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We simplify, to first order in v
c , the generalized, special

relativistic treatment of a Doppler shift from an arbitrar-
ily translating mirror originally derived by Ashworth
and Davies [ Proc. IEEE 64, 280 (1976)]. We show that it is
in good agreement with a somewhat modified, but more
intuitive derivation that only considers the constancy
of the speed of light. We experimentally demonstrate
the theoretical predictions using phase-insensitive fre-
quency measurements in a liquid crystal light valve with
mirror translations of only a few 10’s of nanometers per
second.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

A Doppler shift is the frequency differential of a wave when
a source and detector are in relative motion. Harnessing the
Doppler effect has brought about great gains in scientific, en-
gineering, and society at large. Doppler shifts are used exten-
sively in astronomy [1–3], remote weather monitoring [4–6],
non-invasive medical diagnostics [7–9] and laser velocimetry
(fluid flow) [10, 11] to name a few applications.

Einstein’s derivation of the Doppler shift of light from a uni-
formly translating mirror considered only the Doppler shift
resulting from light reflected at an oblique angle [12]. While the
angle of incidence of the beam relative to the surface normal was
arbitrary, the direction of mirror propagation was in the same
direction as the surface normal.

A derivation of the Doppler shift that considers both arbitrary
mirror propagation direction and arbitrary incidence angle was
derived by Ashworth and Davies [13]. Follow-on experiments
demonstrated the intended prediction from the theory namely
that there is no Doppler effect for transversely moving mirrors
[14, 15]. However, no one has experimentally verified the results
for the general case, including nonrelativistic mirror velocities,
until this experiment. In this study, we measured the Doppler
shift of a beam incident on a mirror moving at non-relativistic

velocities, varying the angles.
Understanding the general case of a Doppler shift from a

moving mirror is important for our previous work on a Doppler-
based gyroscope (see [16]). In that work, it was shown that
Doppler shifts are fundamental in passive gyroscopes. However,
it is impossible to derive a generalized theory about the Doppler
gyroscope without an understanding of the Doppler shifts result
from the movement of the mirror with respect to its surface
normal.

When considering a rotating interferometer, each mirror in
the interferometer can move in a nontrivial direction, depending
on its position relative to the axis of rotation. To calculate the
difference in frequency shift between the two optical paths in
the interferometer, we need to understand what is the frequency
shift that results from the reflection of each individual mirror.

Here, we show that the Ashworth-Davies result in the non-
relativistic domain can be written in an intuitive form that rec-
onciles with a modification of a Doppler shift model by Gjurchi-
novski [17], and we experimentally validated this derivation
for the first time. Our verification employs sensitive differential
frequency measurements in a liquid crystal light valve [18] for a
moving mirror at a velocity of 60 nanometers per second.

2. THEORY

We consider the Doppler shift scenario as originally proposed by
Ashworth and Davies as shown in Fig. 1. A mirror is translating
at constant velocity along the x-axis. An incoming light beam
with an angle of incidence β is specularly reflected from the
surface. Using a convention by Ashworth and Davies, α is the
angle between the surface normal and the propagation direction
of the mirror and ϕ is the angle between the velocity vector and
the angle of incidence.

In an effort to prove that transverse Doppler shifts do not
exist in reflection from a mirror, Ashworth and Davies derived a
generalized special relativistic Doppler shift formula

f f = fi
[tan α + v

c sin ϕ]2 + [1 − v
c cos ϕ]2

1 − v2

c2 + tan2 α
, (1)

where f f and fi are the frequency of the light after and before
the reflection from the mirror, respectively and v is the speed of
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Fig. 1. Light reflecting from a mirror moving with velocity
v along the x-axis. We use the convention of Ashworth and
Davies [13] in which α is the angle between the velocity vector
and the surface normal and ϕ is the angle between the angle
of incidence (from the opposite side of the mirror) and the
velocity vector. We also define β as the angle of incidence.

the mirror. In the limit v ≪ c, we simplify the equation, namely

∆ f =
2v
λ

(tan α sin ϕ − cos ϕ)

1 + tan2 α
, (2)

where ∆ f = f f − fi and λ is the wavelength of the light.
Our aim is to rewrite this result only in terms of the mirror’s

surface normal rather than with respect to the velocity vector.
We first use the trigonometric identity 1 + tan2 α = sec2 α =
1/ cos2 α, which allows us to write

∆ f =
2v
λ
(sin α cos α sin ϕ − cos2 α cos ϕ). (3)

We now make a change of variables. Instead of using ϕ (the
angular difference between the angle of incidence and the ve-
locity vector), we directly use the angle of incidence β given by
β = ϕ + α. This implies

∆ f =
2v
λ

[
sin α cos α sin(β − α)− cos2 α cos(β − α)

]
. (4)

Using the angle sum relations cos(β − α) = cos β cos α +
sin β sin α and sin(β − α) = sin β cos α − cos β sin α as well as
sin2 α + cos2 α = 1, we arrive at the relation

∆ f = −2v
λ

cos β cos α. (5)

This formula is more intuitive than the original Ashworth-
Davies result and easier to use experimentally in describing a
physical system as all angles are defined with respect to the mir-
ror’s surface normal. The formula contains the familiar Einstein
formula [12], in the low-velocity limit, for α = 0 (the scenario
where the mirror surface normal also lies on the x-axis).

The result is also in good agreement with a simple addition
to the intuitive derivation by Gjurchinovski [17]. Gjurchinovski
considered sequential wavefronts reflecting with temporal sep-
aration ∆t from a mirror moving at velocity v parallel to the
surface’s normal. The first wavefront reflected from the mirror
at the first time and after the time interval ∆t the mirror reflected
the second wavefront. During the time interval ∆t the mirror

𝑣Δ𝑡 𝑐𝑜𝑠𝛼 𝛼𝛽

Fig. 2. Consider a mirror moving at nonrelativistic speed v in
an angle α relative to its surface normal, during a time interval
∆t. The mirror velocity in the direction of its normal is v cos α,
so the distance between the mirror before and after the time
interval will be v cos α∆t. Repeating Gjurchinovski derivation
in [17] but replacing v∆t with v cos α∆t will yield Eq.(5)

propagated a distance v∆t. The distance between those two
surfaces (the mirror surface at two different times) was v∆t if
the mirror propagated in the direction of the surface normal.
Using only the constancy of the speed of light in a vacuum with
this assumption, and without using a Lorentz transform, he
reproduces Einstein’s equation [12]:

f f = fi
1 − 2 v

c cos β + v2

c2

1 − v2

c2

, (6)

However, we note that if the velocity of the mirror were not
in the direction of the surface normal, but at an angle α, the
mirror would have only moved v∆t cos α between sequential
wavefronts, as seen in Fig 2. If we only care about the velocity
in order to calculate the distance between the mirror before
and after a time interval ∆t and consider only nonrelativistic
velocities (and thus ignoring length contraction), we can easily
replace v with v cos α and ignore second order of v

c in Eq. (6),
thus reproducing Eq. (5 ).

3. EXPERIMENTAL SETUP

To experimentally test these results, we use a liquid crystal light
valve (LCLV) [18] (see Supplementary Materials for more in-
formation). While any experimental system that can precisely
measure Doppler shifts can be used, we find the LCLV to be ex-
ceptionally ideal. As shown in [18], a LCLV can measure down
to µHz/Hz1/2 meaning that it is several orders of magnitude
more sensitive than any other system per measurement time.
This means that the movement of the mirror can be made to be
very small, which has the effect of minimizing alignment issues
as we rotate through the various measurement angles.

The experimental setup is shown in Fig.3. Collimated light
from a laser at 532 nm is split on a 50/50 beamsplitter. One of
the mirrors is mounted to an adjustable moving platform that
is controlled by a piezoactuator (PZT) so that the beam that’s
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Fig. 3. The experimental setup. A displaced Mach-Zehnder
interferometer, where one of the mirrors is mounted to an
adjustable moving platform, controlled by a piezo-electric
crystal (PZT). A slight angle between the beams is fabricated
in order to create a wave mixing where the beams meet at the
Liquid Crystal Light Valve (LCLV). The two primary diffracted
output orders of the LCLV are focused on a balanced detector.

reflected from the mirror experiences a Doppler shift relative to
the other beam. A Mach-Zehnder type setup is used to create a
slight angle between the two beams on the order of 0.01 radians,
and both beams are then incident on a LCLV. A small angle
between the beams is needed in order to create two-wave mixing
in the Raman-Nath regime of the LCLV; see Supplementary
Materials for more information. The two primary diffracted
output orders of the LCLV are focused on a balanced detector.
The difference in the intensities of the two beams hitting the
balance detector is proportional to the difference in frequency
between the two beams, ∆ f [18].

To test the Doppler shift dependence on the direction of prop-
agation of the mirror, the PZT direction was changed while the
angle of incidence was fixed. With each iteration of the experi-
ment, the moving platform was tuned to a different angle, and
the mirror sitting on it was tuned to be with a fixed angle relative
to the incoming beam at β = 45◦. This caused the movement of
the platform to be in a different direction relative to the mirror’s
surface normal (which corresponds to α as defined above). The
PZT was driven by an arbitrary waveform generator producing
triangle waves at 20 mHz and a peak-to-peak voltage of 15V.
The PZT response was measured to be approximately 100 nm/V.
The experiment was repeated 36 times, with alpha ranging from
−180◦ to −180◦. The absolute value of the mirror’s velocity was
constant through all the iterations and equal to V = 60 nm/s.

The errors in the experiment are primarily from seismic and
acoustic vibrations as well as from fluctuating air currents. While
we had various forms of active and passive noise reduction,
the light valve is particularly sensitive to noise. Further, the
experiments are run at slow speeds meaning that 1/f noise is
significant.

4. RESULTS AND DISCUSSION

The experimental results are shown in Fig. 4. The blue data
points are the measured amplitude of the Doppler shift from the
moving mirror as a function of the angle between the direction
of the mirror’s propagation to the mirror’s normal (α). The
orange curve is a least-squares fitted cosine function. Hence,
the experimental results are in excellent agreement with Eq. (5),
which is the main result of this paper. We have thus shown
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Fig. 4. Experimental results. The Doppler signal amplitude vs
velocity angle α relative to the surface normal is shown in the
blue points along with the error bars. We used a fixed angle
of incidence of β = 45◦. The orange curve is the cosine curve
from Eq. 5, when plugging the parameters of our experiment
(λ = 532 nm, V = 60 nm/s).

that at the Doppler shift non-relativistic limit formula, there is
not only a cosine term that arises from the angle of incidence
that is measured relative to the surface normal but also from the
direction of mirror propagation relative to the surface normal.

5. CONCLUSION

In conclusion, we have developed an intuitive nonrelativistic
Doppler correction to the frequency of light, which includes both
the angle of impact on the mirror and the mirror propagation an-
gle relative to the surface normal. We showed that this result is a
simplification of the formula proposed by Ashworth-Davies for
velocities that are in the above regime. In addition, we were the
first to measure the Doppler shift for a mirror moving at a speed
of only tens of nanometers in different relative directions, where
we measured accurate differential frequencies using LCLV. We
received cosine behavior, which is in line with the intuitive for-
mula we showed that Doppler shift, in this limit, is proportional
to the cosine of the mirror propagation angle, in addition to the
known cosine of the light incidence angle. These results not only
provide a new abstract form for the nonrelativistic regime of
the Doppler shift but also have a significant impact on practical
application areas, like a Doppler-based gyroscope [16].

We gratefully acknowledge support from the Hebrew Uni-
versity.

6. SUPPLEMENTAL DOCUMENT

See supplemental Supplement 1 for supporting content.
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