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CONNECTED COMPONENTS OF THE SPACE OF TRIPLES OF
TRANSVERSE PARTIAL FLAGS IN SO0(p, q) AND ANOSOV

REPRESENTATIONS

CLARENCE KINEIDER AND ROMÉO TROUBAT

Abstract. We count the number of connected components in the space of triples of transverse
flags in any flag manifold of SO0(p, q). We compute the effect the involution of the unipotent
radical has on those components and deduce that for certain parabolic subgroups PΘ, any
PΘ-Anosov subgroup is virtually isomorphic to either a surface group of a free group. We give
examples of Anosov subgroups which are neither free nor surface groups for some sets of roots
which do not fall under the previous results. As a consequence of the methods developed here,
we get an explicit algorithm based on computation of minors to check if a unipotent matrix in
SO0(p, q) belong to the Θ-positive semigroup U>0

Θ when p ̸= q.
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Introduction

In his celebrated paper ([Lab06]), Labourie introduced Anosov representations of a surface
group as a way to generalize Hitchin representations, introduced by Hitchin in [Hit92]. The notion
of Anosov representations was then expanded to any hyperbolic group by Guichard-Wienhard
in [GW12]. Known examples of Borel-Anosov representations include representations of surface
groups and of free groups, for instance through the inclusion of co-compact lattices and Schottky
groups of SL(2,R) via the irreducible representation SL(2,R)→ SL(d,R). A question was then
asked by Andrés Sambarino regarding the abstract structure of groups admitting Borel-Anosov
representations in SL(d,R).

Question. Let Γ be a Borel Anosov subgroup of SL(d,R). Is Γ virtually isomorphic to either a
free group of a surface group ?

This question was answered positively for certain values of d, first by Canary-Tsouvalas and
Tsouvalas in [CT20], [Tso20] for d = 3, 4 and d = 2 mod 4, then by Dey in [Dey24] for d ̸= 5 and
d ̸= ±1 mod 8.

For F0 and F∞ two transverse elements in the space of full flags SL(d,R)/B, where B is
the borel subgroup of SL(d,R), the space Ω(F∞) is parametrised by the unipotent radical U of
B via the map g ∈ U 7→ g · F0. This parametrisation induces a natural involution defined by
i(g ·F0) = g−1 ·F0 which preserves transversality with F0, thus inducing a map i : Ω(F0)∩Ω(F∞).
In [Dey24], Dey uses this involution to obtain a bound on the dimension of boundaries of Borel-
Anosov subgroups of SL(d,R). In [DGR23], Dey-Greenberg-Riestenberg generalize this method
to any pair (G,PΘ) where G is a semi-simple Lie group and PΘ ⊂ G is a parabolic group such
that G/PΘ is self-opposite, thus obtaining the following theorem :

Theorem A (Dey-Greenberg-Riestenberg, [DGR23]). Assume that

i : π0(Ω(F0) ∩ Ω(F∞))→ π0(Ω(F0) ∩ Ω(F∞))

does not have any fixed point. Then any PΘ-Anosov subgroup of G is virtually isomorphic to
either a free group or a surface group.

They then apply this result to G = Sp(2n,R), obtaining that any PΘ-Anosov subgroup of
Sp(2n,R) is virtually isomorphic to either a surface group or a free group when Θ contains an odd
root. Our goal in this paper will be to apply this theorem when possible when G = SO0(p, q) is
the connected component of the identity in the group SO(p, q) of isometries preserving a quadratic
form of signature (p, q), and when PΘ is any parabolic subgroup of SO0(p, q). The first step in
this endeavor will be to count the number of connected components of Ω(F0) ∩ Ω(F∞), the space
of triples of transverse flags up to the action of SO0(p, q), as well as the action of the involution i.

Theorem B. The number of connected components of Ω(F0) ∩ Ω(F∞) ⊂ SO0(p, q)/PΘ is as
follows :

• If p > q, Θ does not contain q and is not equal to {1, ..., q − 1}, there are 2|Θ| connected
components, all of which are stable by i.
• If q = 2, p > 2, and Θ = {1}, there are 3 connected components, two of which are
Θ-positive. One of them is stable by i while the two Θ-positive are exchanged.

2



• If q = 3, p > 3 and Θ = {1, 2}, there are 11 connected components, four of which are
Θ-positive. None of the Θ-positive components are stable by i, and among the remaining
seven, three of them are stable by i and four are unstable.
• If q > 3, p > q, and Θ = {1, ..., q − 1}, there are 3× 2q−1 connected components, 2q−1 of

which are Θ-positive. None of the Θ-positive components are stable by i while among the
remaining 2q components, 2q−1 are stable and 2q−1 are not.
• If p > q + 1, Θ contains q and is not equal to {1, ..., q}, there are 2|Θ|−1 connected

components, all of which are stable by i.
• If p > q + 1 and Θ = {1, ..., q}, there are the same number of connected components as

for Θ = {1, ..., q − 1} with the same effect for the involution.
• If p = q+1, Θ contains q and is not equal to {1, ..., q}, there are 2|Θ| connected components.

When q = 1 or 2 mod 4, none of them are stable by i. When q = 3 or 0 mod 4, all of
them are stable by i.
• If q = 2, p = 3 and Θ = {1, 2}, there are 8 connected components, four of which are

totally positive. None of them is stable by i.
• If q = 3, p = 4 and Θ = {1, 2, 3}, there are 30 connected components, 8 of which are

totally positive. Six of them are stable by i while the other 24 are unstable.
• If p = q + 1 and Θ = {1, ..., q}, there are (q + 5)2q−1 connected components, 2q of which

are totally positive. When q = 1 or 2 mod 4, none of them are stable by i. When q = 3
or 0 mod 4, 2q are stable by i and (q + 1)2q−1 + 2q are not.
• p = q and Θ does not contain any of the last two roots, there are 2|Θ| connected components,

all of which are stable.
• If p = q, q is even and Θ contains only one of the two last roots, there are 2 connected

components. When q = 0 mod 4, they are stable by i while when q = 2 mod 4, they are
exchanged.
• If p = q and q is odd, the parabolics Pq and P ′q associated to the last two roots are not

self-opposite.

When p = q + 1 the group SO(p, q) is split and when Θ = {1, . . . , q}, PΘ is its Borel subgroup.
In that case, the number of connected components in Ω(F0) ∩ Ω(F∞) was already known from
work of Gekhtman-Shapiro-Vainshtein [GSV03].

Combining those results with theorem 4.2, we obtain the following theorems:

Theorem C. Assume that q = 1 or q = 2 mod 4 and let Γ be a PΘ-Anosov subgroup of
SO0(q + 1, q) containing the last root. Then Γ is virtually isomorphic to either a free group or a
surface group.

Theorem D. Assume that q = 2 mod 4 and let Γ be a PΘ-Anosov subgroup of SO0(q, q)containing
one of the last two roots. Then Γ is virtually isomorphic to either a free group or a surface group.

The groups SO0(q + 1, q) and SO0(q, q) are split. When taking PΘ to be the Borel subgroups
of either of those two, the two theorem give the same result as [Dey24] via the inclusions
SO0(q + 1, q) ⊂ SL(2q + 1,R) and SO0(q, q) ⊂ SL(2q,R).

We show that to determine the connected component of Ω(F0) ∩ Ω(F∞) to which a given flag
g · F0 belong to, one only has to check the signs of some explicit minors of the matrix g. In
particular, we give an explicit algorithm to check whether a matrix in SO0(p, q) is Θ-positive
in the sense of Guichard-Wienhard in [GW18]. This algorithm yield a parametrization of the
Θ-positive semigroup U>0

Θ that is different from the one given in [GW18].
Finally, we give an example of a PΘ-Anosov subgroup in SO0(p, q) for Θ = {1, ..., q − 2} which

is virtually isomorphic neither to a surface group nor to a free group.
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Theorem E. There exists a P1,...,q−2-Anosov subgroup of SO0(p, q) which is isomorphic to the
free product of a surface group by Z.

In section 1, we define and give a parametrization of the various flag manifolds associated to
SO0(p, q), as well as recall basic terminology of the geometry of the pseudo-Riemannian Einstein
universe. In section 2, we establish the equations characterizing transversality to a given point
in an affine chart of any flag manifold, both via a geometric approach and an computational
approach. In section 3, we count the number of connected components in Ω(F0) ∩ Ω(F∞). In
section 4, we compute the action of the involution on those connected components and establish
theorems C and D. In section 5, we construct the Anosov subgroups of theorem E.

Acknowledgments

We would like to thank Olivier Guichard, Subhadip Dey and Max Riestenberg for their helpful
comments during the preparation of this article. We are also grateful towards Olivier Schiffmann
for organizing the math camp during which most of the ideas presented here arose.

1. Parabolic spaces of SO0(p, q)

1.1. Flag varieties of SO0(p, q). Let p ⩾ q ⩾ 0 two non-negative integers with p > 0, and
let (e1, . . . , eq, xq+1, . . . , xp−q, ẽq, . . . , ẽ1) be a basis of Rp+q. Let Qp,q be the non-degenerate
quadratic form on Rp+q of signature (p, q) which matrix in the basis B is

Mp,q =

0 0 J
0 Ip−q 0
J 0 0


where is the following q-by-q square matrix:

J =


0 · · · 0 1
... . .

.
1 0

0 . .
.

. .
. ...

1 0 . . . 0

 .

When the context is clear we will write Q instead of Qp,q, and we will denote by Bp,q (or just B)
the associated bilinear form, and for any subspace F of Rp,q, we will denote by F⊥ its orthogonal:

F⊥ = {v ∈ Rp,q|∀w ∈ F,B(v, w) = 0} .

A subspace F will be called isotropic if Q|F = 0. In particular, note that Span(e1, . . . eq) is a
maximal isotropic subspace and that the quadratic form Q restricted to Span(xq+1, . . . , xp−q) is
positive definite.

We denote by Rp,q the space Rp+q endowed with the quadratic form Qp,q. The group SO0(p, q)
is the group of orientation-preserving isometries of Rp,q, and SO0(p, q) will denote the identity
component of SO0(p, q). The Lie algebra of SO0(p, q) is the space

so(p, q) =
{
A ∈Mp+q(R)|ATMp,q +Mp,qA = 0

}
.

For any non-negative integer k ⩾ 0, a totally isotropic subspace of Rp,q of dimension k + 1 will
be called a k-photon. Sometime a 1-photon will simply be called a photon, and a 0-photon will
be called a point. A vector v ∈ Rp,q will be called timelike if Q(v) < 0, spacelike if Q(v) > 0
and lightlike if Q(v) = 0. The set of all lightlike vector form a cone, called the lightcone (of the
origin), denoted by C(0). Given v ∈ Rp,q, the lightcone of v is the translation of C(0):

C(v) = {w ∈ Rp,q|Q(w − v) = 0} .
4



The lightcone C(0) divide Rp,q into two parts: the set of timelike vectors and the set of spacelike
vectors. The set of spacelike vectors is a connected component of Rp,q\C(0) if p > 1, and has two
connected component if p = 1. The set of timelike vectors is a connected component of Rp,q\C(0)
if q > 1, is empty if q = 0, and has two connected components if q = 1. When the space of
timelike vectors has two connected components, we will call a vector in the component containing
e1 of future type and a vector in the component of −e1 of past type.

Definition 1.1. Let k ⩾ 0 be a non-negative integer and let i = (i1, . . . , ik) be a k-tuple of
integers satisfying 0 ⩽ i1 < · · · < ik ⩽ q. A i-flag in Rp,q is a k-tuple F = (F i1 , . . . , F ik) such
that for all 1 ⩽ ℓ ⩽ k, F iℓ is a (iℓ − 1)-photon and for all 1 ⩽ ℓ ⩽ k − 1, F iℓ ⊂ F iℓ+1 . The space
of all i-flag of Rp,q, called the i-flag variety, will be denoted by F i.

When p ̸= q and i = (1, 2, . . . , q), we will call F i the full flag variety.

Remark 1.2. When p = q, every (q − 2)-photon is contained in exactly 2 distinct (p− 1)-photons,
and conversely any pair of distinct (p− 1)-photons determine a unique (q − 2)-photon given by
their intersection. Hence a full flag in SO(p, p) is an (1, . . . , p− 1)-flag.

Let i = (i1, . . . , ik), we define the two standard i-flags F i
0 and F i

∞, or just F0 and F∞ when
the context is clear, as follows:

F i
0 = (Span(ẽ1, . . . , ẽiℓ))1⩽ℓ⩽k

and
F i
∞ = (Span(e1, . . . , eiℓ))1⩽ℓ⩽k.

The group SO(p, q) acts smoothly and transitively on F i, and the stabilizer of F i
0 (resp. F i

∞)
is a parabolic subgroup denoted by Pi (resp. P opp

i ). Thus, the space F i is diffeomorphic to
SO(p, q)/Pi which is a smooth manifold. When i = (1, 2, . . . , q), Pi is a Borel subgroup of
SO(p, q). The subgroup Pi (resp. P opp

i ) is the intersection of SO(p, q) with the set of block-lower
triangular (resp. upper triangular) matrices with the square blocks on the diagonal of size
(i1, i2 − i1, . . . , ik − ik−1, p− q + 2(q− ik), ik − ik−1, . . . , i2 − i1). The intersection Li = Pi ∩ P opp

i

is the subgroup of block-diagonal matrices with block sizes (i1, i2− i1, . . . , ik − ik−1, p− q+2(q−
ik), ik − ik−1, . . . , i2 − i1) and is called the Levi subgroup of Pi. Let Ui be the unipotent radical
of P opp

i and let ui be the Lie algebra of Ui. When i = (1, 2, . . . , k− 1, k), we will write an element
of ui in the following way:

(1.1)



0 −ak−11 −ak−21 · · · −a11 v01 −b11 · · · −bk−21 −bk−11 0

0 −ak−22 · · · −a12 v02 −b12 · · · −bk−11 0 bk−11

0
. . .

...
...

... . .
.

0 bk−22 bk−21

. . . −a1k−1 v0k−1 −b1k−1 . .
.

. .
. ...

...

0 v0k 0 b1k−1 · · · b12 b11

0p+q−2k v0k v0k−1 · · · v02 v01

0 a1k−1 · · · a12 a11
. . .

. . .
...

...

0 ak−22 ak−21

0 ak−11

0


5



where all (aij)1⩽j⩽k, 1⩽i⩽k−j and (bij)1⩽j⩽k, 1⩽i⩽k−j are real numbers, and the (v0j )1⩽j⩽k are
(column) vectors in Rp−k,q−k. The line vectors v0j are defined such that v0jv

0
j = −Q(v0j ). For any

other choice of i = (i1, . . . , ik), ui is a subspace of u1,...,ik where a subset of the aij vanish. For
any 1 ⩽ j ⩽ k and for any 0 ⩽ i ⩽ k − j we define

vij = (bij , b
i−1
j , . . . , b1j , v

0
j , a

1
j , . . . , a

i−1
j , aij) ∈ Rp−k+i−1,q−k+i−1.

We will also sometime denote the first (resp. the last) coordinate of v0j by b0j (resp. a0j ), and the
vector obtained by removing the fist and the last entries of v0j by v−1j . For 1 ⩽ j ⩽ k, let uj(v

k−j
j ) be

the square matrix of size p+q whose j-th line is (0, . . . , 0,−ak−jj , . . . ,−a1j , v1j ,−b1j , . . . ,−b
k−j
j , 0, . . . , 0)

and whose (p+ q + 1− j)-th column is (0, . . . , 0, bk−jj , . . . , b1j , v
1
j , a

1
j , . . . , a

k−j
j , 0, . . . , 0), with all

other entries being 0. A matrix in ui then uniquely writes as

u = u1(v
k−1
1 ) + u2(v

k−2
2 ) + · · ·+ uk(v

0
k).

Proposition 1.3. The map

Ψi :
ui → Ui

u = u1(v
k−1
1 ) + · · ·+ uk(v

0
k) 7→ U = exp

(
u1(v

k−1
1 )

)
. . . exp

(
uk(v

0
k)
)

is a diffeomorphism.

Proof. First note that for all 1 ⩽ j ⩽ k, the subspace

Vj =
{
ui(v

k−j
j ) | vk−jj ∈ Rp−j,q−j

}
is an abelian Lie subalgebra of ui. Let fj = (f1

j , . . . , f
p+q−2j
j ) be a basis of Vj . Then if

vk−jj =
∑

λif
i
j , we have

exp
(
uj(v

k−j
j )

)
= exp(λ1f

1
j )) . . . exp(λp+q−2jf

p+q−2j
i ).

Let f = f1 ∪ · · · ∪ fk be the corresponding basis of ui as a vector space. This basis has the
property that for any 1 ⩽ i ⩽ dim uk, the first i vectors of f span a subalgebra of uk. Then by
[CG90] Prop. 1.2.8, the map Ψi is a diffeomorphism. □

1.2. Transversality.

Definition 1.4. Let i = (i1, . . . , ik). Two flags F1, F2 ∈ F i are called transverse if for all
1 ⩽ ℓ ⩽ k, F iℓ

1 ⊕ (F iℓ
2 )⊥ = Rp,q.

The two standard flags F0 and F∞ are transverse. Given a flag F ∈ F i, we will denote by
Ω(F ) ⊂ F i the subset of flags that are transverse to F .

Proposition 1.5. Let i = (i1, . . . , ik). For any flag F ∈ Ω(F i
∞) transverse to F i

∞ there exists a
unique U ∈ Ui such that F = U · F i

0. Thus Ω(F i
∞) is diffeomorphic to Ui, hence diffeomorphic to

ui.

Let U ∈ Ui. The flag F = U · F0 is transverse to F∞ and we now want to express under which
conditions it is transverse to F0. Since for any i ∈ i we have F i

0 = Span(ẽ1, . . . , ẽi), its orthogonal
is (

F i
0

)⊥
= Span(ẽ1, . . . , ẽq, xq+1, . . . , xp−q, eq, . . . , ei−1).

For F i = U · F i
0 to be transverse to F i

0, the projection of F i to Span(e1, . . . , ei) parallel to
(
F i
0

)⊥
must be surjective. This corresponds to the matrix U ∈ Ui having its i × i upper right minor
to be non-zero. We will denote this minor by deti(U) in the following. We thus obtain the first
description of Ω(F i

0) ∩ Ω(F i
∞):

Ω(F i
0) ∩ Ω(F i

∞)
homeo≃ {U ∈ Ui | ∀i ∈ i, deti(U) ̸= 0} .
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1.3. Einstein universe. Let p ⩾ q ⩾ 1. The space SO0(p, q)/P1 of photons in Rp,q is called
Einstein universe and will be denoted by Einp−1,q−1. This is a smooth manifold of dimension
p+ q − 2 embedded in RP p+q−1, on which the quadratic form Q induces a conformal class of
pseudo-Riemannian metric of signature (p− 1, q − 1). When q = 1 the Einstein universe Einp−1,0
is identified the boundary of the hyperbolic space Hp−1 which is a sphere Sp−2 with its conformal
structure. When q = 2, the space Einp−1,1 is called Lorentzian. Since Einstein universe only
has a conformal structure, only the sign of the quadratic form on a tangent vector make sense.
In particular, the type (time, space or light) of a tangent vector is well defined, and so is the
lightcone of a point. The lightcone of a point x ∈ Einp−1,q−1 is given by:

C(x) = PIso(x
⊥) = P{v ∈ x⊥ | Q(v) = 0}.

The complement in Einp−1,q−1 of any lightcone is an affine space called Minkovski space, denoted
by Minkp−1,q−1. A choice of any point in Minkp−1,q−1 = Einp−1,q−1 \C(x) identifies it with
Rp−1,q−1. The choice of any two points x, x′ ∈ Einp−1,q−1 such that x′ /∈ C(x) defines a (unique
up to linear isometry) affine chart Einp−1,q−1 \C(x) ≃ Rp−1,q−1 in which x′ is the origin.

Proposition 1.6. Let q ⩾ 2. Let x, x′ ∈ Einp−1,q−1, with x′ /∈ C(x). The space of photons
passing through x is identified with C(x) ∩ C(x′) which is conformally equivalent to Einp−2,q−2.

Proof. The set of photons passing through x is the set of isotropic planes in Rp,q containing
the line x. Let ∆ be a photon passing through x. Since x /∈ C(x′), ∆ is not contained in x′⊥.
However since dimx′⊥ = p+ q − 1, the intersection of ∆ and x′⊥ is an isotropic line in x⊥ ∩ x′⊥,
hence defines a point in C(x) ∩ C(x′). Conversely, any point y ∈ C(x) ∩ C(x′) give rise to a
unique photon passing through x defined by ∆ = x⊕ y. Since the quadratic form Q restricted to
the space x⊥ ∩ x′⊥ is of signature (p− 1, q− 1), the set C(x)∩C(x′) of isotropic lines in x⊥ ∩ x′⊥
is identified with Einp−2,q−2. □

2. Equations of transversality

2.1. Pointed photons. Let p ⩾ q ⩾ 2. We will consider the space F = F1,2 of pointed photons
in Rp,q. Let F0 = (x0,∆0) and F∞ = (x∞,∆∞) be the two standard flags defined in Section 1.2.
From Proposition 1.5, any pointed photon F = (x,∆) ∈ F transverse to F∞ can be written as
U · (x0,∆0) where

U = exp


0 −a v1 −b 0

0 0 0 b
0 0 v1

0 a
0

 exp


0 0 0 0 0

0 v2 0 0
0 v2 0

0 0
0



=


1 −a v1 − av2 −b− a

2Q(v2) +B(v1, v2) −Q(w1)
2

1 v2 −Q(v2)
2 b

I v2 v1
1 a

1

 .

Compared to the parametrization 1.1, to alleviate the notations we will write vj ∈ Rp−2,q−2

instead of v0j for j = 1, 2, a (resp. b) instead of a11 (resp. b11) and w1 = v11 = (b, v1, a) ∈ Rp−1,q−1.
For the flag F to be transverse to F0, we first need to have x ⊕ x⊥0 = Rp,q. In other words, x
needs not to lie on the lightcone of x0 in Einp−1,q−1. Since the coordinates of x in the affine
chart defined by x∞ and x0 are precisely given by w1, the transversality condition is Q(w1) ̸= 0

which is equivalent to det1(U) = −Q(w1)
2 ̸= 0. The second transversality condition is given by

7



det2(U) ̸= 0. We can interpret this condition geometrically as follows: there is a unique photon
∆′0 passing through x and intersecting ∆0 since ∆0 intersect C(x) in one point, which is given
by Span(bẽ1 + Q(w1)ẽ2). Both ∆ and ∆′0 are photons passing through x, so we can see them
as two points in E = C(x) ∩ C(x∞) ≃ Einp−2,q−2. In this space, the transversality of photons
means that ∆∩C(x∞) must not lie on the lightcone of ∆′0 ∩C(x∞). The point ∆′0 ∩C(x∞) ∈ E
is on the lightcone of ∆∞ ∩ E precisely when Q(v1) = 0. Otherwise, it lies in the affine chart
E\C(∆∞ ∩ E). When Q(v1) ̸= 0, we use the affine chart Rp−2,q−2 = E\C(∆∞ ∩ E) with origin
∆′0 ∩ E. In this chart, the coordinate of ∆ ∩ E is v

(1)
2 = v2 +

2b
Q(v1)

v1. This means that when

Q(v1) ̸= 0, the transversality condition on ∆ is Q(v
(1)
2 ) ̸= 0. We now look at the equation given

by det2(U) ̸= 0:

det2(U) = det

(
−b− a

2Q(v2) +B(v1, v2) −Q(w1)
2

−Q(v2)
2 b

)
L1←L1+aL2= det

(
−b+B(v1, v2) −Q(v1)

2

−Q(v2)
2 b

)
L1←L2+

2b
Q(v1)

L1

= det

(
−b+B(v1, v2) −Q(v1)

2

− 1
2Q(v2 +

2b
Q(v1)

v1) 0

)

The equation det2(U) ̸= 0 is then − 1
4Q(v1)Q(v2 +

2b
Q(v1)

v1) ̸= 0 and we retrieve the geometric
interpretation. Note however that Q(v1) may vanish. In that case, the point ∆′0 ∩ E does not lie
in the affine chart E\C(∆∞ ∩ E). The intersection of the lightcone of ∆′0 ∩ E with the affine
chart is then a hyperplane.

2.2. (1,2,3)-flags. Let p > q ⩾ 3. We will now consider the space F = F1,2,3 of (1, 2, 3)-flags.
Let F0 = (x0,∆0,Φ0) and F∞ = (x∞,∆∞,Φ∞) be the two standard flags defined in Section 1.2.
From Proposition 1.5, any pointed photon F = (x,∆,Φ) ∈ F transverse to F∞ can be written as
U · (x0,∆0,Φ0) where

U = exp
(
u1(v

2
1)
)
exp

(
u2(v

1
2)
)
exp

(
u3(v

0
3)
)
.

Now we observe that the fibers of the map

F1,2,3 → Einp−1,q−1
(x,∆,Φ) 7→ x

above a point x transverse to x0 is identified to the space of pointed photons in Einp−2,q−2. Our
goal is to use the description given in the Section 2.1 to describe this fiber.

We start with x = U · x0 which is transverse to x0 exactly when Q(v21) ̸= 0, as seen in Section
2.1. We now want to see ∆0 and Φ0 in the space E = C(x) ∩ C(x∞) ≃ Einp−2,q−2. As in
Section 2.1, we define ∆′0 to be the only photon passing through x that intersect ∆0, and in the
same spirit we define Φ′0 to be the set of all photons passing through x and intersecting Φ0. To
alleviate the notations we will write ∆′0 (resp. ∆, Φ, Φ′0, ∆∞, Φ∞) instead of their respective
intersection with E. The point ∆′0 lies on the lightcone of ∆∞ exactly when Q(v11) = 0. In the
following, we suppose Q(v21) ̸= 0. To use the computations done in Section 2.1, we need to use
a basis e′ = (e′2, . . . , e

′
q, x
′
q+1, . . . , x

′
p−q, ẽ

′
q, . . . , ẽ

′
2) of x⊥ ∩ x⊥∞ ⊂ Rp,q in which ∆′0 = Span(ẽ′2),

Φ′0 = Span(ẽ′2, ẽ
′
3), ∆∞ = Span(e′2) and Φ∞ = Span(e′2, e

′
3). Such a basis is obtained by applying
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the matrix 

1 − 2b21a
1
1

Q(v11)

−2b21
Q(v11)

v01 − 2b21b
1
1

Q(v01)
−4(b21)

2

Q(v01)

1
−2b11
Q(v01)

v01 −4(b11)
2

Q(v01)

2b11b
2
1

Q(v11)

I
−2b11
Q(v01)

v01
−2b21
Q(v11)

v01

1
2b21a

1
1

Q(v11)

1


∈ SO0(p− 1, q − 1)

to the basis (e2, . . . , ẽ2). The coordinates of ∆ in the affine chart E\C(∆∞) are then

∆ = b
1,(1)
2 e′3 + v

0,(1)
2 + a

1,(1)
2 ẽ′3

where

b
1,(1)
2 = b12 −

2b11b
2
1

Q(v10)

2.3. General case. Let us consider the case of the Grassmanian of k dimensional isotropic
subspaces of Rp,q. For F0 and F∞ the two standard (k−1)-photons, the equation of transversality
to F0 in the affine map defined by F∞ and F0 is detk(U) = (−1)kdet(S) ̸= 0 where S = (si,j) is
the anti-transpose (i.e. the transpose with respect to the anti-diagonal) of the upper-right k × k

submatrix of U , defined by si,j = bk−i+1
j when i > j, si,i = − 1

2Q(vk−ii ) and

si,j = −bk−j+1
i −Q(vk−j+1

i , vk−j+1
j )−

j−i∑
l=1

ak−li si+l,j .

We are going to perform a succession of change of variables. In order to keep coherent notations,
the values before any change of variable will be denoted with an exponent (0). Let us perform
elementary operations on the matrix S in order to eliminate the coefficient on the first column
assuming that for all i, Q(v

i,(0)
1 ) ̸= 0. We apply the following transformations :

L1 ←− L1 + a
k−1,(0)
1 L2,

L2 ←− L2 +
2b

k−1,(0)
1

Q(v
k−2,(0)
1 )

L1,

...

L1 ←− L1 + a
1,(0)
1 Lk,

Lk ←− Lk +
2b

1,(0)
1

Q(v
0,(0)
1 )

.

We then obtain the matrix S′ where for all i > 1, s′i,1 = 0. Our goal will be to make the
necessary change of variables such that the sub-matrix S2 defined by S2 = (S′)i>1,j>1 is of the
same form as S.

For all i > j, let us write
9



b
k−i+1,(1)
j = s′i,j

= b
k−i+1,(0)
j − 2b

k−i+1,(0)
1

Q(v
k−i+1,(0)
1 )

b
k−j+1,(0)
1 − 2b

k−i+1,(0)
1

Q(v
k−i+1,(0)
1 )

Q(v
k−i−1,(0)
1 , v

k−i−1,(0)
j )

−
i−j∑
l=1

2b
k−i+1,(0)
1 a

k−j−l,(0)
j b

k−j−l,(0)
1

Q(v
k−i+1,(0)
1 )

and v
k−i,(1)
i = v

k−i,(0)
i +

2b
k−i+1,(0)
1

Q(v
k−i,(0)
1 )

v
k−i,(0)
1 . We can then see that

s′i,i = −
1

2
Q(v

k−i,(0)
i )− 2b

k−i+1,(0)
1

Q(v
k−i,(0)
1 )

− 2(b
k−i+1,(0)
1 )2

Q(v
k−i,(0)
1 )

= −1

2
Q(v

k−i,(1)
i ).

Let us then write a
k−j−1,(1)
j = a

k−j−1,(0)
j +

2b
k−1,(0)
1 a

k−j−1,(0)
j

Q(v
k−2,(0)
1 )

and for i < k − j − 1,

a
i,(1)
j = a

i,(0)
j +

2b
k−j+1,(0)
1 a

i,(0)
j

Q(v
k−j,(0)
1 )

+

k−j∑
l=i+1

2a
l,(1)
j b

l,(0)
1 a

i,(0)
1

Q(v
l−1,(0)
1 )

,

as well as, for i ⩽ k − j,

v
i,(1)
j = v

i,(0)
j +

2b
k−j+1,(0)
1

Q(v
k−j,(0)
1 )

v
i,(0)
1 +

k−j−1∑
l=i

a
l,(1)
j b

l,(0)
1

Q(v
l,(0)
1 )

v
i,(0)
1 .

By some elementary but tedious computations which we will not explicit, we then get that for
j > i,

s′i,j = −b
k−j+1,(1)
i −Q(v

k−j+1,(1)
i , v

k−j+1,(1)
j )−

j−i∑
l=1

a
k−l,(1)
i u′i+l,j

and that for all i ⩽ k − j,

Q(v
i,(1)
j ) = Q(v

i−1,(1)
j ) + 2a

i,(1)
j b

i,(1)
j ,

thus showing that the submatrix S2 is indeed of the same form as S with the change of variable
v
i,(0)
j ← v

i,(1)
j , ai,(0)j ← a

i,(1)
j and b

i,(0)
j ← b

i,(1)
j . Since Q(v

1,(0)
1 ) is assumed to be non-zero, the

transversality to F 2
0 then becomes det(S2) ̸= 0 and we can re-apply this process, thus getting

new variables v
i,(m)
j for 1 ⩽ m ⩽ k − 1. Assuming that for all i, j,m, Q(v

i,(m)
j ) is non-zero, we

get the new variables for i ⩽ k − j and m ⩽ j − 1 :
10



v
i,(m+1)
j = v

i,(m)
j +

2b
k−m−j+1,(m)
m+1

Q(v
k−m−j,(m)
m+1 )

v
i,(m)
m+1 +

k−m−j−1∑
l=i

a
l,(m+1)
j b

l,(m)
m+1

Q(v
l,(m)
m+1 )

v
i,(m)
m+1 ,

a
i,(m+1)
j = a

i,(m)
j +

2b
k−m−j+1,(m)
m+1 a

i,(m)
j

Q(v
k−m−j,(m)
m+1 )

+

k−m−j∑
l=i+1

2a
l,(m+1)
j b

l,(m)
m+1a

i,(m)
m+1

Q(v
l−1,(m)
m+1 )

,

b
i,(m+1)
j = b

i,(m)
j −

2b
i,(m)
m+1

Q(v
i,(m)
m+1 )

b
k−j+1,(m)
m+1 −

2b
i,(m)
m+1

Q(v
i,(m)
m+1 )

Q(v
i,(m)
m+1 , v

i,(m)
j )

−
k−m−i+1−j∑

l=1

2b
i,(m)
m+1 a

k−m−j−l,(m)
j b

k−m−j−l,(m)
m+1

Q(v
i,(m)
m+1 )

.

In the end, the equations of transversality for the (1, ..., k)-flags become

det1(U) =
−1
2

Q(v
k−1,(0)
1 ) ̸= 0,

det2(U) =
1

4
Q(v

k−2,(0)
1 )Q(v

k−2,(1)
2 ) ̸= 0,

...

detk(U) =
(−1)k+1

2k
Q(v

0,(0)
1 )Q(v

0,(1)
2 )...Q(v

0,(k−1)
k ) ̸= 0.

2.4. Realization as minors. Let (F0, u · F0, F∞) be a triple of transverse (1, . . . , k)-flags, for
k ⩽ q. In order to determine the connected component of Ω(F0) ∩Ω(F∞) in which U · F0 lies, we
will need the following data:

• For all 1 ⩽ j ⩽ k and 0 ⩽ i ⩽ k − j, we need to know the sign of Q(v
i,(j−1)
j ). Moreover,

if k − i = q − 1 (this happens when k = q − 1 and i = 0 or when k = q and i = 1) or
k− i = q = p−1 (this happens when k = q = p−1 and i = 0) we need to know the sign of
the first coordinate (v

i,(j−1)
j )1 of vi,(j−1)j (to differentiate between future and past vectors

when k − i = q − 1 and between positive and negative numbers when k − i = q = p− 1)
• For all 1 ⩽ j ⩽ k − 1 and 1 ⩽ i ⩽ k − j, we need to know the sign of bi,(j−1)j .

The purpose of this section is to show that this data can be retrieved only using explicit minors
of U . For I, J two subsets of {1, . . . , p + q} of same cardinal, we will denote by ∆I,J(U) the
(I, J)-minor of U , i.e. the determinant of the submatrix (ui,j)i∈I,j∈J . We then claim the following
equalities: ∀1 ⩽ j ⩽ k, ∀0 ⩽ i ⩽ k − j,

(−1)j

2j
Q(v

i,(0)
1 )Q(v

i,(1)
2 ) . . . Q(v

i,(j−1)
j ) = ∆{1,...,k−i},{j+1,...,k−i,p+q−j+1,...,p+q}(U)

and ∀1 ⩽ j ⩽ k, ∀1 ⩽ i ⩽ k − j,

(−1)j−1

2j−1
Q(v

i,(0)
1 )Q(v

i,(1)
2 ) . . . Q(v

i,(j−2)
j−1 )b

i,(j−1)
j = ∆{1,...,k−i+1},{j,...,k−i,p+q−j+1,...,p+q}(U).

In both cases, the quantities we are interested in are ratios of two minors of U . The data of all
the signs of the numbers stated above is equivalent to the data of all the signs of the minors
above.

When k − i = q − 1 or k − i = q = p− 1, ∀1 ⩽ j ⩽ k:

(−1)j−1

2j−1
Q(v

i−1,(0)
1 ) . . . Q(v

i−1,(j−2)
j−1 )(v

i−1,(j−1)
j )1 = ∆{1,...,k−i+2},{j,...,k−i+1,p+q−j+1,...,p+q}(U)
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In both cases this is well defined, and v
−1,(j−1)
j belong to a space on which the restriction

of Q is positive definite, hence the sign of (v
i−1,(j−1)
j )1 is always the same as the one of

∆{1,...,k−i+2},{j,...,k−i+1,p+q−j+1,...,p+q}(U). This observation is crucial because the number

Q(v
−1,(0)
1 )Q(v

−1,(1)
2 ) . . . Q(v

−1,(j−2)
j−1 )

does not arise as one of the previously computed minors.
In the case when k = q− 1 which correspond to the Θ-positive structure of SO0(p, q), the total

number of minors to compute is p(p− 1), which is the same number as the Θ-length of the longest
word wmax

Θ of the Θ-Weyl group defined in [GW24]. This result is analogous to what happens in
the case of full flags in a semisimple split Lie group: the number of (generalized) minors required
to determine the connected component is the length of the longest element of the Weyl group.

3. Counting connected components of triples of transverse flags

3.1. In SO0(3, 2). There are only three parabolic spaces associated to SO0(3, 2): the space of
isotropic lines in R3,2 also known as the Einstein space SO0(3, 2)/P1 = Ein2,1, the set SO0(3, 2)/P2

of photons of Ein2,1 and the set SO0(3, 2)/P1,2 of pointed photons in Ein2,1. The Lie group
SO0(3, 2) is split and the parabolic subgroup P1,2 is its Borel subgroup, therefore we already
know from [Lus94] that the space of flags transverse to F0 and F∞ must contain four connected
components (called totally positive) for which the associated spaces in U1,2 are semi-groups. Since
Ein2,1 is three-dimensional, those components can be seen geometrically.

Proposition 3.1. In SO0(3, 2)/P1, the space Ω(F0) ∩ Ω(F∞) has three connected components.

Proof. The choice of F∞ and F0 gives an affine chart of Ein2,1, Ω(F∞) ≃ R2,1 in which F0 is
the origin. The set Ω(F0) ∩ Ω(F∞) then corresponds to the points in R2,1 which do not lie in
the lightcone of the origin. This splits R2,1 in the space, future and past connected components,
hence the result. □

Let us now study the space of pointed photons of Ein2,1. Let us write F0 = (x0,∆0) and
F∞ = (x∞,∆∞). Let us consider the affine chart from x∞ where x0 is the origin. The space of
pointed photons for which the point is in the affine chart is a trivial bundle R2,1 × S1 over R2,1

for which the fiber over x ∈ R2,1 is the set of photons going through x which is Ein1,0 ≃ S1.

Lemma 3.2. In this affine chart, the set of pointed photons transverse to (x∞,∆∞) is R2,1 ×
(S1 \ {N}), where N is a point of S1.

Proof. Let x ∈ R2,1. There exists a unique photon ∆ going through x which intersects ∆∞ in the
boundary of the affine chart. Let N ∈ S1 such that (x,∆) = (x,N). Let y be a different point in
R2,1. If y ∈ (∆− x)⊥, the photons ∆ and y − x+∆ have the same endpoint at infinity which
lies in ∆∞. If not, the endpoint of y − x+∆ lies in the unique photon from x∞ to the endpoint
of ∆, i.e ∆∞. In both cases, the unique photon going through y which is not transverse to ∆∞ is
(y,N), hence the result. □

Thus for any point x ∈ R2,1 \∆0, there exists exactly one photon through x intersecting ∆∞
which is (x,N) and one photon through x intersecting ∆0 which is (x, S(x)). The coordinates
of this second photon in S1 depend on x. One must then follow the variations of S(x) when x
varies in R2,1. Let ∆ be the only photon through the origin intersecting ∆∞, i.e the photon of
the pointed photon (0, N), and let V = ∆0 ⊕∆.

Lemma 3.3. The two points S(x) and N in S1 are equal if and only if x ∈ V .
12



Proof. Assume that x ∈ V . Then x+∆ is the only photon through x which intersects ∆0, thus
we must have S(x) = N . When x is not in V , the photon x + ∆ does not intersect ∆0, thus
S(x) ̸= N which gives us the result. □

We can now count geometrically the number of connected components of Ω(F∞) ∩ Ω(F0) in
SO0(3, 2)/P1,2. The transversality of x with x0 already separates the connected components into
three groups.

Proposition 3.4. In the space SO0(3, 2)/P1,2,
• there are two connected components of Ω(F∞) ∩ Ω(F0) where x is spacelike,
• there are three connected components of Ω(F∞) ∩ Ω(F0) where x is in the future cone,

two of which are totally positive in the sense of [Lus94],
• there are three connected components of Ω(F∞) ∩ Ω(F0)where x is in the past cone, two

of which are totally positive.
In total, this gives us 8 connected components for SO0(3, 2)/P1,2, four of which are totally positive.

Figure 3.1. The fiber bundle of pointed photons when Q(x) < 0.

Proof. Let’s assume that Q(x) > 0. When x is in the orthogonal of V , ∆0 and x+∆0 have the
same accumulation point at the boundary, thus S(x) = −N . When x /∈ V , S(x) ̸= N and the
condition of transversality to both ∆0 and ∆∞ separates the fiber {x} × S1 in two connected
components. The vector space V is of dimension 2 and thus separates R2,1 in two parts. Let
x = (a, b, v) be the decomposition of x in R2,1 = ∆∞ ⊕∆0 ⊕ V ⊥. When Q(x) < 0, x may cross
the vector space V with both b > 0 or b < 0. Doing so one way or the other makes S(x) go to
N clockwise or counterclockwise. Adding all of this up, one eventually counts two connected
components.

Assume now that x lies in the future cone of the origin. The same reasoning applies, but we
must then always have b > 0. When x is on one side of V , the fiber {x} × S1 separates into two
connected components, one of which disappears when x crosses V . We must then have three
connected components, two of whom correspond to the totally positive components. The same
reasoning applies when x lies in the past cone, hence the result.

□
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Now that we have counted the connected components for the pointed photons, it becomes easy
to count those in SO0(3, 2)/P2, the non-pointed photons in Ein2,1.

Proposition 3.5. In SO0(3, 2)/P2, the space Ω(F∞) ∩ Ω(F0) has two connected components.

Proof. Let x∞ ∈ ∆∞, x0 ∈ ∆0, R2,1 be an affine chart of x∞ with x0 in its center and let
P = R2,0 in R2,1. A photon transverse to ∆∞ cannot be contained in the light cone of x∞, thus
any photon of Ω(F∞) ∩ Ω(F0) must be within the affine chart. For each photon ∆ in the affine
chart, there exists a unique x on ∆ such that x ∈ P , meaning that the photons in the affine
chart can be identified to the restriction of the previous fiber bundle on P . The pointed photons
with points in P transverse to ∆0 and ∆∞ have two connected components, we get the intended
result. □

We may also find those results using the change of variables introduced in the previous section.
Let us write x = v11 = (a, v01 , b). We must first chose whether v11 is picked to be spacelike, future
oriented of past oriented. We then have an easier equation on R defined when v01 ̸= 0 which
becomes undefined when v01 goes from positive to negative. When it is defined, the connected
components are separated by the sign of v0,(1)2 = v02 −

(
− 2b11

(v0
1)

2 v
0
1

)
. Assume that v11 is spacelike.

When v01 is positive and goes to zero, assuming that b11 > 0, − 2b11
(v0

1)
2 v

0
1 goes to −∞ and the

component v02 < − 2b11
(v0

1)
2 v

0
1 cannot cross over, leaving only v02 > − 2b11

(v0
1)

2 v
0
1 . Inversely, when v01 is

negative and goes to zero, − 2b11
(v0

1)
2 v

0
1 goes to +∞. The component v02 > − 2b11

(v0
1)

2 v
0
1 cannot cross

over, leaving only v02 < − 2b11
(v0

1)
2 v

0
1 . This tells us that the component v02 < − 2b11

(v0
1)

2 v
0
1 when v01 < 0

and v02 > − 2b11
(v0

1)
2 v

0
1 when v01 > 0 are actually the same component. The same can be done taking

b11 < 0, which tells us that v02 < − 2b11
(v0

1)
2 v

0
1 when v01 > 0 and v02 > − 2b11

(v0
1)

2 v
0
1 when v01 < 0 are the

same connected component. We thus obtain via computations the two connected components of
SO0(3, 2)/P1,2 where v11 is spacelike.

Figure 3.2. In red and blue the two connected components.

When assuming that v11 is in one of the two timelike cones, the reasoning stays the same expect
for the fact that the sign of b11 becomes fixed. This gives us three connected components as two
of them cannot cross over from v01 < 0 to v01 > 0.

3.2. Pointed photons in SO0(p, 3). We will now compute the number of connected components
of Ω(F0) ∩ Ω(F∞) for the space of pointed photons in SO0(p, 3), meaning for the flag manifolds
of the form SO0(p, 3)/P1,2 for some p > 3.
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Figure 3.3. In red the connected component which exists in both v11 < 0 and
v11 > 0 ; in blue and green the positive components.

The main difference with the pointed photons in SO0(3, 2) is that the elements v01 and v02 both
live in a Lorentzian space Rp−2,1. This yields another set of rules when changing the sign of
Q(v01). Let’s assume for instance that Q(v01) > 0 and b11 > 0. The point v02 must not be on the
lightcone of − 2b11

Q(v0
1)
v01 and is therefore confined into three areas, namely space, future and past.

When v01 goes from the space part to the future part, − 2b11
Q(v0

1)
v01 is negatively colinear to v01 and

goes to infinity along the past orientation of a photon; therefore the past of − 2b11
Q(v0

1)
v01 does not

cross over during the transition, leaving only the space and future parts. This is illustrated in
figure 3.4.

Figure 3.4. The transition from v01 spacelike to v01 future oriented when b11 > 0.
In red, the light cone of − 2b11

Q(v0
1)
v01 .

Inversely, when going from v01 future to v01 spacelike with b11 positive the future component
does not cross over, leaving only the space and past parts at the limit. When comparing, one
then sees that the future for v01 spacelike becomes the space for v01 future and the space for v01
spacelike becomes the past for v01 future. When doing every possible transition, one can then
count the exact number of connected components, see figure 3.5.

Proposition 3.6. The space Ω(F0)∩Ω(F∞) in SO0(p, 3)/P1,2 contains 11 connected components,
4 of which are positive.
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Figure 3.5. The eleven connected components of Ω(F0) ∩ Ω(F∞), one group
of four when Q(v01) < 0 and one group of seven when Q(v01) > 0. The pink
components are isolated and are the Θ-positive components.

3.3. (1, ..., k)-flags in SO0(p, q). We will now be dealing with the case of complete flags of
photons up to dimension k < q− 1 in SO0(p, q), SO0(p, q)/P1,...,k. As in the previous sections, we
know that when for all 0 ⩽ m ⩽ k− 1 and i < k− j, Q(v

i,(m)
j ) ̸= 0, the equations of transversality

become

Q(v
k−1,(0)
1 ) ̸= 0,

Q(v
k−2,(0)
1 )Q(v

k−2,(1)
2 ) ̸= 0,

...

Q(v
0,(0)
1 )Q(v

0,(1)
2 )...Q(v

0,(k−1)
k ) ̸= 0.

It is easy to check what happens when all Q(v
i,(j−1)
j ) are non-zero except Q(v

0,(k−1)
k ). In

this case the equation becomes Q(v
0,(k−1)
k ) ̸= 0 and since v

0,(k−1)
k is in the pseudo-Riemannian

space Rp−k,q−k, v0,(k−1)k can either be spacelike or timelike. This holds for every open set of
SO0(p, q)/P1,...,k where all relevant vectors are of non-zero norm, however since the transversality
equations do not forbid Q(v

i,(j−1)
j ) = 0 when i ≠ k − j, we must track what happens to the

space and time parts when those change signs. We only have to explicit what happens when the
Q(v

i,(0)
1 ) change signs as when those are constant we can deduce the rules for the Q(v

i,(j−1)
j ),

j > 1 by induction on j.

Lemma 3.7. We have that

a
i,(1)
j = aij +

2bk−11 ai1
Q(vi1)

+

k−j∑
i+1

2aljb
l
1a

i
1

Q(vi1)
,

v
i,(1)
j = vij +

2bk−j+1
1

Q(vi1)
vi1 +

k−j∑
l=i

aljb
l
1

Q(vi1)
vi1.

Proof. Let us fix j and prove by decreasing induction on i that
16



2bk−11

Q(vk−21 )
+

k−j∑
l=i+1

2a
l,(1)
j bl1

Q(vl−11 )
=

2bk−11

Q(vi1)
+

k−j∑
l=i+1

2aljb
l
1

Q(vi1)
.

The result is true for i = k − j since a
k−j,(1)
j = ak−jj +

2,bk−1
1 ak−j

1

Q(vk−j
1 )

. Assume that it is true for
any i′ > i. Then

2bk−11

Q(vk−21 )
+

k−j∑
l=i+1

2a
l,(1)
j bl1

Q(vl−11 )
=

2bk−11

Q(vi+1
1 )

+

k−j∑
l=i+2

2aljb
l
1

Q(vi+1
1 )

+
2a

i+1,(1)
j bi+1

1

Q(vi1)

=
2ai+1

j bi+1
1

Q(vi1)
+

2bk−11

Q(vi+1
1 )

+
4bk−11 ai+1

1 bi+1
1

Q(vi+1
1 )Q(vi1)

+

k−j∑
l=i+2

2aljb
l
1

Q(vi+1
1 )

+

k−j∑
l=i+2

4aljb
l
1a

i+1
1 bi+1

1

Q(vi+1
1 )Q(vi1)

=
2ai+1

j bi+1
1

Q(vi1)
+

2bk−11

Q(vi+1
1 )

(
Q(vi1) + 2ai+1

1 bi+1
1

Q(vi1)

)

+

k−j∑
l=i+2

2aljb
l
1

Q(vi+1
1 )

(
Q(vi1) + 2ai+1

1 bi+1
1

Q(vi1)

)

=
2ai+1

j bi+1
1

Q(vi1)
+

2bk−11

Q(vi1)
+

k−j∑
l=i+2

2aljb
l
1

Q(vi1)

=
2bk−11

Q(vi1)
+

k−j∑
l=i+1

2aljb
l
1

Q(vi1)
,

using that Q(vi+1
1 ) = Q(vi1) + 2ai+1

1 bi+1
1 . This gives us the intended results. □

Remark 3.8. In particular, when Q(v
l,(0)
1 ) goes to zero for l ̸= i, ai,(1)j and v

i,(1)
j stay bounded.

Lemma 3.9. When Q(v
0,(0)
1 ) goes to zero, we have for all j ⩾ 2,

b
1,(1)
j ∼ −

Q(v
0,(1)
j )

2a
1,(1)
j

.

Proof. We know that Q(v
1,(1)
j ) = Q(v

0,(1)
j ) + 2a

1,(1)
j b

1,(1)
j , meaning that

b
1,(1)
j =

Q(v
1,(1)
j )−Q(v

0,(1)
j )

2a
1,(1)
j

.

From lemma 3.7 we know that Q(v
1,(1)
j ) and a

1,(1)
j are both bounded when Q(v

0,(0)
1 ) goes to

zero, meaning that we get the equivalence

b
1,(1)
j ∼ −

Q(v
0,(1)
j )

2a
1,(1)
j

.

□
17



Lemma 3.10. For all i, when Q(v
i,(0)
1 ) goes to zero, Q(v

l,(j−1)
j ) stays bounded for all (j, l) ̸= (2, i).

Proof. This lemma relies on similar computations to those presented in the proof of Lemma
3.7. □

Let us then write down the effect of changing the signs of Q(v
l,(0)
1 ).

Proposition 3.11. When Q(v
i,(0)
1 ) goes to zero with i ⩾ 1,

v
i,(1)
2 ∼ 2a

i,(1)
2 bi1

Q(vi1)
vi1,

a
i,(1)
2 ∼ 2a

i+1,(1)
1 b

i+1,(1)
1 ai1

Q(vi1)
,

while all else stays bounded. When Q(v
0,(0)
1 ) goes to zero,

v
0,(1)
2 ∼ 2a

1,(1)
2 b

1,(0)
1

Q(v01)
v01 ,

b
1,(1)
2 ∼ −Q(v

0,(1)
2 )

2a
1,(1)
2

while all else stays bounded.

This result shows that two different phenomena appear depending of whether Q(v
0,(0)
1 ) changes

signs or any of the Q(v
i,(0)
1 ) for i ⩾ 1. Let us explicit what happens in those two cases.

Lemma 3.12. When Q(v
i,(0)
1 ) changes sign, the space and time parts in Q(v

i,(1)
2 ) ̸= 0 are reversed.

Furthermore a
i,(1)
2 must have the sign of a

i+1,(1)
1 b

i+1,(1)
1 a

i,(0)
1

Q(v
i,(0)
1 )

before and after the change of signs.

For all others i, j, the time and space parts of Q(v
i,(j−1)
j ) ̸= 0 are unchanged.

Proof. Since Q(v
i,(1)
2 ) ∼ 2a

i,(1)
2 b

i,(0)
1

Q(v
i,(0)
1 )

, vi,(1)2 ̸= 0 implies that v
1,(0)
2 is outside the isotropic cone of a

point v
1,(0)
2 − v

i,(1)
2 which goes to infinity along the isotropic line Span(v

0,(0)
1 ) in one direction or

the other depending on the sign of −a
i,(1)
2 b

i,(0)
1

Q(v
i,(0)
1 )

. Since Q(v
i,(0)
1 ) changes sign, this implies that the

direction of Span(vi,(0)1 ) along which v
i,(1)
2 − v

i,(0)
2 goes to infinity is reversed when Q(v

i,(0)
1 ) goes

to zero positively or negatively, which implies that the time and space parts of Q(v
i,(1)
2 ) ̸= 0 are

reversed, hence the result. The second part follows immediately from a
i,(1)
2 ∼ 2a

i+1,(1)
1 b

i+1,(1)
1 a

i,(0)
1

Q(v
i,(0)
1 )

.

The third part follows from the fact that all other values remain bounded when Q(v
i,(0)
1 ) goes to

zero. □

Lemma 3.13. When Q(v
0,(0)
1 ) changes sign, the space and time parts in Q(v

0,(1)
2 ) ̸= 0 are

reversed. Furthermore b
1,(1)
2 must have the sign of −Q(v

0,(1)
2 )

2a
1,(1)
2

before and after the change of signs.

For all others i, j,m, the time and space parts of Q(v
i,(j−1)
j ) ̸= 0 are unchanged.

Proof. Since k ⩽ q−2, the space Rp−k,q−k to which v02 belongs to remains non-Lorentzian and the

same argument as before applies. The second part follows immediately from b
1,(1)
2 ∼ −Q(v

0,(1)
2 )

2a
1,(1)
2

.

The third part follows from the fact that all other values remain bounded when Q(v01) goes to
zero. □
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Example 3.1. Let us discuss the case of pointed photons in SO0(p, q) for q > 3. Using the
change of variables obtained in section 2, the situation becomes similar to the SO0(3, 2) case
except that v01 no long lives in a euclidian line but in a non-Lorentzian pseudo-Riemannian
space Rp−2,q−2. The change of variable is non-defined when Q(v11) = 0 and when it is defined,
the fact that v

0,(1)
2 = v02 +

2b11
Q(v0

1)
v01 has non-zero norm implies that v12 must not be on the light

cone of − 2b11
Q(v0

1)
v01 . The transversality of points split the connected components into two groups,

whether Q(v11) is positive of negative. Let us assume it is positive. When Q(v01) is negative, since
Q(v11) = Q(v01) + 2a11b

1
1 we cannot have b11 = 0, thus splitting into two choices for the sign of b11.

This gives us the following situation which yields two connected components :

Figure 3.6. In red and blue the four connected components of Ω(F0) ∩ Ω(F∞).

The case where Q(v11) < 0 is symmetric. We thus have the total number of connected
components.

Proposition 3.14. The space Ω(F0)∩Ω(F∞) in SO0(p, q)/P1,2 contains 4 connected components
when q > 3.

Remark 3.15. Those connected components exactly correspond to the components delimited by
the signs of the two upper-left minors of S.

Proposition 3.16. The space Ω(F0) ∩ Ω(F∞) ⊂ SO0(p, q)/P1,...,k has 2k connected components,
determined by the signs of the upper left minors of size i of S for 1 ⩽ i ⩽ k.

Proof. By applying the previous rules when changing the signs of the Q(v
i,(j−1)
j ) whose sign is not

fixed by the equation of transversality, one can then see that every change only reverses the space
and time parts of the corresponding equations, and thus that every equation of transversality only
split SO0(p, q)/P1,...,k into two, thus giving 2k connected components as there are k equations,
hence the result. □

3.4. (1, ..., q − 1)-flags in SO0(p, q). In this section we will only treat the case where p > q,
the case where p = q will be discussed in a following section. We know from the works of
Guichard-Wienhard on Θ-positivity (see [GW18]) that there must be 2q−1 Θ-positive connected
components in Ω(F0) ∩ Ω(F∞). We apply the same reasoning as before, except that the elements
v
0,(j−1)
j now belong to the Lorentzian space Rp−q+1,1, meaning that we now have to distinguish

between the space part, future part and past part of the complement of a lightcone. When
Q(v

i,(0)
1 ) changes sign for i > 0, the same happens as in the previous case as v

i,(1)
2 belongs to a

non-Lorentzian pseudo-Riemannian space.
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Lemma 3.17. When v
0,(0)
1 goes from the space part to the future part and a

1,(1)
2 b

1,(0)
1 is positive,

the past part in Q(v
0,(1)
2 ) ̸= 0 does not cross over, the space part becomes the past part and the

future part becomes the space part. When either the sign of a1,(1)2 b
1,(0)
1 changes or v

0,(0)
1 goes from

the space part to the past part, the future part does not cross over, the space part becomes the
future part and the past part becomes the space part. Furthermore b

1,(1)
2 must have the sign of

−Q(v
0,(1)
2 )

2a
1,(1)
2

before and after the change of signs. For all others i, j, the time and space parts of

Q(v
i,(j−1)
j ) ̸= 0 are unchanged.

Proof. As before, since Q(v
0,(1)
2 ) ∼ 2a

1,(1)
2 b

1,(0)
1

Q(v
0,(0)
1 )

, v0,(1)2 ̸= 0 implies that v0,(0)2 is outside the isotropic

cone of a point v
0,(0)
2 − v

0,(1)
2 which goes to infinity along the isotropic line Span(v

0,(0)
1 ) in one

direction or the other depending on the sign of −a
1,(1)
2 b

1,(0)
1

Q(v
0,(0)
1 )

. When v
0,(0)
1 crosses from the space

part to the future part, Q(v
0,(0)
1 ) is originally positive. Furthermore, since a

1,(1)
2 b

1,(0)
1 is assumed

to be positive, v0,(0)2 − v
0,(1)
2 goes to infinity while being negatively colinear to v

0,(0)
1 which is

going to the future part, meaning that the past cone of v0,(0)2 − v
0,(1)
2 disappears as v

0,(0)
1 goes

from space to future. Inversely, when v
0,(0)
1 goes from future to space the sign of Q(v

0,(0)
1 ) is

originally negative, meaning that everything is reversed and it is the future cone of v0,(0)2 − v
0,(1)
2

that does not cross over. In the end, one sees that when v
0,(0)
1 goes from space to future, the past

part does not cross over, the space part becomes the past part and the future part becomes the
space part, hence the result. □

Remark 3.18. The transversality equations are deti(S) ̸= 0 for 1 ⩽ i ⩽ q − 1, so the signs of the
deti(S) separates Ω(F0)∩Ω(F∞) into at least 2q−1 connected components. We will show that for
a given choice of the signs of the deti(S) there are 2 connected components (except in the case
when Θ-positive components arise, which we will also detail).

As previously, we start with an initial set of connected components each given by the choice of
the sign of all Q(v

i,(j−1)
j ) for 1 ⩽ j ⩽ q− 1 and 0 ⩽ i ⩽ k− j. When Q(v

i,(j−1)
j )Q(v

i−1,(j−1)
j ) < 0,

we also need to fix the sign of bi−1,(j−1)j . These component are obtained when restricting to
the open subset of Ω(F0) ∩ Ω(F∞) where all Q(v

i,(j−1)
j ) are all non-zero. We then "glue" them

together along the locus where exactly one of the Q(v
i,(j−1)
j ) vanish. The locus where two or

more vanish at the same time is of codimension greater than 2 hence does not change the number
of connected components. Contrary to the previous sections, the combinatorics of the gluing
process for (1, . . . , q − 1)-flags is more involved. To proceed with the study of this gluing process,
we first describe a synthetic model describing the situation.

We represent an initial connected component by a anti-triangular (q − 1) × (q − 1) matrix
M = (mi,j)1⩽i⩽q−1, 0⩽j⩽q−1−i with entries valued in Z/3Z identified with the set {∗,+,−} (with
∗ = 0,+ = 1,− = 2), with every entry having one of the two colors red or blue. The way to
read this data is as follows: the color of mi,j corresponds to the sign of Q(v

j,(i−1)
i ) (blue for

negative and red for positive), mi,j = ∗ if and only if the (i, j) and (i, j − 1) entries are of the
same color (the entry (i,−1) count as red as Q(v

−1,(i−1)
i ) is always positive), and if mi,j ̸= ∗ then

it corresponds to the sign of bj,(i−1)i . We now want to describe the effect changing the sign of
Q(v

j,(i−1)
i ) has on this matrix. We will call such a modification a alteration of M .

For each (i, j) such that i < q − 1 and j < q − 1− i, we define

µi,j = (−1)ε1(−1)ε2mi,jmi+1,jmi,j+1mi+1,j+1
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where

ε1 =

{
1 if mi+1,j and mi+1,j+1 are of the same color
0 otherwise and ε2 =

{
1 if mi,j = ∗
0 otherwise

When µi,j ̸= + we say that the (i, j) entry of M is alterable. When mi,j is alterable, one can alter it
as follows: choose a sign (+ or −) for every ∗ among the four entries mi,j ,mi+1,j ,mi,j+1,mi+1,j+1

such that after replacing every ∗ by the sign chosen, we get si,j = −. Then change the color of
mi,j and mi+1,j , and replace the entries that were not ∗ at the beginning with ∗. There might be
multiple sign choices that result in an admissible alteration, hence a alterable entry may have
several possible alterations. These rules are obtained by translating the result of Proposition 3.11
in this setup, and the correction factor given by ε1 and ε2 are due to the presence of aj,(i−1)i in
the formulas whereas we are only working with the b

j,(i−1)
i here. To get coherent formulas when

j = q− 2− i (meaning that the (i+ 1, j + 1) entry does not exist), we need to make the following
fix: we set mi+1,q−1−i to be a red + when mi+1,q−2−i is blue and a blue − when mi+1,q−2−i is
red.

Example 3.2. Let us explicit an example. Assume q = 4. The transversality in SO0(p, 4)/P1,2,3

is given by three equations :

Q(v
2,(0)
1 ) ̸= 0,

Q(v
1,(0)
1 )Q(v

1,(1)
2 ) ̸= 0,

Q(v
0,(0)
1 )Q(v

0,(1)
2 )Q(v

0,(2)
3 ) ̸= 0.

Since v
2,(0)
1 , v1,(1)1 and v

1,(1)
2 all live in non-Lorentzian space, the first two equations split the

space Ω(F0)∩Ω(F∞) in four parts. For each cell in which Q(v
2,(0)
1 ), Q(v

1,(0)
1 ), Q(v

0,(0)
1 ), Q(v

1,(1)
2 ),

Q(v
0,(1)
2 ) are all non-zero, the third equation of transversality becomes Q(v

0,(2)
3 ) ̸= 0. The vector

v
0,(2)
3 lives in a Lorentzian space, meaning it can be either spacelike, future or past. When going

from one cell to another, the nature of the vector v
0,(2)
3 can change.

Let us start by considering the matrix

∗ ∗ ∗
+ +
+

Let us then change the nature of v0,(0)1 from spacelike to future with b
1,(0)
1 > 0. Let us assume

that a
1,(1)
2 is negative. Since a

1,(1)
2 b

1,(0)
1 is negative, the future part in Q(v

0,(1)
2 ) does not cross

over. The space part must then become future and the past part space. Assuming that Q(v
0,(1)
2 )

is negative, −Q(v
0,(1)
2 )

2a
1,(1)
2

must then be positive, meaning that b
1,(1)
2 must be negative. Finally, since

all other values remain bounded, we get the following alteration

∗ ∗ ∗
+ +
+

−→ + + ∗
∗ ∗
+

Let us now change v
0,(0)
1 from future to spacelike with b

1,(1)
2 > 0. By applying the same method,

one then get
+ + ∗
∗ ∗
+

−→ ∗ ∗ ∗
− −
+
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By the applying the same reasoning, one gets the following alterations

∗ ∗ ∗
− +
−

−→ + + ∗
∗ ∗
−

−→ ∗ ∗ ∗
+ −
−

We are going to show that these two alteration class of matrices are part of the same connected
component. Let us start with the matrix

∗ ∗ ∗
+ −
−

and change the nature of v1,(0)1 from spacelike to timelike. We know that crossing from v
1,(0)
1

spacelike to v
1,(0)
1 timelike changes v

1,(1)
2 from spacelike to timelike. Let us assume that b

2,(0)
1

and b
1,(0)
1 are positive. Since a

1,(1)
2 must have the sign of b

2,(0)
1 a

1,(0)
1

Q(v
1,(0)
1 )

and b
1,(0)
1 positive implies

a
1,(0)
1 negative, we know that a

1,(1)
2 has to be positive on departure and negative on arrival. On

departure, Q(v
1,(1)
2 ) > 0 so when Q(v

0,(1)
2 ) is negative, a1,(1)2 positive implies b1,(1)2 negative. From

all this we deduce the following alteration:

∗ ∗ ∗
+ −
−

−→ ∗ + +
+ ∗
−

We will now change the nature of v
0,(1)
2 from past to spacelike with b

1,(1)
2 > 0. Since

v
0,(2)
3 ∼ − 2b

1,(1)
2

Q(v
0,(1)
2 )

, the past part does not cross over, the space part becomes the past part

and the future part becomes the space part. Let us then change back the nature of v0,(1)2 from
spacelike to future. By applying the same rules, we then get the following alterations :

∗ + +
+ ∗
−

−→ ∗ + +
∗ +
∗

−→ ∗ + +
− ∗
+

Finally, let us change v
1,(0)
1 from timelike to spacelike. With the same reasoning as before, we

get the following alteration :

∗ + +
− ∗
+

−→ ∗ ∗ ∗
− −
+

We have shown that all these open sets of Ω(F0) ∩ Ω(F∞) were part of the same connected
component.

The Θ-positive components correspond to matrices M that have no admissible alteration. We
then call the matrix M a Θ-positive sign matrix.

Lemma 3.19. In the alteration class of any matrix M there is a matrix M ′ such that for all
2 ⩽ i ⩽ q − 1 and for all 0 ⩽ j ⩽ q − 1− i, the (i, j) entry of M ′ is blue when j is even and red
when j is odd. We call such a matrix a striped sign matrix.

Remark 3.20. The color of the first line entries of a striped matrix are determined entirely by the
signs of the deti(U), hence are invariants of the alteration class of M .

Proof. We prove the result by induction on the column index. If an entry (i, 0) with i ⩾ 2 of
the first column is red, it is a ∗ by definition, hence the entry (i− 1, 0) is alterable. Doing any
alteration of (i − 1, 0) will result in (i, 0) being blue. By applying this process starting from
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bottom to the top, we can change the whole first column to blue except for the entry (1, 0). Once
the column j is either blue or red except for (1, j), the same argument allow us to color the
column j + 1 with the other color, once again except for (1, j + 1). □

Remark 3.21. When M is a striped sign matrix and (i, j) is an alterable entry with i ⩾ 2, the
only possible alteration at (i, j) takes all four entries (i, j), (i+ 1, j), (i, j + 1) and (i+ 1, j + 1)
to ∗, obtaining a matrix that is no longer striped. Altering again the same entry, one get back a
striped matrix, and every possible such alteration result in a striped matrix M ′ such that among
the entries (i, j), (i+ 1, j), (i, j + 1) and (i+ 1, j + 1) of M ′, an even number of them have their
opposite signs compared to M . We will use this operation of altering twice to change an even
number of signs a lot in the following proofs.

Remark 3.22. Because of the phenomenon described in Remark 3.21, any two sign matrices M
and M ′ which have the same ∗ entries but whose total number of − entries differ mod 2 can not
be in the same alteration class. In particular, there are at least two alteration classes of striped
matrix having the same signs for all Q(vi1) for 0 ⩽ i ⩽ q − 2.

Lemma 3.23. If a striped matrix M is not Θ-positive, there is a alteration-equivalent striped
matrix M ′ = (m′i,j) such that:

m′i,j =

{
+ if j or q − 1− i is odd
− if j and q − 1− i are even

unless for all 0 ⩽ j ⩽ q − 2, m1,j = ∗, in which case

m′i,j =

 ± if i = 2 and j = q − 3
+else if j or q − 1− i is odd
−else if j and q − 1− i are even

We call a striped matrix of this form a normalized striped matrix.

Proof. We start by showing that we can alter M to a striped matrix whose (2, 0) entry is alterable
if q is odd and whose (1, 0) entry is alterable if q is even. If there are no alterable entry with
i ⩾ 2, it means that there is one alterable entry (1, j) on the first line. Altering it twice allow
us to change the signs of (2, j) and (2, j + 1), thus making (2, j − 1) alterable because exactly
one of the four signs determining if it is alterable changed, and it was not alterable before by
hypothesis. There are two edge cases when we can not apply this result, first is when j = q − 2
and m1,q−2 = m1,q−1 = ∗:

... ∗ ∗

... ±
in which case (1, j − 1) is also alterable and we can apply the previous construction to (1, j − 1).
The second edge case is when q = 4 and the first line is all ∗:

∗ ∗ ∗
± ±
±

We showed how to get to a normal striped form in Example 3.2.
Now we have a alterable entry (i, j) with i ⩾ 2. We will "move" it to make the upper left

corner (2, 0) alterable. For this, notice that altering (i, j) twice changing the signs of (i, j) and
(i, j+1) make (i, j− 1) alterable, and altering (i, j) twice changing the signs of (i, j) and (i+1, j)
make (i− 1, j) alterable. Iterating this process allow us to alter into a striped matrix whose (2, 0)
entry is alterable. If q is even and the (1, 0) is not alterable yet, we can make it alterable by
altering twice (2, 0) changing the sign of (2, 0) and (3, 0).

We want now to have a striped matrix for which every (i, j) entry with q − i − 1 even and
j even is alterable. We start with the one on the top left, which we already made alterable,
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and we will make the one two cells to the right and the one two cells below also alterable. By
iterating this process, we will make all of them alterable. If a cell (i, j) is alterable, we can make
(i+ 2, j) and (i, j + 2) (provided they exist) alterable by making (i+ 1, j + 1) alterable: if it is
not already the case, we can change signs of (i, j) and (i+ 1, j + 1), thus making (i+ 1, j + 1)
alterable. Then, if neither (i+ 2, j) nor (i, j + 2) are alterable, we can make them both alterable
by altering (i+ 1, j + 1) twice changing signs of (i+ 2, j + 1) and (i+ 1, j + 2). If both (i+ 2, j)
and (i, j + 2) are alterable, there is nothing to do. If only (i+ 2, j) (resp. (i, j + 2)) is alterable
and if (i + 2, j + 2) is not out of bounds, we can make (i, j + 2) (resp. (i + 2, j)) alterable by
altering twice (i+ 1, j + 1) changing signs of (i+ 1, j + 2) and (i+ 2, j + 2) (resp. (i+ 2, j + 1)
and (i+ 2, j + 2)). If (i+ 2, j + 2) is out of bounds and only exactly one of (i+ 2, j) or (i, j + 2)
is alterable, we just ensure that (i + 2, j) is alterable by changing signs of (i + 2, j + 1) and
(i+1, j+2). Applying this process starting with the top-left corner and expanding from it ensures
that the only the one in the top right. That entry is either (2, q − 4) if q is even or (1, q − 3) if q
is odd. In the latter case, we actually just need to make the (2, q − 3) be a + if the first row is
not only made of ∗. For this, we distinguish two cases: either (1, q − 4) is a ± or it is a ∗. When
(1, q − 4) is a ±, we first make it alterable by changing the signs of (1, q − 5) and (1, q − 4) (since
(1, q − 5) is alterable) if it is not. Then changing signs of (1, q − 4) and (2, q − 3) give us the
result. When (1, q− 4) is a ∗, notice that (1, q− 3) and (1, q− 2) must be ± since (1, q− 3) is not
alterable. Then by hypothesis there is an entry (1, j) which is not a ∗, and we can assume j to
be maximal for this property. Then by altering twice successively (1, j), (1, j + 1), . . . , (1, q − 4),
we can change only the signs of (1, j) and (2, q − 3), hence the result. When we need to make
(2, q − 3) alterable, we use the same arguments to change its sign thus making it alterable.

At this point, we have a striped matrix whose entries (i, j) with q − 1 − i and j even are
alterable (except for (2, q − 4) or (1, q − 3) when the first row is all ∗ which we will discuss later).
We can alter twice each of these entries to make all of them be − and all of their left, bottom
and bottom-left neighbors +, thus resulting in a normalized striped matrix. When the first row is
all ∗, the only entry that can not be changed this way is the last one of the second row which
stays as a sign ±. □

Note that a normalized striped matrix has all its entries (i, j) with i ⩾ 2 alterable.

Lemma 3.24. In the alteration class of any matrix that is not Θ-positive, there is a unique
normalized striped matrix such that the first row is either all red ∗ or a sequence of ± and ∗ such
that only the last sign ± of the row may be −.

Proof. Let M be a normalized striped matrix. Let j0 such that m1,j0 = − and there exists a
j1 > j0 such that m1,j1 = ±. We can suppose that j1 is minimal for this property. Then for all
j0 < j < j1, we have m1,j = ∗. Then by altering twice (1, j0), (1, j0 + 1), . . . , (1, j1 − 1), we can
change only the signs of (1, j0) and (1, j1). When j1 = j0 + 1, it may happen that (1, j0) is not
alterable. If that is the case, altering twice (2, j0) changing the signs of (2, j0) and (2, j0 + 1)
makes (1, j0 + 1) alterable, then altering twice (1, j0 + 1) changing the signs of (1, j0 + 1) and
(1, j0 + 2) makes (1, j0) alterable, and finally altering twice again (2, j0) takes the matrix back to
being normalized striped form, except that now (1, j0) is alterable and we can proceed. □

Remark 3.25. From the previous lemmas we get that the the alteration class of a sign matrix
(hence a connected component of Ω(F0)∩Ω(F∞)) that is not Θ-positive is entirely determined by
the sequence of blue/red entries of the first line and the parity of the number of − entries of any
striped sign matrix in its alteration class.

From these lemmas we obtain the following count of the number of connected components of
Ω(F0) ∩ Ω(F∞) for all p and q:
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Proposition 3.26. In SO(p, q)/P1,...,q−1, for p > q:
• When q = 2, there are 3 connected components in Ω(F0)∩Ω(F∞), 2 of which are Θ-positive.
• When q = 3, there are 11 connected components in Ω(F0)∩Ω(F∞), 4 of which are positive.
• When q ⩾ 4, there are 3× 2q−1 connected components in Ω(F0) ∩ Ω(F∞), 2q−1 of which

are Θ-positive.

Remark 3.27. The two cases we have already treated, SO0(p, 2)/P1 and SO0(p, 3)/P1,2, are
actually special cases where the general formula does not apply.

Remark 3.28. The Θ-positive components can be obtained in the following way: the corresponding
sign matrix must not contain any ∗, hence is striped, with a first line being also striped, i.e.
Q(v

j,(i−1)
i ) is positive when j is odd and negative when j is even for all 1 ⩽ i ⩽ q − 1. Then, the

component is determined by the signs ± of the first line: indeed, since no entry is alterable, fixing
any signs in the first line determines uniquely the (2, q − 3) entry by µ2,q−3 = +, which in turn
determines (2, q − 4) etc. By computing line by line starting with the second line, going from
right to left on each line, one can find a unique Θ-positive striped matrix having the prescribed
first line, thus describing the 2q−1 Θ-positive components. Computing all the vectors v

j,(i−1)
i

and checking that no entry of the corresponding sign matrix is alterable allow for an explicit
algorithm to decide whether a matrix in UΘ is Θ-positive. Also note that with our conventions
on the quadratic form Q, the sign matrix with only + entries is not Θ-positive.

3.5. (1, ..., q)-flags in SO0(p, q). Asumme that p > q+1. Let F ∈ Ω(F0)∩Ω(F∞) ⊂ SO0(p, q)/P1,...,q.
The first (q− 1) equations already separates Ω(F0)∩Ω(F∞) into 3× 2q−1 connected components.
When all relevant elements are non-zero, the equation added by the transversality of the maximal
isotropic spaces is Q(v

0,(q−1)
q ) ̸= 0. However v0,(q−1)q belongs in the Euclidean space Rp−q,0 which

is of dimension at least 2 since p > q + 1, meaning that the space Q(v
0,(q−1)
q ) ̸= 0 is actually

connected.

Proposition 3.29. The connected components of Ω(F0) ∩ Ω(F∞) ⊂ SO0(p, q)/P1,...,q are exactly
those coming from the transversality in flags of SO0(p, q)/P1,...,q−1, meaning that the map induced
on connected components by π : SO0(p, q)/P1,...,q → SO0(p, q)/P1,...,q−1 is bijective.

Proof. By combining proposition 3.11 with the fact that the v
0,(j−1)
j live in a connected space,

one gets the result. □

3.6. (1, ..., q)-flags in SO0(q+1, q). Let us now deal with the case of maximal flags when p = q+1.
Since the group SO0(q + 1, q) is a split group for which P1,...,q is a Borel subgroup, we know from
[Lus94] that there must be 2q totally positive connected components in Ω(F0) ∩ Ω(F∞). This
stems from the fact that the v

0,(j−1)
j now live in the Euclidean space R and that the equation

Q(v
0,(q−1)
q ) ̸= 0 separates R into two connected components determined by the sign of v0,(q−1)q .

Proposition 3.30. In SO0(q + 1, q)/P1,...,q:
• When q = 2, there are 8 connected components in Ω(F0) ∩ Ω(F∞), 4 of which are totally

positive.
• When q = 3, there are 30 connected components in Ω(F0) ∩ Ω(F∞), 8 of which are totally

positive.
• When q ⩾ 4, there are (q + 5)2q−1 connected components in Ω(F0) ∩ Ω(F∞), 2q of which

are totally positive.

Proof. Let (v
q−1,(0)
1 , ..., v

0,(0)
q ) be an element of uΘ. As proven before, the first q − 1 equations of

transversality already splits Ω(F0)∩Ω(F∞) into 3×2q−1 connected components, 2q−1 of which are
Θ-positive. Let us assume that (v

q−1,(0)
1 , ..., v

1,(0)
q−1 ) lives in a component which is not Θ-positive.
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The last equation of transversality is

[v
0,(0)
1 ]2...[v0,(q−1)q ]2 ̸= 0,

with the cells where the change of variables are defined being those where all the v
0,(j−1)
j are

positive or negative for j < q. The sign of v
0,(q−1)
q separates each cell into two connected

components. Depending on the cell of in which (v
0,(0)
1 , ..., v

0,(0)
q−1 ) is, the signs of the b

1,(j−1)
j may

be fixed or not. Assume that it is not fixed and let us change the sign of v0,(j−1)j from positive

to negative. Let us first take b
0,(j−1)
j > 0. Since v

0,(j)
j+1 ∼

2b
1,(j−1)
j

v
0,(j−1)
j

, we have v
0,(j)
j+1 → +∞ which

means that the space v
0,(j)
j+1 < 0 does not cross over. However, when taking b

0,(j−1)
j negative,

the opposite happens, meaning that in the end both v
0,(j)
j+1 < 0 and v

0,(j)
j+1 > 0 cross over. When

assuming that the sign of b0,(j−1)j is fixed, one then cannot connect all the parts of the cells into
two different connected components.

However, since it was assumed that (vq−1,(0)1 , ..., v
1,(q−2)
q−1 ) was not in a Θ-positive component, it

is possible the get into a different cell within the same connected component of the sub-maximal
flags. Doing this can always make it so that the sign of b0,(j−1)j is no longer fixed. Furthermore,
switching the cell of (vq−1,(0)1 , ..., v

1,(q−2)
q−1 ) does not change the signs of v0,(0)1 , ..., v

0,(q−1)
q , meaning

that the connected component of the sub-maximal flags is split into two connected components
when adding the last equation.

Let us now assume that (v
q−1,(0)
1 , ..., v

1,(q−2)
q−1 ) is in a Θ-positive component. The sign of

the b
1,(j−1)
j are now all fixed. One then sees from switching the signs of the v

0,(j−1)
j that the

last equation split the component into q + 1 connected components, two of which are positive.
Combining those two cases gives the result.

Figure 3.7. The six connected component in a Θ-positive cell of the sub-
maximal flags in SO0(6, 5). The components in pink and yellow are totally
positive.

□

Remark 3.31. This result was already known due to Gekhtman-Shapiro-Vainshtein, see [GSV03].
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Remark 3.32. When all necessary vectors are non-zero, the last equation of transversality becomes

[v
0,(0)
1 ]2...[v0,(q−1)q ]2 ̸= 0.

However, since [v
0,(0)
1 ]2...[v

0,(q−1)
q ]2 = [v

0,(0)
1 ...v

0,(q−1)
q ]2. Let us define the map f : uΘ → R as

f(vq−11 , ..., v0q ) 7−→ v
0,(0)
1 ...v0,(q−1)q .

One may check that f is actually polynomial and thus may be defined on the whole uΘ,
regardless of the fact that the change of variables may sometimes be undefined. One then gets
that det(S) = f2, and that the sign of f splits Ω(F0) ∩ Ω(F∞) into two groups of connected
components. In fact, this precisely gives the two connected components composing the groups
defined by the first (q − 1) equations of transversality which are not Θ-positive.

3.7. Incomplete flags in SO0(p, q). From the computations we have done we can deduce the
number of connected components of Ω(F0) ∩ Ω(F∞) ⊂ SO0(p, q)/PΘ where Θ is a subset of
the set of roots of SO0(p, q) which has not been already covered and p > q. In order to do
this, one only has to take the description of connected components in SO0(p, q)/P1,...,k where
k = max(Θ) and identify the connected components which are no longer separated by an equations
Q(v

k−j,(j−1)
j ) ̸= 0. We will give a quasi-complete list of all the cases barring those involving the

biggest roots of SO0(q, q) which will require its own separate study.

Proposition 3.33. In Ω(F0) ∩ Ω(F∞):
• When Θ does not contain the biggest root and is not equal to {1, ..., q − 1}, there are 2|Θ|

connected components determined by the signs of the significant minors of S.
• When Θ contains the biggest root, is not equal to {1, ..., q} and p > q + 1, there are 2|Θ|−1

connected components determined by the signs of the significant minors of S except the
determinant of S itself which is always non-negative and does not add any connected
components.
• When Θ contains the biggest root, is not equal to {1, ..., q} and p = q + 1, there are 2|Θ|

connected components determined by the signs of the significant minor of S except the
determinant of S itself which is always non-negative but split in two connected components
nonetheless.

Proof. Let us first suppose that Θ does not contain the last root and p > q. Then Θ ⊂ {1, . . . , q−1}
and the projection from Ω(F 1,...,q−1

0 )∩Ω(F 1,...,q−1
∞ ) to Ω(FΘ

0 )∩Ω(FΘ
∞) obtained by forgetting the

subspaces whose dimensions do not belong to Θ is surjective. However since Θ ̸= {1, . . . , q − 1}
there is j0 ∈ {1, . . . , q−1}\Θ, and the alteration classes of matrices defined in 3.23 are identified if
they differ only from their j0 column. This identifies the two different classes of normalized striped
matrices having the same signs of all deti(U), showing that there are at most 2|Θ| connected
components in Ω(FΘ

0 )∩Ω(FΘ
∞). However since there are still |Θ| minors that have to be non-zero,

there are at least 2|Θ| connected components, hence the result. □

3.8. Maximal photons in SO0(q, q). We are only going to discuss partially the case p = q. In
this case, the group SO0(q, q) is split.

Proposition 3.34. The space of maximal photons of Einq−1,q−1 is the union of two connected
components.

Proof. The space Einq−1,q−1 is conformally equivalent to Sq−1 × Sq−1 and the maximal photons
are exactly the graphs of isometries f : Sq−1 → Sq−1 for the round Riemannian metric. The space
of isometries Isom(Sq−1) ≃ O(q) is the union of two connected components, hence the result. □
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This stems from the fact the the root diagram of SO0(q, q) has two highest roots, each
corresponding to a connected component of the space of maximal photons in SO0(q, q). We will
denote by Pq and P ′q the parabolic subgroups associated to those two roots.

Proposition 3.35. For each sub-maximal photon Q in SO0(q, q)/Pq−1, there exists a unique
pair of maximal photons in SO0(q, q)/Pq × SO0(q, q)/P

′
q each containing Q.

Proof. Let Q be an isotropic sub-vector space in Rq,q of dimension q−1. The orthogonal of Q is of
dimension q+ 1 and is the orthogonal sum of Q with a space of signature (1, 1), Q⊥ = Q⊕⊥ R1,1.
Taking an isotropic space of dimension q containing q is equivalent to taking an isotropic line in
R1,1. There are exactly two isotropic lines in R1,1, hence the result. □

In particular, Pq and P ′q may not be self-opposite, while every other parabolic space associated
with SO0(p, q) is self-opposite.

Proposition 3.36. The spaces SO0(q, q)/Pq and SO0(q, q)/P
′
q are self-opposite if and only if

q = 0 mod 2.

Proof. Let F0 ∈ SO0(q, q)/Pq be the graph of the identity map in Sq−1 for a conformal model
Einq−1,q−1 ≃ Sq−1 × Sq−1. Two maximal photons in Einq−1,q−1 are transverse if and only if they
do not intersect. Any other maximal photon in Einq−1,q−1 can be seen as the graph of an isometry
g : Sq−1 → Sq−1. When q is odd, any direct isometry in SO0(q) must have a fixed point, meaning
that its graph in Einq−1,q−1 must intersect F0. Therefore any maximal photon transverse to F0

must be within SO0(q, q)/P
′
q. Inversely, when q is even, any maximal photon transverse to F0

must be within SO0(q, q)/Pq, hence the result. □

The question of counting and parametrizing connected components in Ω(F0)∩Ω(F∞) can then
only make sense when q is even.

Proposition 3.37. When q is even, the subset Ω(F0)∩Ω(F∞) of SO0(q, q)/Pq has two connected
components.

Proof. As before, the equation of transversality is given by the determinant of the matrix S,
det(S) ̸= 0. However in SO0(q, q)/Pq, all the aij and vij are equal to zero and the matrix S is
skew-symmetric. In particular, when q is even, det(S) is always non-negative. It is then well
known that the space det(S) ̸= 0 is the union of two connected components determined by the
sign of the Pfaffian of S, hence the result. □

4. Obstructions on the structure of PΘ-Anosov subgroups of SO0(p, q)

The aim of this section is to answer a variant of a question by Sambarino regarding the
structure of Anosov subgroups.

Question 4.1. Let Γ be a Borel Anosov subgroup of SL(d,R). Is Γ virtually isomorphic to either
a free group of a surface group ?

In [DGR23], Dey-Greenberg-Riestenberg generalize the arguments developped in [Dey24] to
any PΘ-Anosov subgroup of a semi-simple Lie group G as long as PΘ is self-opposite. Let PΘ be
a parabolic subgroup of a semi-simple group G such that G/PΘ is self-opposite. Let F0, F∞ be
two transverse points in G/PΘ. The unipotent radical UΘ acts freely and transitively on Ω(F∞),
which gives a parametrization g ∈ UΘ 7→ g · F0. This parametrization of Ω(F∞) endows it with a
continuous involution i inherited from UΘ defined by i(g · F0) = g−1 · F0. Since F0 is fixed by i
and i preserves transversality, the involution acts on Ω(F0) ∩ Ω(F∞) and on π0(Ω(F0) ∩ Ω(F∞)).
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Theorem 4.2 (Dey-Greenberg-Riestenberg, [DGR23]). Assume that

i : π0(Ω(F0) ∩ Ω(F∞))→ π0(Ω(F0) ∩ Ω(F∞))

does not have any fixed point. Then any PΘ-Anosov subgroup of G is virtually isomorphic to
either a free group or a surface group.

Our aim is to compute the action of the involution on the connected components of Ω(F0) ∩
Ω(F∞) for any parabolic subgroups PΘ of SO0(p, q), to answer positively to Question 4.1 (when
replacing SL(d,R) with SO(p, q)) when possible and to provide counter-examples in some other
cases.

4.1. Computing the involution. In order to parametrise the space Ω(F∞) in SO0(p, q)/P1,...,k,
we used the diffeomorphism from uΘ to UΘ,

(vk−11 , ..., v0k) ∈ uΘ 7−→ exp(A1(v
k−1
1 ))... exp(Ak(v

0
k)) · F0 ∈ SO0(p, q)/P1,...,k.

We wish to compute the effect of the involution on the coordinates in uΘ. For each (vk−11 , ..., v0k)

in uΘ, there exists an element (i(vk−11 ), ..., i(v0k)) in uΘ such that

[exp(A1(v
k−1
1 ))... exp(Ak(v

0
k))]
−1 = exp(−Ak(v

0
k))... exp(−A1(v

k−1
1 ))

= exp(A1(i(v
k−1
1 )))... exp(Ak(i(v

0
k))).

We will write

i(vk−11 ) = (i(ak−11 ), ..., i(a11), i(v
0
1), i(b

1
1), ..., i(b

k−1
1 )),

...

i(v1k−1) = (i(a1k−1), i(v
0
k−1), i(b

1
k−1)),

i(v0k) = i(v0k).

Proposition 4.3. The involution on uΘ is as follows :

i(aij) = −aij +
k−i−j∑
l=1

i(ai+l
j )i(aij+l),

i(v0j ) = −v0j +
k−j∑
l=1

i(a1j+l)i(v
0
j+l),

i(bij) = −bij −Q(vii , v
i
j)−

k−j−i+1∑
l=1

ak−i−l+1
j i(bij+l).

Proof. This is a straightforward computation. Of particular note is that the involution acts by
transposition on the matrix S, providing further evidence that i preserves the transversality to
F0. □

4.2. (1, ..., k)-flags in SO0(p, q). As explained in proposition 3.16, the connected components
of Ω(F0) ∩ Ω(F∞) in SO0(p, q)/P1,...,k, k < q − 1 are determined by the signs of the successive
upper-left minors of S. Since the involution acts on S by transposition, those minors are left
unchanged and every connected component of Ω(F0) ∩ Ω(F∞) is preserved by the involution.

Proposition 4.4. When Θ = {1, ..., k} and k < q − 1, the action of i on π0(Ω(F0) ∩ Ω(F∞)) is
trivial.
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4.3. (1, ..., q − 1)-flags in SO0(p, q). In order to compute the action of i on the connected
components of Ω(F0) ∩Ω(F∞), one only has to exhibit one element of each connected component
on which the involution is easily computable. Let us first assume that for each i, j, aij = 0.
We deduce from the formulas of the change of variables that for each i, j,m, ai,(m)

j = 0. This
implies that for each j, Q(v

k−j,(j−1)
j ) = Q(v

k−j−1,(j−1)
j ) = ... = Q(v

0,(j−1)
j ). Since only the signs

of Q(v
k−1,(0)
1 ), Q(v

k−2,(1)
2 ), ..., Q(v

0,(q−3)
q−2 ) are fixed, it is possible to find a cell of any connected

components determined by the first q − 2 equations in which all the aij are equal to zero. Since
the Θ-positive connected components are never stable by the involution, we will not discuss them.

As the involution preserves to signs of the upper-left minors, and since all the aj are equal to
zero, it must also preserve each equation set (Q(v

0,(j−1)
j ) ̸= 0). Let us determine the action of

the involution on its connected components.

Proposition 4.5. For each j, the action of I on (Q(v
0,(j−1)
j ) ̸= 0) always sends the space

component on itself. When j is even, the future and past components are preserved. When j is
odd, the future and past components are exchanged.

Proof. For j = 1, the result is clear since i(v01) = −v01 . For j = 2, we have v
0,(1)
2 = v02 +

2bq−2
1

Q(v0
1)
v01 .

Let us take v02 = 0. Since the involution acts by i(bq−21 ) = −bq−21 − Q(v01 , v
0
2), we now have

i(bq−21 ) = −bq−21 . Since i(v01) = −v01 , this gives us i(v
0,(1)
2 ) = v

0,(1)
2 , hence the result.

Let us take v0ℓ = 0 and biℓ = 0 for each ℓ even. For j = 3, we have

v
0,(2)
3 = v03 +

2bq−31

Q(v01)
v01 +

2b
q−3,(1)
2

Q(v
0,(1)
2 )

v
0,(1)
2 .

Since v02 = 0 and bq−32 = 0, we have

b
q−3,(1)
2 = −2bq−21 bq−31

Q(v01)
,

as well as v
0,(1)
2 =

2bq−2
1

Q(v0
1)
v01 . This gives us

v
0,(2)
3 = v03 +

2bq−31

Q(v01)
− 2bq−31

Q(v01)

= v03 .

By repeating this process, we obtain that when j is even, v0,(j−1)j =
2bk−j+1

j−1

Q(v
0,(j−2)
j−1 )

v
0,(j−2)
j−1 and

when j is odd, v0,(j−1)j = v0j . This gives us the intended result. □

The first q − 2 equations of transversality split Ω(F0) ∩ Ω(F∞) into 2q−2 groups of connected
components. When all relevant variables are non-zero, the last equation of transversality is

Q(v
0,(0)
1 )Q(v

0,(1)
2 ), ..., Q(v

0,(q−2)
q−1 ) ̸= 0.

The sign of the determinant of S once again splits each of the 2q−2 groups into two groups.
Finally, as proven in 3.26, the parity of the number of timelike vectors in the v

0,(0)
1 , ..., v

0,(q−2)
q−1

which are in the future cone splits each of these groups into two connected components.

Proposition 4.6. Among the 3 × 2q−1 connected components in Ω(F0) ∩ Ω(F∞, the 2q−1 Θ-
positive components are all exchanged, 2q−1 of the remaining components are exchanged and the
rest is stable by i.
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Proof. Assume that q is even. The involution thus acts on (v
0,(q−2)
q−1 ≠ 0) by exchanging the past

and future parts. Let us chose the vectors v
0,(0)
1 , ..., v

0,(q−3)
q−2 . The choice of v0,(q−2)q−1 determines

three connected components. If the parity of the number of future vectors among the timelike
vectors of the v

0,(0)
1 , ..., v

0,(q−3)
q−2 is unchanged by the involution, the component where v

0,(q−2)
q−1 is

spacelike must be sent to itself and the two components where v
0,(q−2)
q−1 is past and future must be

sent to each other. Since i is an involution, the fourth connected component must be stable by i.
If the parity of the number of future vectors among the timelike vectors of the v

0,(0)
1 , ..., v

0,(q−3)
q−2

is changed by the involution, the component where v
0,(q−2)
q−1 is spacelike must not be stable by the

involution while the two components defined by v
0,(q−2)
q−1 past and future are. This tells us that

half of the non-positive components must be stable by i while the other must be unstable, hence
the result.

Assume that q is odd. The involution thus acts on (v
0,(q−2)
q−1 ≠ 0) by preserving the past and

future parts. If the parity of the number of future vectors among the timelike vectors of the
v
0,(0)
1 , ..., v

0,(q−3)
q−2 is unchanged by the involution, the three components given by the choice of

v
0,(q−2)
q−1 must be preserved by i.. If the parity of the number of future vectors among the timelike

vectors of the v
0,(0)
1 , ..., v

0,(q−3)
q−2 is changed by the involution, the components given by the choice

of v0,(q−2)q−1 must not be stable by i. This gives us the result. □

Remark 4.7. In particular, there always exists at least one connected component which is stable
by involution. The component where all the v

0,(j−1)
j are spacelike is of particular interest as it is

easy to exhibit antipodal spheres of higher dimensions contained inside. Let us take all aij , bij
equal to zero and embed Rp−q+1,0 in Rp−q+1,1 as a positive sub-vector space. The map

φ : v ∈ Rp−q+1 7−→ exp(A1(v))... exp(Aq−1(v)) · F0

satisfies that for each distinct pair v, v′, the elements φ(v) and φ(v′) are transverse. Adding F∞
as the point at infinity gives us an antipodal sphere of dimension p− q + 1. It is not known to us
whether this sphere may be realised as the boundary of a P1,...,q−1-Anosov subgroup, except when
q = 2 where those are the boundaries of fuchsian representations of uniform lattices of SO0(p, 1).

Remark 4.8. When considering the complete flags of photons SO0(p, q)/P1,...,q for p > q+1, since
the last equation does not change the count of the connected components, the computation of
the involution remains the same.

4.4. Maximal photons in SO0(q+1, q). Let us compute the involution for the space of maximal
photons SO0(q + 1, q)/Pq. The space of complete flags of photons will be discussed at the end of
the section.

Dealing only with the maximal photons is formally equivalent to taking all the aij equal to zero,
which brings us back to proposition 4.5. The equation of transversality is given by f2 ̸= 0, where
f is defined in remark 3.32 and the two connected components of Ω(F0) ∩ Ω(F∞) are determined
by the sign of f . When all necessary vectors are non-zero, f is equal to v

0,(0)
1 ...v

0,(q−1)
q . The same

reasoning as in 4.5 tells us that depending on the parity of j, (v0,(j−1)j < 0) and (v
0,(j−1)
j > 0)

are either preserved or sent to each other. One may easily determine in which case the sign of f
is reversed and in which case it is invariant.

Proposition 4.9. When q = 1 or q = 2 mod 4, the two connected components of SO0(q+1, q)/Pq

are swapped by i. When q = 3 or q = 0 mod 4, the two connected components of SO0(q + 1, q)/Pq

are stable by i.

From this we may deduce the following theorem using Theorem 4.2:
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Theorem 4.10. Assume that q = 1 or q = 2 mod 4 and let Γ be a PΘ-Anosov subgroup of
SO0(q+1, q) where Θ contains the last root. Then Γ is virtually isomorphic to either a free group
or a surface group.

This applies in particular to Borel-Anosov subgroups of SO0(q + 1, q); however this result was
already known due to Dey ([Dey24]).

4.5. Maximal photons in SO0(q, q). As stated in proposition 3.36, when q is even, the space
Ω(F0) ∩ Ω(F∞) is the union of two connected components. Since all aij and vij are equal to zero,
the involution becomes i(bij) = −bij .

Proposition 4.11. When q = 0 mod 4, the two connected components of Ω(F0) ∩ Ω(F∞) are
stable under the involution. When q = 2 mod 4, the two connected components of Ω(F0) ∩ Ω(F∞)
are swapped by the involution.

Proof. The two connected components are determined by the sign of the Pfaffian of S. The effect
of the involution on S is i(S) = −S. When the size of S is equal to 0 mod 4, Pf(−S) = Pf(S)
while when it is equal to 2 mod 4, Pf(−S) = −Pf(S), hence the result. □

Using Theorem 4.2, we obtain the following result:

Theorem 4.12. Assume that q = 2 mod 4 and let Γ be a PqΘ-Anosov subgroup of SO0(q, q)
containing one of the two last roots. Then Γ is virtually isomorphic to either a free group or a
surface group.

5. Constructing higher dimensional Anosov subgroups

This section will be dedicated to the construction of PΘ-Anosov subgroups of SO0(p, q) which
are not virtually isomorphic to a surface group or a free group for some of the Θ which do not
fall under the assumptions of Theorems 4.12 or ??.

Lemma 5.1. Let PΘ ⊂ SO0(p, q) be a parabolic subgroup and let x+, x− be two transverse points
in SO0(p, q)/PΘ. Then there exists δ ∈ SO0(p, q) such that ⟨δ⟩ is PΘ-Anosov with boundary
{x+, x−}.

Proof. Since x+ and x− are transverse, they can be completed into two transverse complete
flags x+, x− ∈ SO0(p, q)/P1,...,q. We thus have x± = (F±1 , ..., F±q ) with F−i ⊕ F+

i ≃ Ri,i for
each i. Let us decompose orthogonally F−q ⊕ F+

q = R1,1
1 ⊕ ... ⊕ R1,1

q such that for each i,
F−i ⊕F+

i = R1,1
1 ⊕ ...⊕R1,1

i and let V = (F−q ⊕F+
q )⊥. Finally, let δ be the transformation acting

trivially on V and

δ|R1,1
i

=

(
λi 0
0 λ−i

)
,

with λ > 1. The subgroup ⟨δ⟩ is P1,...,q-Anosov with boundary {x+, x−} in SO0(p, q)/P1,...,q.
In particular, ⟨δ⟩ is also PΘ-Anosov with boundary {x+, x−}, hence the result. □

Proposition 5.2. Let PΘ be a parabolic subgroup of SO0(p, q), Γ a PΘ-Anosov subgroup of
SO0(p, q) and x+, x− two points of SO0(p, q)/PΘ which are transverse to each other and such
that for all y ∈ ∂Γ ⊂ SO0(p, q)/PΘ, x± and y are transverse. Let δ ∈ SO0(p, q) associated to x+

and x− by the previous lemma. Then there exists a finite index subgroup Γ′ ⊂ Γ and k ∈ N such
that ⟨Γ′, δk⟩ is PΘ-Anosov and isomorphic to the free product Γ′ ∗ Z.
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Proof. This is a direct application of a result by Dey and Kapovich ([DK23], [DK24]). Since x+

and x− are transverse to the whole boundary of Γ, there must exist pairwise transverse compacts
B, A+, A− such that ∂Γ ⊂ B and x± ∈ A±. Since A± is transverse to ∂Γ, there exists C > 0
such that if γ ∈ Γ satisfies |γ| > C, γ · A± ⊂ B, thus there exists a finite index subset Γ′ ⊂ Γ
such that for all non trivial γ ∈ Γ′, γ ·A± ⊂ B. Inversely, there exists k such that δk ·B ⊂ A+

and δ−k ·B ⊂ A−. By applying the result from Dey and Kapovich, we then get that ⟨Γ′, δk⟩ is
PΘ-Anosov and isomorphic to Γ′ ∗ Z. □

Remark 5.3. When Γ is a surface group, any finite index subgroup Γ′ ⊂ Γ is also a surface group.

Since the free product of a surface group with Z is not virtually isomorphic to either a surface
group or a free group, this means that in order to construct a suitable PΘ-Anosov subgroup one
only needs to finds a PΘ-Anosov subgroup Γ isomorphic to a surface group and two transverse
points x+ and x− in SO0(p, q)/PΘ which are transverse to the boundary of Γ.

Proposition 5.4. Let PΘ = P1,...,q−2 be the stabilizer of a sub-sub-maximal flag of isotropic
spaces in Rp,q. There exists a PΘ-Anosov subgroup of SO0(p, q) which is isomorphic to the free
product of a surface group and a cyclic group.

Proof. Let Γ be a Θ-positive subgroup of SO0(q − 1, q − 1). Since the Borel subgroup of
SO0(q − 1, q − 1) is the stabilizer of a sub-maximal flag of isotropic spaces in Rq−1,q−1, the
inclusion Γ ⊂ SO0(q − 1, q − 1) ⊂ SO0(p, q) with p ⩾ q gives a P1,...,q−2-Anosov subgroup of
SO0(p, q). For each k ⩽ q − 2, let πk : SO0(p, q)/P1,...,q−2 → SO0(p, q)/Pk be the projection on
the k-th factor. Let x0 and x∞ be two distinct points in ∂Γ. In the affine chart of Einp−1,q−1
defined by π1(ξ(x0)) and π1(ξ(x∞)), the image of π1 ◦ ξ is contained within a sub-vector space V
of Rp−1,q−1 of signature (p− 2, q − 2). Furthermore, depending on whether q is even or odd, all
the elements of the image are of positive or negative norm. Let x+

1 and x−1 be two elements of
the orthogonal of V such that x−1 = −x+

1 and of the same sign as the image of π1 ◦ ξ. For each
x ∈ ∂Γ, x±1 is transverse to π1(ξ(x)).

Let us consider the set of flags of affine isotropic spaces in Rp−1,q−1 of dimension 1, ..., q − 3
containing x±. Since the intersection E of the isotropic cones of x± and x∞ is a copy of
Einp−2,q−2, this space can be identified with SO0(p, q)/P1,...,q−3, and since x± is orthogonal to
V , the boundary of V in the isotropic cone of x∞ is contained within E. We can then do the
same procedure in the affine chart of E defined by π2(ξ(x∞)) and π2(ξ(x0)) to get two flags
(x±1 , ..., x

±
q−2) which are transverse to each other and transverse to the image of ξ. This yields the

result via proposition 5.2. □

Remark 5.5. It is actually not necessary to take a finite index subgroup of Γ. For each γ ̸= e in Γ,
the set Oγ of points x in SO0(p, q)/PΘ which are transverse to γ · x is an open and dense subset
of SO0(p, q)/PΘ. Since Γ is countable, the set

⋂
γ ̸=e Oγ is still dense, meaning that up to a small

perturbation of x+ and x− one may assume that they are both in
⋂

γ ̸=e Oγ . We may then take
B to be the reunion of a small compact containing ∂Γ and of small enough compacts containing
the γ · x±. There is only a finite number of those compacts which are not contained within the
compact containing ∂Γ, thus B is also compact. We then get that A± and B are transverse to
each other, hence the result.

Remark 5.6. Iterating this procedure allows one to construct a P1,...,q−2-Anosov subgroup which
is isomorphic to Γ ∗ Fn for each n. Indeed, theorem A from [DK23] tells us that the boundary of
Γ ∗ Z is contained within B ∪A±; by taking A± small enough, it is possible to find another pair
of transverse points transverse to B ∪A± and thus to the boundary of Γ ∗ Z. The result follows
by repeating the process for Γ ∗ Fn−1.
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