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Air ducts are integral to modern buildings but are challenging to access for inspection. Small quadrotor drones offer
a potential solution, as they can navigate both horizontal and vertical sections and smoothly fly over debris. However,
hovering inside air ducts is problematic due to the airflow generated by the rotors, which recirculates inside the duct
and destabilizes the drone, whereas hovering is a key feature for many inspection missions. In this article, we map the
aerodynamic forces that affect a hovering drone in a duct using a robotic setup and a force/torque sensor. Based on
the collected aerodynamic data, we identify a recommended position for stable flight, which corresponds to the bottom
third for a circular duct. We then develop a neural network-based positioning system that leverages low-cost time-of-
flight sensors. By combining these aerodynamic insights and the data-driven positioning system, we show that a small
quadrotor drone (here, 180 mm) can hover and fly inside small air ducts, starting with a diameter of 350 mm. These results
open a new and promising application domain for drones.
Video: https://youtu.be/BLQqoa7Zolw

Introduction

Air ducts are common sights near the ceiling of most in-
dustrial buildings, and are often concealed inside the walls
and drop ceilings of offices, hospitals, and modern houses
(Fig. 1.A). They also constitute a significant component in
the design of underground networks, such as metro stations.
These air ducts are essential for maintaining air quality, heat-
ing, and air conditioning. Like most parts of a building, they
need regular inspections to detect or identify faults; how-
ever, they are inherently impossible to access to humans due
to their narrow dimensions and inability to support human
weight.

Many robots have been proposed to inspect air ducts1–3 and,
for a close problem, the numerous sewage, gas and water
pipes4,5. All of them are based on variations of wheels and
tracks and some of them are deployed in industries. Unfor-
tunately, these robots are mostly fit for water pipes or short
lengths of air ducts, as they do not cope with the vertical and
ascending/descending parts that are common in air duct net-
works.

In this article, we propose to use quadrotor drones as a

new way of accessing and inspecting air ducts. While flying
in such a constrained environment might appear counterin-
tuitive, drones can easily go up or down when needed; they
can also fly over debris on the ground and are easier to de-
ploy when the entrance of a duct is near the ceiling. Current
drones are a mature technology that can be small enough to fit
in 35+ cm pipes6 and can embed mission-specific sensors like
gas leak detectors7. Overall, quadrotors have the potential to
be small enough and flexible enough to move in complex air
ducts and pipes.

Before the 1960s, most air ducts were rectangular because
they were easy to manufacture from bended metal sheet and
easy to fit in buildings. Since then, engineers realized that
round ducts have numerous advantages while being inexpen-
sive to manufacture with modern forming machines. Notably,
round ducts offer superior sealing compared to plate assem-
blies, require less metal for equivalent airflow, and are avail-
able in longer lengths. In this study, we examine circular air
ducts ranging from 35 to 56 cm in diameter, as these sizes
are commonly found in buildings and pose challenges for fly-
ing. Ducts smaller than this range are too narrow for 10-20
cm drones, while larger ducts are less common and pose fewer
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Figure 1. A-B. Examples of air duct networks. Air ducts are common in most modern buildings because they are necessary for maintaining air
quality and temperature. C. Problem considered The objective of this article is to make it possible for small quadrotor drones (here, 180mm) to
hover (and fly) air ducts with a diameter from 350 to 560 mm. D. In an air duct, drones are significantly less stable. We tested the same drone
with the same controller (based on external motion tracking, Methods), inside and outside a circular air duct with a diameter of 35cm cm and tracked
the position for 120 seconds. Because of the aerodynamic recirculations inside a duct, the drone has a hard time hovering at a fixed position.
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Figure 2. A. Experimental setup to measure the aerodynamic forces added by the recirculations. The drone is screwed on a 6-dimensional
force/torque sensor, which is fixed to a 7-DOF robotic manipulator. The manipulator makes it possible to measure the forces at 192 different
positions, to “map” the aerodynamic forces added by the air duct. B. Forces added by the air duct in a 40cm diameter circular air duct. The
arrow shows the direction, the ellipse the variance, and the color the magnitude of the force (N.). The displayed force is the measured force to which
the forces outside the duct are subtracted. C. Interpretation of the forces in a 40cm diameter air duct. The blue zone corresponds to the ground
effect. In the purple zone, the drone is pushed downward. In the red zones, it is “sucked up” by the walls, that is, these are unstable positions that
are likely to lead to collisions. The green zone is the most stable one, as most effects are canceled. Counter-intuitively, the center of the duct is not
the most stable position; instead, the airflow is less perturbed at an altitude of about 10 cm (above the ground effect). D. Forces added by the air
duct in a 50cm diameter air duct. The pattern is similar to the one in the 40 cm diameter air duct. E. Forces added by the air duct in a 50cm
× 50cm square duct. The arrow shows the direction, the ellipse the variance, and the color the magnitude of the force (N.). The displayed force is
the measured force to which the forces outside the duct are subtracted. F. Interpretation of the forces added by the air duct in a 50cm × 50cm
square duct. There is no downward force, but there are clear (1) ground effect (blue), wall effect (red), and ceiling effect (yellow). The center of the
duct is stable, but the ceiling and the walls are unstable, as they pull the drone towards the borders.

challenges.
Quadrotors are now ubiquitous in outdoor environments

and fulfill many missions, from entertainment to movie-
making and industrial inspections, but they are also in-
creasingly being tested in underground environments. Many
promising experiments are in mines8,9, which are hazardous
and often require going up vertically. Beyond mines, the
DARPA recently (2021) challenged research teams to propose
technologies that can navigate human-made tunnel systems,
urban underground, and natural cave networks, intending
to provide situational awareness to a small team of opera-
tors10,11. In the final round, 11 out of the 17 teams deployed
drones, in addition to other robots, including the winning
team12. Overall, drones are appealing candidates for tunnel
environments for the same reasons as for the smaller ducts
and pipes: they can move vertically, from climbing ladders to
negotiating vertical wells, and fly over complex ground ter-
rains without being slowed down.

A few flying prototypes have been built to fly in man-
holes, penstocks and HVAC (Heating, Ventilation and Air-
Conditioning) ducts, by mainly focusing on the tolerance to
collision with variants of protective cages13. Hence, de Petri
et al.14 demonstrated a sub-500g drone that flies into a rectan-
gular 0.5×0.4 m-wide and 5.2 m-long manhole that involves a
yaw turn, with flaps continuously touching the wall to prevent
the shield from colliding with the manhole. In a larger diame-

ter, a drone enclosed in a 40cm “shell” recently flew in a 1.5 m
diameter penstock with a sloped section15. Another drone, en-
closed in a 40cm circular cage that rolls on the ground, moved
into a rectangular 60×75-cm-wide and 175-cm-long wooden
HVAC duct prototype with its top side opened16.

Several challenges arise when a drone attempts to fly in a
highly confined space, like an air duct, that is typically not
encountered in larger tunnels. First, the aerodynamic inter-
actions between the rotors and the environments are complex
and unknown because the airflow “comes back” to the drone
and perturbs it significantly17. Second, these turbulences,
combined with the proximity of the walls, make the position
estimation highly critical; but this estimation is difficult in
dark and almost featureless environments18,19. These chal-
lenges are amplified by the fact that the drone needs to be as
small as possible to fit in the smallest ducts possible.

To our knowledge, the only attempt to explicitly address
these challenges was only recently published19, in which a
1.23 kg/40 cm drone flew autonomously in a 0.6 m air duct.
The authors used computational fluid dynamics simulation to
select the best flying speed, following the intuition that mov-
ing allows the drone to avoid flying in the turbulences it cre-
ates, but flying too fast makes maneuvering, wall avoidance,
and control difficult.

Here, our objective is to address the specific challenge of
hovering a small quadrotor in a 35 to 50-cm air duct, consider-
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ing that hovering is harder than translating19, but mandatory
for many applications like inspection. We use a 180 mm (in-
cluding rotors) / 130 g quadrotor based on the Bitcraze Bolt, a
derivative of the Crazyflie6, with brushless motors and addi-
tional distance sensors (Fig. 1B, Methods).

We first designed a robotic system to measure the forces
that are created by the airflow when flying in air ducts. We
obtained a “map” of the forces in a circular air duct. From
these experiments, we found the position that is the less af-
fected by air recirculations. We then designed a positioning
system that makes it possible for the drone to hold its position,
which is an input to a classic position loop. We used miniature
time-of-flight (ToF) sensors combined with a neural network
that estimates the position given the measurements. Putting
these two components together, the optimized position and a
reliable position estimate, we show that a 180 mm drone can
hover autonomously in a 350mm air duct, which opens a whole
new flight domain for drones.

Results

Aerodynamic forces in air ducts

When the air is accelerated by the four rotors, it is expected to
hit the floor, then circulate and potentially go back to pertur-
bate the drone from the top or the side. The most well-known
of the expected effects is the ground effect20,21, which creates
additional lift when a drone or a plane is close to the ground;
but there are also “ceiling effects”22 and “wall effects”23–25 and
“corner effects”26, which are less explored. Interestingly, these
surface effects can be used to detect obstacles in the vicinity
of the drone27,28. To our knowledge, there is currently no data
about the effects of rotors in circular pipes or air ducts, in
which all these effects combine together.

We first observed that these effects substantially impact the
capability of a drone in an air duct. In this experiment, a
drone was controlled to hover inside and outside a 35-cm air
duct, at the center. In both cases, its controller relies on an
external, absolute position system (HTC Vive, see Methods).
In free air, the drone is very stable, with typical oscillations
of less than 5 mm around its target position, and not more
than 20mm (Fig. 1D, orange). By contrast, inside the duct,
the drone has often an error of almost 60mm, and is generally
much less capable of staying at the center (Fig. 1D, green).

To understand the aerodynamic forces in a pipe in a sys-
tematic way, we designed a robotic setup based on a 7-
degree of freedom manipulator (Franka-Emika Panda) and a
force/torque sensor (Fig. 2A) (Methods). Our objective is to
measure the forces added by the circular duct on the drone
for many positions. To do so, we fixed the quadrotor to the
force/torque sensor and mounted it on a 3D-printed horizon-
tal pole, which acts as the end-effector of the manipulator. For
each measure, the quadrotor is started so that the lift com-
pensates its weight (about 50% of the maximal power with
our quadrotor). This sets the reference for the force measure-
ments in “free air”, that is without any interaction with the en-
vironment. We then ask the robot to move the drone inside the
duct and keep it inside for 10 seconds, measuring the forces
and filtering them with a low-pass filter (Methods, Fig. S1).
We repeated this procedure for 192 regularly spaced points to
obtain a “map” of the forces. For each point, we computed the
mean force inside the duct, subtract the mean force outside
of the duct, and computed the standard deviation along both
axes to compute an ellipse that represents the uncertainty of
the measurement (Methods).

The results show a coherent structure of the forces along

the whole duct (Fig. 2B). For a diameter of 40 cm, we ob-
serve a ground effect for the first 8 to 10 cm (Fig. 2C, blue).
Please note that we do not have data for positions closer to the
ground because of the configuration of the pole that supports
the drone and the possible risks of colliding with the duct, but
we expect the ground effect to be more important when the
drone gets closer to the ground. If we look at a vertical line
centered in the duct, we observe an overall downward force,
especially at the center of the duct (Fig. 2C, purple), which is
canceled by the ground effect once close enough to the floor
(Fig. 2C, green). On a horizontal axis, the two top quadrants
show forces mostly horizontal that attract the drone to the
walls (Fig. 2C, red).

We observe the same pattern of forces for all the diameters
of the circular ducts that we investigated, from 40 to 65 cm
(Fig. 2D, Fig. S2). In all circular pipes, the area with the
least perturbation is around the bottom quarter of the pipe,
horizontally centered. As expected, when the power is re-
duced, the forces keep the same direction but reduce in magni-
tude, and, conversely, they increase when the power increases
(Fig. S3).

In a square air duct, the forces follow a different, sim-
pler pattern (Fig. 2E). There is a clear, vertical ground effect
(Fig. 2F, blue) up to about 15 cm (for a 50 × 50 cm air duct).
Wall effects that attract the drone towards the wall are mostly
horizontal and start at about 15cm from the wall. Interest-
ingly, the ceiling effect pulls the drone up when it is closer than
15 cm from the ceiling, whereas this effect is not observed in
circular ducts.

Overall, these maps of forces created by a drone flying in a
pipe or air duct confirm the complexity of the airflow in this
environment and explain why a standard drone has a much
harder time flying in an air duct than outside. The exact value
of the forces depends on many parameters, most noticeably
the velocity, the lengths and the number of blades of the ro-
tors, which, in turn, are linked to the size and mass of the
drone, as well as many design choices. At the current stage, it
is therefore challenging to define a general model that would
give an estimate of the forces for any kind of drone.

Nonetheless, the consistent pattern of forces across varying
duct diameters and motor regimes enables the formulation of
qualitative guidelines for the best drone stability. In a circu-
lar air duct, contrary to intuition, optimal stability is achieved
by flying at a height of about 15 cm (about a quarter of the
duct diameter in a 40 cm duct). This positioning places the
drone above ground effects yet below downward forces, effec-
tively stabilizing its position (green zone of Fig. 2). The top
left and top right quadrants pose instability risks due to the
drone’s attraction towards the duct borders, rendering pre-
cise position control challenging. By contrast, in a square air
duct, the center is the less impacted zone and attraction forces
become significant if the drone gets closer than about 15 cm
of the wall or ceiling. Notably, while a circular duct’s ceiling
does not attract the drone, a rectangular duct’s ceiling poses
a safety hazard because it pulls the drone up.

Data-driven Localization

From our aerodynamic experiments, we deduce an optimal
placement of the drone in an air duct. However, even at the
best position, the drone must contend with the turbulences
while maneuvering in close proximity to the walls that sur-
round it in every direction. In such a situation, precise posi-
tion control is key, as even minor deviations of a few centime-
ters can lead to a collision which will likely be followed by a
crash. The primary challenge for position control lies in ac-
curately estimating the drone’s position within the duct: once
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HTC Vive Lighthouse motion tracking system

Optitrack marker-based motion tracking systemLight

Figure 3. Experimental setup to acquire data for the data-driven localization. From left to right, a Lighthouse base station (on a tripod), an
LED panel light, a circular air duct in which the drone flies, an Optitrack Trio, and a Lighthouse base station (on a tripod).

the position is known, conventional position control methods
such as PID29 or more sophisticated techniques30 can be im-
plemented.

A drone in an air duct can hardly exploit vision-based
localization techniques, like visual SLAM31 or optic-flow32.
First, its environment is typically featureless, almost uniform,
whereas these techniques rely on salient visual features and
contrasts. Second, as air ducts are dark, the drone must pro-
vide its own illumination, whereas onboard lights cannot be
powerful on a small drone without impacting the autonomy
significantly and do not cast light uniformly. Last, a sub-150g
drone cannot embed much computing power, making it chal-
lenging to work with image processing algorithms.

Instead, our drone exploits 9 miniature time-of-flight sen-
sors (Methods), one toward the ground, and 8 in the horizon-
tal plane; these sensors have a range of 4 meters and do not
require any light.

When we assume that the drone is horizontal and the time-
of-flight sensors are casting a single ray, the altitude (z posi-
tion) corresponds to the distance returned by the sensor that
is directed toward the ground, and the horizontal position in
a slice of the duct (y position) can be solved analytically with
a geometrical method (Methods).

Nonetheless, the current time-of-flight sensors we use have
a typical field of view of 27 degrees (Methods). As a conse-
quence, when a sensor is not perpendicular to the wall, that
is, when the rays are “tangent” to the walls, it will return some
average distance that is not fully determined. Please note that
this is always the case for a subset of the sensor for any posi-
tion of the drone.

While the sensor properties could be measured and modeled
depending on their angle with the wall, we decided to follow
a more “end-to-end” approach by learning a neural network
that computes the horizontal and vertical positions (y and z)
given the horizontal and vertical velocities, and roll and pitch
angles, and the laser measurements. Velocities were intro-
duced after testing various parameter combinations, leading
to improved experimental flight performance. The yaw input
was omitted, assuming the drone’s forward axis aligns with
the air duct’s axis. This decision also avoids potential issues
that could arise in the neural network if the yaw angle falls
outside the [-90°, 90°] range, a concern not applicable to the
roll and pitch angles. Our objective is for this model to take
into account both the inaccuracies of the sensors but also im-
plicitly disambiguate computations by learning priors based
on the statistical properties of typical flights.

This neural network is learned with classic supervised
learning. To do so, we need to acquire the ground truth, here
the full pose of the drone, with a reliable external system;
this is challenging because the duct walls hide the drone from

standard optical tracking systems (e.g. Optitrack or Vicon).
We considered two options: (1) Optitrack Duo/Trio, which is a
system based on two/three calibrated infrared cameras that
can be placed in the axis of a duct, and (2) the HTC Vive
lighthouse system33, which relies on a rotating IR laser in
one or two external beacons. We decided to exploit the HTC
Vive system because the position is computed internally by the
Crazyflie drone34, which makes it easy to align temporally the
measurements from the lasers, the IMU, and the ground truth
(as they are all computed in the same system). By contrast,
external systems like Optitrack need to send the position by
radio to the drone which adds at least a few milliseconds of
delay. The setup is made of a one-meter segment of air duct
placed horizontally on the ground with 2 Lighthouse base sta-
tion v2 situated approximately 60 cm from each extremity of
the duct (Fig. 3). In the duct, the drone is controlled remotely
by a pilot using a gamepad to have more control when flying
close to the duct. Using this approach, we acquired a dataset
of 9 flights, totaling 33.9 minutes, at a frequency of 250 Hz.
A data augmentation process utilizes the XZ plan of symme-
try to double the training dataset size. Overall, the dataset is
made of 891614 points, divided into a training set of 784836
points and a test set of 106778 points.

The position estimator is a multilayer perceptron (MLP)
with 4 layers, for a total of 63 neurons (Methods). It takes
13 inputs (the 9 time-of-flight sensors, the y and z velocities
and the roll and pitch angles estimated by the Kalman filter
from the IMU). The inputs pass through 2 hidden layers of
size 32 and 16. The outputs are the y and z positions. It is
trained on a computer with the PyTorch library and then in-
tegrated into the firmware of the drone using the X-CUBE-AI
toolkit from STMicroelectronics. It runs at 10 Hz on the on-
board STM32F4 microcontroller (Methods).

The results on the test set (Fig. 4) show that both methods
(geometric and neural network) can estimate the position in
the air duct. Nonetheless, the neural network is significantly
more accurate than the analytical approach, with a median
error of -3.0 mm versus -5.2 mm laterally (Fig. 4D, [5%,95%]
confidence interval [-13.3, 5.9] vs [-67.3, 30.1]), and -0.5 mm
versus 17.1 mm vertically (Fig. 4E, [5%,95%] confidence inter-
val [-6.6, 5.1] vs [-67.3, 107.0]). The horizontal errors of the
geometrical method are likely to originate from an imperfect
measurement model for the sensors, although more experi-
ments would be needed to understand this in detail. Impor-
tantly, the geometric computations sometimes have large er-
rors that would directly result in a crash, in particular about
10 cm on the vertical axis for the 95% confidence interval.

Additional data for 45 cm and 56 cm tubes are provided in
Supplementary Material (Fig. S4 and Fig. S5), which support
the same conclusions.
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A - 3-dimensional view of the drone inside a 35cm diameter air duct

B - Lateral positions and Absolute Lateral Errors C - Vertical positions and Absolute Lateral Errors

D - Lateral Errors

E - Vertical Errors

Figure 4. A. 3D view of the drone flying inside a 35cm diameter air duct. The drone is in the middle of the cylinder. The emission cone of the
time-of-flight (ToF) sensors is represented in red and is ϕ = 27◦. ToF sensors emitting on the horizontal plane are separated by θ = 45◦. di and dj
represent 2 distances measured by the ToFs. B-E. Comparison of the position estimations from the geometric and neural network methods
against the ground truth inside a 35 cm air duct. The green line represents the Ground Truth measured by the Extended Kalman Filter of the
drone helped with the Lighthouse positioning system. The orange and blue lines represent respectively the lateral position outputted by the neural
network and the geometrical solution. B. Lateral positions and Absolute Lateral Errors. In this time section of the test set, the geometrical
solution is less accurate than the neural network. C. Vertical positions and Absolute Vertical Errors. In this time section of the test set, the
geometrical solution is less accurate than the neural network. D. Lateral Errors. This boxplot represents the dispersion of the lateral position error
outputted by the neural network and the geometrical solutions with respect to the ground truth in the test set. The neural network outputs a lateral
position that is more precise and accurate than the geometrical solution. E. Vertical Errors. This boxplot represents the dispersion of the error
between the vertical position measured by the neural network and the ground truth in the test set. The neural network outputs a vertical position
that is more precise and accurate than the geometrical solution.
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Flight tests

We uploaded the neural network to the onboard microcon-
troller (Methods, Fig. 6) and used its outputs as the inputs of
the Kalman filter used by the Crazyflie software to estimate
its position, velocity and orientation. In concrete terms, we
plug the neural network as if it were a motion capture sys-
tem (like the HTC Vive system that we use for training). As a
consequence, the output of the neural network is merged with
the IMU, the optical flow sensor and the model of the drone,
and not used directly. The neural network does not estimate
the “forward” (x-axis) position, which is, in our opinion, an
open problem of navigation that is unrelated to aerodynam-
ics9,35,36. To perform the experiments, an LED panel light was
positioned on the ground in front of the air duct entrance. The
light is oriented horizontally, slightly towards the ground to
produce a grazing light shining on the spiral bump of the duct
to cast shadows, thereby enhancing the visual cues available
to the drone’s optical sensor to estimate the “forward” posi-
tion.

We used the same air duct as the one used for training, that
is, we consider that a neural network is trained for each duct
diameter and that the operator of the drone can easily select
the right network. We did not consider changes in diameter
during flight since we were focused on hovering and not nav-
igation. However, our preliminary tests show the system is
robust to different diameters as depicted in Fig. S6. To get
an independent ground truth, we set up an external marker-
based visual tracking system (Optitrack V120:Trio, Methods)
that is both independent from the onboard estimation and the
system used for the dataset used in the training phase.

We first performed a 2-minute flight at an altitude of 11.5
cm in a 35-cm circular air duct (Fig. 5A). Overall, the drone is
stable enough to fly, which shows that flying an 18-cm drone
in a 35-cm air duct is possible by combining both the choice of
altitude and the data-driven position estimator.

We then investigated if, as predicted by our aerodynamic
forces measurements (Fig. 2), the drone is less stable at the
center of the duct than at the recommended altitude. To do
so, we performed stationnary flights at 5 altitudes separated
by 2 cm between 9.5 cm (the lowest experimentally possible)
and 17.5 cm (the center of the duct and the highest experimen-
tally possible) and observed the deviations from the target po-
sition. These results (Fig. 5B) confirm our aerodynamic force
measurements: the drone is significantly less stable when the
altitude increases, with an amplitude of oscillation (first quar-
tile) of about 1 cm at an altitude of 9.5 cm versus 3.6 cm at 17.5
cm.

Additional data for 45 cm and 56 cm tubes are available in
Supplementary Material. They show similar results. Inciden-
tally, the neural network generalizes well enough to enable
the quadrotor to fly in a duct with a diameter 10 cm smaller
or larger than the one on which it has been trained (Fig. S6).

Discussion

A new domain for flying robots

Our findings demonstrate that a quadrotor weighing less than
150 grams can effectively hover within a 35-centimeter diam-
eter air duct by combining (1) an altitude below the center of
the duct, as showed by our aerodynamical forces study, and
(2) a neural-network position estimator trained through an
“end-to-end” approach. This success opens a whole new do-
main for flying robots — air ducts and similar pipes – with
potential applications that span from industrial inspection to
public safety.

One of the major challenges for future applications will be
dust, which is a common occurrence in most air ducts, par-
ticularly on their lower surfaces. To mitigate this issue, the
drone needs to move less air or at a lower speed, which is typ-
ically achieved by designing it to be lighter and by increasing
the size of the rotors. More experiments are needed to eval-
uate the extent of the issue, as typical air duct networks are
engineered to prevent dust buildup, in particular, by incorpo-
rating air filters37.

A second challenge for applications will be the naviga-
tion in air duct networks, encompassing progression through
the network, selecting appropriate junctions, and subse-
quently returning to the entrance with the recorded images.
As mentioned before, SLAM algorithms are successful in
robotics31,38,39 but they are unlikely to work well in a feature-
less environment like an air duct, and they are computation-
intensive. Visual odometry based on optic flow would be eas-
ier to embed40,41, but is also challenging in a dark environ-
ment that is only lit with small embedded lights42. Teleoper-
ation, that is, using a pilot, would be a possible approach but
maintaining a radio link is challenging in underground tun-
nels43,44; it may still be a possible solution in metal ducts45,46.
However, more research is needed in radio transmission in-
side complex metal duct systems over a long range with bends,
junctions and the presence of obstacles and materials that
could dampen the signal. A solution could be using drones
to physically carry data (data muling) when important data
is needed from the ground station or the main drone47. A
promising research avenue is to maintain this radio link us-
ing a chain of drones that propagate the signal from drone to
drone48.

Control

For this study, we used a conventional position controller
based on a cascade of PID controllers6. We performed a pre-
liminary study in simulation using model-predictive control
instead of this position controller, so that the quadrotor could
anticipate the forces and include its control decisions49. How-
ever, our results did not show an improvement significant
enough to justify the complexity of implementing real-time
model-predictive control on such a light quadrotor. Simpler
schemes based on feed-forward terms50 in the PIDs could be
enough to take the knowledge of the forces into account. Nev-
ertheless, our measurements indicate that (1) the forces fluc-
tuate significantly over time, which means that they are un-
likely to be perfectly predicted, and (2) they are small enough
to be ignored when the drone flies at the recommended alti-
tude and position. Our current conjecture is that explicitly
integrating force predictions into the position controller may
only prove advantageous when navigating in close proximity
to the ceiling or the upper sides of the duct.

Instead of improving the control law, non-coaxial drones51

could give more command authority and allow the drone to
compensate directly in the horizontal plane, without adding
roll or pitch motions. To our knowledge, no small non-coaxial
drone has been designed yet, but this is a promising research
avenue.

Aerodynamics

In order to comprehend the aerodynamic phenomena at play,
we designed a robotic setup that measures the average forces
at different positions in a duct. While these experiments offer
valuable insights and propose an airflow pattern, the system
overlooks the drone’s motion, as it remains fixed. In particu-
lar, a controlled quadrotor continuously adjusts its attitude to
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Figure 5. A. Positions of the drone at altitudes of 115mm and 155mm. Two 2-minute flights are shown in this plot. The red circle represents
the 35-cm air duct. The 2 red crosses depict the position the drone must keep for each flight where the drone takes off and hovers at an altitude (Z)
of 115mm or 155mm in this air duct. It must stay at Y = 0. Two groups of points are visible. The group located below (colors from blue to yellow)
are the positions of the drone for the flight at 115mm. The group located above (colors from blue to green) represents the positions of the drone
for the flight at 155mm. The neural network used is the one trained on this 35-cm air duct. B. Interquartile Range and Median of Y Positions.
This plot depicts the interquartile range (in light green color) and the median (the bright green line) of the lateral positions taken by the drone for
different flight altitude targets (represented by the green dots). The target altitude is on the ordinate and the abscissa represents the measured
lateral position. It uses the same neural network as the figure A on the left.

compensate for turbulences, but, by doing so, it changes the
direction of the flow accelerated by the rotors, which, in turn,
changes how it circulates. This closed-loop system, which can,
for instance, lead to the amplification of control instabilities,
would require more experiments.

Furthermore, our setup only indirectly measures the air-
flow within the duct by assessing how the duct modifies the
forces exerted on the quadrotor. Modern techniques like Par-
ticle Inverse Velocity52,53 offers the potential to directly visu-
alize and possibly model the air velocity field, enhancing our
understanding of its dynamics. Specifically, it would be use-
ful to know if there are temporal patterns of turbulence, or
chaotic elements that cannot be modelled. We expect these
future experiments in aerodynamics to lead to numerous in-
sights about the best strategy to stabilize a drone in this spe-
cific, but well-defined, environment.
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Code availability

The Python scripts to reproduce the analyses are included
with the data. The C code of our quadrotor, based on
the bitcraze open-source code, will be available on https:

//github.com/hucebot/.

Methods

Drone

The drone (Fig. 1B) is 180 mm wide (including rotors) and
75 mm high (feet and an additional deck on top included). It
weighs 130 g (battery included). The main board is a Bitcraze
Bolt, a derivative of the Crazyflie6, based on an STM32F4 mi-
crocontroller at 168 Mhz. The main frame is custom-made in
carbon fiber. The drone is powered by a single (type 18650) Li-
Ion battery of 3.6V / 3 Ah, which gives an autonomy of about
15 minutes. The four brushless motors are the ROBO 1202.5
11500kv from Flywoo associated with GEMFAN 3018 2-blade
propellers measuring 7.6 cm in diameter. The four ESCs are
XSD 7A ESC from FlashHobby.

On the bottom of the drone, the Micro SD card deck by
Bitcraze was added to collect the data for the training of the
neural network. The “Flow Deck v2” by Bitcraze was added
to add the downward-facing time-of-flight and an optic flow
sensor.

On the top of the drone, a custom deck was added to add 9
time-of-flight sensors (STM32’s VL53L1X), based on the de-
sign of the Multi-ranger deck by Bitcraze (which is similar,
but with 5 sensors only).

Comparison of flight stability inside and outside a
circular duct (Fig. 1)

The drone flies for 2 minutes inside the 35-cm air duct and out-
side (Fig. 1D). The drone’s state estimator uses the HTC Vive’s
Lighthouse Positioning system as the position reference. The
altitude command is 127mm for both flights so the propellers,
located 50mm over the feets of the drone are about the middle
of the duct. The data have been centered around the median.
Y is the lateral position and Z is the altitude. X (not shown
here) is the forward position along the tube axis.

Force measurements (Fig. 2, Fig. S1, Fig. S2, and
Fig. S3)

The drone is mounted on a 6D force/torque sensor (FTN-
NANO17 with the calibration SI-12-0.12, by ATI technolo-
gies), which is connected to the acquisition computer by eth-
ernet. According to the manufacturer, the sensitivity of the
sensor are:

• Fx/Fy/Fz: 1/320 N

• Tx/Ty/Tz: 1/64 N.mm

The data are acquired at 7 Khz.
The sensor is mounted on a 3D-printed pole, designed to

be as rigid as possible, which is screwed in place of the robot
end-effector (Fig. 2).

For each measurement, the robot (Franka-Emika Panda)
starts outside of the duct. The motors are started and the
drone is kept outside for 5 seconds. Except for the data of
Fig. S3, the motors are set to 50% of their maximum value,
which compensates for the weight of the drone. This gives the
reference force/torque. Then, the robot puts the drone inside
the air duct (as deep as possible given the workspace of the

robot, which corresponds to roughly putting the center of the
drone 30 cm inside).

The data are first filtered with a low-pass Butterworth filter
of order 4 (from the scipy.signal Python package), with a
sampling frequency of 7 Khz with a cutoff frequency of 1 Hz.

On plots (e.g., Fig. 2), the arrow corresponds to the mean of
the force Fz and Fy, and the ellipse corresponds to the covari-
ance ellipse (1 standard deviation).

Geometric position estimation (Fig. 4)

Knowing the position of the drone whose center is OB in the
cylinder, for each ToF i, the point Oi, which is the intersec-
tion between the ToF direction and the cylinder verifies the
following equation: O2

i,y + O2
i,z = r2. However the point Oi is

the translation of the point OB by the orientation vector of the
ToF: di = disi, hence its coordinates based on the position of
the drone 

Oi,x = OB,x + disi,x
Oi,y = OB,y + disi,y
Oi,z = OB,z + disi,z

(1)

W and B are respectively the world and drone coordinate
frames and RWB is the rotation matrix to pass from the drone
to the world coordinates. This matrix is known from the gyro-
scope of the drone.

[si]W = RWB [si]B (2)

We have for 2 distinct ToF i and j:

r2 = (OB,y + disi,y)
2 + (OB,z + disi,z)

2

= (OB,y + djsj,y)
2 + (OB,z + djsj,z)

2
(3)

Which gives us

2OB,y(disi,y − djsj,y) + 2OB,z(disi,z − djsj,z)

= d2j (s
2
j,y + s2j,z)− d2i (s

2
i,y + s2i,z) (4)

with the following notation:

ak = ai,j = d2j (s
2
j,y + s2j,z)− d2i (s

2
i,y + s2i,z)

bk = bi,j = 2(disi,y − djsj,y)
ck = ci,j = 2(disi,z − djsj,y)

(5)

We get the equation

ak = bkOB,y + ckOB,z

A = (B|C)

(
OB,y

OB,z

)
(6)

A, B and C are column vectors of the ak, bk, and ck coeffi-
cients. If the number of ToF is k > 2 the position is the so-
lution of the root mean square problem. The solution can be
calculated with the pseudo-inverse of the matrix M = (B|C)(

OB,y

OB,z

)
= (MTM)−1MTA (7)

Training of the neural network (Fig. 4)

During data-gathering flights, we utilized the Bitcraze SD-
deck to record data at 250 Hz, including ToF ranges and state
estimator outputs such as position, speed and attitude. The
drone is stabilized using a cascaded PID controller and accu-
rate localization is performed using two HTC Vive Lighthouse
Base Stations as part of the global positioning system. This
configuration helps the drone to fly close to walls by a pilot us-
ing a Logitech F710 gamepad. However, the Lighthouse deck
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Figure 6. The system architecture. The neural network uses as input the velocities ˆ̇yt−1 and ˆ̇zt−1 and the angles ˆrollt−1 and ˆpitcht−1 previously
estimated by the EKF (Extended Kalman Filter) as well as 9 ToF Sensors distances. The output is an estimation of the y and z position of the drone
in the circular section of the duct. The EKF takes as inputs the outputs of the Neural Network, the IMU and the Optical Flow Sensor to output an
estimate of the position, velocity and angle of the drone. A Cascaded PID controller is then used to control the drone propellers, comparing the
estimated dynamics of the drone against the programmed commands.

extension used to get the localization from the HTC Vive sys-
tem masks the ToF sensor measuring the distance on top of
the drone. Hence, the data coming from this sensor are dis-
carded. To prepare the data for neural network training, we
first remove all segments containing crashes. Additionally,
since the setup comprises a one-meter segment of an air duct
and to prevent laser sensors from measuring obstacles outside
the duct, any laser range above 50 cm is replaced by zero. This
dataset consists of 9 flights, averaging 3.15 minutes per flight
and totaling 29.4 minutes. Finally, a data augmentation pro-
cess utilizes the XZ plan of symmetry to double the dataset
size.

Implementation of the neural network in the firmware

We use the X-CUBE-AI toolkit v6.0.0 from STMicroelectron-
ics to convert the weights of the neural network into optimized
C code that can run on the MCU of the drone. The choice of
this toolkit is motivated mainly by its ease of use. Also, its
low memory consumption and low latency performances54 are
key factors to enable running a neural network alongside the
existing algorithms on the system. The output of the neu-
ral network is then inputted into the Extended Kalman Filter
(EKF) of the drone as depicted in Fig. 6. This neural network
gets inputs at a rate of 10 Hz. The inference time is about
0.2 ms on average. The controller is the state-of-the-art PID
cascaded controller of the Bitcraze Bolt.

Experimental setup for flight tests (Fig. 3)

The V120:Trio camera from Optitrack is placed at about 60
cm of one extremity of the duct so at least 2 cameras can
track the drone and the duct. The selection of this camera
is based on its millimeter-level precision in tracking small ob-
jects like drones, as demonstrated in55. The camera is close
enough to track 6.4-mm-diameter reflective markers stuck in-
side the cylindrical duct and on a 3d printed structure fixed
on the rear of the drone. The extensions on the drone are
the SD-card deck to plug a micro SD-card to collect data from
the drone, the Flow deck v2 containing a ToF (VL53L1X) and
an optic flow sensor, and the MultirangerX9 deck containing
9 ToF (VL53L1X) (the one measuring the top distance is not
used as explained in Methods). The tube is lit with an LED

spot close to the ground so the spiral structure of the duct can
cast some shadow and the reflection of the light on the tube
does not saturate the optical sensor. This setup enables the
possibility of using the Flow deck in the X direction (forward)
to estimate the last coordinate position not calculated by the
neural network.

The drone is placed in the middle of the duct with its for-
ward direction aligned with the axis of the duct before take
off. The drone takes off and hovers for 2 min at a given al-
titude while keeping its lateral position in the center of the
tube. Then, the drone lands. The altitude is increased incre-
mentally until the drone is too unstable to fly in the duct.

Calibration of data for analysis

The positions of the markers stuck inside the duct and mea-
sured by the Optitrack are used to fit a cylinder to align the X
vector of the reference frame with the axis of the duct. Then,
the reference frame of the Optitrack data are translated to the
middle of the bottom of the tube. This attitude and position
change of the reference frame is reflected in all Optitrack data
post-flight.

The neural network implemented on the drone has been
trained with the Lighthouse deck which sets an altitude of 0
cm when the drone is positioned on the ground. The position
of the drone measured by the Optitrack is located in the cen-
ter of the drone 3.5 cm above the ground when it is not flying,
where the control board is. Consequently, the target altitudes
are shifted 3.5 cm up in the Y-axis of the final plots.

The 10 first seconds after take-off detection and the last 5
seconds before landing are removed in the final dataset which
gives us 5 × 1min 45s of steady state flight equaling 8min
and 45s of flight data for each altitude shown in Fig. 5B-C
and Fig. S6.

Flight results for other air duct diameters (Fig. S6)

The same methodology explained precedently for the 35-cm
tube has been used for the other air ducts (45 and 56 cm).
Fig. S6 illustrates the flight results conducted in air ducts of
35, 45 and 56 cm using the neural network trained in these
conducts. In these figures, the real altitude at which the drone
must fly, or flight altitude target, is in most cases shifted by
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several centimeters depending on the neural network used.
On the contrary, the median of the Y position errors is more
vertical and at most 1.5 cm from 0.

In Fig. S6A to D and G to J the drone flies with a neural
network trained in a different air duct size.

In Fig. S6E, G, I and K, the drone flight shows an increase
in the interquartile range on the Y position as the altitude in-
creases in the 45 and 56 cm air duct. This could explain an
increase in aerodynamic turbulences on the drone. There is
a slight increase in the size of the interquartile range of the
Y error in the lower part of the 45-cm and 56-cm duct which
could be the impact of the ground effect on the drone. How-
ever, this does not appear clearly when the drone flies into
35-cm duct (In Fig. S6A and C).

References

(1) Wang, Y. & Zhang, J. Autonomous air duct cleaning robot system
in 2006 49th IEEE International Midwest Symposium on Circuits
and Systems 1 (2006), 510–513.

(2) Tanise, Y. et al. Development of an air duct cleaning robot for
housing based on peristaltic crawling motion in 2017 IEEE Inter-
national Conference on Advanced Intelligent Mechatronics (AIM)
(2017), 1267–1272.

(3) Jeon, S. W., Jeong, W., Park, D. & Kwon, S.-B. Design of an in-
telligent duct cleaning robot with force compliant brush in 2012
12th International Conference on Control, Automation and Sys-
tems (2012), 2033–2037.

(4) Roh, S.-g. & Choi, H. R. Differential-drive in-pipe robot for moving
inside urban gas pipelines. IEEE transactions on robotics 21, 1–
17 (2005).

(5) Shao, L., Wang, Y., Guo, B. & Chen, X. A review over state of
the art of in-pipe robot in 2015 IEEE International Conference on
Mechatronics and Automation (ICMA) (2015), 2180–2185.

(6) Giernacki, W., Skwierczynski, M., Witwicki, W., Wronski, P. &
Kozierski, P. Crazyflie 2.0 Quadrotor as a Platform for Research
and Education in Robotics and Control Engineering in 2017 22nd
International Conference on Methods and Models in Automation
and Robotics (MMAR) (IEEE, Miedzyzdroje, Poland, Aug. 2017),
37–42. ISBN: 978-1-5386-2402-9.

(7) Duisterhof, B. P., Li, S., Burgués, J., Reddi, V. J. & de Croon, G. C.
Sniffy bug: A fully autonomous swarm of gas-seeking nano quad-
copters in cluttered environments in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2021),
9099–9106.

(8) Li, H., Savkin, A. V. & Vucetic, B. Autonomous area exploration
and mapping in underground mine environments by unmanned
aerial vehicles. Robotica 38, 442–456 (2020).

(9) Elmokadem, T. & Savkin, A. V. A method for autonomous collision-
free navigation of a quadrotor UAV in unknown tunnel-like environ-
ments. Robotica 40, 835–861 (2022).

(10) Orekhov, V. & Chung, T. The DARPA subterranean challenge: A
synopsis of the circuits stage. Field Robotics 2, 735–747 (2022).

(11) Chung, T. H., Orekhov, V. & Maio, A. Into the Robotic Depths:
Analysis and Insights from the DARPA Subterranean Challenge.
Annual Review of Control, Robotics, and Autonomous Systems 6,
477–502 (2023).

(12) Tranzatto, M. et al. CERBERUS in the DARPA Subterranean Chal-
lenge. Science Robotics 7, eabp9742 (2022).

(13) Briod, A., Kornatowski, P., Zufferey, J.-C. & Floreano, D. A
collision-resilient flying robot. Journal of Field Robotics 31, 496–
509 (2014).

(14) De Petris, P., Nguyen, H., Kulkarni, M., Mascarich, F. & Alexis, K.
Resilient collision-tolerant navigation in confined environments in
2021 IEEE International Conference on Robotics and Automation
(ICRA) (2021), 2286–2292.

(15) Abayan, J. J., Banglos, C. A., Librado, L., Pao, J. & Salaan,
C. J. ToF-based Simultaneous Localization and Mapping using
a Shelled-UAV for Penstock Applications in 2022 IEEE 14th Inter-
national Conference on Humanoid, Nanotechnology, Information
Technology, Communication and Control, Environment, and Man-
agement (HNICEM) (2022), 1–6.

(16) Khalil, A., Jaradat, M. A., Mukhopadhyay, S. & Abdel-Hafez, M. F.
Autonomous Control of a Hybrid Rolling and Flying Caged Drone
for Leak Detection in HVAC Ducts. IEEE/ASME Transactions on
Mechatronics 29, 366–378 (2023).

(17) Wang, L., Zhou, B., Liu, C. & Shen, S. Estimation and adaption of
indoor ego airflow disturbance with application to quadrotor trajec-
tory planning in 2021 IEEE International Conference on Robotics
and Automation (ICRA) (2021), 384–390.
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Supplementary Materials

• Video: https://youtu.be/BLQqoa7Zolw – The video
shows the drone hovering in air ducts of different diame-
ters.
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Fig. S1. Raw and filtered data from the force-torque sensor. The three components of force and torque for a typical measure of additional
force in an air duct, for three different positions (green, orange, and blue). The drone is first outside of the duct for 5 seconds, with little variations in
force (in N) and torque (in N.m). Then, it enters the air duct and, for different positions, different forces appear. The data are filtered with a low-pass
filter (Methods).
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Fig. S2. Forces added by the duct for different diameters. A. 40 cm. B. 50 cm. C. 65 cm. Overall, the force patterns stays similar and the
force magnitude depends on the distance to the borders of the duct: lower forces in the middle of a larger duct than in a smaller one, but similar
forces when close to the borders.
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Fig. S3. Influence of the motor regime. Here, the color corresponds to the percentage of the max velocity of the motors. We tested 30%, 50%
(about what is needed for hovering with our drone), 70%, and 90% in 45 cm circular air duct. Overall, the patterns stays the same but the intensity
of the force increases with the motor regime (that is, the air velocity).
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A - Lateral positions and Absolute Lateral Errors B - Vertical positions and Absolute Lateral Errors

C - Lateral Errors

D - Vertical Errors

Fig. S4. Comparison of the position estimations from the geometric and neural network methods against the ground truth inside a
45 cm air duct. The green line represents the Ground Truth measured by the Extended Kalman Filter of the drone helped with the Lighthouse
positioning system. The orange and blue lines represent respectively the lateral position outputted by the neural network and the geometrical
solution. A. Lateral positions and Absolute Lateral Errors. In this time section of the test set, the geometrical solution is less accurate than the
neural network. B. Vertical positions and Absolute Vertical Errors. In this time section of the test set, the geometrical solution is less accurate
than the neural network. C. Lateral Errors. This boxplot represents the dispersion of the lateral position error outputted by the neural network and
the geometrical solutions with respect to the ground truth in the test set. The neural network outputs a lateral position that is significantly more
precise and accurate than the analytical approach, with a median error of -0.1 mm versus 1.8 mm laterally ([5%,95%] confidence interval [-8.4,
8.4] vs [-26.4, 29.7]). D. Vertical Errors. This boxplot represents the dispersion of the error between the vertical position measured by the neural
network and the ground truth in the test set. The neural network outputs a vertical position that is significantly more precise and accurate than the
analytical approach, with a median error of -1.8 mm versus -14.8 mm laterally ([5%,95%] confidence interval [-7.3, 4.3] vs [-42.9, 65.2]).
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A - Lateral positions and Absolute Lateral Errors B - Vertical positions and Absolute Lateral Errors

C - Lateral Errors

D - Vertical Errors

Fig. S5. Comparison of the position estimations from the geometric and neural network methods against the ground truth inside a
56 cm air duct. The green line represents the Ground Truth measured by the Extended Kalman Filter of the drone helped with the Lighthouse
positioning system. The orange and blue lines represent respectively the lateral position outputted by the neural network and the geometrical
solution. A. Lateral positions and Absolute Lateral Errors. In this time section of the test set, the geometrical solution is less accurate than the
neural network. B. Vertical positions and Absolute Vertical Errors. In this time section of the test set, the geometrical solution is less accurate
than the neural network. C. Lateral Errors. This boxplot represents the dispersion of the lateral position error outputted by the neural network and
the geometrical solutions with respect to the ground truth in the test set. The neural network outputs a lateral position that is significantly more
precise and accurate than the analytical approach, with a median error of 1.0 mm versus 1.7 mm laterally ([5%,95%] confidence interval [-10.3,
13.2] vs [-33.0, 30.5]). D. Vertical Errors. This boxplot represents the dispersion of the error between the vertical position measured by the neural
network and the ground truth in the test set. The neural network outputs a vertical position that is significantly more precise and accurate than the
analytical approach, with a median error of 1.2 mm versus -67.3 mm laterally ([5%,95%] confidence interval [-8.1, 11.2] vs [-98.5, -0.0]).

Martin et al., 2024 preprint | 15



Flying in air ducts, 2024Flying in air ducts, 2024Flying in air ducts, 2024

A - Y Errors in 35cm duct

C - Y Errors in 45cm duct

E - Y Errors in 56cm duct

B - Z Errors in 35cm duct

D - Z Errors in 45cm duct

F - Z Errors in 56cm duct

Fig. S6. Y and Z position errors for flights conducted in air ducts of 35, 45 and 56 cm in diameter using the Neural Networks (NN). For
each altitude target (depicted by the dots on the colored curves), 5 2-min flights are performed and the result are presented as the Interquartile
Ranges (IQR) (in light color) and the medians (bright color lines with dots) of the lateral (Y) and vertical (Z) position errors. The NNs trained in
the 35-cm, 45-cm and 56-cm air ducts are coded in green, orange and blue respectively. In general, we observe that the drone can fly in an air
duct using an NN trained in one that is wider or narrower. However, in these situations, the capability to fly higher or lower decreases. A-B. Y and
Z Positions Errors in the 35-cm air duct. In this air duct the drone can fly using the NNs trained in the 35-cm and 45-cm air ducts. The drone
manages to fly in a cylinder 22% narrower than the one where it has been trained on. However, the altitude range on which it is able to fly is very
small, and under the middle of the air duct (17.5 cm). This could explain why the data show very slight increase in the IQR in the Y positions (Fig. A)
for the NN trained on the 45-cm air duct (orange), compared to the other one. On Fig. B, the altitude precision of both datasets is comparable.
The superior accuracy of the NN trained in the 45-cm air duct can be attributed to the higher quality of the dataset used for training. C-D. Y and
Z Positions Errors in the 45-cm air duct. In this air duct the drone can fly using the NNs trained in the 35-cm, 45-cm and 56-cm air ducts. The
drone manages to fly in a cylinder 29% wider than the one where it has been trained on. Overall, Y errors (Fig. C) depict a similar flight behaviour
where the interquatile range gets greater as the altitude increases. The Z errors (Fig. D) present a flight altitude that has a consistent accuracy
using the NN trained in this air duct (nn 45 in orange). The other two present a stronger shift in accuracy. E-F. Y and Z Positions Errors in the
56-cm air duct. In this air duct the drone can fly using the NNs trained in the 45-cm and 56-cm air ducts. The Y errors (Fig. E) depicts a similar
interquartile range shape that widens around the middle of the air duct (22.5 cm). On Fig. F, The NN trained in this airduct (blue) seems to output
an altitude that shifts a lot or it could be the ground effect that pushes the drone up. On the same figure, the other NN (orange, NN 45) presents an
underestimation of the altitude which corresponds to the observed IQR of NN 35 in green of Fig. D, where both are flying in a wider airduct.
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