
HAL Id: hal-04775722
https://hal.science/hal-04775722v1

Submitted on 10 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to Online System-level Prognostics based
on Adaptive Degradation Models

Ferhat Tamssaouet, Khanh Nguyen, Kamal Medjaher, Marcos Orchard

To cite this version:
Ferhat Tamssaouet, Khanh Nguyen, Kamal Medjaher, Marcos Orchard. Contribution to Online
System-level Prognostics based on Adaptive Degradation Models. PHM Society European Conference,
PHM Society, Jul 2020, Virtuel - Online, France. �10.36001/phme.2020.v5i1.1213�. �hal-04775722�

https://hal.science/hal-04775722v1
https://hal.archives-ouvertes.fr


A Contribution to Online System-level Prognostics based on
Adaptive Degradation Models

Ferhat Tamssaouet1, Khanh T.P. Nguyen2, Kamal Medjaher3 and Marcos Orchard4,

1,2,3 Laboratoire Génie de Production, INP-ENIT, Université de Toulouse, Tarbes, 65000, France
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ABSTRACT

Considering traditional model-based prognostics approaches,
a previously defined model is required to estimate the sys-
tem’s health state and then propagate it to predict the system
remaining useful life (SRUL). Following a Bayesian frame-
work, the result of this prior estimation is updated by in-field
measurements without changing the model parameters. Nev-
ertheless, in the case of prognostics at system-level, solely up-
dating prior health state, based on the pre-determined model,
is no longer sufficient because numerous mutual interactions
between components cause multiple uncertainties in system
degradation modeling, and then can lead to inaccurate SRUL
prediction. Therefore, this paper proposes a new methodol-
ogy for online joint uncertainty quantification and model es-
timation based on particle filtering (PF) and gradient descent
(GD). In detail, the inoperability input-output model (IIM) is
used to characterize system degradations considering interac-
tions between components and effects of the mission profile;
and then the inoperability of system components is estimated
in a probabilistic manner using PF. In the case of consecutive
discrepancy between the prior and posterior estimates of the
system health state, GD is used to correct and to adapt the IIM
parameters. To illustrate the effectiveness of the proposed
methodology and its suitability for an online implementation,
the Tennessee Eastman Process is investigated as a case study.

1. INTRODUCTION

Until now, research in the field of failure prognostics, in the
literature, is conducted generally at component-level (Daigle,
Bregon, & Roychoudhury, 2012; Atamuradov, Medjaher, Der-
sin, Lamoureux, & Zerhouni, 2017). However, complex engi-
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neering systems are composed of multiple individual compo-
nents operating interactively. Thus, when one or more com-
ponents fail, the performances of the whole system are ad-
versely affected. Therefore, the development of system-level
prognostics approaches is also essential. However, in that per-
spective, several challenges are faced. Among them, three
main challenges will be investigated and solved in this paper.

The first challenge concerns the development of the model
that allows the various factors influencing the evolution of
system degradation to be taken into account, including the
components’ mutual interactions and the effects of the mis-
sion profile. However, most systems are composed of het-
erogeneous elements with different operating mechanisms,
which makes modeling them difficult (Liu & Zio, 2016).

The second challenge is related to uncertainty quantification.
Indeed, the transition from component-level to system-level
prognostics leads to an increase in the number of uncertainty
sources, which causes more issues when predicting the SRUL
(Das, Elburn, Pecht, & Sood, 2019).

The third challenge concerns the online implementation of
the prognostics algorithms. This is due to two principal rea-
sons: 1) the unavailability of prior and extended knowledge
about the systems under study because of the impossibility to
perform run-to-failure experiments for equipment availabil-
ity, cost, or safety reasons (Acuña & Orchard, 2017), and
2) the implementation of these algorithms is computing re-
sources demanding, given the modern system complexity.

In this paper, a methodology for online failure prognostics at
the system-level is presented. The inoperability input-output
model (IIM), which considers interdependencies between com-
ponents, mission profile, and inner component degradations,
is used as a modeling framework. This methodology requires
minimal input information on system degradation since the
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parameters of the IIM model can be estimated and corrected
online using our developed algorithm based on gradient de-
scent. The resulting IIM model is then exploited by a par-
ticle filter to estimate the health state of the system, by tak-
ing into account the process uncertainty and the monitoring
data received from the sensors. Once a fault is detected, and
based on the functional architecture of the system, its esti-
mated health state is propagated into the future to determine
its system remaining useful life (SRUL). The results of this
methodology are evaluated, at each execution of the dedicated
algorithm, to find a balance between prediction accuracy and
computation time.

The remainder of the paper is organized as follows. Firstly,
Section 2 presents the inoperability input-output model. Sec-
tion 3 focuses on the description of the elements composing
the proposed methodology, and its online implementation is
detailed in Section 4. The effectiveness and applicability of
the proposed methodology are discussed in Section 5, through
a real industrial case study, which is the Tennessee Eastman
Process. Finally, Section 6 concludes the paper and gives
some future works.

2. SYSTEM DEGRADATION MODELING FRAMEWORK

Confronted with the nonexistence of a modeling framework
to represent the system degradation in a comprehensive way,
the authors have proposed in previous works the inoperabil-
ity input-output model (IIM) (Tamssaouet, Nguyen, & Med-
jaher, 2019). This model considers heterogeneous systems by
introducing the concept of inoperability, which expresses the
distance between the state of health of the current system and
its failure threshold. The fact that the IIM can take into ac-
count mutual interactions between numerous elements offers
a promising perspective when applying it in the PHM domain.
The formulation of the IIM, in the context of prognostics, is
as follows (Tamssaouet et al., 2019):

q(t) = K(t).[A.q(t− 1) + c(t)] (1)

where:

• q(t) is a vector representing the overall inoperability of
the system components at time t. Each component of
this vector is a value between 0 and 1, where qi(t) = 0
corresponds to a healthy component and qi(t) = 1 to a
faulty component.

• A is a matrix representing the interdependencies between
the system components. Each element aij of the ma-
trix corresponds to the influence of the inoperability of a
component j on the inoperability of a component i. The
bigger aij is, the greater is the influence of j on i.

• c(t) is a vector representing the system components’ in-
ternal inoperabilities at time t, i.e., the degradation of the
components due to wear, corrosion, or any other failure
mechanism. The parameter ci(t) can be obtained by nor-

malizing the health indicator of the component i to its
failure threshold (see (Tamssaouet et al., 2019) for fur-
ther details about health indicator normalization).

• K(t) is a diagonal matrix representing the factors influ-
encing the inoperabilities of the components at time t in
relationship with the system mission profile. Each ele-
ment ki(t) is specific to only one component i.

The proposed IIM can address a wide range of interdependen-
cies between the system components and several situations
related to systems operation (Tamssaouet, Nguyen, Medja-
her, & Orchard, 2020).

3. METHODOLOGY FOR JOINT PARAMETER ESTIMA-
TION AND SRUL PREDICTION

The methodology proposed in this paper for the online de-
termination of the SRUL involves three steps. The first one
consists in the determination of the system degradation model
parameters (i.e., IIM). Once this model is determined, the sec-
ond step concerns its utilization to estimate the system health
state and predict its future evolution, while characterizing the
related uncertainties. This step is carried out online by com-
bining model predictions and monitoring data. The third step
is the calculation of the SRUL based on the system configu-
ration. These steps will be detailed in this section, while its
online application will be presented in section 4.

3.1. Estimation of system degradation model parameters

In a model-based prognostics approach, data are mainly used
to identify and update the parameters of a pre-determined
degradation model. In the literature, there exist numerous
methods that can be applied for parameter estimation. Among
them, the gradient descent GD method (Snyman & Wilke,
2018) is proposed for this work. Indeed, this method is adapted
for model parameter estimation in system-level prognostics
because 1) It can be applied for linear/non-linear models, 2)
it can effectively handle a great number of parameters at the
same time, which is the case in system-level prognostics, 3) it
is an adaptable method thanks to its many extensions (Ruder,
2016), and 4) compared to Newton’s method or inversion
of the Hessian using conjugate gradient techniques, it is not
computationally intensive, making it suitable for an online
application.

In this framework, the IIM parameters are identified to mini-
mize the mean squared error (MSE) between the inoperability
estimated by the model, q̂i, and the in-field measured inoper-
ability, qi:

L(q̂i, qi) =
1

N
(q̂i − qi)2 (2)

Algorithm 1 describes how to determine all the IIM param-
eters, including the internal inoperability evolution of every
component ci(t, θi), the interdependencies matrix A and the
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Algorithm 1 General algorithm for estimating the IIM pa-
rameters related to a component i

1. Set initial values of IIM parameters (a0ij , k
0
i , θ0i )

2. at the (h+1)-th iteration step (h ∈ N+), while stopping
criterion not satisfied
• Evaluate

q̂i(t) = khi

[
M∑

j=1,j 6=i
ahijqj(t− 1) + ci(t, θ

h
i )

]
• Calculate the gradients regarding each parameter:

∂L
∂khi

, ∂L
∂ahij

, ∂L
∂θhi

• Update the IIM parameters:

kh+1
i = khi − γ

∂L
∂khi

ah+1
ij = ahij − γ

∂L
∂ahij

θh+1
i = θhi − γ

∂L
∂θhi

3. end while

matrix of the external influencing factors encompassed in ma-
trix K. Without loss of generality, let’s consider that ci(t, θi)
is a differentiable multi-variable function of parameters θi
that need to be estimated. In Algorithm 1, the stopping crite-
rion can be set as a fixed number of iterations, a given value
of MSE (the less is the MSE, the more is the accuracy of the
model) or when an optimum is reached (a null gradient).

Depending on the prior knowledge available about the system
degradation mechanisms, Algorithm 1 can be adapted easily
in order to estimate only the unknown parameters.

Once the model has been formulated and its parameters de-
termined, it will be used to estimate and predict the system
health state, as explained in the next subsection.

3.2. System health state estimation and prediction

To estimate the health of the system and its related uncer-
tainty, the degradation model (i.e., IIM) and monitoring data
are used in the Bayesian filtering (BF) approach. Since real
systems are generally non-linear and have non-Gaussian noise,
a widely-used method to obtain a sub-optimal solution for the
BF problem is the particle filtering (PF) (M. Orchard, 2006).
In addition to the current health state estimation, this method
is also used to predict the future health state of the system, as
described below.

3.2.1. Inoperability uncertainty estimation

In order to estimate the inoperability posterior density of the
M system components at each time instant k given the obser-
vations yk, the particle filtering (PF) is used. However, con-

trary to its traditional utilization, in this paper, a particle is
considered as a vector representing the state of health (inop-
erability) of the system components. Thus, the weight asso-
ciated with a particle represents the approximation of the in-
operability probabilities of all the M components at the same
time. That means that each particle’s weight represents the
probability that the system components have particular val-
ues of inoperability contained in the particle’s vector. The
process of estimating the inoperability state of a system at a
time k is explained in the following.

Firstly, using the IIM presented in Section 2, the prior prob-
ability density distributions PDFs of the system components
inoperabilities p(qk|qk−1) at time k are predicted based on
the ones at the previous time k − 1:

p(qk|qk−1) ∼ IIM(qk−1) (3)

Next, given new observations yk
i

at time k for a component i,
i ∈ {0, 1, ...,M}, the system posterior PDFs inoperabilities
are updated by the particle filtering. In detail, considering
a set of N particles {q(l)}l=1,...,N , their associated normal-
ized weights {w(l)}l=1,...,N are evaluated by the likelihood
functions p(yk

i
|qk

i
) using the importance distribution func-

tions π(qk
i
|qk−1

i
, y1:k

i
):

w
(l)
k ∝ w

(l)
k−1

M∏
i

p(yk
i
|q(l)k

i

)p(q
(l)
k
i

|q(l)k−1
i

)

π(qk
i
|qk−1

i
, y1:k

i
)

(4)

Finally, to overcome the degeneracy problem, a resampling
process is applied in each time step to replace particles hav-
ing low importance weights with particles that have higher
importance weights.

The posterior PDFs of the system inoperability at time k can
be approximated before the resampling step by:

p(qk|y0:k) ≈
N∑
l=1

w
(l)
k δ(l)qk (qk) (5)

where δ(·) denotes the Dirac delta function.

The estimation procedure is repeated at every instant k, k ∈
{1, 2, ..., kp}, where kp is the starting time of the prediction
step presented in the next subsection.

3.3. Inoperability uncertainty prediction

Prognostics is a problem that goes beyond the scope of filter-
ing problem since it involves future time horizons in which
no measurements are available. Thus, the particle filtering,
which is more suitable for estimation problems, needs to be
adapted to use it for prediction.

In this work, to reduce the computation requirement, we sug-
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gest to follow the procedure proposed in (Doucet, Godsill, &
Andrieu, 2000) and which is based on the assumption that the
particle weights are constant from time kp to time k. Accord-
ing to this procedure, the predicted PDF of the inoperability
of the system’s components at time k (i.e., p(qk|y1:kp)) can
be obtained by applying recursively (3) to q(l)kp .

Once the prediction of the future system inoperability is made,
it will be used to determine the system remaining useful life
(SRUL), as explained in the next subsection.

3.4. SRUL determination

The SRUL provides information related to the time when the
whole system fails (i.e., when the combined failures of indi-
vidual components lead to system failure) (Rodrigues, 2018).
However, the consequence of the degradation of one or more
components depends on the considered architecture (e.g., par-
allel or series). Therefore, the SRUL must be calculated ac-
cording to the system configuration.

Assuming that the system is healthy at time kp− th, moment
when the prediction algorithm is launched, the SRUL can be
computed as follows:

SRUL = τF − kp (6)

with τF is the system time-of-failure ToF with:

τF = inf(k ∈ N : system failure at k) (7)

To determine the ToF, let’s denote a healthy system (with no
occurrence of catastrophic failure) and a faulty system (with
the occurrence of catastrophic failure) at k − th by Hk and
Fk, respectively. Let’s also consider Hkp:k = (Hkp , Hkp +
1, · · · , Hk) as the sample space that determines all possible
sequences where a system has not catastrophically failed un-
til the time k. Then, according to the definition of the condi-
tional probability, the failure probability without considering
maintenance (i.e., the system can only fail once) at k − th is
given by:

P (Fk) = P (Fk|Hkp:k−1)p(Hkp:k−1);∀k > kp (8)

where P (Fk|Hkp:k−1) is given by:

P (Fk|Hkp:k−1) =

∫
Rnq

p(failure|qk)p(qk|y1:kp)dqk (9)

The second term of (8), p(Hkp:k−1), stands for the probability
that one component is healthy from kp − th until time (k −
1)− th, which can be expressed as:

p(Hkp:k−1) =

k−1∏
h=kp+1

p(Hh|Hkp:h−1) (10)

As Fk and Hk are exclusive events, the failure event can be
modeled as Bernoulli stochastic process. It follows that:

p(Hkp:k−1) =

k−1∏
h=kp+1

(1− p(Fh|Hkp:h−1)) (11)

The expressions presented in (8) and (11) are valid, whether
for prognostics of a single component or complex systems.
However, when considering a multi-components system, the
way of characterizing p(Fk|Hkp:k−1) will change according
to the system configuration. For example, in a series config-
uration of M components, the probability that a system will
fail at time k, conditional that it is healthy at k − 1, is a finite
union of the components failure events. As only one com-
ponent failure can appear at an instantaneous moment, the
components failure events can be considered as incompatible.
Then, the system failure probability can be written as:

p(Fk|Hkp:k−1) =

M∑
i=1

p(F
ik
|Hkp:k−1) (12)

where p(F
ik
|Hkp:k−1) is the probability that component i

will fail at time k, conditional that the system is healthy at
k − 1.

4. ONLINE IMPLEMENTATION OF THE PROPOSED JOINT
PARAMETER ESTIMATION AND SRUL PREDICTION
METHODOLOGY

The main problem with the online implementation of a prog-
nostics algorithm is its computing time (Pecht, 2009). The
online implementation of the methodology proposed in this
paper allows to reduce the computation time but also to ad-
dress two other problems, which are:

• The problem of online prediction of RUL/SRUL has been
widely studied through filtering or machine learning meth-
ods (M. E. Orchard & Vachtsevanos, 2009). However,
these methods suggest that the system degradation mod-
els are already estimated (for model-based methods) or
trained (for data-driven methods) and can be used by
merely updating them. Nevertheless, in practice, this in-
formation is not available. In this case, the parametric
estimation of the degradation model must be done online
at the same time as the system health state estimation and
prediction.

• In a Bayesian approach of prognostics, the estimates given
by the model are corrected by actual measures about the
system health state without changing the parameters of
the model. However, in the case of system-level prog-
nostics, uncertainties associated with modeling can be
very high. Therefore, the degradation model needs to
be adaptive with regard to the monitored system.

Figure 1 presents an overview of the proposed methodology
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Figure 1. Methodology for online joint parameter estimation and SRUL prediction.

for an online combined estimation of the IIM parameters and
SRUL probabilistic prediction. Requiring only the trends of
the component-level degradation (i.e. c(t)), it allows per-
forming three principal tasks: 1) online estimation of the sys-
tem health state, 2) online update of the IIM parameters and
3) online probabilistic SRUL prediction.

In detail, the IIM, whose initial parameters were estimated of-
fline by performing run-to-failure experiments or randomly-
generated, is used at time k to predict (short-term prediction)
the health state at time k + 1 (prior estimation). At the time
k + 1, when new pre-processed degradation data acquired by
sensors are available, the prior estimation is filtered to ob-
tain the posterior one using particle filtering. If an anomaly
has been detected or a threshold value for the inoperability of
a component has been exceeded, the posterior PDF is prop-
agated (long-term prediction) to calculate the SRUL; other-
wise, we continue filtering. After every short-term prediction,
the prior health state estimation is evaluated with respect to
the actual data. If there is a discrepancy, the long-term predic-
tion is updated along with the estimated SRUL (if an anomaly
is already detected). In this case, the parameter i, which rep-
resents the number of consecutive discrepancies observed, is
incremented; otherwise, it is reinitialized. If several discrep-
ancies appear consecutively (i exceeding a number δ set by
the user), the gradient descent is used to update the IIM pa-
rameters.

As mentioned above, the proposed methodology requires an
effective way to assess whether the difference between the
measurement acquired by sensors and the predicted health
state obtained by IIM is significant. In this work, the authors
propose a method based on the evaluation of the uncertainty
characterization. In that aim, the number of particles that fall
within the accuracy range of the sensor values is determined,

i.e.:

M =
∑

i∈{n=1...N |qk /∈[yk−αδdata,yk+αδdata]}

w
(l)
k (13)

with the number of particles that should be included in the
confidence interval is fixed by the user, and α is a parameter
to delimits this confidence interval. Since most modern sen-
sors are calibrated to have a Gaussian uncertainty, it is possi-
ble to use the 68–95–99.7 rule, which represents the percent-
age of values that lie within a band around the mean with a
width of two, four, and six standard deviations, respectively.
Thus, depending on the confidence that we have on the sensor
measures, one percentage value can be chosen.

In summary, the proposed methodology allows online system
state estimation and SRUL prediction, with accurate and re-
liable results. Indeed, the update of the IIM parameters and
the long-term prediction of the component inoperability evo-
lution is not done systematically, but only when a discrep-
ancy is observed. This procedure prevents unnecessary com-
putational time. Also, the parameter estimation process can

𝒚𝒌−𝜎 +𝜎−2𝜎 +2𝜎 +3𝜎−3𝜎

68%

95%

99,7%

Data
Sampled 
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estimation

𝑞𝑖𝑘

P
ro

b
a

b
ili

ty

Figure 2. Evaluation of the filtering performance.
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be stopped when its execution time is equal to the sampling
time of measurements, or the loss function is close to zero.
Note that the obtained values of the IIM parameters will be
used as the initial values in the next iteration when a new
measurement is acquired. Then, even if the optimum is not
reached at a certain iteration of the algorithm, it is approached
in the direction of that optimum. This 1) guarantees a preci-
sion of the final results in terms of parameter estimation and
thus improves the accuracy of health state estimation and pre-
diction 2) reduces the complexity of the proposed method, as
the number of iterations it takes for the gradient descent al-
gorithm to meet its shutdown criterion decreases. Finally, the
algorithm complexity decreases rapidly if parameters of the
IIM are known exactly a priori to reach a quadratic complex-
ity in case only the interactions between the components are
unknown.

5. APPLICATION AND RESULTS

In this section, the proposed methodology is applied to solve
the failure prognostics issue of the Tennessee Eastman Pro-
cess (TEP).

Figure 3. P&ID of Tennessee Eastman Process (Downs &
Vogel, 1993).

5.1. System presentation

The Tennessee Eastman Process (Downs & Vogel, 1993) is
used in the literature as a realistic benchmark for process con-
trol optimization and fault diagnostics. The TEP involves five
major units (working in open-loop), including a two-phase re-
actor, a partial condenser, a separator, a stripper, and a com-
pressor, as shown in the schematic flow diagram and instru-
mentation (P&ID) of the Fig.3. The aim of this process is the
synthesis of two liquid products from gaseous reactants. The
process is monitored by 53 variables. In order to observe the
system response, 28 faults can be injected (Bathelt, Ricker, &
Jelali, 2015), which can be related to set-point changes, drifts,
or random variation of variables.

As the TEP was not intended, initially, for prognostics pur-
poses, its fundamental paradigms are changed to liken system
degradation, as detailed in the next subsection.

5.2. Problem formulation

In this case study, the authors consider failure as the interrup-
tion of the operational continuity resulting from the violation
of the variables shutdown limits. Therefore, only components
with shutdown constraints are considered, i.e., the reactor, the
stripper, and the separator. Each of these components is mon-
itored by a single parameter: pressure for the reactor, and
liquid level for the stripper and the separator. Table 1 lists the
specific operational constraints related to the system’s param-
eter that the control system should respect.

Process variables Operating limits Shutdown limits
Low High Low High

Reactor pressure (kPa) none 2895 none 3000
Separator level (m) 3.3 9.0 1.0 12
Stripper level (m) 3.5 6.6 1.0 8.0

Table 1. TEP operating constraints (Downs & Vogel, 1993).

Two disturbances predefined in (Bathelt et al., 2015) were in-
jected. These disturbances, occurring in the reactor and the
stripper respectively, are represented as a deviation in the re-
actor cooling water flow and a deviation in the heat transfer of
the heat exchanger of the stripper. Then, the own degradation
process of the components (i.e. c1(t) and c2(t)), are assumed
to follow equations 14 and 15, respectively.

c1(t) = α · c1(t− 1) + β (14)

c2(t) = ε · c2(t− 1) (15)

with α, β, and ε are the parameters of the two models to be
estimated as well as the components of the matrix A from the
monitoring data. Regarding the matrix of influencing factors
K, its diagonal elements ki are equal to 1 because the data
are acquired in the default production mode.

As the TEP is a continuous production process, and it is not
desirable to let its parameters drift until the shutdown, as this
can lead to financial losses and safety risks. It is then not
possible to early estimate the parameters of the degradation
model and should be estimated online through the proposed
methodology.

5.3. Online parameter estimation and SRUL prediction
of the TEP

To predict the TEP SRUL online, the methodology described
in Sections 3 and 4 is utilized. This methodology’s input is
only the structure of the IIM, i.e., the number of critical com-
ponents to monitor, failure threshold, and the trends of the
component degradations.
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Figure 4. Predicted component inoperabilities (a) and ToF PDF (b) at tp = 2440s.

In order to enhance the result accuracy, a digital filter is ap-
plied to the real data in order to reduce their noise. In this
case, a Savitzky-Golay filter (Savitzky & Golay, 1964) is cho-
sen because it allows increasing the precision of the data with-
out distorting the signal trend.

In order to reduce the computation time related to the appli-
cation of the proposed methodology, one must evaluate the
outputs of the estimated IIM with respect to the monitoring
data to investigate whether it is necessary to update the IIM.
The procedure of the IIM update and the SRUL prediction is
set as follows:

• When a discrepancy between the predicted value by the
IIM and the monitoring data is greater than 1 σ on both
sides of the mean value (i.e. θ = 0.01), which represents
the process measurement standard deviation, the param-
eter δ is incremented by 1, and a long-term prediction of
the system health state is performed.

• When three successive discrepancies are detected (i.e.
δ = 3), the IIM parameters will be updated using the
GD method.

Concerning the GD-based parameter estimation method, we
consider as a stopping criterion the difference of the MSE in
two successive iterations less than 10−10, and the learning
rate is set to 0.005 (i.e., γ = 0.005). The initial values of the
component internal degradation parameters, i.e. α, β and ε in
equations 14 and 15, are set randomly (in order to show the
robustness of the estimation method). The IIM parameters
are updated throughout the TEP operation, and, at the end
of the implementation, the internal degradation models of the

components obtained as follows:

c(t) =

∣∣∣∣∣∣
c1(t)
c2(t)
c3(t)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1.018 · c1(t− 1) + 0.001

0.9 · c2(t− 1)
0

∣∣∣∣∣∣
Also, the estimated interdependencies matrix A is:

A =

 0 8 · 10−3 2 · 10−8
3 · 10−4 0 3 · 10−8
2 · 10−4 10−4 0


One can notice that the last column elements of the estimated
matrix A are smaller compared to the other matrix elements.
This is due to the fact that in this simulation, the separator
is not degrading by itself and thus does not significantly in-
fluence the degradation of the other components. However,
its influence on the other component degradations is not null,
i.e. ai3 6= 0. In fact, the separator degrades because of the
influence of the other components, and as a result, it, in turn,
influences them.

Figure 4a shows the estimated and measured inoperability of
the TEP units at the first prognostics time tp = 2440s, which
corresponds to when the reactor pressure goes out of its nor-
mal operating limit given in Table 1. One can notice that
the estimation given by using the IIM (determined by GD)
and the particle filtering corresponds to the actual measure-
ments of the component inoperabilities despite the system’s
nonlinearity properties. Also, in Figure 4b, we can notice
that the predicted ToF (equal to 2895s) PMF is close to the
true ToF (equal to 2905s), and is slightly pessimistic. This
result allows early scheduling of maintenance actions and,
therefore, puts the system, its operators, and its environment
in a safer situation. The evolution of the predicted SRUL is
shown in Figure 5. One can notice that the predicted SRUL
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becomes more and more accurate over time, when more and
more data are collected, and converges to the true SRUL. In
this case, the SRUL corresponds to the RUL of the first failed
component. Indeed, the TEP can be considered as a series-
configuration one because the operability of the system de-
pends on the operability of all its components.
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200
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Figure 5. SRUL prediction performance with α=0.1.

By applying the proposed methodology, the IIM parameters
were updated only 89 times out of a total of 494 data sam-
ples. The long-term prediction of component inoperabilities
was made only 23 times, versus 82 cycles of the system af-
ter the anomaly was detected. The total computation time
was 140 seconds by using an Intel core iZ 7700 and 16 Gb
RAM. Knowing that the system fails after 2905 seconds of
operation, it is reasonable to consider low computational re-
sources while ensuring a good prediction of the SRUL, even
though the TEP is a highly critical facility, and the resources
allocated here are reasonable to deploy in reality.

6. CONCLUSION

In this paper, a new methodology for online system remaining
useful life (SRUL) prediction is proposed. In that perspec-
tive, a unified model for the system degradation, which con-
siders interdependencies between components, mission pro-
file, and inner component degradations, namely the inoper-
ability input-output model, is proposed. This methodology
combines system degradation parameter determination (us-
ing gradient descent method), system health state estimation
and prediction (using particle filtering), and SRUL calcula-
tion based on the system configuration. Process and data un-
certainty is accounted for, while minimal input information
on system degradation is required. Finally, this methodology
is designed to be computationally resource-efficient while en-
suring an accurate prediction of the SRUL thanks to its ca-
pacity to identify suitable moments to update the model and
to predict SRUL. The applicability and the performance of
the proposed methodology for real industrial systems were
validated using data from the well-known Tennessee East-
man process. In detail, the obtained degradation model has

proper physical meaning in relation to the system degrada-
tion mechanisms. Besides, the predicted SRUL converges to
the true value rapidly, even when considering low computa-
tion resources.

Several perspectives can be raised by this work. First, in or-
der to reduce the requirements on the knowledge available
on the system, one can propose a general regression model
for the component degradations. Also, sensitivity analysis
can be conducted to find the best parameters of the method-
ology to utilize to get accurate results with low computation
resources.
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