, we can conclude that

The invariant γ represents the geodetic curvature of the lines λr, and analogously the invariant
(γ) is the geodetic curvature of their orthogonal trajectories λ̄r.

By Eq. (20) we can also assert that
In a bundle of lines the sum of the squares of the geodetic curvatures of any two orthogonal lines

has a value independent of the choice of the lines. If φr is the coordinate system of the bundle, the
sum is represented by the invariant

∑
r φ

(r)φr.
[1350|15] As is it known and as it results from Eqq. (17) and (19) the two invariants γ and (γ)

can cancel each other identically together only on developable surfaces and only for the bundle of
systems, which in the plane results from the doubly infinite rectilinear system. Leaving aside this
case, the equations

ρ =
√
γ2 + (γ)2 (24)

φr = ρλ′r (25)

define on the surfaces φ a vector, i.e. a quantity ρ determined in length and direction for each point
of the surface, the first being given by ρ and the second by the lines that have λ′r as a covariant
coordinate system. This vector on the surfaces φ for each bundle of systems φr will be called
curvature of the bundle.

Letting

cosα =
γ

ρ
, sinα =

(γ)

ρ
, (26)

the comparison of Eq. (25) with Eq. (23) gives

λ′r = cosαλr + sinαλ̄r, (27)

from which it follows (§ 3) that α is the angle that must be described to pass from the lines λr to
λ′r, and γ is the projection of the curvature of the bundle on the lines λr.

We conclude that:
If we consider a system of lines drawn on the surfaces φ, the geodetic curvature of any line of

the system at a certain point is the projection of the curvature of the bundle to which the system
belongs.

We will call the lines λ′r curvature lines of the bundle, and it will be easy to recognize that:
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The necessary and sufficient condition for a bundle φr to contain a system of geodetic lines
consists in the fact that its curvature lines belong to the [1351|16] bundle. Verify this condition, the
trajectories orthogonal to these lines of curvature are geodetic.

The validity of what has just been said is guaranteed by a simple observation: if the lines λr are
assumed to be geodetic, from Eqq. (26) and (27) one has α = π

2 and consequently λ′r = λ̄r.
I will also observe that, if the surfaces φ are developable, the bundle—that in the plane coincides

with the doubly infinite rectilinear system—can be considered as a bundle with zero curvature
whose lines are all lines of curvature of the bundle.

8. — Let us apply the rules for differentiating product systems, sums and composite systems to
Eq. (11) in § 3. Keeping in mind Eqq. (14), one thus arrives at

µ̄rs = λ̄r
∑
p

λ(p)µps − λr
∑
p

λ̄(p)µps,

from which, remembering Eq. (9), one gets

µ̄21 − µ̄12 =
√
a
∑
rs

a(rs)µrs.

One therefore also has
µ21 − µ12 =

√
a
∑
rs

a(rs)µ̄rs.

Recalling Eq. (17), we can conclude that
(1) The necessary and sufficient condition for a simple two-variable system µr to have as

elements the derivatives of a function µ depends on the possibility that the canonical system µ̄r
orthogonal to it with respect to φ satisfies the equation

∑
rs a

(rs)µ̄rs = 0.
(2) The necessary and sufficient condition for µr to be the coordinate system of a bundle of

systems of lines drawn on the surfaces φ consists in the fact that the system µ̄r satisfies the equation∑
rs a

(rs)µ̄rs = G.
[1352|17] Let µr be any simple covariant system, λr the covariant coordinate system of a system

of lines drawn on the surfaces φ, γ their geodetic curvature, and φr the coordinate system of the
bundle to which they belong. We set∑

r

µ(r)λr = α,
∑
r

µ(r)λ̄r = β, (28)

i.e.
µr = αλr + βλ̄r.

Via Eqq. (12) we will also have
µ̄r = −βλr + αλ̄r,

from which—using Eq. (14)—follows

µ̄rs = αsλ̄r − βsλr − µrφs,

and, thanks to Eq. (19),∑
rs

α(rs)µ̄rs =
∑
r

α(r)λ̄r −
∑
r

β(r)λr − αγ − β(γ). (29)

If we assume that the system µr is the result of the derivatives of a function µ with respect to
xr, from Eqq. (5) and (28) it follows that α and β are the ratios of the increases that µ undergoes
for infinitesimal displacements of the point (x1, x2) along the lines λr and λ̄r.

Since we define
α2 + β2 = ∆2

1µ

with Eqq. (8) and (28), we see that, if we attribute to ∆1µ the direction of the trajectories
orthogonal to the lines having a parameter µ, then α and β are also the projections onto the lines
λr and λ̄r of the first-order differential parameter ∆1µ, which will be called first order parameter
of the function µ.
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[1353|18] If instead we suppose that µr is the covariant coordinate system of a bundle of systems,
we see without difficulty that α and β are the projections of the curvature of the bundle on the
lines λr and λ̄r. The two theorems demonstrated above and the formula (29) allow us to establish
two Corollaries:

(1) For α and β to be the projections of the first-order parameter of a function of x1 and x2 on
two orthogonal systems λr and λ̄r of geodetic curvatures γ and (γ), it is necessary and sufficient
that the equation ∑

r

β(r)λr −
∑
r

α(r)λ̄r + αγ + β(γ) = 0

is satisfied .
(2) For α and β to be the projections of the curvature of a bundle of systems on two orthogonal

systems λr and λ̄r of geodetic curvatures γ and (γ), it is necessary and sufficient that the equation∑
r

β(r)λr −
∑
r

α(r)λ̄r + αγ + β(γ) +G = 0

is satisfied.
In these equations the first two terms represent, as has been said, the projections of the first-order

parameters of the functions β and α on the lines λr and λ̄r, that is, the ratios of the increases of
these functions due to infinitesimal displacements of the point (x1, x2) along the lines λr and λ̄r.
If we now suppose that the lines λr belong to the bundle considered in Corollary (2), from this
Corollary one obtains the formula∑

r

(γ)(r)λr −
∑
r

γ(r)λ̄r + ρ2 +G = 0,

where ρ designate the curvature.
Indicating by ds and δs the linear elements of the lines λr and λ̄r, and with dψ and δψ the

corresponding variations of any function ψ, the previous equation can be put in the form

d(γ)

ds
− δγ

δs
+ ρ2 +G = 0.

[1354|19] And this echoes a well-known theorem due to Liouville, from which we can define the
following Corollary:

If in any bundle of lines drawn on the surfaces φ we consider two orthogonal systems λr and λ̄r
of linear elements ds and δs and of geodetic curvatures γ and (γ), the difference δγ

δs − d(γ)
ds is equal

to the absolute curvature of the surfaces φ increased by the square of the curvature of the bundle,
and is hence the same for all the double orthogonal systems belonging to the bundle.

9. — Now let µ be any function of the variables x1 and x2, and λr the coordinate system of the
lines with a µ parameter. We will have (§ 3)

∆1µ · λ̄r = µr.

Indicating by φr the covariant coordinate system of the bundle, to which the system λr belongs,
via Eq. (16), one can write

∆1µλrφs = λ̄r(∆1µ)s − µrs,

so
∆1µ · φs = −

∑
r

λ(r)µrs.

Finally, from (19), one gets

∆1µ · γ = −
∑
rs

λ(r)λ(s)µrs, ∆1µ · (γ) = −
∑
rs

λ̄(r)λ(s)µrs. (30)

Let
2∆1µ · σ =

∑
rs

a(rs)µrs, (31)



11

from which this identity arises [1355|20]

1

∆1µ
µrs = σars − (σ + γ)(λrλs − λ̄rλ̄s)− (γ)(λrλ̄s + λ̄rλs), (32)

i.e., through Eq. (8),
1

∆1µ
µrs = (2σ + γ)λ̄rλ̄s − γλrλs − (γ)(λrλ̄s + λ̄rλs). (33)

These formulas express the second derivatives of any function µ of x1 and x2 by means of its
first derivatives and the three second-order differential invariants γ, (γ) and σ. We have already
established the meanings of γ and (γ). In order to recognize the meaning of σ it is enough to
remember that the expression

∑
rs a

(rs)µrs is nothing but the second-order differential parameter
of the function µ.

I will call the three invariants γ, (γ) and σ fundamental second-order invariants of the function
µ associated with the fundamental form φ, by means of which one can evidently express all the
other invariants of the same order, which are obtained by associating µ with φ. There is, however,
an essential difference between γ and (γ), on the one hand, and σ, on the other: γ and (γ), as is
patent from their geometric meanings and their expressions (19), depend only on the nature of the
lines λr, and this means that—thanks also to the suggestion of Eq. (30)—they do not change if
instead of µ we consider any function ψ(µ); σ by contrast changes. In fact, if we put

2σ1 =
∆2ψ

∆1ψ
,

and by ψ′ and ψ′′ we designate the first and second derivatives of ψ with respect to µ, one has

σ1 = σ +
ψ′′

2ψ′∆1µ.

For this reason γ and (γ) can be called [1356|21] first and second geometric invariant, and σ
functional invariant of second order of µ.

From Eqq. (14) and (23) one gets

λrs = λ̄r

(
γλs + (γ)λ̄s

)
,

and from the latter, recalling the theorem contained in Eq. (4), it is possible to set a differential
relation between the two geometric invariants γ and (γ). We arrive at a differential relation
connecting the three fundamental second-order differential invariants if we start from the formula

1

∆1µ
(∆1µ)s = −(γ)λs + (2σ + γ)λ̄s, (34)

and we multiply Eq. (32) by
µ(r) = ∆µλ̄(r),

adding with respect to the index r. In fact, using these equalities and the theorem (1) in the
previous paragraph [p. 9] we write∑

r

(
2σ(r) + γ(r)

)
λr +

∑
r

(γ)(r)λ̄r + 2(γ)σ = 0. (35)

If we maintain the notations presented in § 8, Eq. (35) can also be presented in the form

d(2σ + γ)

ds
+
δ(γ)

δs
+ 2(γ)σ = 0, (36)

which lends itself to an easy geometric interpretation.
Which can also be achieved in another way, by applying the theoretical content in Eq. (4) to

Eq. (32).

10. — From Eq. (23) it follows

φrs = γsλr + (γ)sλ̄r + φ̄rφs,
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[1357|22] and, via Eq. (22),
2θ =

∑
r

γ(r)λr +
∑
r

(γ)(r)λ̄r, (37)

then, via Eq. (36),
−θ =

∑
r

σ(r)λr + (γ) = σ. (38)

By designating by ds and δs the linear elements of the lines λr and λ̄r, Eqq. (37) (38) can also
be put under the form

2θ =
dγ

ds
+
δ(γ)

δs
, (39)

− θ =
dσ

ds
+ (γ)σ. (40)

Since, as already observed, θ is an invariant relative to the bundle φr, of which the system λr is
a part, the last expressions written for θ lend themselves to easy geometric interpretations for this
invariant. It will suffice for me to observe that from Eq. (39) and from a well-known theorem it
results immediately that:

(1) The cancellation of the invariant θ is the necessary and sufficient condition for the lines λr
to be isothermal.

(2) If a system of lines is isothermal, all the systems of the bundle are isothermal.
Theorem (2) was already known,a while for the first it will be appropriate to give a demonstration

based directly on the property that serves to define isothermal systems.
According to this definition, for a system of lines λr to be isothermal it is necessary and sufficient

that there exists a function ν of x1 and x2 such that, setting

ψr = eνλr, (41)
[1358|23] all ψr are derivatives of a function ψ, so one has identically

∆2ψ = 0.

Via Eq. (41), since
ψ̄r = eν λ̄r,

always maintaining the notations of the previous paragraphs, one gets at the same time

ψrs = eν(νsλr + λ̄rφs),

and
ψ̄rs = eν(νsλ̄r − λrφs),

on the basis of which, according to theorem (1) in § 8, the analytical translation of the conditions
stated above gives us ∑

r

ν(r)λr = −(γ),
∑
r

ν(r)λ̄r = γ. (42)

For a system λr to be isothermal it is necessary and sufficient that there exists a function ν
whose first-order parameter has projections onto the lines and their orthogonal trajectories −(γ)
and γ, respectively; in other words, thanks again to theorem (1) in § 8 and Eq. (37), it is necessary
and sufficient that θ = 0.

Naturally, the bundles of isothermal systems will be called isothermal bundles, whilst the bundle
φr related to an invariant θ will be called anisothermal bundle. While Eqq. (39) and (40) of this
invariant give us, as we have already noted, two geometric interpretations of the invariant itself,
Eq. (22) gives us a very important analytical interpretation. In fact, starting from this expression
and still recalling our theorem (1) in § 8, we can conclude that:

The necessary and sufficient condition for a bundle of systems (of which φr is the coordinate
system) to be isothermal consists in the fact that the canonical system φ̄r orthogonal to [1359|24] it
results from the derivatives of a function with respect to the independent variables xr.

a See § 17 of the above-mentioned Memoria by Prof. Beltrami.
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From Eqq. (12) and (23) one has∑
r

φ̄(r)λ̄r = γ,
∑
r

φ̄(r)λr = −(γ),

and, from the comparison of these equalities with Eqq. (42), one recognizes that, when the condition
exposed above is satisfied, the system φ̄r results from the derivatives of the function ν, which
appears in Eq. (41). Afterwards, one just needs to set the function ν whose derivatives are the
elements of the system φ̄r, and the possibility of integrating our expressions will emerge; this
integration will give us the isometric parameter ψ of the system λ̄r. And this parameter contains,
as it is known, two arbitrary constants linearly. In a similar way the isometric parameter χ of the
lines λr will be obtained by integrating

χr = eν λ̄r.

Since the system φr, and consequently the system φ̄r, can be deduced from the system λr with
simple derivations, the determination of the functions ψ and χ requires only quadratures. We can
conclude that:

Given the coordinate system of a system of isothermal lines, its isometric parameters and those
of its orthogonal trajectories are obtained by simple quadratures.

If φr and fr are the coordinate systems of two isothermal bundles, and we designate by α the
angle that the lines of any system of the first bundle create with those of any system of the second
bundle, it is calculated (§ 5) that

αr = fr − φr,

and
αrs = frs − φrs.

If by hypothesis ∑
rs

a(rs)φrs =
∑
rs

a(rs)frs = 0,

[1360|25] then
∆2α = 0.

According to a well-known theorem, the angle generated between the lines of two isothermal
systems not belonging to the same bundle is the isometric parameter of a new isothermal system.
Attention: this theorem is nothing but a corollary of the following proposition:

Given the coordinate system φr of an isothermal bundle, the coordinate system fr of any other
isothermal bundle is obtained by setting fr = φr + αr, if by α we designate an arbitrary function,
which satisfies the equation ∆2α = 0, that is, the isometric parameter of an arbitrary isothermal
system.

In fact, we will have f̄r = φ̄r + ᾱr, and, remembering theorems (1) and (2) in § 8,∑
rs

a(rs)φ̄rs = G,
∑
rs

a(rs)ᾱrs = 0.

And here we conclude that ∑
rs

a(rs)f̄rs = G.

Ergo the system fr is the coordinate system of a bundle, and since, in compliance with our
hypotheses, ∑

rs

a(rs)φrs =
∑
rs

a(rs)αrs = 0,

then
∑
rs a

(rs)frs = 0, namely, the bundle will be isothermal.

11. — Given two irreducible binary quadratic differential forms,

φ =
∑
rs

arsdxrdxs, ψ =
∑
pq

(apq)dypdyq,
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let us try to recognize whether one is transformable into the other, or whether it is possible to
determine x1 and x2 as a function of y1 and y2 in such a way as to satisfy [1361|26]

(apq) =
∑
rs

arsx
(p)
r x(q)s

a (43)

[ . . . ].
As it results from the general theory of quadratic differential forms, a first derivation with

respect to y1 and y2 leads from Eq. (43) to a new system, which can be put under the form

x(pq)r =
∑
st

(
a(st)

)
(apq,t)x

(s)
r −

∑
stu

a(ur)ast,ux
(p)
s x

(q)
t . (44)

If we find out the expressions of the third derivatives of x for x and for their first derivatives,
and id we eliminate the third derivatives, we arrive at the Gauss equation:

[G] = G, (45)

where [G] is the Gauss invariant relating to ψ.
It follows that Eq. (43) cannot be satisfied if the two quantities G and [G] are not constant

and do not have the same value. If (45) is satisfied identically, i.e., if G and [G] have the same
constant value, the system resulting from (43) and (44) is complete and has the form of the previous
expressions, which Lie carefully investigated in his Theorie der transformationsgruppen, first part,
tenth chapter. This system is consequently unconditionally integrable, and its general integral
system admits, in addition to two additive constants, three arbitrary constants. We conclude that:

Once the condition (45) is verified identically, there is a number of substitutions, equal to ∞3,
which transform the form φ into [1362|27] ψ, and in order to determine both of them it is convenient
to integrate the complete system resulting from Eqq. (43) and (44). In particular, each form φ, with
constant Gauss invariant, admits ∞3-transformations in itself, which will be obtained by integrating
the system of Eqq. (43) and (44) after having placed (apq) = apq in it.

If G and [G] are both variables of (43) and (44), it is convenient to add (45) and

[Gp] =
∑
r

Grx
(p)
r , (46)

where [Gp] represents the derivative of [G] with respect to yp. Eliminating x(p)r one arrives at

∆1[G] = ∆1G, (47)

where ∆1 is the first-order differential parameter of [G] with respect to ψ.
Let us first assume that (47) is a consequence of (45), namely, that we have

∆1[G] = F ([G]), ∆1G = F (G),

where F is the symbol of any function. Indicating by kr the coordinate system of lines G =
constant, we will have

1

∆1G
(∆1G)r = F ′(G)k̄r.

By Eq. (32), if we indicate by g, (g) and h the fundamental geometric second-order differential
invariants and the functional of G, one gets

1

∆1G
(∆1G)r = −(g)kr + (2h+ g)k̄r,

[1363|28] so (g) = 0, and
2h+ g = F ′(G).

Similarly, if [g] and [h] are the first geometric invariant and the second-order functional invariant
of [G] relative to ψ, one obtains

2[h] + [g] = F ′([G]),

a I point out that by x(p)
r , x(pq)

r , etc. I designate the derivatives of the successive orders of xr with respect to yp, yq,
etc.
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and since F ′(G) = F ′([G]) is a consequence of Eq. (45) we will also have

2[h] + [g] = 2h+ g. (48)

If we now differentiate Eq. (46) with respect to y1 and y2, and for the second derivatives we replace
values given in (44), letting

[Gpq] ≡ Dψ[Gp],

one arrives at
[Gpq] =

∑
rs

Grsx
(p)
r x(q)s . (49)

Thanks to Eq. (32) and by virtue of the fact that (g) = 0, one has
1

∆1G
Grshars − (h+ g)(krks − k̄rk̄s),

hence Eq. (49) is reduced to
[h] = h, [g] = g, (50)

which, by (48), are consequently interconnected. If for example the first equality is a consequence
of (45), i.e., if F1 represents any function, we simultaneously get

h = F1(G), [h] = F1([G]).

So we arrive at a complete system of differential equations if Eqq. (43) (44) (45) are completed
with (46), and its integral system contains an arbitrary constant. Here is the result: [1364|29]

If G and [G] are variables and if, by associating them respectively with the forms φ and ψ, then
denoting by ∆1G and ∆1[G] their first-order differential parameters, with h and [h] their second-
order functional invariants, and if F and F1 symbolize two arbitrary functions, we simultaneously
have

∆1G = F (G), ∆1[G] = F ([G]), h = F1(G), [h] = F1([G]).

And now there is a simply infinite number of substitutions that transform φ into ψ. In order to
determine these forms we need to integrate the complete system, which results from Eqq. (43) (44)
(45) (46). In particular, the necessary and sufficient conditions for a form φ to be transformable
into itself are given by,

∆1G = F (G), h = F1(G), (51)
which need to be verified, so as to allow the transformation in question with a simply infinite number
of substitutions.

I will not dwell on the cases in which one of the Eqq. (47) or (50) is incompatible with (45), so
that they are not consequently interconnected, since this falls back on well-known and obvious
considerations.

I will observe however that, from what has been said above, there do not exist binary quadratic
differential forms that admit a number ∞2 of transformations in themselves; furthermore, for
all forms φ that admit a simply infinite number of transformations, it is true not only that
(g) = 0, namely, that on the surfaces φ the lines of equal curvature are parallel, but also that
they are isothermal: in fact

∑
r h

(r)λr = 0 established by (51), and thanks to Eq. (38) in § 10 the
anisothermal state of the bundle to which the system of those lines belongs is zero.


