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Abstract

Nonlinear vibration absorbers, commonly referred to as Nonlinear Energy Sinks (NESs),
have been the object of several theoretical and experimental studies over the past decade.
This work illustrates the theoretical design and experimental realization of a Nonlinear En-
ergy Sink coupled to an energy harvester. The mass of the Magnetic-Strung NES is a magnet
which is linked to the primary system by means of two strings with adjustable pretension that
work transversally. The restoring elastic force of the strings is modulated by the magnetic
force applied by two magnets suitably located on the primary mass. Either a cubic or a
bistable configuration may be obtained, depending on the distance of the additional magnets,
NES’s efficiency as an absorber is studied on a harmonically forced single degree-of-freedom
primary system. The Target Energy Transfer (TET) from the primary system to the NES,
as well as different response regimes like the Strongly Modulated Response (SMR), are ex-
perimentally observed. Furthermore, the harvesting of energy from the NES vibrations is
also investigated by coupling the mechanical system with a coil for electromagnetic energy
conversion. Consequently, the vibration energy of the primary mass is absorbed by the NES
and finally converted into electric energy.

Keywords: Nonlinear Energy Sink, Passive Vibration Control, Energy Harvesting,
Targeted Energy Transfer

1. Introduction

A Nonlinear Energy Sink is a passive vibration absorber which is nonlinearly coupled to
a primary system. The use of a Nonlinear Energy Sink (NES) as a vibration absorber has
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been subject of interest over the last decade with studies that have shown, in comparison
to the classical linear Tuned Mass Damper (TMD), that the NES could be effective over
a broader frequency range and only require a small additional mass. It has been shown
that the nonlinear attachments can lead to an irreversible energy transfer from the primary
system towards the NES, this process is known as Targeted Energy Transfer (TET) or
pumping [1, 2, 3, 4, 5]. Experimental works [6, 7, 8] have shown that the dynamics which
govern this energy transfer phenomenon can be defined as a 1:1 resonance capture between
the primary mass and the NES. One important and intriguing feature of a NES system is
its ability to tune itself to the primary system response, since the NES does not have its
own natural frequency due to its intrinsic nonlinear nature. TET under external forcing has
been investigated both theoretically [9] and experimentally [10]; these studies have shown
that NES systems can exhibit multiple responses of interest including steady state constant
amplitude regimes and Strongly Modulated Responses (SMR). NESs have also been studied
to passively control instabilities. For example, in [11] a NES is used to control the limit
cycle behavior of a Van der Pol oscillator. In [12, 13, 14, 15] it was used to suppress
aeroelastic instabilities. Most of the aforementioned works considered a nonlinearity with a
cubic stiffness term. Fundamentally, the basic principle was to use a geometric nonlinearity
of an elastic element to obtain a cubic nonlinearity in the restoring force. Nevertheless,
the nature of the nonlinearity used in the NES may be of any kind. Later studies have
explored other ideas such as: non-polynomial functions[16], multiple states of equilibrium
[17], non-smooth functions and Vibro-Impacts [18, 19, 20, 21, 22].

Energy harvesting from the environment [23] has recently received considerable atten-
tion and many works have been motivated by advancements in the microelectronics industry,
which have enabled a reduction in the power consumed by MEMS devices [24, 25]. Solar,
chemical, and thermal methods have been extensively investigated and recognized as po-
tential sources of energy. The harvesting of energy from either structural born vibrations
or the motions of rigid structures has also shown much promise. Many early works con-
sidered inertial generators with linear behavior [26]. A primary limitation of linear inertial
generators is their narrow-band efficacy; i.e. their performance significantly decreases for
any mismatch of the excitation and resonance frequency [27]. Tuning the device’s resonance
and widening the bandwidth by adding many oscillators are some methods that have been
studied to overcome this limitation in [28, 29].

Analogous to the vibration absorber, nonlinearity seems to also offer the potential to im-
prove performance in energy harvesting systems. One of the first experimental investigations
of an energy harvester specifically designed to exhibit a nonlinear response was described in
[30] where magnetic levitation was used to extend the device bandwidth. A similar study
based on piezoelectric energy conversion is presented in [31]. A piezoelectric nonlinear en-
ergy harvester is presented in [32] where high power output and wide working bandwidth are
reached. The same authors have also investigated a new magnetoelectric generator in [33].
Many systems demonstrate the advantages of monostable Duffing oscillators for increased
bandwidth. The bistable Duffing oscillator has also been investigated for energy harvesting
in references [34, 35].

In this paper the two research fields of nonlinear vibration absorbers and energy harvest-
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ing are combined. The study of a new concept of cubic NES coupled to an electromagnetic
harvester is presented. By means of a magnetic force, the nonlinear force between the
NES and the primary system can be adjusted and shaped to test different configurations.
Three configuration are experimentally tested and the results are compared to highlight the
potential use of the device as an absorber and/or energy harvester.

2. Design of the Magnetic-Strung NES

Figure 1 shows a picture of the experimental system named Magnetic-Strung Nonlin-
ear Energy Sink (MS-NES). This system contains mechanical components, such as masses,
strings, and springs, along with electromechanical components and magnets. Thus the next
few sections will sequentially introduce each of the interacting components into the governing
equations of this NES system. The current section starts by deriving the governing equa-
tions for the mechanical components of the system while noting a primary complication; i.e.
the need to precisely obtain a zero linear stiffness term in the NES. Later sections describe
the electromechanical coupling and the zeroing of the aggregate linear stiffness through the
use of permanent magnets.

Figure 1: Top view of the system that was designed for experimental testing. This system contains mechan-
ical components, an electric circuit, a coil, and additional magnets.

Figure 2 shows a schematic of the important mechanical components for the NES system.
The primary system is presumed to be a linear oscillator (LO) that contains a massM , spring
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K and damper C. Base excitation, in the form of a harmonic displacement of Xe, is used to
drive the system. The NES is composed of a small mass m that is coupled to the primary
system through two elastic strings that are shown by the line segments AB and BD. The
strings act as elastic elements and provide the coupling force between the LO and the NES.
The force acting on the mass m as a function of the displacement y can be approximated
by the expression

Fstrings =
T0

L
y +

(

EA

2L3
−

T0

2L3

)

y3 +O(y5) (1)

where T0 is the pretension in the strings, E is the elastic modulus, and A is the cross
sectional area of the strings. Thus, the restoring force caused by string deflection contains
a term linearly proportional to the displacement, a term proportional to the cube of the
displacement, and higher order terms which have been neglected. From Eq (1), the linear
stiffness is k1 = T0

L
and cubic stiffness k3 =

(

EA
2L3 −

T0

2L3

)

. Both terms are a function of the
string pretension T0, a parameter that could be altered in the experiments. It is worth noting
that the only way the linear stiffness component can be set to zero is to have absolutely
no string tension. Unfortunately, this is difficult to achieve experimentally; though the
approach used to attempt this effect is further discussed in the upcoming sections.

Figure 2: Schematic of the Strung-NES. View from the top. AB and BD are the strings which act as elastic
elements.

Defining the absolute displacement of the NES mass as z = x+y, the equations of motion
of the system can be written as

Mẍ+ cẋ+ kx+ k1(x− z) + k3(x− z)3 + c1(ẋ− ż) = kXe + cẊe

mz̈ + c1(ż − ẋ) + k1(z − x) + k3(z − x)3 = 0
(2)

where an overdot indicates a derivative with respect to time, where M , k and c are respec-
tively the mass, the stiffness, and the damping of the primary system, where m is the mass
of the NES, and where c1, k1 and k3 are respectively the damping, the stiffness linear term
and the stiffness cubic term related to the relative motion between the NES and the primary
system.
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An important feature of an NES is that it should have no linear natural frequency. This
feature, albeit difficult to achieve experimentally, is precisely the characteristic that allows
the NES to tune itself to the primary system and to be an effective vibration absorber over
a broad range of frequencies. Note that achieving an aggregate linear stiffness of zero or the
complete absence of a linear stiffness component would both achieve the goal of a zero linear
natural frequency. As mentioned previously, the linear stiffness for the mechanical system
described thus far is only zero if there is no string pretension. During experimentation, it
was difficult to have absolutely no tension in the string and simultaneously avoid free-play,
a small region with no restoring force as the mass is displaced. Therefore a counter-balance
in the form of magnet-magnet interactions will be introduced into the mathematical model
in Section 2.2.

2.1. Electromechanical coupling

This section derives the equations for the electromechanical coupling in the system. The
important components are shown in both the picture of Fig. 1 and in the schematics of
Figs. 3 and 4. In particular, Fig. 1 shows the NES mass is a magnet that oscillates through
the center of a coil. The electromotive force can be described with Faraday’s Law

ε = −
dΦB

dt
(3)

where ε is the electromotive force and ΦB is the magnetic flux. The conceptual idea of
combining the NES and harvester is shown in Fig. 3. The oscillations or vibrational energy
of the primary system flows to the NES and is finally converted into electric energy through
the harvester.

LO NES Harvester

KINETIC 

ENERGY

ELECTRICAL

ENERGY

Figure 3: Schematic of the energy flow from the linear oscillator to the harvester.

As derived in reference [27], the oscillating magnet and closed circuit of the coil introduce
coupling terms into the mechanical system and an additional equation for the electrical
circuit. Assuming the simple electrical circuit shown in Fig. 4, which only contains a single
electrical load, the governing equations become:

Mẍ+ cẋ+ kx+ k1(x− z) + k3(x− z)3 + c1(ẋ− ż) = kXe + cẊe

mz̈ + c1(ż − ẋ) + k1(z − x) + k3(z − x)3 − γI = 0

Lİ + (RL +Ri)I + γ(ż − ẋ) = 0

(4)
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where I is the current in the electrical circuit, L is the coil’s inductance, Ri is the coil’s
internal resistance, RL is the resistive load within the electrical circuit, and γ is an elec-
tromechanical coupling term. It should be noted that in the electrical circuit of Fig. 4
no electromotive force has been represented since the electrical current is generated by the
relative motion between the magnet and the coil. In the system Eq. (4) the electromotive
force appears in the third equation as γ(ż − ẋ).

Figure 4: Schematic of the coupled electrical circuit: Ri and L are the resistance and the inductance of the
coil, RL is the resistive load the current I is delivered to.

2.2. Magnetic counterbalance

A primary challenge in experimentally realizing a NES system is the difficulty associated
with creating a mechanical system with no linear stiffness. Instead of attempting to create
this effect with a single mechanical component, this work explored the interaction between
permanent magnets to create a counterbalance effect. More specifically, magnetic repulsion
forces were used to cancel out the inherent linear stiffness in the original mechanical system.
To elaborate, Fig. 5 shows a schematic of the NES primary mass which is constrained to
translate in the y direction. The addition of two neighboring magnets, located a distance
of Ro away, provided a repulsive force to counter the linear component of the mechanical
restoring force. While several aspects of the derivation parallel the approach presented in
reference [35], the authors have chosen to include this derivation for completeness and to
ensure the subtle differences are not overlooked. The potential energy and force expressions
were derived from a dipole model (Ref.[36, 37]). The magnetic flux density, or B-field, at
the location rp, due to a magnet located at rs, is given by

B = −
µ0

4π
∇
ms · rp/s
|rp/s|3

(5)

where ∇ indicates the vector gradient, where µ0 = 4π × 10−7 H/m is the permeability of
free space, and where rp/s is the relative position vector to the point of interest rp from a
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Figure 5: Schematic of the NES mass (center magnet) shown with two outer magnets that could slide
along the tracks shown in Fig. 1 to alter the distance Ro between the NES mass (or magnet) and the outer
magnets.

source magnet located at rs. The term ms = Msvs is the magnetic moment of the magnet
located at rs, and Ms and vs are the magnetization and volume, respectively, of the source
magnet. The potential energy of the magnet at rp in the field generated by the magnet at
rs is

U = −mp ·B (6)

By applying Eqs. (5) and (6) to the schematic of Fig. 5, the following expression was
obtained for the potential energy of the magnet interactions

U = −
µ0Mcvc

2π

MovoN

2

(

y2

(y2 +R2
o)

5/2
−

1

(y2 +R2
o)

3/2

)

(7)

where Mc and vc are the magnetization and the volume of the central magnet, Mo and vo are
the magnetization and the volume of the outer magnets, N is the number of outer magnets,
Ro is the distance between the outer magnets and the central magnet (i.e. the NES mass),
as displayed in Fig. 5. In this study three magnets are used, one central and two outer
(N = 2), all having the same properties and dimensions: Mc = Mo = 1.05 × 106 A/m,
vc = vo = 2.24 mm3.

The interaction force between the two magnets can then be obtained from the gradient
of equation (6). Thus the magnetic restoring force Fm is the derivative of (7) with respect
of y

Fm = −
µ0McvcMovo

2π

(

5y

(y2 +R2
o)

5/2
−

5y3

(y2 +R2
o)

7/2

)

(8)

Inserting Fm into Eq. (4) gives the final form for the governing equations of motion

Mẍ+ cẋ+ kx+ k1(x− z) + k3(x− z)3 + c1(ẋ− ż) = kXe + cẊe

mz̈ + c1(ż − ẋ) + k1(z − x) + k3(z − x)3 + Fm − γI = 0

Lİ + (RL +Ri)I + γ(ż − ẋ) = 0

(9)

where the magnetic force Fm = Fm(z − x) has been inserted into the previously derived
equations.
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Figure 6: Normalized magnetic force versus normalized displacement curve generated from Eq. (8). Vertical

axis is normalized by Fx or the maximum Fm value generated over the range −2 ≤
y

Ro

≤ 2.

A normalized force displacement curve, which uses the expression for Fm and its max-
imum value Fx, is shown in Fig. 6. As seen in the plot, the magnet-magnet interaction

force is highly nonlinear over the normalized range of −2 ≤
y

Ro

≤ 2. For experiment design

purposes, Eq. (8) can also be used to determine the magnet spacing Ro = Rc that creates
a counterbalance effect. This is where the linear component of the magnetic force exactly
cancels the linear component of the mechanical restoring force. An expression for the coun-

terbalance spacing Rc can be obtained by evaluating the derivative
dF

dy
at y = 0 and setting

it equal to k1. Solving for Ro and then noting that Ro = Rc at this position, gives the
following expression:

Rc =
5

√

5µ0McvcMovo
2πk1

= 5

√

5µ0McvcMovoL

2πT0

(10)

this expression has been given in terms of both k1 and the string tension T0 by using the
relation k1 = T0/L, where L represents the initial length of the strings as illustrated in Fig.
2.

Figure 7 shows a normalized force versus displacement curve when the counterbalance
spacing Rc is used for the magnet spacing. This figure separately shows the mechanical
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Figure 7: All the forces involved in the balancing: the total elastic force (green curve - triangles) and
its linear (yellow - stars) and cubic (black - squares) components, the magnetic force (blue - circles) and
the resulting force (red - crosses). The magnetic force cancels out the linear elastic component and as a
consequence the total resulting force is essentially cubic.

and magnetic restoring forces along with the aggregate linear and nonlinear restoring force
components, which were obtained by summing the mechanical and magnetic forces. As
expected, the predicted counterbalance spacing acts to zero out the linear component of the
aggregate or total restoring force, and only the nonlinear components of the restoring force
remain.

2.2.1. Potential function counterbalance design

The previous section describes an approach for finding the magnet spacing Rc that en-
ables the linear component of the magnetic repulsion force to cancel out the linear component
of the restoring force from strings. This section describes an alternative approach for achiev-
ing the same effect. More specifically, the interaction between the elastic and the magnetic
forces on the NES mass were described in terms of their potential energies.

As both the elastic string and magnetic forces are conservative, they can be obtained
by taking the derivative with respect to the displacement y of the correspondent potential
function U = U(y).

Expressing the elastic potential energy as:

Uel = Uk1 + Uk3 =
1

2
k1y

2 +
1

4
k3y

4 (11)
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Figure 8: Elastic potential energy (yellow - circles), magnetic potential energy (red - crosses) and their sum
(blue - triangles) in the case of the cubic configuration (a) and the bistable configuration (b).
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Figure 9: Nonlinear force between the primary system and the NES in the case of bistable configuration.

and the magnetic potential energy as expressed in Eq.(7), we can write the total potential
energy Utot(y) = Uel(y)+Um(y). By studying the evolution of Utot as Ro varies, the stability
of each configuration can be analyzed.

When there are no outer magnets (Ro = inf), the total potential energy is composed of
only the elastic energy Utot = Uel = Uk1 + Uk2. The point y = 0 is the only equilibrium

point, and it is stable as dU
dy

∣

∣

∣

y=0
> 0. If the outer magnets are placed at Ro = Ro so that the
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magnetic force cancels out the linear part of the elastic force, the equilibrium point y = 0

loses its stability and becomes neutrally stable as dU
dy

∣

∣

∣

y=0
= 0. This configuration, called

cubic, is shown in Fig. 8a.
When the magnets are placed at a distance Ro < Ro, the point y = 0 becomes unstable

and two new stable points appear. The potential energies of this bistable configuration are
illustrated in Fig. 8b. Fig. 9 shows the resultant nonlinear force between the primary
system and the NES.

3. Electrical power delivered and viscous power dissipated

In order to estimate the efficacy of the Magetic-Strung NES (MS-NES) as an absorber
and as a harvester, we define the average electrical power delivered and the average viscous
power dissipated:

P el(t0) =
1

t0

∫ t0

0

Pel(t) P vis(t0) =
1

t0

∫ t0

0

Pvis(t) (12)

Where Pel(t) = RLI
2(t) is the the electrical power delivered to the resistive load RL and

Pvis(t) = C1(ż− ẋ)2 is the power dissipated by the viscous damping C1 between the primary
system and the NES.
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Figure 10: Numerical Frequency-Power Function for the no-magnet (a) and the cubic (b) configuration for
an external forcing ẍe = 0.6 m/s2. The values used in these simulations are those of the experimental
apparatus presented in the next section (Tab1, Tab.2). It can be seen that the viscous power dissipated (red
stars) and the electrical power delivered (blue circles) are significantly higher in the case of cubic MS-NES.

These new quantities have a particular interest as they can be used to describe the
efficacy and performance of the MS-NES when strongly nonlinear phenomena arise in the
response. For example, when in a forced regime the response is not steady but periodical or
even chaotic, these measurements provide an accurate estimation of the energy dissipated
and converted as they reach a steady value as t → ∞:
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P el∞ = P el(t → ∞) P vis∞ = P vis(t → ∞) (13)

In practice, a steady value is reached even after a few cycles. It is possible to calculate
a steady value P el∞ and P vis∞ at each frequency and amplitude of external excitation .

We present in Fig. 10 the Frequency-Power plots for the no-magnets configuration and
the cubic configuration of the MS-NES. The peak of energy dissipated and delivered is
significantly higher in the case of cubic configuration: 60 mW and 40 mW respectively for
the no-magnets, whereas 95 mW and 65 mW for the cubic.
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Figure 11: Average Power Delivered (blue circles) and Average Power Dissipated (red stars) as a function of
the outer magnets distance Ro. External forcing: ẍe = 0.6 m/s2 - f = 5.57 Hz (a); ẍe = 1.8 m/s2 - f = 5.57
Hz (b).

Since we have identified the peak frequency at f = 5.57 Hz, it is possible to evaluate
the powers (dissipated and delivered) by keeping constant the frequency and varying the
magnets distance. Fig. 11 shows P el∞ and P vis∞ for a level of external excitation of ẍe = 0.6
m/s2. It can be seen that the performances get better as the distance Ro deceases down
to a distance Ro ≈ 4.5 cm. Eq.(10) indicates that this distance corresponds to a cubic
configuration (Rc = 4.4 cm). After that, the powers drastically drop down. This behavior
can be explained by the fact that, since the configuration becomes bistable, the NES mass
becomes stuck in a potential well and does not have enough energy to escape.

If the level of external excitation is higher (ẍe = 1.8 m/s2), the performances continues
improving even for a smaller distance Ro. This scenario is displayed in Fig. 11.

4. Description of the prototype

In Fig. 12 the prototype is shown. All the blue and the orange pieces have been 3D
printed at Duke University. The lower part is a cart sliding on an airtrack that minimizes the
friction of the primary system. The two sides attached to two sprigs, with one connecting
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to the ground and the other to the shaker. The NES is a magnet which is placed into a
hollow tube and onto a nonmagnetic low-friction slider upon the primary mass. The NES
is connected to the primary mass by means of two strings which work transversely when
the NES oscillates. On the sides of the NES the two outer magnets can be noticed; it is
important to highlight that their distance to the NES is adjustable in order to reach the
suitable force shape. Finally, the coil through which the NES mass oscillates is placed on
the primary mass.

Figure 12: The prototype of the Magnetic-Strung NES.

4.1. Identification of the coupled electro-mechanical system
The modal parameters of the primary system were obtained from free oscillation mea-

surements, and are listed in Tab.1 along with the mass ratio between the NES and primary
system.

fn[Hz] K[N/m] ξ ǫ = m/M

5.6 1223 0.036 0.04

Table 1: Modal parameters of primary system.

The electrical parameters have been experimentally measured and are listed in Tab.2,
where L is the coil’s inductance, Ri is the coil’s internal resistance, RL is the resistive load
and γ is a transducer constant that couples the mechanical and the eletrical system.
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L[H] RL[Ω] Ri[Ω] γ[V s/m]

100× 10−3 100 3500 −3.2572

Table 2: Electrical parameters.

Figure 13: Experimental apparatus used to evaluate the transducer constant γ coupling the mechanical and
the electrical system.

An extensive study on the nonlinear electromagnetic coupling between a coil and an
oscillating magnet is presented in [38].

In this work, the term γ was experimentally evaluated as follows: taking the electrical
equation of Eq. (4) governing the circuit shown in Fig. 4 it can be seen that, for a steady
condition, if the relative velocity ẏ = ż − ẋ is known and by measuring the current I, the
only unknown is the constant γ, which therefore can be evaluated.

Lİ + (RL +Ri)I + γ(ż − ẋ) = 0 (14)

The experimental apparatus in shown in Fig. 13. The magnet was placed on the shaker,
and it oscillated through the coil which was at rest (ẋ = 0), i.e. ẏ = ż. Since the harmonic
motion of the magnet was known, the constant γ was finally estimated as γ = −3.2572V s/m
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by measuring the voltage across the coil.
It is important to notice that the values of the electrical parameters L, Ri, RL and γ used

to obtain the results that follow, were not optimized in order to maximize the energy har-
vested. While the objective of this work is the observation and the experimental validation
of the theoretical concept, an optimization process will be carried out in future research.
This process will need to simultaneously take into account both the vibration reduction and
the energy harvesting aspects. These two aspects are actually related; by looking at Sys.(9),
it can be seen that the electromechanical coupling adds some damping to the mechanical
system. However, experimental measurements have shown that for the prototype studied in
this work, the electrical damping was negligible compared to the mechanical one, so it can
be considered that the electrical system has no effect on the mechanical one.

4.2. Experimental verification of the cubic stiffness

The efficacy of the outer magnets was subsequently tested experimentally. Static tests
were performed in order to measure the elastic force provided by the strings and to obtain
a force-displacement graph.

The NES magnet and the two outer magnets were identical and their magnetization and
dimensions are listed in Tab. 3

M [A/m] do[mm] di[mm] l[mm]

1.05× 106 12.7 7.0 25.4

Table 3: Magnetization and dimensions of the NES and the outer magnets.

First the configuration with no outer magnets was tested. The force-displacement mea-
surements are shown in Fig. 14 as blue dots. These points have been polynomial interpolated
using a linear and a cubic term: F = k1y+ k3y

3, which allows us to estimate the linear and
the cubic stiffness displayed in Tab. 4).

k1[N/m] k3[N/m3]

112.25 1.38× 106

Table 4: Linear and cubic stiffness for the configuration without outer magnets.

Knowing the linear stiffness k1, the distance Ro was calculated using Eq.(15) in order to
cancel out the linear term and to obtain an essentially cubic relation.

Ro =
5

√

5|C|

k1
= 4 cm (15)

The measured points when the magnets were put at a distance Ro = 4 cm are shown
in Fig. 14 as red dots. As for the the previous configuration, they have been polynomial
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Figure 14: Experimental force-displacement relation without (blue-circles) and with (red-stars) outer mag-
nets. The experimental points have been fitted by means of the polynomial expressions F = k1y + k3y

3.

interpolated using a linear and a cubic term: F = k′

1y + k′

3y
3. The coefficients obtained are

shown in Tab.5..

k′

1[N/m] k′

3[N/m3]

0.42 1.43× 106

Table 5: Linear and cubic stiffness for the configuration with outer magnets.

Therefore, as theoretically predicted, the presence of the outer magnets essentially allows
for cancellation of the linear term of the elastic force and the ability to obtain a quasi-
essential cubic relation, crucial aspect to fully take advantage of the characteristics of a
nonlinear vibration absorber.

5. Experimental results

The system was harmonically forced by the base motion at several amplitudes and fre-
quencies. The aim was to observe the types of response the system could exhibit and to
study its performance in terms of energy absorption and harvesting. The primary mass and
the moving base were equipped with accelerometers. The NES motion was monitored by
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using the signal issued by the coil, i.e. the voltage across the coil. This voltage can be
considered proportional to the magnet velocity.

The results illustrated are issued from the same case of external excitation (0.6 m/s2 at
6.2 Hz) and for three different configurations of the MS-NES. In the first configuration the
outer magnets are not used so the relation between the absorber and the primary system is
not completely nonlinear but presents the linear term. In the second configuration, called
cubic, the outer magnets are placed at a distance which allows the magnetic force to perfectly
cancel out the linear term and the resulting force to be purely cubic. The third configuration
is the so-called Bi-stable and the resulting force has a shape as illustrated in the previous
section.

For each configuration, a kinematic study is firstly conducted. The phase diagram as
well as the Poincaré sections of the system’s responses are obtained in order to evaluate
their periodicity. Subsequently, the capability of the MS-NES as a vibration absorber and
as an energy harvester is analyzed. According to theory, this specific excitation frequency
is where the Strongly Modulated Responses are expected to appear. In fact, results have
shown that depending on the distance of the magnets (i.e. on the shape of the force between
LO and MS-NES), the system can exhibit different types of response going from periodic to
chaotic.

5.1. No outer magnets

In this configuration, the outer magnets are not used, meaning that in Eq. (4) the
magnetic force Fm is zero. The expression for the restoring elastic force between the MS-
NES and the primary system is: F = k1(z − x) + k3(z − x)3.

Concerning the kinematic study, in Fig. 15a the displacement and the velocity of the
NES mass are shown. The envelope has been highlighted. Fig. 15b shows the phase diagram
y− ẏ of the response. The red dots on the phase diagram represent the Poincaré map of the
envelope.

In Fig. 15 the solution reached by the system can be observed to be steady and the
response amplitude constant. The trajectories in the phase diagrams are ellipses and all
the points in the Poincaré map are gathered in the same area; we can conclude that the
global behavior is totally deterministic. It should be noticed that the Poincaré map of the
envelope is represented, as a consequence the trajectories of the phase space diagram do not
go through the points of the map.

After studying the kinematics of this configuration we go further by analyzing the ener-
getic aspects of the system. We are interested in studying the energy flow from the primary
system to the NES, and in evaluating the portion of energy which is dissipated by viscous
friction and the amount which is converted into electrical energy.

In Fig. 16 (a), the instantaneous kinetic energy during the recorded time interval of the
primary system and of the NES is shown. The lower part shows the instantaneous electrical
energy delivered to the resistive load Pel = I2RL. As concluded after the kinematic analysis,
the system exhibits a steady solution: an equilibrium is reached between the vibrating energy
held in the primary system and the portion of energy transferred to the NES.
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Figure 15: NES displacement y and velocity ẏ (a) in the configuration without outer magnets and its phase
diagram (b). The envelope of the response is highlighted and its Poincaré Map represented by red dots in
the y − ẏ space. The global system behavior is totally deterministic and the regime steady.

We can have a better understanding of how the energy is distributed in the system by
calculating the ratio between the energy located into the NES and the total energy present
in the system. The energy ratio is a good indicator of the vibration absorption performance
of the system.

ENES

ETOT

=
TNES + UNES

TLO + ULO + TNES + UNES

(16)

The energy ratio throughout the time is illustrated in Fig. 17: about half the total
energy of the system is located into the NES.

The energy transferred to the NES is then partially dissipated by the viscous damping
and partially converted into electrical energy.

In Fig. 18 the average electrical power delivered and the average viscous power dissipated
as defined by Eq.(12) are shown. Because of the steady nature of the response, the two
quantities quickly reach their asymptotic values.

5.2. Cubic

Here the results obtained from the tests performed on the cubic configuration are illus-
trated. As explained in Sec. 2.2, it is possible to calculate the distance of the outer magnets
Ro in order to obtain a purely cubic relation between the primary system and the NES. For
a linear elastic term k1 = 69.4 N/m, the distance was estimated to be Ro = 4 cm.

The external forcing amplitude and frequency are equal to the values found in the pre-
vious section: 0.6 m/s2 at 6.2 Hz.

We first focus on the kinematic of the response and subsequently discuss the energetic
aspects. In Fig. 19a the displacement and the velocity of the NES mass are shown and their
envelope has been highlighted in red. In Fig. 19b the phase diagram y − ẏ is shown as well
as the Poincaré map of the envelope (red dots).
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Figure 16: No magnets configuration: instantaneous kinetic energy of the primary system ((a) - blue) and
of the NES ((a) - red stars figure) and instantaneous electrical power delivered to the resistive load (b).
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Figure 17: NES-LO Energy ratio defined as: ENES

ETOT
= TNES+UNES

TLO+ULO+TNES+UNES
in the configuration without

outer magnets.

We can immediately see that the response of the system has become modulated: it is
no longer steady but periodic. This kind of response is known in literature as Strongly
Modulated Response (SMR) and is typically observed among nonlinear absorbers [3].

The phase diagram and the Poincaré map allow us to attest that although it appears
to have a complex pattern the response is not chaotic. This can be deduced from the NES
response in Fig. 19.
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Figure 18: Average electrical power delivered (blue) and the average viscous power dissipated (red stars) in
the configuration without outer magnets.
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Figure 19: NES displacement y and velocity ẏ in the cubic configuration (a) and its phase diagram (b). The
envelope of the response is highlighted in red and its Poincaré Map represented by red dots in the y − ẏ
space.

Fig. 20 shows the kinetic energy of the primary system and the NES (a) as well as the
electrical power delivered to the resistance (b). It can be seen that the cycles the system
completes are periodic and repetitive. In Fig. 21a a zoom of Fig. 20 illustrates the process
of energy transfer from the primary system (LO) to the NES: the kinetic energy the primary
system accumulates is transferred to the NES and subsequently partially dissipated through
viscous damping and partially converted into electrical energy.

Fig. 21b describes the energy transfer mechanism by showing the energy ratio ENES/ETOT
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Figure 20: Cubic configuration: instantaneous kinetic energy of the primary system ((a) - blue solid line)
and of the NES ((a) - red dotted line) and instantaneous electrical power delivered to the resistive load (b).
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Figure 21: Kinetic energy transfer (a) between the primary system (blue) and the NES (red) during the
strongly modulated response of the cubic configuration and NES-LO energy ratio (b) defined as: ENES

ETOT
=

TNES+UNES

TLO+ULO+TNES+UNES
.

as defined by Eq. (16): it can be seen that the total energy is cyclically entirely located into
the NES.

Comparing the electrical power delivered in the two configurations without magnets
(Fig. 16) and cubic (Fig. 20), we can see that in the latter configuration, the peaks of power
reached are considerably higher than the value held constant by the first configuration.
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Figure 22: Average electrical power delivered (blue) and the average viscous power dissipated (red stars) in
the cubic configuration.

The average power delivered and the average power dissipated as defined by Eq. (12) are
displayed in Fig. 22: the asymptotic values P el∞ and P vis∞ are higher than those obtained
by the previous configuration.

5.3. Bi-stable
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Figure 23: NES displacement y and velocity ẏ in the bi-stable configuration (left) and its phase diagram
(right). The envelope of the response is highlighted in red and its Poincaré Map represented by red dots in
the y − ẏ space.
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Figure 24: Bi-stable configuration: instantaneous kinetic energy of the primary system ((a) - blue solid) and
of the NES ((a) - red dotted) and instantaneous electrical power delivered to the resistive load (b).
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Figure 25: Average electrical power delivered (blue) and the average viscous power dissipated (red stars) in
the bi-stable configuration.

The third configuration tested is the bi-stable configuration. As explained in Sec. 2.2.1,
this configuration is obtained by placing the outer magnets at a distance Ro smaller than
that canceling out the linear elastic term. The force-displacement relation has a shape as
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shown in Fig. 9 where three equilibria exist: one unstable (y = 0) and two stable (y = ±d).
By examining Fig. 23 it can be seen that the response is still strongly modulated but

this time the cycles appears to be more chaotic, as no specific periodicity can be identified.
The lack of periodicity in the system’s response can also be observed by looking at the

kinetic energy transfer and the electrical power delivered shown in Fig. 24. Each cycle seems
to have its own shape. As a general observation, the peaks of kinetic energy reached in this
configuration are higher than those attained in the cubic configuration.

The average power dissipated and the average power delivered are shown in Fig. 25. If
compared to the cubic configuration, we can notice a slight improvement in the electrical
power, whereas the viscous power is essentially the same as previously observed.

In essence, the bi-stable configuration generates a chaotic kinematic behavior of the NES
which may potentially be favorable in terms of energy absorption and harvesting. Although
the experimental results here presented do not show a significant improvement compared to
those obtained with the cubic configuration, it may be worth carrying out a more extensive
study on this configuration, which would include an optimization process.
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Figure 26: NES-LO Energy ratio defined as: ENES

ETOT
= TNES+UNES

TLO+ULO+TNES+UNES
in the bistable configuration.

6. Bifurcation diagrams

The experimental observations show that, for an identical external forcing, the MS-NES
may exhibit several types of response depending on the distance of the outer magnets Ro.
More specifically, it was observed that the response goes from appearing completely steady
and deterministic when the magnets are not used, to being non-deterministic in the case of
the bistable configuration.
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Figure 27: Sampled envelope’s amplitude of the primary system velocity ẋ (a) and the NES velocity ẏ (b)
are plotted as function of the distance Ro. Forcing: 0.6 m/s2 - 6.2 Hz.

This section presents the numerical results illustrating the transition towards a chaotic
behavior when the distance Ro gradually decreases. The simulations were performed for an
amplitude and a frequency of the external forcing of 0.6 m/s and 6.2 Hz.

The sampled envelope’s amplitude of the primary system velocity ẋ (Fig. 27a) and the
NES velocity ẏ (Fig. 27b) are plotted as functions of the distance Ro. These plots represent
two bifurcation diagrams for the system, as Ro is the varying parameter. It means that
where several points exist for the same distance Ro, the envelope amplitude is not constant
but varies during the time. We can observe that for a distance Ro > 7 cm the response
is steady: i.e. the envelope has a constant amplitude. Between 6 and 7 cm there is the
first bifurcation which brings to a periodic regime (6 cm). When Ro decreases further, the
response is more and more non-deterministic until it appears to be steady again for Ro < 3
cm. This is caused by the fact that the two stable points in the bi-stable configuration gain
stability as Ro gets smaller. The system ends up oscillating steadily around one of these two
points.

7. Conclusions

In this paper the study of a new concept of nonlinear absorber with energy harvesting has
been introduced and its experimental realization presented. The restoring force between the
primary system and the NES is shaped thanks to an external magnetic force. The energy
absorbed by the NES is converted into electrical energy by means of an electromagnetic
transducer.

The results have shown that the presence of the magnetic force allows the NES to reach
a purely cubic configuration by canceling out the linear term of the elastic force. The
importance of having a purely nonlinear force between the NES and the primary system
has been highlighted, since the presence of a linear component may radically change the
response of the system. The Strongly Modulated Response seems to be a valid option in
terms of energy absorption, suggesting that the nonlinearities may be used to improve the
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energy harvesting aspect. Interesting results leading to new open questions have arisen from
the shaping of the force between the primary system and the NES via the magnetic force;
particularly, the bistable configuration seems to be a promising path to follow.

This study unifies the research fields of nonlinear vibration absorbers and energy har-
vesting from vibrations showing the advantages of a combined application. An optimization
process is still required in which the performances of the NES and the harvester would be
investigated.
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