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Abstract
The particular role of cortical oscillations has been a long-debated topic that resulted in a variety of theoretical frameworks.
Oscillatory activity in the ↵ band has been associated with sensory processing, attention as well as other cognitive functions,
while � band oscillations is thought to be related to stimulus feature processing. Current theoretical frameworks rely on
the separation of the cortical architecture into layers. Recently, methodological advancements have allowed to test layer
specific frameworks on the role of oscillations in cortical computations in healthy human participants. Using EEG-fMRI,
we have investigated for the first time both, stimulus feature specificity (line orientation) and the relationship between the
laminar BOLD activity and ↵ and � band oscillations. We find � oscillations to be positively correlated with feature-specific
signals in superficial layers as predicted by the literature, but we found a deep layer contribution as well. Furthermore we
found a layer (and frequency) dissociation within the ↵ band for general, feature unspecific, processes and a feature related
process. The power of the ↵-band correlated negatively with feature unspecific neural activity in all cortical layers. We
further found that high frequency ↵ oscillations were specifically related to stimulus feature specific BOLD signal in deep
and superficial layers. More interestingly, we also observed a general modulation effect for negative BOLD signal deflections
in line with the inhibitory role of ↵ during visual attention in superficial layers. Those findings support the association of
� band oscillations with visual feature processing and further point towards the involvement of multiple ↵ oscillations in
more general and feature related processes.
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Introduction
The involvement of brain oscillations in cortical computa-
tions and their role in laminar communication channels are
highly debated in the scientific community. Although the
significance of � band oscillations for cortical computations
remains uncertain [1–4], they have been associated with bot-
tom up stimulus feature specific processing [5, 6]. In line
with anatomical findings, � band oscillations are primar-
ily associated with neuronal activity in granular and supra-
granular layers [7]. Hence, nearly all current frameworks pre-
dict that � band oscillations should be observed specifically
during ongoing stimulus feature processing in supra-granular
layers [6–8].

In contrast, low-frequency oscillations (↵ oscillations, par-
ticularly) were commonly thought to reflect a general in-
hibitory process [9, 10]. However, recent empirical evid-
ence [11–13] and theoretical work [8, 14, 15] suggest that

↵ might play a much more differential role in cortical in-
formation processing and routing. Evidence suggests that ↵

oscillations are expressed in all cortical layers, although the
debate regarding their laminar profile in the cortex is still
ongoing [16–18]. Discrepancies have led to the assumption
that ↵ band activity reflects a family of low-frequency os-
cillations that serve functionally distinct roles and act more
specifically than previously anticipated [8, 19]. A common
finding is that ↵ oscillations are mainly linked to feedback-
directed activity, implying the involvement of top-down pro-
cesses [16], possibly coordinated with the involvement of the
pulvinar [20] (but see Lozano & VanRullen 2019 [21]).

The framework proposed by Bonnefond et al. (2017) [8]
posits that ↵ oscillations are involved in establishing task-
or stimulus-specific communication channels in the feedback
direction by synchronizing low-power ↵ band activity in source
and target regions (see also Harvey et al., 2013 [22] and van
Kerkoerle et al., 2014 [16]). This suggests that ↵ band oscil-
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lations are tightly linked to the activity of neuronal popula-
tions processing specific stimulus features, or at least recept-
ive fields, which contradicts the prevailing idea of low spatial
selectivity of ↵. Additionally, the framework predicts that
the communication channel is established in supra-granular
layers, as described in the original publication. The frame-
work emphasizes that the actual communication is estab-
lished via source-target ↵ band coherence, while the selec-
tion of neurons (e.g., through attention-related processes) is
related to ↵ power changes (i.e., low ↵ power in relevant
and high ↵ power in irrelevant pools of neurons). These two
processes may be dissociated through distinct laminar ac-
tivation profiles. Stimulus-induced � oscillations or spiking
activity [23] might be locally controlled by these ↵ oscilla-
tions, which are nested within the excitable phase of ↵, and
then transferred to the next hierarchical level for further pro-
cessing.

Testing the proposed framework necessitates a thorough
investigation of feature specific cortical activity on the lam-
inar level, which has traditionally posed a challenge in healthy
human participants. Hence, most evidence has been ob-
tained from animal models. Past studies have primarily
focused on methodological obstacles [18, 24, 25] or have re-
lied on laminar level functional magnetic resonance imaging
(fMRI) alone [26–30]. However, fMRI lacks temporal resolu-
tion and serves as a proxy for neuronal activity. In contrast,
electroencephalography (EEG) and magnetoencphalography
(MEG) directly record neuronal activity, but have relatively
low spatial resolution due to the mixture of different sig-
nals they record. Recent studies combining high-resolution
(laminar-level) fMRI with EEG recordings have successfully
addressed these limitations [18, 31]. In our study, we em-
ployed this approach to investigate, for the first time, feature-
specific BOLD signals in the deep (infra-granular), middle
(granular), and superficial (supra-granular) cortical layers in
primary visual regions. The proposed framework emphasizes
the role of ↵ oscillations in selecting pools of neurons relevant
to the task and inhibiting potentially interfering or unwanted
information. Therefore, we not only examined the relation-
ship between EEG and positive BOLD signal deflections but
also related EEG power changes to negative BOLD deflec-
tions, which has received less attention and mostly focused
on the default mode network [32–34]. However, sparse evid-
ence suggests that negative BOLD deflections contribute to
understanding ongoing neuronal processing and specifically
the inhibition of unwanted information [35, 36]. In our ana-
lyses, we focused on feature-specific and feature-unspecific
BOLD signal changes (including negative deflections), high-
lighting the general importance of studying BOLD signal
decreases for functional tasks.

The primary aim of this study was to investigate the re-
lationship between cortical oscillations and feature-specific
and feature-unspecific BOLD signals across multiple cortical
layers. For this we used a visual oddball task where only the
standard stimuli consisting of two orthogonal stimulus grat-
ings offset by 90

� were our features of interest. Our results
demonstrate that � band activity not only relates to the
feature-specific superficial layer BOLD signal [8, 16, 18, 37]
but also to deep layer BOLD activity. Additionally, we found
that general modulatory, feature unspecific processes, po-
tentially associated with attention related mechanisms, and
feature-specific laminar activation profiles were linked to dis-
tinct ↵ frequency bands.

This study provides the first direct evidence in healthy
human participants that low-frequency oscillations serve mul-
tiple purposes in the visual cortex, associated with distinct
cortical layer profiles.

Methods and Materials

Participants

A dataset consisting of 52 right-handed individuals (34 of
whom identified as female) between the ages of 18 and 35
(µ = 24.0, � = 4.0) was collected. We only included par-
ticipants who did not need eye correction (due to practical
reason concerning the scanning procedure) and did not have
a history of neurological or psychiatric issues or had not un-
dergone neurosurgery. All participants provided informed
consent and were monetarily rewarded for their participa-
tion. The study received ethical approval from the local
ethics committee.

Data Acquisition

Functional and anatomical magnetic resonance ima-

ging (fMRI) data was collected using a Siemens MAG-
NETOM Prismafit 3T MRI scanner equipped with a 64-
channel whole head and neck coil. Before entering the scan-
ner, each subject received detailed instructions and was given
the opportunity to practice the main experiment in a short
block. Once prepared, the subject was placed inside the
scanner. A T1-weighted scan was acquired in the saggital
orientation using a 3D MPRAGE sequence [38] with the
following parameters : TR/TI = 2.2/1.1s, 11

� flip angle,
FOV 256 ⇥ 256 ⇥ 180 mm and a 0.8 mm isotropic resolu-
tion. Parallel imaging(iPAT = 2) was used to accelerate
the acquisition resulting in an acquisition time of 6 min and
31 s. For the functional data, we utilized a 3D gradient-EPI
[39] with CAIPI acceleration capabilities [40] as implemented
by Stirnberg et al. [41]. A partial brain acquisition using a
coronal slab was encoded with a FOV 208.8⇥208.8⇥39.6 mm

covering most occipital and parietal lobes, incluing primary
visual regions. The flip angle was set to 20

�, resulting in a
near isotropic voxel size of 0.9052⇥0.9052⇥0.9 mm (volume
TR: 3.3 s; TE: 34 ms). The sequence was modified to allow
an arbitrary time delay between every 3 consecutive volumes.
Here, the delay was set to 3 s to ensure unperturbed EEG
data acquisition during this delay and that the whole BOLD
HRF could be subsequently sampled afterwards.

This protocol was used for both, the main experiment
and the retinotopic field mapping. However, for the latter
the sequence gap was omitted because no EEG data was re-
corded. Each experimental block started with six dummy
volumes to allow for the magnetization to reach a steady
state, but only the last three of those dummy volumes were
actually recorded (and later removed for the data analysis).

In addition, we simultaneously recorded EEG data using
a 64 channel MR compatible EEG system [42] at a sampling
rate of 5k Hz. Impedances were kept below 20k ⌦ during
subject preparation. Electrode positions were recorded using
a photogrammetry-based approach, as described in Clausner
et al. (2017) [43]. A 3D model, computed from approxim-
ately 50 photographs of participants wearing an EEG cap,
was aligned via facial features to a 3D representation of the
anatomical MRI. Electrode positions were determined from
the photogrammetry based 3D model, transformed into MRI
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space and projected along the vertex normals to the MRI
scalp surface.

Furthermore, eye-tracking data was simultaneously col-
lected using an EyeLink 1000+ [44], but later omitted from
the analysis protocol due to insufficient data quality and
cumbersome handling in the scanner.

The full experimental protocol comprised a high-resolution
anatomical T1 scan lasting for 8 min, followed by four con-
secutive blocks of EEG-fMRI recordings for the main ex-
periment. Each block lasted for 14 min, with a total dur-
ation of 4 ⇥ 14 = 56 min. Three blocks of population re-
ceptive field (pRF) mapping were recorded hereafter, each
block lasting for 7 min, utilizing the same fMRI recording
sequence but without the 3 s pause for clean EEG data re-
cording (3 ⇥ 7 = 21 min). Additionally, 20 resting-state
volumes of that sequence with an inverted flip angle lasting
1 min were acquired for distortion field estimation. How-
ever, this was not included in the final analysis protocol.
Instead a non-linear recursive boundary estimation [45] was
used that simultaneously provides the cortical layer estima-
tion (explained in detail below). The total duration of the
experiment was approximately 150 min, including ⇡ 40 min

preparation time, a 5� 10 min break between the two main
experimental parts, and 15 min for participants to wash and
dry their hair after the experiment.

Stimulus presentation

Stimuli were projected onto a screen behind the subject’s
head using an EIKI LC XL100 projector (https://www.eiki.
com/) with a resolution of 1024 ⇥ 768 px and a maximum
brightness of 5,000 ANSI-lumen, and a contrast ratio of
1000 : 1. The effective field of view comprised a 24 ⇥ 18°
visual angle at a distance of 855 mm relative to the sub-
ject’s eyes. Throughout the entire experiment, stimuli were
presented in an otherwise dark scanner room. During the
anatomical scan, participants were able to read the experi-
ment instructions again and were asked to remain still with
their eyes either opened or closed for the rest of the record-
ing.

Main experiment

Participants performed a demanding visual attention task,
using central stimulus presentation. The stimuli could either
be left (counterclockwise) or right (clockwise) oriented grat-
ings (±45° relative to the vertical axis of the screen). A
subtle wavy pattern was incorporated as oddball stimuli and
participants were instructed to respond to them using their
right index finger. The non-oddball to oddball ratio was
set to 5 : 1. Stimuli were presented on a gray background
with 50% luminance, using the "Presentation" software [46].
A fixation indicator was designed based on the findings of
Thaler et al. (2013) [47], which consisted of a black, filled
circle overlaid with a white cross (also known as the "Greek
cross"), containing a central fixation dot (see Figure 1). This
design was found to yield higher fixation performance com-
pared to traditional fixation stimuli, such as simple crosses
or dots. In our experiment, the central fixation dot at the
centre of the fixation indicator was either red or green, indic-
ating to the participant whether they should avoid blinking
(red = avoid blinking).

Feature specific (left or right oriented) stimuli were con-
structed as Tukey-filtered gratings of 8° visual angle in dia-
meter and a spatial frequency of alternating bright and dark
lines of 3.125 cycles per 1° = 25 cycles that were presented at
the central screen location. The contrast between bright and
dark components was set to 70% luminance change. An area
of 0.8° visual angle in diameter was cut out centrally to house
the fixation mark. Gratings could be presented in either
left or right orientation, deviating ±45° from the vertical
axis. Additionally, oddball trials were constructed similarly,
but with a slightly wavy pattern of an amplitude of 0.3571°
visual angle and a frequency of 0.6526 cycles per degree
visual angle (⇡ 4 cycles across the diameter of the stimulus
area). Furthermore four different phase offsets

⇥
0,

⇡
2
,⇡,

3⇡
2

⇤

were used in a pseudo-randomized, counter-balanced man-
ner. The outer edge of the stimulus, as well as the edge to-
wards the inner cut-out where the fixation was placed, was
filtered using a Tukey filter, to avoid sharp edges.

All settings concerning stimulus appearance were extens-
ively piloted to obtain a satisfactory trade-off between diffi-
culty and accuracy. An example for an oddball stimulus can
be found in Figure 1 A.

Receptive field mapping

To identify visual cortex regions of interest (ROIs), a popula-
tion receptive field (pRF) mapping was conducted to obtain
structural locations of V1, V2, and V3 for both hemispheres
[48]. The experiment consisted of three blocks, with 128
volumes recorded for each block. The stimulus presentation
was implemented using the VistaDisp software package [49]
in PsychToolbox [50]. A sequence of full-contrast checkered
bars was presented, moving in different directions (W ! E,
SE ! NW, N ! S, and SW ! NE) and their reverse dir-
ections in front of an otherwise empty screen of 50% lumin-
ance. The bars were 2.25° visual angle wide and up to 18°
visual angle long, filling a circular area of 18° visual angle
in diameter. The overlap with neighbouring bar locations
was 1.125° (half a bar’s width). Sixteen different locations
along the directional axis for each moving direction were
sampled, resulting in 128 trials per block, with each loca-
tion being sampled twice. Each location had an alternating
full-contrast black and white pattern presented five times for
0.66 s per cycle (= 0.66 s for 2 alternations). One volume
was recorded for one of the sets of five consecutive pattern
repetition cycles. For each diagonal moving direction, the
pattern disappeared for the last eight locations (40 cycles)
of that direction to allow for the BOLD response to fall back
to baseline. The procedure is further described in Alvarez
et al. [51].

Experimental Procedure

The sequence of events that forms a trial, as well as how
the interleaved data acquisition sequence was constructed is
illustrated in Figure 1 A. After participants were instructed
and informed consent was collected, the EEG cap was fitted
and electrode positions were recorded. Hereafter electrode
housings were filled with an electrically conducting gel to
bridge the gap between the electrodes and the skull. Af-
terwards participants were placed inside the scanner. Foam
and pillows helped to keep the participant’s head stable and
to remain comfortable throughout the experiment. A strap
of tape across the forehead provided additional tactile feed-
back of any head motion and contributed to minimizing head
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Figure 1: Experimental Procedure of the main experiment. 1.2 s prior to the stimulus onset the fixation indicator would turn from green to
red, indicating the subject to avoid blinking. After a period of 0.4 s (0.8 s before stimulus onset) the last fMRI volume of the previous trial finished
recording. For a period of 3 s no fMRI data is collected in order to avoid gradient artifacts in the EEG data. The stimulus presented is a left or right
(±45° from vertical axis) oriented grating. In 16.7% of stimuli (2 ⇥ 8.3% for left and right respectively) the linear pattern of the grating would have
a slight wiggly pattern (see example grating). Participants were ask to respond to those oddball trials with a button press. If no oddball trial was
presented, the stimulus would remain on the screen for 1.6 s, followed by a 0.6 s period where only the fixation indicator is shown. In case of a response,
corresponding feedback ("correct", "false alarm" or "miss") is displayed instead. Afterwards, the fixation indicator turns back to green, indicating the
subject that the period to avoid blinking has ended. Now, three consecutive 3D EPI volumes (TR : 3.3 s) are recorded, before the next trial starts.
Overall, 240 trials (four blocks with 60 trials each) have been collected. Additionally, a high resolution (0.8 mm iso voxel size) T1 weighted full brain
image has been collected before the main experiment to obtain individual subject’s anatomy. Furthermore, three blocks of pRF mapping (128 trials
each) have been performed after the main experiment using the same fMRI sequence as in the main experiment (without gaps).

movements. The eye tracking device was set up and cal-
ibrated after that. Before the main experiment started -
during the high resolution T1 weighted anatomical scan was
- a practice block was performed for the actual task that
followed hereafter. The practice block was a slightly modi-
fied version of the main task, such that the inter-stimulus-
interval (ISI) was shortened and the ratio of oddball over
non-oddball trials was increased to 1 : 3 to facilitate the
training effect. The main experiment consisted of four blocks
of 60 trials each, ten of which were oddball trials that were
excluded from the later analysis. Participants were instruc-
ted to respond as fast as possible to the occurrence of such a
trial by pressing the response button with their right index
finger.

A trial was defined as the following sequence of events:
1.2 s before the stimulus onset the central dot of the fixa-
tion mark would turn red (indicating the subject to avoid
blinking). With a probability of p = 0.167 an oddball trial
would be shown and otherwise a regular stimulus for 1.6 s.
If no oddball was shown and the subject did not respond by
a button press, the red fixation stayed for additional 0.6 s

before turning back to green, which would end the trial. In
all other cases the subject would receive feedback in form
of a centrally presented text indicating hit, miss or false
alarm, followed by the green central fixation. Hence, each
trial would in any case last 1.2 + 1.6 + 0.6 = 3.4 s of which
the last 3 s went into the EEG analysis. During the last 3 s

before the trial ended, MRI gradients and RF pulses were
switched off, such that no MR data could be collected. This
was done to ensure good EEG data quality. After each trial,
three partial brain 3D EPI volumes (TR = 3.3 s) were re-
corded, sampling the BOLD response for a single stimulus
presentation of that length [52].

For each of the four experimental blocks, 60 trials were
presented, resulting in 240 trials per participant in total.
Since trials could be constructed as left or right oriented
gratings and oddball or non-oddball trials, four possible trial

types could occur. Since the ratio between non-oddball and
oddball trials was fixed at 5 : 1, each block consisted of
five oddball and 25 non-oddball trials and therefore in total
20 oddball and 100 non-oddball trials for each orientation
respectively (

P
= 240). The four different phase-offsets

were unevenly distributed within blocks but counterbalanced
across the experiment.

After the main experiment, participants could voluntarily
rest for some minutes before the population receptive field
(pRF) mapping [53] was performed. Central fixation during
pRF mapping was ensured by a fixation dot that randomly
changed colour between red and green at an average rate
of 1 change per 3.3 s. This corresponds to 1 TR, since the
same fMRI protocol as for the main experiment has been
used, only without the gaps that allow more noise free EEG
recordings during the main experiment. Participants were
instructed to indicate a colour change by a button press with
their right index finger. All three blocks for pRF mapping
were recorded consecutively without a break, except for sub-
ject S11, where only the first two blocks were recorded due
to the subject feeling uncomfortable in the scanner.

Data processing

Data analyses were performed using the following software
packages and toolboxes: analyzePRF [53, 54], ANTs [55],
FieldTrip [56], Freesurfer [57], FSL [58], janus3D [43], Meta-
shape [59], MRICron [60], MRI Volume Masker 3000 TM
[61], MrVista [49], OpenFmriAnalysis [45], SPM12 [62] and
Workbench [63], including respective dependencies in either
Bash, Python or MATLAB. All analysis scripts can be down-
loaded from: [link will be provided soon].

No participants have been excluded from any of the ana-
lyses. For the main experiment, trials were selected for both
non-oddball conditions (= 25 trials per orientation per block
= 200 trials per subject). Trials were only excluded in case
of a false alarm response or if major EEG artifacts such as

4

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.31.605816doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.605816
http://creativecommons.org/licenses/by/4.0/


significant muscle artifacts during the period of interest have
been detected, which was the case in ⇡ 2% of all trials.

fMRI Motion Correction and Co-registration

A critical step in laminar fMRI is the correction for motion
and co-registration of functional and anatomical data since
even sub-millimeter misalignments affect the laminar seg-
mentation substantially. Motion parameter estimation and
correction was done using ANTs [55]. As a first step, the first
three volumes were removed from each set of volumes (for the
three blocks of pRF mapping and the four blocks of the main
experiment). Afterwards a manually drawn brain mask was
created for every first volume of the first main experiment
block and the first pRF mapping block using MRI Volume
Masker 3000 TM [61]. Automatically generated masks were
manually “fine tuned”, such that the outer boundary was en-
closing the gray matter as close as possible. Extensive parts
of cerebrospinal fluid, fatty components, arteries and other
tissue were carefully excluded from the masks. The resulting
masks were used to constrain motion parameter estimation
and to correct the anatomical segmentation performed by
Freesurfer [57] within the respective region of interest (the
field of view of the functional scans). The actual motion
parameter estimation was then performed in two stages. In
the first stage all volumes of one recording block were re-
gistered to the within-average over time of that block. Dur-
ing the second stage all newly computed within-block aver-
ages were registered to the first volume of the first block of
the main experiment. Thus all blocks, including pRF map-
ping, used the first volume of the first block of the main
experiment as the final reference. While for the first stage
a rigid body transformation was used, an affine transform-
ation was computed for the second stage. The initial linear
transformation in that stage was followed by a non-linear
transformation using symmetric normalization (SyN) [64].

A similar approach was used for functional to anatomical
partial volume co-registration, including a rigid body, affine
and non-linear transformation using symmetric normaliza-
tion. Note, that the T1 weighted image was registered to
the functional data (and not vise versa) to map the laminar
segmentation that is obtained from the anatomical T1 (see
below) to functional data space. All estimated motion para-
meters were combined and applied in a single operation to
ensure that functional data was interpolated only once [65].

Anatomical Segmentation

In a first step, the manually drawn functional masks were re-
gistered to native T1 space. This was done in order to ensure
proper anatomical segmentation performed using FreeSurfer
[57]. This procedure greatly improved the later non-linear
boundary registration of pial and white matter boundaries of
functional and anatomical data, which are used for the con-
struction of cortical layers and correct for field distortions.
In detail, after the initial full brain segmentation, respective
functional brain masks obtained as described above were fit
to the full brain mask and replaced the respective parietal
parts that were covered by the functional data. Hereafter
the estimation of pial and white matter surface boundaries
was recomputed. Corrected pial surfaces and uncorrected
white matter surfaces were used as boundaries for the later
laminar segmentation as this procedure makes use of the
surface’s boundaries.

Population Receptive Field Mapping

Population receptive field (pRF) mapping was performed
as implemented in the open source tool-box analyzePRF.
More detailed information about the algorithmic implement-
ation can be found in the reference literature [53, 54]. Bin-
arized versions of each stimulation frame served as spatial
regressors for the underlying general linear model (GLM).
Each of the presented 64 unique bar locations (including
blanks) were thresholded such that the background received
a value of 0 and the entire bar irrespective of the checker-
board pattern received a value of 1. In order to save compu-
tation time, stimuli were downsampled from screen resolu-
tion to a resolution of 192⇥ 192 px. A Savitzky–Golay filter
with a filter window of 61 TR s (201 seconds) was applied to
the data. The data then was converted into percent signal
change relative to the median. Whereas the Savitzky–Golay
filter was applied for each experimental block separately, per-
cent signal change was computed over all blocks combined.
Based on a GLM - including third order polynomials - para-
meters were estimated for orientation (angle), distance to the
centre of the screen (eccentricity) and the explained variance
per voxel (R2). The gray matter mask, obtained from the
anatomical segmentation, was applied and only gray mat-
ter voxel locations were fed into the pRF analysis. Based
on those maps, regions of interest (V1-3) were manually la-
belled using Freeview. To facilitate the manual drawing pro-
cess, a functional atlas [66] containing all regions of interest
was anatomically fitted to the functional data beforehand.
Fitted regions from the atlas were overlaid together with
the results of the pRF mapping onto the inflated pial sur-
face as obtained from Freesurfer. Marked labels were then
transformed into volumetric data and into functional data
space using previously computed co-registration transform-
ation matrices and volumes. It should be noted however,
that regions V2 and V3 could not be reliably separated in
all participants due to poor data quality. Hence, all analyses
will focus on V1 only, but results for V2 and V3 are provided
within the supplementary material (see Figures Sf1, Sf3 and
Sf4 and Tables St2 and Tables St3).

Estimation of Cortical Layers

Laminar segmentation was performed using co-registered gray
and white matter boundaries as references for upper and
lower bounds of the segmentation. In order to resolve cor-
tical depth precisely, the curvature of the anatomical bound-
aries was taken into account. This is necessary since the rel-
ative thickness of cortical layers varies depending on the cor-
tical curvature [67]. Each voxel covered by the gray matter
mask, received a weight as a function of its volume belonging
to each of the shell-like meshes forming the boundaries. If
a layer boundary would cut the voxel exactly in half, adja-
cent layers would receive a weight of 0.5 each. Hence, voxels
were not separately treated as belonging to different layers,
but rather their signal was seen as a weighted mixture com-
ing from different layers. Thus, a voxel located towards the
white matter boundary would contribute more to the signal
generated in deeper layers - receiving a higher weight - as
compared to a voxel being closer to the surface, which would
receive a lower weight at the reference location [68]. Layer
weights were computed using the open source toolbox Open-
FmriAnalysis. As a result, five layer weights per voxel were
obtained (CSF, superficial, middle, deep and white matter
layer).
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Figure 2: Intermediate results to sanity check the EEG and fMRI data. A) Full brain DICS beamformer results. Subject average of
log-ratios between stimulus and baseline for 11 Hz (↵)and 60 Hz (�) for both sets of separately filtered EEG data. This serves illustrative
purposes only, since the virtual channels of interest have been selected from time-frequency transformed virtual channels obtained using LCMV
beamforming. Here the 5% vertices with the strongest decrease (top) or increase (bottom) are shown. B) Time-frequency representation

of virtual EEG channels. Subject average of log-ratios between stimulus and baseline of time-frequency transformed virtual channels,
obtained using LCMV beamforming (2 ⇥ 2 virtual channels for low and high frequencies and both hemispheres separately). Only the right
hemispheric channels are shown. The white empty square indicates the data points that were included in the combined EEG-fMRI analyses.
Average reaction time and stimulus onset are indicated by a continuous or dashed white line respectively. C) Average t-value distribution.

Surface projection of average t-map of the first level contrast for the general fMRI activation (top) and the contrast between left and right
stimulus orientation (bottom) for illustrative purposes.

EEG data processing

The major goal of the EEG data preprocessing was to op-
timize noise suppression for each frequency band of interest
(↵, �) in order to extract EEG signal components of interest
as clean as possible. In previously published literature a su-
pervised signal decomposition based on ICA has been util-
ized [18, 31]. This approach requires the manual selection
of target components for each frequency band. By removing
all non-target components, noise can be suppressed and the
resulting signal will only contain the data of interest. How-
ever, beamforming offers the major advantage of being able
to perform unsupervised noise suppression [69, 70]. During
the piloting phase, beamformer methods were successfully
applied to the EEG data collected in an (f)MRI environ-
ment and yielded accurate source reconstruction results, in
line with previous studies using a similar approach [71, 72].

Low (↵) and high (�) frequency bands were processed
separately to extract the desired response patterns. The
data was filtered for the lower frequencies using a pass band
between 2 and 32 Hz and for the high frequencies between
20 and 120 Hz respectively. A 50 Hz dft filter to suppress
power line noise was applied to the latter as well. EEG
electrode locations were obtained from the photogrammetry
based 3D model and co-registered using the face shape to
the anatomical MRI using janus3D, as described in Claus-
ner et al. (2017) [43]. A finite element model (FEM) was
computed from the high resolution anatomical T1 based on
the FieldTrip-SimBio pipeline [73]. The leadfield was com-
puted from the EEG electrode positions and the FEM model.
Sources were modelled as equivalent current dipoles at loca-
tions limited to the respective coordinates of voxels included
in the gray matter and ROI masks. Dipole orientations
were derived from the cortical curvature and thickness, since
this is crucial for a precise mapping especially in EEG [74].
Workbench [63] was used to compute the surface normals
that connect pial and white matter surfaces. The orientation

of the resulting vectors then served as the dipole orientation
for each respective location. The described procedure was
done separately for the left and right hemisphere in order to
obtain separate filter weights, since distinct source activity
for both hemispheres was to be expected [75]. The result-
ing weight matrices were applied to the band pass filtered
data in order to obtain virtual channels at the correspond-
ing equivalent current dipole locations. A spectral analysis
was performed on each virtual channel separately. Thereby
the exact settings for low and high (time-) frequency decom-
position varied slightly. While for low frequencies, a Han-
ning taper was applied using a data time window length
of 400 ms (time steps: 20 ms), zero-padded to achieve a
frequency resolution of 0.5 Hz and smoothed with a kernel
width of ±2 Hz; for high frequencies the data was processed
using the same time related settings, applying a multi-taper
(DPSS [76]) approach (seven tapers) with a resolution of
2.5 Hz. The frequency domain was smoothed using a ker-
nel width of ±10 Hz. Afterwards the virtual channel with
the highest average amplitude change between 8 � 12 Hz

(↵) or 50 � 70 Hz (�) relative to baseline, was selected. As
a baseline period, a time window from �0.3 to �0.1 s for
high and at �0.3 for low frequencies was chosen. Gradi-
ent artifacts caused by ringing of MRI machine’s amplifier
after the gradient coils were switched off were observed prior
to �0.3 s relative to stimulus onset which was unexpected.
The initially planned start of the baseline period was �0.5 s,
however due to those artifacts �0.3s relative to stimulus on-
set served as the new lower bound for the baseline period.
For this reason, the low frequency baseline period comprised
only a single time point at �0.3 s, because a pre-stimulus ↵

decrease was expected starting around 0.25 s prior to stim-
ulus onset. Pre-stimulus ↵ has often been related to visual
detection performance [77] and might thus reflect different
processes than the actual target time interval. In fact a small
but visible ↵ decrease could be observed 0.25 s prior to stim-
ulus onset (see Figure 2 B, top). The data was transformed
into the log

10
ratio between the baseline and each sample
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point in a time window between 0.1 and 1.6 s after stimulus
onset for each hemisphere. The time-frequency (TF) trans-
formed virtual channels with the highest average response
were chosen to be the "best" channels that were later used
to build the regressors for the combined EEG-fMRI analyses.
In total four dipole locations (i.e. the TF transform of cor-
responding virtual channels) were selected for each subject
individually: One for each of the two hemispheres and one
for each of the two separate frequency bands. Figure 2 A
depicts the result of a full-brain DICS beamformer analysis
[78] for illustrative purposes. Since the LCMV beamformer
approach was limited to specific ROIs obtained from pRF
mapping, the DICS full brain scan was performed in or-
der to verify that indeed visually induced activity yields the
strongest effects at the occipital pole. All steps previously
mentioned were implemented in MATLAB R2021a [79] us-
ing the open source toolbox FieldTrip. See Figure 2 B for
a depiction of the average TF transformed virtual channel
response over participants for one hemisphere and both fre-
quency bands. Since the main hypotheses of the presented
study do not directly address the frequency responses (i.e.
power changes) themselves, which are well established re-
sponse patterns, but rather their relation to the BOLD sig-
nal, a pre-selection of EEG data with the strongest response,
still acts as valid scientific strategy and does not result in a
case of "double dipping".

Combined EEG-fMRI analysis

The general logic of fitting trial-by-trial based EEG time-
frequency regressors individually for each TF bin to the
BOLD signal for different cortical regions and across lay-
ers, follows largely what is described in Scheeringa et al.
(2016) [18]. Several steps have been undertaken to prepare
the EEG and fMRI data for the later combined analysis.

Nuisance regressors contained all trial and response
combinations that were not included in the task regressors
(e.g. false alarm trials). Additional regressors contained
blink or artifact trials, button presses and reaction times.
All the aforementioned regressors were convolved with the
hemodynamic response function as built into SPM12. Re-
action time regressors were treated as a parametric modula-
tion. The onset of the modulation was set to the average re-
action time for each individual block and the actual reaction
time as the modulating value. This procedure was chosen
in accordance with previous literature [18]. Furthermore the
average white matter signal and the average residual signal
(average signal after regressing out gray and white matter
signals) were included in the nuisance regressor matrix. All
motion parameters (translation along and rotation around
x, y, z) and their first derivatives were included as well as
a set of high pass filters modelled as five sines and five co-
sines. Those five sine and cosine waves were constructed,
such that they would span one to five full cycles across one
experimental block. Task related fMRI regressors were
built separately for left and right oriented gratings or both
combined.

EEG data regressors were built on the TF resolved
virtual channel data, obtained as described above. Fre-
quency bin span 0.5 Hz for low and 2.5 Hz for high frequency
data and time bins were set to 0.4 s that were shifted by
0.1 s intervals (sliding window). One regressor was built
for each frequency and time bin separately. This was done
by convolving z-transformed trial-by-trial power changes of

the EEG data with the hemodynamic response function that
comes with SPM12, such that each regressor served as para-
meter modulator. Thereby the time onset was set to the
mid data point of the time domain data bin and shifted by
one to three TRs matching the corresponding three volumes
that have been recorded after the corresponding trials. In
the later general linear model (GLM) each TF based re-
gressor was fit in a separate model. Task and nuisance fMRI
regressors however were kept fixed for each model. Similar
to fMRI based task-regressors, three sets of task-related re-
gressors were built for left or right oriented trials and both
combined. All analyses were performed for a (EEG) time
window ranging from 0.1 s to 0.8 s after stimulus onset,
for which corresponding time bins were averaged. This was
done because the average reaction time to oddball stimuli
was 759 ms. Since the main stimulus processing is assumed
to take place before the response - but in order to include as
many data points as possible - the time bin including 0.8 s

after stimulus onset was included as well.

Before the combined EEG-fMRI analysis could be con-
ducted, a normalization step has been applied in order to
counteract the signal drop-off resulting from the interleaved
sequence. Since in each trial the gap was followed by the col-
lection of 3 consecutive volumes, each voxel of such volumes
within one block was divided by the average BOLD signal in
that voxel of every 1

st, 2nd or 3rd volume in that block. Fur-
thermore, a first level fMRI analysis on the motion corrected
data was performed in order to identify voxels of interest.
Thereby multiple selection criteria were applied to the first
level t-maps: The feature unspecific BOLD response (fu)
is defined as the response to any stimulus (irrespective of
orientation). The feature specific BOLD response (fs) in
turn is defined as the response of a voxel to a specific stimu-
lus orientation compared to baseline or the contrast between
both (left � right stimulus orientation). A positive t-value
from the contrast thereby indicates a stronger response to
left over right oriented gratings, whereas a negative t-value
reflects a voxel’s response preference to right oriented grat-
ings. This allows the formation of a joint selection to group
voxels based on the feature specific response compared to
baseline and the contrast. A voxel with e.g. feature specific
BOLD increase (t > 0 for the right stimulus compared to
baseline) and negative contrast value (t < 0) to that same
stimulus would be said to be a) generally activated by the
right stimulus and also stronger compared to the left stim-
ulus (explained in detail below). As the threshold used for
voxel selection was inconsistent in the previous fMRI-EEG
publications, we decided to adopt a transparent approach.
Each selection was made such that the top 5%, 10% and 25%
of voxels (according to t-value) were included. We corrected
for multiple comparisons accordingly (see below). See Fig-
ure 3 C for a visual representation of the analysis strategy,
Table 1 for a summary of the used nomenclature.

Importantly, fMRI based voxel selection and EEG based
trial-type related regressors could either be combined con-
gruently or incongruently (since feature specific response and
the feature contrast can be divided into responding stronger
to the left or right oriented stimuli). This means that res-
ults could be selected for data of all voxels that respond fea-
ture specific to one orientation with EEG based regressors
built on trials of exactly this orientation (congruent; short:
EEGco) or the respective other orientation (incongruent;
short: EEGinco). A congruent pairing (EEGco) would e.g.
combine data of each voxel with a stronger BOLD increase
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Figure 3: Data preparation and combined EEG-fMRI analysis for three cortical layers. A) Layer specificity. Cortical layers are constructed as
shell-like meshes, taking the gray and white matter boundaries as reference. Between those two reference shells two additional shells divide the space
between gray and white matter into three layers. The area outwards relative to the gray matter boundary is assigned to the CSF layer, whereas the area
inwards from the white matter boundary is assigned to the white matter layer. Each voxel contributes a fraction of its signal to those layers, depending
of the proportional volume of a voxel within each shell like mesh of each layer (see example). Respective fractions are later used as weights to split the
� coefficients resulting from GLM into different layer contributions. B) EEG based regressors. After transforming the EEG data into virtual channel
data for each grid point within the gray matter (using LCMV beamforming), virtual channels are time-frequency transformed. For each hemisphere
and frequency band separately (2 Hz to 32 Hz for ↵ and 20 Hz to 120 Hz for �) the virtual channel with the highest � power increase or ↵ power
decrease after stimulus onset is selected respectively (

P
= 4 virtual channels). Regressors are build for each time-frequency bin separately. Time bins

are averaged to boost SNR. Power values over trials are convolved with the HRF as built into SPM12 resulting in one parameter modulation regressor
for each TF bin. C) Voxel selection. Voxels are selected based on t-maps resulting from first level contrasts. Thereby, both stimulus orientations
vs baseline, each stimulus orientations vs baseline or the contrast between both orientations are considered. D) Statistical inference. EEG based
regressors are entered into a general linear model (GLM) as predictors for the BOLD signal in each selected voxel. The resulting � coefficients for
each voxel are multiplied with the respective layer weights (excluding white matter and CSF layers) in each voxel and averaged for the respective time
window of interest (0.1 s to 0.8 s after stimulus onset) to obtain the final depth by frequency resolved data. This data was tested against the hypothesis
that there was no significant relationship between the EEG and fMRI data (� coefficients do not differ from zero) for each respective condition, using
a cluster permutation test [80]. Resulting clusters were averaged in each layer over frequencies for the widest possible window selected across layers.
The layer profiles of the averaged clusters were tested against the hypothesis that the layer profile is as likely as any other layer profile - under the
assumption of interchangeability of the data - using an auto-regressive rank order permutation (aros) test [81].

to left with EEG based regressors based on trials where the
stimulus orientation was left. In the case of EEGinco, the
same feature specific voxels would rather be combined in a
selection with EEG-based regressors for right oriented stim-
uli. If voxels for both orientations have been selected (fea-
ture unspecific response) an EEG regressor that was built
on both trial types was used in the result selection (no con-
gruence separation).

Irrespective of voxel selection, a higher t-value selec-

tion threshold indicates higher specificity for the respect-
ive stimulus and a lower threshold increases the signal-to-
noise ratio (SNR) by including more data. This changes the
number of voxels selected. In previous publications, employ-
ing a similar experimental setup, 500 voxels with highest ac-
tivation [82, 83] or the top 5%, 10% or 25% activated voxels
[18] were selected. A study by Markuerkiaga et al., spe-
cifically designed to assess the number of voxels required for
optimal SNR in the context of laminar level fMRI, finds 250
voxels (for 3T fMRI ) to yield the best contrast-to-noise ratio
(CNR) [84]. However, since all previously mentioned public-
ations set a more or less arbitrary threshold and the last did
not take the correlation with EEG into account and hence
potential changes in SNR and CNR for those cases, three
thresholds have been selected to eliminate eventual uncer-
tainties: 5%, 10% and 25% of most activated voxels.

A general linear model (GLM) has been computed
with predictors for each TF bin separately for all voxel in
V1 that later have been sub-selected according to the re-
spective condition. Afterwards, each of the resulting re-
gression coefficients (� coefficients) was multiplied with the
voxel specific layer weights that have been obtained as de-
scribed above. The general strategy rests on the idea that
the predicted fMRI activity can be seen as a mixture of sig-
nal contributions from each layer in each voxel. For this ana-
lysis, contributions from white matter and CSF layers have
been excluded and only signal contributions from superficial,
middle and deep layers have been taken into account. After
averaging results from different hemispheres, experimental
blocks, percentiles of interest (e.g. the top 5% voxels of a re-
spective contrast) and time bins for a time interval between
0.1 and 0.8 s after stimulus onset, the final data contains
the average regression coefficients for depth ⇥ frequency ⇥
subject.

Subsequently, separate analyses were done for two fre-
quency of interest (FOI) ranges centred around the ↵ and �

band responses observed in the EEG. Within these frequency
ranges inferential statistics based a cluster level approach
were computed. For low frequencies the FOI range was set
to frequencies between 8 Hz and 14 Hz (↵ band), whereas
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for the high frequencies the FOI was defined as frequencies
between 50 Hz and 70 Hz (� band), which covers the peak
response frequencies found in the average EEG data (see Fig-
ure 2 B). Within the respective range - and if not otherwise
indicated - a single tailed cluster permutation test [80] has
been conducted separately for each threshold and FOI for ↵

and � in V1 since the expected direction of the effect was de-
rived from the literature [18, 85, 86]. Each significant cluster
has been further processed by means of an auto-regressive
rank order similarity (aros) test [81]. The fundamental idea
behind the aros test is whether group averages (i.e. aver-
ages of the signal of cortical layer in the present case), can
be ranked such that the rank order is explained significantly
better by the data than it would if the average data could
not be meaningfully sorted (i.e. is shuffled). This is achieved
by transforming the group averages into unique rank order
values (e.g. superficial > deep > middle) and computing
the average fit of the data to this rank order. In a second
step data points are shuffled between the groups and the
same procedure is applied (i.e. computing the rank order
of the mean and the average fit of the now shuffled data
to the new rank order). Repeating this permutation step a
large number of times (here 25000 times) yields a permuta-
tion distribution, to which the initially computed fit value
of the un-shuffled data is compared. Rejecting the null hy-
pothesis would result in the assumption that the rank or-
der of the group averages indeed can be explained by the
data significantly better than it would if the data points
could not be meaningfully sorted into those groups. Thus,
in the present case it could reveal how the correspondence
between the EEG and fMRI signals could be sorted across
layers. However, statements about the magnitude of the dif-
ference between two (or more) layers cannot be made. This
approach provides insight about the specific activation pro-
file across layers for specific conditions within a significant
depth⇥frequency cluster. Since clusters span layer and fre-
quency bins unevenly, the data that was used for the later
aros test was collapsed over frequencies, such that the lowest
and highest significant frequency bin served as the bound-
ary over which the frequency domain was averaged. This
was done irrespective of the respective cluster size within a
specific layer (see Figure 3 D). Testing for layer specificity is
not straightforward due to issues related to multiple compar-
ison and non-normal distributed data. To circumvent this,
Scheeringa et al. (2016) [18] tested for EEG-fMRI layer spe-
cificity by fitting layer profiles for ↵ and � to each other us-
ing an ordinary regression and tested whether � coefficients
differed to zero. While this approach is suitable for demon-
stration purposes, it does not reveal the exact nature of those
differences between layers. While Scheeringa et al. proved
the concept of layer specific feature extraction, the present
paper aims to determine the relational activity across layers
depending on the feature specific response as well for which
reason the aros test has been developed. For the present
case this means that while neglecting the effect size of the
difference across layers, the overall profile of the differential
activation across layers can be obtained without comprom-
ising statistical power due to multiple comparison.

The described procedure of selecting the respective voxels
of interest, fitting EEG based regressors jointly with task and
nuisance fMRI regressors to the data, weighting the resulting
� regression coefficients with the corresponding layer contri-
bution weights and applying a cluster permutation test, fol-
lowed by an aros test on significant clusters, has been applied
to each of the contrasts of interest. To account for multiple

comparison across the respective selection thresholds, cluster
and aros p-values have been adjusted using the false dis-
covery rate (FDR) adjustment procedure proposed by Ben-
jamini & Hochberg [87]. In the next section, we describe the
different voxels selections applied (see Table 1).

Feature unspecific BOLD decrease

Previous literature on the relationship between laminar level
fMRI and EEG in the visual domain mainly focused on
proofs of concept and related visual cortex fMRI activity to
EEG without considering different stimulus features [18, 31],
which has been accomplished here. Furthermore, the re-
lationship between visual cortex fMRI data and EEG has
been extended to include visual cortex deactivation. In gen-
eral, the sparse corpus of literature investigating negative
fMRI deflections in conjunction with the presentation of
visual stimuli mainly focused on attention related effects
[35, 88] (especially for foveal presented stimuli and a de-
manding task; see Crespi et el., 2011 [89]). Furthermore, it
has been related to decreased neuronal activity in monkey
V1 [36]. Note, that attention was not manipulated as part of
the experimental setup. The results in Figure 2 C (top half)
however, strongly suggest some attention related processing
being involved, as the pattern largely matches what has been
reported for retinotopic activation patterns under the in-
volvement of spatial covert attention [35]. More specifically,
the observed pattern suggests an upwards directed attention
bias, which has been reported in previous literature as well
[90], especially for object (and not spatial) based stimulus
judgements [91], as was the case for this study. Strikingly,
the clear separation between positive and negative t-values
for both stimuli (see Figure 2 C bottom) along the calcar-
ine fissure disappeared when contrasting both stimulus ori-
entations (presumably because attention related and other
general effects do not vary depending on the stimulus orient-
ation). The positive BOLD signal component is expected to
reflect the feature specific response under the influence (en-
hancement) of attention [85]. Hence a strong entanglement
of attention for receptive fields and feature related processes
(when conducting the analysis for both stimuli combined) is
expected. To overcome this limitation and identify "true"
feature-unspecific signal components, we have focused on
the negative feature unspecific BOLD signal to rule out fea-
ture specific contributions, because at attended locations,
the BOLD signal inevitably comprise feature related signal
components. In addition, previous literature suggests that
attention related ↵ power increases could be associated with
BOLD-signal decreases [35, 36, 85] and hence might provide
a meaningful insight into feature unspecific signal contri-
butions. As described above, for each contrast, multiple
thresholds have been applied such for voxels with the 5%,
10% and 25% most negative t-values.

Feature specific BOLD response

In general, the response to the two orthogonal stimulus fea-
tures has been assessed two fold. Based on the t-value ob-
tained from the first level contrast (left�right stimulus ori-
entation), and by comparing the t-values of one orientation
to baseline. For the first case, voxels respond preferentially
to one over the other orientation. The result of the contrast
and the response compared to baseline then create a joint
selection. This is the response of a voxel to one stimulus
orientation compared to baseline, relative to the response
of that voxel to the other stimulus. Hence, voxels with a
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contrast value that is based on the difference between one
positive and one negative or two negative values compared
to baseline are systematically excluded. This joint selec-
tion between feature specific voxels with strictly positive re-
sponse compared to baseline, can be interpreted as feature

specific BOLD increase. In turn, feature specific BOLD
decreases could be defined accordingly, but because of how
the feature contrast is defined (stronger response to one ori-
entation over the other orientation), the feature specific

BOLD decrease was solely based on the comparisons to
baseline. This means that a feature specific BOLD decrease
to one orientation includes those voxels that have a stronger
BOLD decrease compared to baseline as compared to the
other stimulus orientation compared to baseline, but only for
those voxel with a t-value smaller than zero. Lastly, voxels
were selected based on the contrast and on whether they ex-
posed a sign flip as a result of being presented with one or the
other orientation. While the feature contrast does not limit
the voxel selection based on a voxel’s response compared
to baseline, and the feature response compared to baseline
limits the voxel selection to either positive or negative re-
sponses compared to baseline, the feature specific BOLD

sign flip response is formed by a joint selection of contrast
value and whether a voxel responds with a BOLD increase
to their preferred orientation and with BOLD decrease to
the respective other orientation. Using this procedure an in-
direct link between feature specific inhibition in the context
of feature processing can be established. See Table 1 for a
summary of all conditions.

Each selection can be further split into voxels that re-
spond preferentially to left or right stimuli. In addition, the
EEG regressors can as well be separated into left and right

by the trials they were constructed from. Using this strategy,
the result of the GLM can be separated into congruent or
incongruent parts, were feature specific signal changes were
assessed for congruent (EEGco) or ingongruent (EEGinco)
combinations of selected voxels and EEG based regressors.
Beside separately looking at congruent and incongruent com-
binations, contrasts have been computed as the difference of
� coefficients between EEGco and EEGinco (EEGco�inco).
Here, attention related effects are assumed to not play an
important role, since the same sub-selection of voxels was
used and a bias resulting from orientation dependent EEG
regressors with respect to attention appears very unlikely.
As previously mentioned, each set of results was followed by
a single tailed cluster permutation test [80]. The only de-
viation to this is the test on feature specific sign flip data,
with EEGinco. Here a two sided cluster permutation test
has been performed, because the directionality of the effect
could not be reliably derived from the literature or theoret-
ical models.

The final results structure encompasses the layer by fre-
quency resolved data for each voxel selection threshold and
combination with EEG power regressors, significant clusters
and aros results for ↵ and � separately. Figure 4 provides
a dummy result figure with explanations on the arrange-
ment of plots. Furthermore, results averaged over frequen-
cies within each cluster can be found in the supplementary
material.

pref. selection

description ori. criteria

feature unspecific � [stimulus � BL] < 0
BOLD decrease (fu decr.)

feature specific [l � r] > 0, with

BOLD increase (fs incr.) L [l � BL] > [r � BL] > 0

R [l � r] < 0, with

[r � BL] > [l � BL] > 0

feature specific L [l � BL] < [r � BL] < 0
BOLD decrease (fs decr.)

R [r � BL] < [l � BL] < 0

feature specific [l � r] > 0, with

BOLD sign flip (fs flip) L [l � BL] > 0 > [r � BL]

R [l � r] < 0, with

[r � BL] > 0 > [l � BL]

pref.

Result combinations ori. EEG regressor

congruent L EEGL

(EEGco)

R EEGR

incongruent L EEGR

(EEGinco)

R EEGL

Table 1: Contrast dependent voxel selection Voxel selections were
made based on t-maps resulting from first level fMRI analyses. Those
t-maps include any stimulus compared to baseline (stimulus � BL),
the contrasts between both stimulus orientations (i.e. left � right
or l � r) and each stimulus separately compared to baseline (l � BL
or r � BL). From those four t-maps, voxel selections have been de-
rived to answer respective hypotheses. Depending on the respective
selection threshold voxels can be further sub-selected (e.g. top 5%).
The feature unspecific BOLD decrease has been assessed by select-
ing the data of voxels with a general BOLD decrease to any stimulus
irrespective of the stimulus orientation. Feature specific BOLD in-

crease was defined as those voxels that were separated based on the
sign of the contrast l� r, which was further sub-selected to only con-
tain voxels that are strictly positive when comparing each stimulus
to baseline. Feature specific BOLD decrease in turn is assessed by
separating voxels into L and R depending on the stimulus orientation
for which the t-value of the stimulus compared to baseline is most
negative and excluding voxels with a t-value (� 0). Lastly, voxels
have been analysed that expose a feature specific BOLD sign flip.
Those are voxels that have been grouped into L and R based on the
feature contrast and were sub-selected such that the response to one
orientation compared to baseline is positive, while the response to the
respective other orientation compared to baseline is negative. After
computing the GLM, the result matrices were obtained by group-
ing � weights for the respective voxel selections (L or R) and EEG
regressors either congruently (EEGco) or incongruently (EEGinco)
with the stimulus orientation of the trials the EEG based regressors
were built from.

Results

Behavioral data and basic task effects

Behavioral and basic task effects were only analyzed de-
scriptively. No inferential statistics have been conducted,
since those analyses mainly served as sanity checks or re-
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EEG Frequency
- superficial 
- middle 
- deep

% most extreme  
t-values

5%10%25%

Selection 
threshold

Cortical 
layers

 coefficient�̄

Significant 
Cluster test

After MC correction

Before MC correction

Condition

Before MC correction

After MC correction

Figure 4: Composition of result figures. The main result plots
will be composed of 6 "slices" or "pieces of cake", where each "slice"
represents one congruence condition. Each slice will look like the bot-
tom right one in this figure. For illustrative purposes the information
is built up clock-wise starting at the bottom left slice. The left hand
slices reflect the results for the ↵ band and the right hand side res-
ults for the � band, while the top two slices reflect congruent and the
bottom two reflect incongruent results. In between (centre) the con-
trast congruent � incongruent can be found. Each shell-like struc-
ture reflects a certain selection threshold with results where t-values
used for voxel selection that are most extreme are located towards the
centre (e.g. top 5%). Each of the threshold shells is again sub-divided
into three layers, reflecting (from outside towards centre) superficial,
middle and deep layer results. At the outer ring the respective fre-
quency is shown. A cluster permutation test has been performed on
each layer by frequency "patch" and significant results are highlighted
using more saturated colours. If a cluster failed to reach significance
after correction for multiple comparison, the cluster is decorated with
tiny black dots. In case of a significant cluster (before correction for
multiple comparison), an aros test has been performed, to determine
the rank order the effect across layers. Thereby, three dots (� � �)
indicate the strongest and one dot (�) the weakest effect in case the
test reached significance. Again, if an aros result did not reach signi-
ficance after multiple comparison correction or in case the aros test
was performed on a cluster that did not reach significance after mul-
tiple comparison correction, the aros result is shown as black dots
(rather than white). Hence, statistically most relevant effects will be
reflected in highlighted clusters without black dots and white circles
indicating the rank order across layers.

flect intermediate results that were used for the main ana-
lyses. The main purpose of these analyses was to verify
subject’s compliance to the task (behavioral results) and ex-
pected functional result patterns (e.g. expected EEG time-
frequency responses). The shown results represent the data
as it was used to conduct the final combined EEG-fMRI ana-
lyses.

On average (SD) participants responded correctly to the
stimuli in 94% (8%) cases with a false alarm rate of 2% (3%)
to non-oddball stimuli and a miss rate of 5% (7%), indicat-
ing that participants performed the task adequately well and
complied to the task instructions. The average (SD) reac-
tion time was 759 ms (131 ms). See Figure 1 for a graphical
representation of the task.

The EEG signal, used to construct regressors for the final
combined EEG-fMRI analyses, was obtained by a time fre-
quency analysis of each virtual channel, computed for each
voxel location of the gray matter in V1. In each hemisphere,
one virtual channel for low and one for high frequencies was
selected that showed the strongest ↵ decrease and � increase
respectively. Figure 2 B depicts the average EEG response of
the selected, TF transformed virtual channel averaged over
all trials and subsequently over all participants. For demon-
stration purposes, only low and high frequency channels of

5%10%25% � �
5% 10% 25%

- D -

- M -

- S -

- D -

- M -

- S -

- D -

- M -

- S -

V1 feature unspecific BOLD decrease

Figure 5: Average � coefficients (average contribution per voxel)
for voxel sub-selections with negative t-values for both stimulus ori-
entations combined (general activation). For each frequency bin a
separate model has been computed and results were weighted with
the respective layer contribution weights. Frequency bins (0.5 Hz

steps for ↵ and 2.5 Hz steps for �) are indicated at the out-most
half circle. Layers are indicated by coloured abbreviations for super-
ficial (S), middle (M) and deep (D) layers. Percentages indicate the
threshold at which voxels were selected (e.g. 5% would refer to the 5%
most negative t-values given a respective sub-selection). More satur-
ated areas indicate a significant cluster after a cluster permutation
test [80]. For each significant cluster an aros test [81] has been con-
ducted across all layers for the widest possible frequency range that
the cluster spans. In case of a significant result, white circles indicate
in which layers the respective effect was strongest (3 circles), medium
strong (2 circles) and weakest (1 circle). Thereby, the strongest effect
in the ↵ band corresponds to the most negative � values. Corres-
ponding cluster and aros p-values are shown in Table 2.

the right hemisphere are shown. By visual inspection, the
main ↵ band decrease was determined to last from 0.2 s

to 0.8 s after stimulus onset and for a frequency range of
8 Hz to 14 Hz. The main � band increase was determined
between 0.1 s and 0.7 s after stimulus onset for a frequency
range between 50 Hz and 70 Hz. A time window between
0.1 s and 0.8 s, was used for the main analyses, since both
time windows for ↵ and � responses are covered. Further-
more, this time window ensures that only time bins went
into the analyses that were related to the actual stimulus
processing (µRT = 759 ms), but at the same time that the
signal-to-noise ratio was kept as favourable as possible. To
verify that the main TF response of interest originated at
the occipital pole, a DICS beamformer full brain analysis
had been conducted at the centre frequencies of the selected
bands. As visible in Figure 2 A the top 5% of the subject
averaged strongest decrease at 11 Hz or increase at 60 Hz in
response to the stimulus indeed localized to occipital regions.

While the result of the general activation first level BOLD
analysis (both stimulus orientations) within V1 showed a
clear-cut t-value distribution pattern around the calcarine
sulcus with more negative t-values located dorsal and more
positive t-values ventral to the fissure, the first level con-
trast between both stimulus orientations did not. However,
a similar pattern as observed with both stimulus orientations
has been found for each stimulus orientation separately com-
pared to baseline. In addition to the observed distribution
of positive and negative t-values, the peak activation for any
or both stimuli compared to baseline were expected to loc-
ate to the occipital pole, due to the central presentation of
the stimulus [53, 92]. When computing the contrast between
both orientations, this peak should be much less pronounced
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or absent. Both of those patterns have been observed. See
Figure2 C for a visual representation. Again, this visualiza-
tion only serves descriptive purposes. No inferential analyses
have been conducted.

Combined EEG-fMRI analyses

The relationship between the EEG and fMRI data has been
investigated on a trial-by-trial basis by means of a general
linear model (GLM) as done previously [18, 31]. A separate
GLM model was computed for each TF bin by convolving the
EEG response of time-frequency transformed virtual chan-
nels with the standard hemodynamic response function as
built into SPM12. Task and nuisance fMRI regressors served
as control parameters and were fixed for each model. � coef-
ficients for every voxel that were taken into consideration
were multiplied by the layer weights for those respective
voxels. This procedure was repeated for multiple activa-
tion thresholds used to select a respective sub-set of voxel,
such that the most activated (or deactivated) 5%, 10% and
25% voxels have been considered. The data was averaged
for a time window between 0.1 s and 0.8 s after stimulus
onset. Here, only results for V1 are reported, mainly due
to poor data quality of the pRF mapping, which resulted in
less distinguishable higher order visual areas (V2, V3). Ad-
ditionally, the used stimulus material specifically targeted
high activation in V1 (over V2 or V3) [93]. Results for V2
and V3 are reported in supplementary material (see Fig-
ures Sf1, Sf2, Sf3 and Sf4 and Tables St2 and Tables St3)
and do not substantially deviate from results for V1.

Feature unspecific BOLD decrease

A significant negative relationship between low frequency
EEG (↵) power changes and negative BOLD signal deflec-
tions (i.e. the more negative the BOLD, the stronger the
↵) irrespective of trial type has been found using a cluster
permutation test [80] for all three sub-selection thresholds
(5%, 10%, 25%) for each of the selected sets of voxels. See
Figure 5 for a visualization of the results and Table 2 for for
p-values, corrected using the Benjamini-Hochberg approach
[87] to adjust false discovery rates (FDR). Results for V2
and V3 are shown in Figure Sf1 and Tables St2 and St3
(supplementary material). For each cluster the average data
that was used compute the aros test [81] can be found in the
supplementary material as well (Figures Sf5, Sf8 and Sf11).

The strongest negative relationship between ↵ and the
negative BOLD signal was found mainly in superficial lay-
ers, where main driver of this effect appear to be lower fre-
quency ↵ oscillations (< 11 Hz). This observation becomes
even more pronounced for lower thresholds, where despite a
reduced number of voxels the effect becomes stronger.

In turn, for none of the voxel sub-selections a signific-
ant effect for the high frequency (�) EEG power regressors
has been observed, irrespective of the respective selection
threshold.

Feature specific BOLD response

Feature specific BOLD signal deflections have been related to
EEG based regressors for (1) voxels that exhibited a feature
specific BOLD increases (2) voxels that exhibited a feature
specific BOLD decreases, and (3) voxels that respond pos-
itive to one but negative to the other stimulus orientation

(feature specific sign flip; see Table 1). Thereby, voxels with
stronger response to the left or right orientation (for neg-
ative responses this means a stronger negative deflection)
have been combined with EEG power regressors (for ↵ or
� separately) built from left or right oriented trials, either
congruently (EEGco) or incongruently (EEGinco). Further-
more, the contrast EEGco�inco has been computed for each
respective sub-selection of voxels (5%, 10%, 25%). See Fig-
ure 6 for a visualization of the results and Table 2 for exact
p-values, corrected using the Benjamini-Hochberg proced-
ure [87] to adjust false discovery rates (FDR). The result
of the feature contrast alone, as well as results for V2 and
V3 are shown in Figure Sf2, Figure Sf3 and Sf4 as well as
Tables St1, Tables St2 and St3 (supplementary material).
For each cluster the average data that was used to compute
the aros test [81] and can be found in the supplementary
material too (Figures Sf7, Sf10 and Sf13).

Feature specific BOLD increases (Figure 6 A)

We observed a negative relationship between the alpha fre-

quency band and the feature specific BOLD signal increase
for EEGco . A trend level result (significant uncorrected for
multiple comparisons) for feature specific, positive BOLD
and EEGinco was observed as well. No significant effect
was observed for the contrast EEGco�inco in the ↵ band.
Interestingly, the exact ↵ frequency range differs between
the selection of voxels for EEGco and EEGinco. The exact
↵ frequency spectrum was slightly biased upwards (⇡ 10 to
14 Hz) for EEGco while the frequency range involved for the
trend level result for EEGinco tend towards the lower end
of ↵ (⇡ 8.5 to 11 Hz).

The laminar profile for EEGco has been observed to be
flat with the exception of the most liberal threshold (25%
most activated voxel) where the strongest relationship between
↵ and the BOLD signal was located in superficial layers fol-
lowed by deep layers. For the trend level clusters in EEGinco

the strongest effect was found in deep layers.

Within the gamma frequency range we observed a
positive relationship between the � band EEG signal and
the feature specific BOLD signal increases for the contrast
between congruent and incongruent conditions for frequen-
cies between ⇡ 55 and ⇡ 65 Hz. Only for the most liberal
threshold (25%) a significant layer profile was obtained, with
the strongest relationship between � and the BOLD signal
in superficial and deep cortical layers.

Feature specific BOLD decreases (Figure 6 B)

We also observed a significant negative relationship between
alpha frequencies and feature specific BOLD signal de-
creases for EEGinco. Similarly to feature specific BOLD
increases selection, we did not observe significant differences
for the contrast EEGco�inco in the ↵ band. The frequency
range involved for EEGinco appeared to be broadband (cov-
ering almost the entire spectrum). The laminar profile for
orientation specific BOLD signal decreases voxels was found
to have a stronger relationship between ↵ and superficial and
middle layer BOLD activity.

No significant results was observe for the gamma fre-

quency based EEG regressors for these selections of voxels.
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Figure 6: Average � coefficients (average contribution per voxel). For each frequency bin a separate regressor has been used and results
were weighted with the respective layer contribution weights. Frequency bins (0.5 Hz steps for ↵ and 2.5 Hz steps for �) are indicated at
the out-most half circle. Layers are indicated by coloured abbreviations for superficial (S), middle (M) and deep (D) layers. Voxels were
selected based on the first level fMRI contrast as follows: (A) Voxels that respond strictly positive to both orientations and stronger to
one orientation over the other or (B) Voxels that respond more negative to one orientation compared to baseline as the other orientation
compared to baseline does. See also Table 1 for an overview of how the conditions are constructed. Percentages indicate the threshold at
which voxels were selected and refer to the respective sub-selection (e.g. 5% would refer to the 5% most positive or negative t-values given a
respective sub-selection). Congruent thereby means that if a voxel e.g. responds stronger to left oriented gratings over right oriented gratings
EEG based predictors for the left orientation trials (and vice versa) were used to compute the results. In turn incongruent means that if a
voxel e.g. responds stronger to left oriented gratings over right oriented gratings based predictors for the right orientation trials (and vice
versa) were used to compute the results. More saturated areas indicate a significant cluster after a cluster permutation test [80] and FDR
correction [87]. Black dots indicate a cluster p-value of > .05 after, but < .05 before the correction was applied. For each significant cluster
an aros test [81] has been conducted across all layers for the widest possible frequency range that the cluster spans. In case of a significant
result after FDR correction, white circles indicate in which layers the respective effect was strongest (3 circles), medium strong (2 circles)
and weakest (1 circle). If the aros p-value was < .05 before, but > .05 after the correction, aros shapes are indicated using grey circles.
The strongest effect in the ↵ band corresponds to the most negative � values, whereas in the � band the strongest effect refers to the most
positive. Corresponding cluster and aros p-values are shown in Table 2.

Feature specific BOLD with sign flip (Figure 7)

We observed a negative relationship between alpha fre-

quencies and feature specific BOLD signal deflections that
are positive for one, but negative for the other orientation
for EEGco and the contrast EEGco�inco. Both showed a
bias of the effect towards deep layers and while the effect for
EEGco spans almost the entire frequency spectrum of in-
terest, the effect for the congruence contrast was observed to
be biased towards the upper ↵ range (⇡ 10 to ⇡ 14 Hz). Ad-
ditionally a positive relationship between ↵ and the BOLD
signal was found for the deep layer in EEGinco for the 5%
most specific voxels.

No significant results was observe for the gamma fre-

quency based EEG regressors for these selections of voxels.

Discussion
In the present study, laminar level fMRI was combined with
simultaneously recorded EEG in healthy human participants.
We tested whether stimulus induced changes in EEG power
in the ↵ and � band relate to feature specific or feature
unspecific neural activity at the level of cortical layers as
reflected in the BOLD signal. First, we observed that �

band oscillations are positively correlated with feature spe-
cific BOLD signal increases in superficial layers as predicted
by the literature [6, 8, 16, 18]. In addition to that we ob-
served that � band oscillations are also related to deep layer
BOLD activity changes (see Figure 6 A). Second, we found
↵ band oscillations to be negatively related to BOLD signal
decreases given any stimulus (global modulation). Although
a negative relationship between ↵ power changes and BOLD
signal increases has been previously reported ([18, 31, 85]),
the relationship between ↵ and negative BOLD signal de-
flections (see Figure 5) has not been previously reported,
because stimulus evoked BOLD decreases have received less
attention from previous research. Furthermore, we could
show that ↵ band oscillations were inversely related to fea-
ture specific BOLD activity as well, which has been predicted
by some, but not the majority of theoretical frameworks [8]
(see e.g. Figure 7). The global and feature specific rela-
tionship between ↵ and BOLD signal fluctuations could be
attributed mainly to superficial and deep layers, both layers
being predicted by the literature [8, 16, 94].

We first discuss the fMRI results before moving to the
combined analyses. Strikingly, in addition to a large posit-
ive BOLD response, we observed a reduced BOLD activity
(independent of the stimulus orientation) dorsal of the cal-
carine sulcus (Figure 2 C top). Even though attention has
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V1
↵ �

5% 10% 25% 5% 10% 25%
cluster aros cluster aros cluster aros cluster aros cluster aros cluster aros

fu decr. - .026 .000 .026 .000 .004 - - - - - - -

fs incr.

co .006 - .006 - .003 .000 - - - - - -
co - inco - - - - - - .043 - .021 - .021 .000

inco - - - - � � - - - - - -

fs decr.

co - - - - - - - - - - - -
co - inco - - - - - - - - - - - -

inco .011 - .011 .000 .002 .000 - - - - - -

fs flip

co - - .007 .000 .000 .000 - - - - - -
co - inco .026 - .017 .000 .007 .000 - - - - - -

inco .041 � - - - - - - - - - -

Table 2: False discovery rate (FDR) adjusted p-values, computed using the Benjamini-Hochberg procedure [87] for the respective voxel
sub-selections in V1. FDR corrections where computed on the p-values resulting from either the cluster permutation tests [80] or the
corresponding aros tests [81] across the respective selection thresholds (5%, 10% and 25%). The circle symbol ( � ) indicates a p-value smaller
than 0.05 before multiple comparison correction was applied. Conditions are abbreviated as follows: fu decr.: feature unspecific BOLD
decrease (negative BOLD for any stimulus compared to baseline); fs incr.: feature specific BOLD increase; fs decr.: feature specific BOLD
decrease;fs flip: feature specific BOLD sign flip (feature specific positive BOLD for one orientation, but negative for the other orientation).
See also Table 1 for more information and Figure 6 for a visual representation.

not been manipulated as part of this experiment, the overall
distribution of positive and negative BOLD reported here,
closely resembles previous findings on the retinotopy of the
attentional spotlight, where attended locations would result
in higher BOLD activity whereas unattended parts result in
less BOLD activity [35]. One interpretation would be that
the task (detecting wiggles) could be solved by spatially at-
tending one part of the stimulus only. Those negative de-
flections do probably not reflect a case of "blood stealing"
[58], since it has been found that a decrease in attention
led to a decrease in the BOLD signal [88] as well, which
could furthermore be related to decreased neuronal activity
[36]. More importantly, we were able to isolate voxels with a
feature-specific response for both positive and negative (i.e.
voxels that are more negative for one orientation than the
other) BOLD signal deflections. The feature-specific neg-
ative voxels might reflect sharpening through feedback [95].
However, a small portion of these negative voxels respon-
ded positively to the other orientation (flip voxels). Given
the small amount of these voxels, we believe that these flip
voxels are rather negatively modulated by nearby activated
voxels (sharpening) through horizontal connections [96].

The combined EEG-fMRI analyses revealed a positive
correlation between � and feature-specific voxels in both su-
perficial and deep layers. The relationship between � and
superficial layer BOLD is similar to what has been reported
by Scheeringa et al. (2016) [18]. In addition to that, previous
work in monkeys also attribute � band activity to superficial
layers [16]. Accordingly, oscillations in the � band have been
attributed mostly to a feed-forward flow of information via
superficial anatomical connections [6, 7]. However, we also
found a relationship between � and deep layer BOLD which
was not reported by Scheeringa and colleagues who reported
a more evenly spread layer distribution for V1, with a trend
to more superficial layers in V2 and V3. A notable differ-
ence with the results presented here is that this study did not
include a contrast between congruent and incongruent fea-
tures. Since the here reported deep layer � effect is stronger
compared to middle layers, we do consider this finding func-
tionally relevant. Furthermore, even though van Kerkoerle

et al. (2014) [16] discuss the � effect with respect to superfi-
cial layer neuronal activity only, their data shows a signific-
ant peak in layer 6 as well, which might even be stronger than
in superficial layers and potentially even stronger modulated
by task relevance (see figures 2F and 2G in the respective
publication). In fact an analysis of the relationship between
the EEG signal and the BOLD signal that focused only on
the feature contrast (L�R; independent of the comparison to
baseline) revealed a trend level result with an even stronger
deep layer contribution as compared to superficial layers (see
Figure Sf2 in supplementary material). This strongly implies
an involvement of � oscillations in feature specific processes
[5]. Since � band oscillations are thought to be related to the
ongoing active processing of stimuli [5, 6] or directly reflect
neuronal spiking activity [23], limiting the analysis strictly
to voxels with a positive t-value might have increased the
SNR substantially, resulting in a stronger effect for feature
specific BOLD signal increases as compared to the feature
contrast alone. Recent publications on the information ex-
change within and between primary visual cortex areas of
macaques also reported deep layer � band activity depend-
ing on the stimulus material [97, 98]. Those publications
challenge the feed-forward exclusivity of � altogether by re-
vealing intra-area feedback communication in V1 from layer
5 to layer 6 and layer 6 to supra-granular layers. Possibly, the
relationship between � and deep layer BOLD we observed is
also related to similar processes. However, it was also shown
that feed-forward connections to higher order regions do ex-
ist in deep cortical layers of macaque monkeys as well [99].
Conclusive evidence about the directionality and source of
the � related deep layer effect thus remains uncertain.

The correlative nature of the here presented approach
cannot provide such insights and are likely better addressed
in recordings in animal models[16]. Our data however, clearly
supports the investigation of feature processing related deep
layer � band activity.

Regarding ↵ modulation, we found a general negative
relationship between ↵ band power and the orientation -
independent BOLD signal decreases mentioned above (espe-
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Figure 7: Average � coefficients (average contribution per voxel).
For each frequency bin a separate regressor has been used and results
were weighted with the respective layer contribution weights. Fre-
quency bins (0.5 Hz steps for ↵ and 2.5 Hz steps for �) are indicated
at the out-most half circle. Layers are indicated by coloured abbre-
viations for superficial (S), middle (M) and deep (D) layers. Voxels
were selected such that they respond positive to one orientation but
negative to the other orientation and stronger for one orientation as
compared to the other (feature specific BOLD sign flip). See also
Table 1 for an overview of how the conditions are constructed. Per-
centages indicate the threshold at which voxels were selected and refer
to the respective sub-selection (e.g. 5% would refer to the 5% most
positive or negative t-values given a respective sub-selection). Con-
gruent thereby means that if a voxel e.g. responds stronger to left
oriented gratings over right oriented gratings EEG based predictors
for the left orientation trials (and vice versa) were used to compute
the results. In turn incongruent means that if a voxel e.g. responds
stronger to left oriented gratings over right oriented gratings based
predictors for the right orientation trials (and vice versa) were used
to compute the results. More saturated areas indicate a significant
cluster after a cluster permutation test [80] and FDR correction [87].
Black dots indicate a cluster p-value of > .05 after, but < .05 be-
fore the correction was applied. For each significant cluster an aros
test [81] has been conducted across all layers for the widest possible
frequency range that the cluster spans. In case of a significant res-
ult after FDR correction, white circles indicate in which layers the
respective effect was strongest (3 circles), medium strong (2 circles)
and weakest (1 circle). If the aros p-value was < .05 before, but > .05
after the correction, aros shapes are indicated using grey circles. The
strongest effect in the ↵ band corresponds to the most negative � val-
ues, whereas in the � band the strongest effect refers to the most pos-
itive. Corresponding cluster and aros p-values are shown in Table 2.

cially in superficial layers and frequencies below 11 Hz; see
Figure 5). Given the general ↵ power decrease (that would
overshadow local increases; see Figure 2 A and B), we inter-
pret this result as a reduction of decreased ↵ power (relative
increase) that would be linked to the locally reduced BOLD
activity (Figure 2 C top). Future experiments manipulat-
ing attention might reveal a similar relationship between ↵

and superficial layer cortical activity for suppressed (unat-
tended) receptive fields. The negative relationship between
↵ and this negative BOLD signal is in line with the hypo-
thesized inhibitory nature of ↵ [8, 9, 85, 100].

We observed a significant relationship between deep layer
↵ for feature specific BOLD with sign flip (tending towards
the upper ↵ range), which stands against the traditional view

of ↵ acting as a more global modulator [9, 100] rather than
a local feature-specific actor. In addition we found a signi-
ficant relationship between superficial and deep layer BOLD
and ↵ (above 11 Hz) for the feature contrast voxel selec-
tion between congruent and incongruent EEG-fMRI pairings
(see supplementary material). If the congruence contrast
was limited to strictly positive or negative voxel, such effect
was not significant. This could be explained by the limited
variability if the analysis focused solely on positive or neg-
ative BOLD signal changes, where voxels with a very large
response variability (e.g. strongly positive to one but neg-
ative to the other orientation) are excluded. This is in line
with the results observed for flip voxels, where those highly
variable voxels not only lead to the strongest effects overall
(despite the number of voxels was lowest), but furthermore
exposed a positive relationship between ↵ and deep layers
for feature incongruent selections. As discussed above, we
believe that these flip voxels are negatively modulated by
nearby activated voxels. Therefore the positive correlation
between ↵ and the negative BOLD signal could be a con-
sequence of the negative correlation between ↵ and the pos-
itive BOLD signal of the respective other orientation.

Interestingly, we observed that frequencies below 11 Hz

were negatively correlated with the BOLD signal in the in-
congruent conditions of feature specific BOLD signal in-
creases on a trend level. In the congruent condition we ob-
served a correlation in higher frequencies of > 11 Hz. Given
that we observed also a stronger negative correlation for
frequencies below 11 Hz with the orientation-independent
BOLD signal decreases (especially for the 5% most negative
voxels), we interpret the ↵ effect below 11 Hz as a source of
general modulation. Thereby, ↵ power would possibly de-
crease in task-relevant pools of neurons and increase in task-
irrelevant pools of neurons (i.e. attention-related). On the
contrary, frequencies > 11 Hz would reflect feature-specific
processes, only observed in neurons responding specifically
to that stimulus orientation.

The literature on differences in frequency within the ↵

band depending on visual stimulus features is sparse. Ac-
cording to Klimesch (1997) [101], lower frequency ↵ power
was assumed to reflect attentional processes while upper ↵

band power is related to semantic memory demands. Here,
lower frequency ↵ appears to be related to the modulation
of negative BOLD signal changes for general (see Figure 5)
processes. This would be in line with the findings on lower
frequency ↵ reported by Klimesch. In turn our findings on
upper frequency ↵ oscillations are more often related to fea-
ture specific processes (see e.g. Figure 7), which could be
related to the findings on upper frequency ↵ by Klimesch.
He related upper frequency ↵ power to memory perform-
ance under high cognitive load, which in turn could be a
proxy for how well the stimuli (i.e. its features) were en-
coded. A second publication by Rodriguez-Larios et al.
(2022) [19] employed a single-subject analysis of independ-
ent components which revealed two dissociable ↵ rhythms,
which both were differentially modulated by visual distract-
ors. The lower ↵ component increased in power, while the
higher frequency ↵ component decreased in power under the
presence of a visual distractor. Behavioural accuracy was
positively related with lower frequency ↵ power and neg-
atively related with upper frequency ↵. Again, we inter-
pret those findings as indirect evidence to support the here
presented results, with the lower frequency ↵ being related
to attentional processes (i.e. distractor suppression) and the
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upper frequency ↵ to the content of the memory. Further-
more, it could be shown that individual ↵ frequency (IAF)
and task performance are related such that higher IAF is
linked to higher visual task accuracy [102–104]. Coldea and
colleagues (2022) [104] argue that the IAF modulates the
speed of visual sampling, which is in line with Di Gregorio et
al. (2022) [102]. Since behavioral performance in the present
study was consistently high at 94% on average and subjects
were asked to respond to a potential oddball as quickly as
possible, a higher ↵ frequency might reflect a more success-
ful stimulus encoding and hence faster and more accuracte
behavioral performance.

In addition ↵ amplitude and frequency have been shown
to reflect two distinct processes, where ↵ frequency is related
to task performance, amplitude could be demonstrated to be
related to visual awareness or confidence judgements about
individual task performance [103, 105, 106] that could even
be shown to depend on the exact cortical region [107]. Taken
together, the here observed upwards shift in frequency for
the feature specific BOLD with sign flip (see Figure 7) is
in line with those findings and most likely reflects a process
different from general modulatory processes that are more
reflected by broadband or low frequency ↵.

Not only did we find a dissociation in the frequency do-
main between the relationship of ↵ and the BOLD signal,
but furthermore found that the laminar activation patterns
provide further insight into multiple ↵-related processes. Low
frequency ↵ is related predominantly to the BOLD signal
in superficial layers (except feature specific BOLD increase
voxels with incongruent EEG feature pairing where the SNR
is limited due to the focus on positive signal changes only),
while the higher frequency ↵ could be associated predomin-
antly to superficial and deep layer activity. Superficial layer
activity has been shown to be under modulation of attention
[18, 83, 94, 108], but mostly feedback related cortical activ-
ity in deep layers has been associated with stimulus features
[26] and (feature) predictions [108]. As brought forward by
Bastos et al. (2020) [108] in the context of stimulus predict-
ability, ↵ band activity in deep layers might be more related
the predictability of certain stimulus features and superficial
↵ being more generally modulated (irrespective of stimulus
features). This would further be in line with findings by
Pluta et al. (2019) [109], who could demonstrate in mice,
that superficial layer activity acts suppressive on deep layers
in order to fine tune stimulus feature selectivity.

One remaining question would be, whether already pre-
stimulus ↵ band activity in the upper range is predictive for
task performance, as suggested by some authors [102, 103]
and whether the laminar profile would be similar to the here
presented findings on post-stimulus ↵. Due to the limited
time window prior to the stimulus onset and gradient arti-
facts of the MRI machine that lasted until 300 ms before
the onset of the stimulus, pre-stiumulus ↵ could not be in-
vestigated in depth here. Figure 2 B however, indicates that
pre-stimulus ↵ might play a role for the present task.

A second remaining question is the relationship between
the observed ↵ and � band effects. For the congruence con-
trast of feature specific voxels the strongest effects have been
observed in superficial layers, followed by deep layers, which
again supports the hypothesis that this deep layer effect is at
least partly related to feature related processing. If and how
lower and upper-frequency ↵ band oscillations across differ-

ent cortical layers interact with each other and how each or
both interact with � band oscillations [8], needs to be invest-
igated in detail in future experiments.

Future publications will furthermore need to take � band
oscillations into account as well, as those are hypothesized to
play a crucial role for visual stimulus processing and might
exert a potential top-down influence [7, 110]. Here, we only
looked at � band oscillations exploratory and found no sig-
nificant correlation between � and the BOLD signal. This
could be due to the selection process for the respective EEG
virtual channels that were optimized specifically for ↵, but
furthermore could be explained by the burst-like nature of �
oscillations [110, 111] which makes them harder to capture
with the analysis strategies employed here.

Conclusion
In sum, we present evidence for the presence of multiple ↵

- related processes in the visual system. While deep layer ↵

appears to be related to the processing of specific stimulus
features, superficial layer ↵ appears related to a more gen-
eral modulation of BOLD activity. In addition, the active
stimulus feature processing appears tightly linked to � band
oscillations via superficial and deep layers as well.
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