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Light Scattering by a Sphere

according to A.F. Stevenson's method

Frédéric Gruy
Laboratoire Ondes et Matiere d’Aquitaine, CNRS, UMR 5798, Université de Bordeaux

Email : frederic.gruy@u-bordeaux.fr

Abstract: This paper takes up the calculation of the electromagnetic field scattered by a sphere
composed of a material with any relative permittivity and permeability, according to the method of A.F.
Stevenson (1953). Unlike Stevenson's original publication, the calculations are detailed and completed.
This work completes that achieved for an ellipsoid (Gruy, hal-04655313). However, the result is not

obtained by replacing (a,b,c) by (R,R,R) into the expressions of the electromagnetic field,

revealing technical problems, but by directly applying Stevenson's method. The solution then uses the
spherical harmonic functions in place of the ellipsoidal harmonic functions. The solution obtained by
Stevenson's method has been successfully compared to that obtained by Mie's theory. The interest of
this result, which has also been well known for a long time, lies in its use as a tool for partial validation
of the solution obtained for the ellipsoid.
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1. Introduction

The interaction between an electromagnetic wave and an object results in the existence of an
electromagnetic field inside the object and outside the object (the scattered field). The
electromagnetic field is obtained by solving Maxwell's equations associated with boundary
conditions (the surface of the object and the surface of a sphere of infinite radius and the same
center as the object). The corresponding analytical solutions exist for very few objects,

including the sphere (Mie theory, 1908).

For a particle whose size is small compared with the wavelength of the incident radiation , it

can be interesting to develop the electromagnetic field, which is a function of the wave vector,
in the form of a series in (ik)n, where k is the modulus of the wave vector. This approach was

formally discussed by Stevenson (1953) and applied to the simplest non-spherical object: the

ellipsoid (1953).

Stevenson's article on ellipsoids is difficult to read, as various researchers have noted, and for

good reason:

- no intermediate calculation is provided, only the final result, with this indication: « The
calculations are somewhat long and involved, but are fairly straightforward applications of
ellipsoidal harmonics. »

- The calculation shows the result to order n=0 and 1, and very partially to order 2, bearing
in mind that the higher the order, the more complex the calculations. Stevenson confined

himself strictly to the calculations needed to obtain the far scattered field.

In a previous paper (Gruy, hal-04655313), we presented, based on Stevenson's paper, the
detailed calculations leading to the development of the electromagnetic field to order 2
(complete). This allows the reader to calculate the field at any point (inside, outside the

ellipsoid).

The developments and results obtained for the ellipsoid could be applied to the special case of
the sphere by taking a, = a, =a, = R . However, a number of technical problems arise during
this direct application, such as the definitions of v,v" , of X and therefore the expression of

U, for a sphere. We will therefore follow the methodology proposed by Stevenson, but with

the emphasis on the use of spherical harmonics instead of ellipsoidal harmonics.



2. Fundamentals on Stevenson’s method

Using Stevenson's notations, the incident plane polarized electromagnetic wave is

characterized by the three sets of director cosines :

u= (l,m,n) for k vector
u, =(1,,my,n,) for E“ vector
u, =(l,,m,,n,) for H" vector

u, u,, u, are therefore the unit vectors respectively carrying the vectors k&, EWet g,

This means:

E(O) — (l m n )eik(lxl+mr2+nx3)
1 1 1

; (2.1)
H(O) — (12 m, n, ) elk(lx1+’"x2 +nx3)
Incident fields and scattered fields can be expressed as a power series :
p p
EO=YEO() E=YE, (i)
p=0 p=0
p V4 (22)
HO =Y H"(ik) H=YH,(ik)
p=0 p=0

The power series truncated at the order 2 for the incident wave is:
EO(O) = (ll m, ”1) El(o) = (l1 m, n ) (lxl + mx, + nx, ) Eéo) = %(11 m, n )(lxl +mx, + nx, )2
H" = (l2 m, n, ) Hl(o) = (l2 m, n, )(bcl +mx, + nx3) Héo) = %(l2 m, nz)(lxl +mx, + nx, )2

(2.3)

According to Stevenson, we distinguish the field inside the ellipsoid, denoted E(i),H(i) , and

the scattered or external field (E,H). They obey the equations (coming directly from the

Maxwell’s equations):



E,=VV, E'=VV"
H =G, +VU, H”=G"+vU"
E,=F,+VV, EP=F"+vyY"

. 4 (2.4)

VAG =-E, VAG"”=-¢E
VAF,=H, VAFE"=uH"
VeG =VeG" =VeF, =VeF" =0
A is the cross product, e is the scalar product.
with the boundary conditions (surface of the sphere) :
n/\V(VO _[/0<">):_n/\E(§°)
nOV(VO —81/0(”):—110E0(°)
n AV (U, -U")=-nn(G -G +H")

, 4 (2.5)
neV (U, - uU")=-n O(G1 — uGY +H1(°))
n AV (V, =V ) =—na(F, - F" + E)
neV(V,—eVy")=-ne(F,—¢F" +E)
n is the outward pointing unit normal.
with
[neEdS=[neHds=[neE,ds=0 (2.6)

It should be mentioned that, according to Stevenson, the functions V,,U,,V, and

T/O(i),Ul(i), V1 are harmonic functions in the mathematical sense and not electrical potentials
(E, =VV, and not E, ==V in physics).

To simplify the calculations without loss of generality due to spherical symmetry, we will take
u(l 0 0) u,(0 1 0) u,(0 0 1).These particular values will be used mainly when the

benefit of a simpler calculation is obvious, e.g. the second order term.

Maxwell's  equations are invariant if the following substitutions are  made:
E—->H, H—->-E, &< u. So HO,Héi),—El,—El(i),HZ,Hgi) are straightly obtained from

EO,Eéi),Hl,Hl(i),Ez,Egi) if we carry out the following substitutions for the director cosines (of the

incident electric and magnetic fields) and the material properties:



(L, m n)—>(, m, ny)
(L, my n)>—(, m n)

e U (2.7)



3. Real spherical harmonics

The first real spherical harmonics are shown below:

/ 1
degree0: Y, =,/—

4r
3 x /3 X 3 x
degreel: Y, = ETZ Y,= 573 Y, = 571

degree 2 :
Y_l_sxlxzy_l_sxzxsy_SMY_/I_SMY_[I_SM
2,2 T 7"2 2,-1 T ]/_2 2,0 1672' 7"2 2,1 4”_ }"2 2,2 1672' 7"2
degree 3

1 [35 %35 -x) 1 105 xx,x, 121 % (5% -r7)
A T AR N e
4\ 2rx r 2N 7 r 4\ 2rx r

1 [21 x (55 —r%) 1 [105 X (x —x7) 1 [35 x(x -3x3)
Y=o h.=7 3 )y | i —
4\ 2z r 4\ r 4\ 2x r

Next, we introduce the parameter g,  which is the numerical coefficient into Y,

(3.1)

for instance

)m !

I [21 o
g3, =—+[— - This gives:
T 4\ 2r
Yl,m = gl,le,m (32)
X, (5)632 —r2)

where Z, is a function of Cartesian coordinates, for instance Z, = ————=.

’ ’ r
Next, we need to express the following monomials as a function of Z, -
degree 1:
X,/ r=2_ x;lr=2Z, x/r=212, (3.3)
degree 2 :
xx, /1= Z, , XX /r? = Z, | XX /r* = Z,,

11 1 11 1 11 (3.4)
X Irt=———Z, +=2Z,, X/ ==-=Z,,—=Z,, x| ==+=2Z,,

367 27 367 27 3 37



degree 3:
1 1 1

xlxzz /1”3 = _ZZ3’3 —%le +§ZI,1
1 1 1
xlez /r’= Zzs,—3 _%23,—1 +gZI,—l
1 1 1
x3x12 /l"3 :523,2 —EZLO +§Zl,0
1 1 1
x3x22 /7"3 = —523’2 _EZB’O +§ZL0
T | 1
xx; /[ r = s Zy, +§le
1 1
x2x32 /P = s A +ng 4,
1 3 3
x13/ = Zy, %23,1"' Z,
1 3 3
x23 /7"3 = _ZZ3’73 —%23,71 +§ZL*1
1 3

3.3
Ir==Z,,+=Z
Xy 1 r 5 730 T 540 (3.5)

3 _
XX, % /17 =25

Note that the transition from ellipsoidal to spherical coordinates is not so straightforward (see the work
of Panou, 2015).

At degree [, harmonic functions, respecting the boundary conditions (center of the sphere and point
at infinity) are put in the form :

i

R, (r,9,¢) = Z Ll,mr_(l+l)Yl,m ('9’¢)

:[’ (3.6)

Rl(i) (I", 9’ ¢) = Z Kl,mrlYl,m (9’ ¢)

m=—1

I,m

/
Rl = Z L'l,m I"_(HI)Z
" (3.7)
Rl(l) = Z K'l,m rlZl,m
m=—[
with L 'l,m = Ll,mgl,m K 'l,m = Kl,mgl,m
With Stevenson's notations, the harmonic potentials will appear in the manuscript:
U =R, Ul(i) = RS) V, =R, Vz(i) = R3(i)

We will use certain results obtained for the ellipsoid (Gruy, hal-04655313), the application of which to
the particular case of the sphere is not problematic. Obviously, the calculations are much easier with



the sphere and some of the parameters used by Stevenson have simpler analytical forms. Thus, for
those that we will use in the manuscript :

22 2 2 2
ro=x +x;+x; =5+R

1(&)=2(+R%) " 1=2R"

I,(£) =§(§+R2)3/2 I, = §R3

Iaa(é)%(f”z)_m Iaa%R‘S (3.8)
3R’

f1_2(5+2)
3 —

LS G VU A
2(e+2) (6+2)

4. Zeroth order term

We remind the well-known result, so named static field (see, for instance,, Stratton, 1941) :

V, :f_j;—i(llxl +mlx2+nlx3)=f—j;—ix2 (4.1)
VO(” = %(llx1 +mx, + n,x, ) = 2-?——3)(2 (4.2)
E, = ;;581:_;(”1 -3x, ?j (4.3)
BV = i —u, (4.4)

with u, =(0,1,0) et Vr=(x,/r,x,/r,x,/r)

We easily check that the condition 2.6 from Stevenson holds: jn £, dS=0.

5. First order term

from Gruy, (hal-04655313 Eq. 5.12) :

N Lo |x Lox
G = R 1-¢ GY =_ 3¢
== m Alx, G m, AlX,
r2+e 2(2+¢)
nl x3 nl x3

Hence,



Loo|x l,

: R 1-¢ 3¢
G -uGV+ g =] = + “Alm, Alx, +(Ix, + mx, +nx, )|m
1 —H G 1 S 21 2(2+8)/J 1 2 ( 1 2 3) 2
nl x3 nZ
with e=0,1
1- .
Onedenotes: a=-——2+ 3¢ )7
2+¢ 2(2+¢)
Hence, on the surface of the sphere,
L% l, X

G, —,Lt"Gl(i) +H1(0) = a|m, A|x, +(Ix, + mx, +nx;)|m, = B]| x,

nl ’x3 n2 'x3
with
I, ml, —an, nl,+am,
[B] =|Im, +an, mm, nm, —al,
n,l—am, mn,+al, nn,

(5.1)

(5.2)

(5.3)

1
The trace of [B] vanishes. if e=0, o« =— and [B] is symmetric given the orthogonality of the unit

vectors of the incident electromagnetic field.

The expression of the boundary conditions on the sphere surface implies that the solution for U, and

Ul(i) obeys 3.6 with / =2, therefore

A,x, = A,2x, + A x, + A, 2x, ,
V(U= U ) =|dpx + 4 =420, = 22%, =SR*nY. LY,
A%, + Aydx, + A x, "2

which can be rewritten as :

V(U - U )=[4,]Rn=5R"n 22: LY,

m=-2

with
2(/12_/10) ﬁ“—z /11
[4,]=] 4, 2(4+4) 4,
4 A 42,

and

Ay = (R_SLz,m - /UeKz,m ) Eom

(5.4)

(5.5)

(5.6)

(5.7)

10



R7L,, — K, iscalled P, if e=0 and P if e=1.

2,m
[AU] is symmetric and has a null trace. if e =0, the matrix [A] = [AU ] + [B] is symmetric as well. The

matrices A, 4,, B will be denoted 4“, 4/, B" if e=1.

The previous results will enable us to reformulate the boundary conditions (in 7 = R ), starting with
the cross product (e=0):

xl xl xl
n/\[A] X, =% X, /\[A] x, =0 (5.8)
X3 X3 X3

Each component / of this vector is a quadratic form. Since the products x;x; can be expressed as linear

combinations of spherical harmonics (Eqg. 3.4), so can the components of the cross product.

The elements of the cross product for each component / and each spherical harmonics m are given in
table 1:

/ m| -2 -1 0 1 2 Y
1 A A, — A 1 1 —A 1 A A
3,1 33 2,2 _EA” _§A2’3 2,1 5143’2 %_%
2 —A3’2 Al,z ﬁJrﬁ Al,l _A3,3 _lA ﬁ_ﬁ
36 2 33
3 Ay =y | 4 _lA +1A 4 lA +1A @_ﬂ
6 2,1 6 1,2 2 2,1 2 1,2 3 3

Table 1: components of the cross product CP expressed by means of spherical harmonics

CPI = z CPl,m Zl,m

The constant contribution appears in the column YO’O. [A] being a symmetric matrix, the equation 5.8

is equivalent to the system of 5 equations (one for each spherical harmonic function) :
A1,2 =0 A1,3 =0 A2,3 =0 Al,l = Az,z Al,l = A3,3 (5.9)

or
-5 1 -1
P,=R"L, ,-K, ,= _E(mlz +lm2)g2,_2
] I :
P—l = R 5L2’71 _KZ,—I = —E(I’ll’}’l2 + mnz)gz’l,l
- 1 _
I)O — R 5L2’0 _KZ,O = _Znnzgz,lo (510)
] 1 i
R=R SLz,l -K,, = _E(nIZ +1n2)g2,11

_ 1 _
P =R SLz,z _Kz,z = Z(mmz _llz)gz,lz

11



The scalar product (e =1) is written as :

X

n -[A#] x, [-5R™ Zz“ LY, = %Z A" xx, —SR™ 22: LY, =0
i,J m=-2

m=-2
X3

or

0

Alﬂl Aéu 2 A3/13 Alﬂl A2ﬂ2 1
+| —— = |Z, | ———=|Z
( 6 6 3 ) (2 2% 321

This leads to :

3R 5L2 Lt2ukK, =(ml, +lm2)g2 >
3R™L,, +2uK,, =(nl,+1n,)g;)
3R"5L2,_1 + 2,uK2)_l = (mn2 +nm, )g;}_l

3R_SLz,o +2uK, = %”nzgz_,lo

_ 1 _
3R SLZ,2 + 2;11(2,2 = E(”Z —mmz)gz,l2

We note that ZA" =
i=1

finally, with 5.10,

5
a3 R =t im) (1) K= (ki)
(2ﬂ+3)R 5L'21 (nl +In )(1 ,U) K'2’1=(ﬂlz+ln2)m

S >
(2,U+3)R L 2,—1:(mn2+nm2)(1_'u) Ko = (mnz—i—an)m

i ! >
(2ﬂ+3)R SL'Z’O 25(1—/1)7’1”2 K", :nnzm

o ' >
(2u+3)R L 2,2 :E(HZ —mmz)(l—y) Kty = (I —mmz)m

with L'l,m = Ll,mgl,m K'l,m = Kl,mgl,m

we can see that

2
L'Z,m = g(l_ﬂ)RSK'Z,m

if u=1:

(Al + A48) 2, + (A + AL) 2y, + (Al + 41,) Z

2,-1

5R z LZm 2,m

m=-2

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

12



L', ,=0 K',,=(ml+Im,)/2
L',,=0 K', =(nl,+In,)/2
L', =0 K',  =(mn,+nm,)/2
L),,=0 K',,=nn,/4

L'),,=0 K',,=(ll,-mm,)/4

(5.16)

Ultimately, the two harmonic potentials can be expressed as:

5 1 5
Ul() = Em(lllez +mm,x; +nn,x; +(ml, +Im,) x,x, +(nl, +In, ) x,x, + (mn, +nm2)x2x3)
2 R
U, Zg(l—ﬂ)FUl()
(5.17)
or (choosing the particular set of unit vectors, see §2)
U(l) = 1—5 x1x3
22u+3
5 It { T (5.18)
i —H
U, :g(l_:u)r_SUl() :m7x1x3
finally,
‘x3 x3
Hl(i) - 38 0 l 5
2(2+5) 22u+3
—X X
(5.19)
Ri-z|® 1-u & Vr
H =— 0 ad — 10 —5xx0, —
r2+¢ 2u+3r r
—X X
if £=1,then
X3 X3
O ——_3_ 1o 1o
2(2+8) 2
X X
(5.20)
3 X3
R 1-¢
1= "3 0
r2+¢

We easily check that the condition 2.6 from Stevenson holds: In e HdS = J.n (G, +VU,)dS =0.

13



6. Second order term
6.1. Calculation of anFz(i)
6.1.1 calculation of £,

We easily show that,

outside the sphere (hal-04655313) :

24
Fo=—— (6.1)
3r
however, the calculation of F, , (V AF,, =VU,) requires more attention:
Given the expression of U, , we assume that Fz,U obeys the general expression:
D > d
Fy==+2.2%7, (6.2)
r o r
where D, ,d, are constant vectors to be determined.
We easily show that :
r*VAF,, =3D,AVr+Y.d, r(5Z,,Vr-H,) (6.3)
with
x,/r 0 =2x,/r x;,/r 2x,/r x/r
H,=\x/r H, =|x;/r H,=|"2x,/r H = 0 H,=-2x,/r Vr=|x,/r
0 x,/r 4x,/r x/r 0 x,/r
and
n\m | -2 -1 0 1 2
1 2,3 3 2 2 /.3 1 1 2
X% ZS’_Z ~Z—72u X A e A et A%
5 7 57 2 10 7 5 ¢
2 2/ 2/ 3 2 1 1 2
xx, /r X, x5/ 7. -2z Z; —Z, +—7Z,  —=7,
5 5 2 10 > 5
3 Z, x5 /7 EZ +iZ x5 /7 Z,
5 3,0 5 1,0

Table 2: expressions of Z, ,x, /r(components of Z, Vr) as a function of Z, . Expressions of

xnxl2 /r* have been previously reported (Egs. 3.5).

One deduce for 52, Vr—H, :

14




m=-2 m=-1 m=0 m=1 m=2
5 1 57, . 3Z 5 1 5 1
ZZ3,73 _ZZ3,71 5 > 21 - 523,2 _523,0 523,3 _523,1
51 A A 57 5 1
__Z3,3 __ZS,I 2 3Z3,0 2 _Z3,—3 +=Z;
4 4 Z, Z,, 2 2
5Z, 57,
Table 3: 57, Vr—H, vector
therefore,
VAF,,=VU = (300 AVF+Yd, A(SZz,mVr—Hm)j r
Z —EZ
X, /r=5x.x0 11’ 3032 (6.4)
= V(r@xlx}j =pr | 0-5xx,x,/r =pr 57, ,

X, /r=5xx /1

with = —21;:[3 R’

Z,,m form a system of orthogonal (but non orthonormal) functions; we immediately deduce that

D, =0.We can also deduce a system of linear equations whose unknowns are the components of d

, called dm,k . The analysis of the system shows that the equations are not independent. This means

that the components of d, may be expressed as a function of the components of, for instance, d :

m=-2 m=-1 m=0 m=1 m=2
2 —-6d,, 0 dy, 3d,, —3d,,
~6d,, 3d,, d,, 0 ~f+3d,,
0 B- 6do,2 d0,3 _6d0,1 0

Table 4: d,, vector
We can then check that Ve F, , =0.

Let us take the particular case d, =0 :

p 27, 5 2x,x, /1
Fz,u :r_3 _Zz,z :r_3 (xg_xlz)/rz
Zy x,%, /1’

(6.5)

15




We have F, =F,,+F,, to within one additive constant; its value will be discussed later on.

therefore,

VeF, :VO(i—fj (6.10)

F, does not satisfy the zero divergence condition (Eq. 2.4). To overcome this difficulty, we look for a

scalar function (denoted V, " by Stevenson), suchas F, ., =F, ,, +VV,", with F, ,, =F,,+F,,

new

. We verify that VAF, . =0 (with VAF, , =0 yet), because of VAV, "=0.

new

ToensureVeF

2,new

ar=ve 2] (6.1

3r

=0, V," has to obey :

V," may be expressed as:

=244, (6.12)

Using the Laplacian in spherical coordinates, we can easily obtain an expression equivalent to 6.56 (hal-
04655313) with an indeterminate constant Jj:

¢, =x.1,(r) (6.13)
with

R*J. 1
fi(r)=—r-— (6.14)

r 3r

Conjecture : F, +VV, does not depend on the choice of J ;.

This conjecture will be proved after the calculation of V.

6.1.2. calculation of F.”

Inside the sphere :

u'V AF =G vy (6.15)
Voo (6.16)

6.15 is written as :

16



I, (ml, +Im,)/2
(ml, +1Im,)/2 mm,
(nl,+1n,)/2  (mn,+nm,)/2

T 2u+3

A is symmetric, B is antisymmetric.

Given the expression 6.17, we assume that :

Lj7i

T ZDk XX,

The matrix D*is symmetric by definition.

This gives :

ZZ(lejdl Dll/ lk) M

m,j

(6.17)

(nl, +1n,)/2 o -4 4
(mny+nm))/2| B=-2 A" 0 -4"

nn, _ AS) Al(i) 0

(6.18)

(6.19)

where the relationship between m and (k, 1) is the following :

(k,[)»>m (3,2)>1 (1,3)>2 (2,1)>3

Equation 6.16 becomes :
Zijx/ _Zx ZDk] -

or ZD:J =0 Vi
k

(6.20)

(6.21)

The equation set linear in ij contains 18 unknownstj and 12 equations. Therefore, we add the

condition :

D{,=0 i#k

(6.22)

Conjecture : Fz(i) + VVZ(i) does not depend on the choice of D,f»l. i#zk.

The issue is still open.

One easily deduces that:

17



Dll,l =0 D;,z :_l|:

2 (mn2 +nm, ) - gAl(i)} D31,3 = l[

2 (mn2 +nm, ) + gAl(i)}

2u+3 2u+3

15 ; 1l 5 ;
Dlz,1 :Z{2u+3(nlz +1n2)+gA§)} Dzz’2 =0 D; :—Z{z’u_i_?)(nlz +1n2)—gA§)} (6.23)

1 s i 1
D&:—ﬂ;ﬂ+ng+MJ—&ﬁq D;:Z[

5
2u+3

(ml, +lm2)+gA§i)} D;,=0

Determining the unknowns D;’3,D12’3,D13’2 is a little more complicated. They have to satisfy :

5
M, = 2(1)32 -D},)= mzzz
M,,= 2(D;,3 _D13,2) :mmmz (6.24)
5
M..=2(D*-D!.)= nn
33 ( 13 2,3) 21+3 2
The solution of which is :
1 1 5 2 1 5 3 1 5
=— mm, — nn D, =— nn, — Il D’ =—— (I, —mm 6.25
= 62y+3( 2 =) Dig 62y+3( 2= k) D 62y+3(2 ) (629)

At the end the components Fz(,il) osz(i) are:

U Y SR W
# T =yea (2 3) 42u+3

(mn, +nm2)(x32 —x22)+—

3213 (mm, —nn, ) x,x,

- i 1 i 1 1
u'FY ZgAz()(xf+x32)+12’u+3(ln2+n12)(x12—xf)+—2u+3(nn2—112)x1x3 (6.26)

1.5
32443

(lm2 +m12)(x22 —xlz)+

_ i 1 i 1
Y7, le(’) ZsAg)(xf +x§)+—

PR (i1, = mm, ) x,x,

Stevenson's expression (Eq. 2.24 in his article) is indeed found for a sphere, but with an expression of

Cl(i) that cannot be deduced from that of the ellipsoid.

With the particular values of the unit vectors, 6.26 reduces to :

Fz(,? =0

172(2 = lgyAgi) (xlz +X; ) +15—’u(x12 —xf) (6.27)
T4 42u+3

El=0
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6.2. Calculation of V/,, V"

Let us write the boundary condition on the surface of the sphere (Eq. 2.5).

A straightforward calculation of the right-hand side yields (by denoting J = J,)

n -(F2 w7V, "+ B —ng("))

_ _ 2 2 _ 2 2 _
:R{(l—?;J)l g+( 3gﬂ+2 SHe J al +( 3gﬂ+ Sug]x3 Jx2+R1 K

— X.
24 | e+2 2u+3 J4R* | &+2 2u+3)4R? 2u+3""
(6.28)
nA (B4 V1, B - B )=
-x, /R
2 2 3
R’ l(1+3.])1 " 3g'u+2— SH x12+ 3g’u+ SH x32 0 (6.29)
2 2+ \e+2 2u+3 )4R e+2 2u+3)4R
x, /R
| x,x; /R’
+R? 4 xx,%, / R’
2u+

—X, (xl2 +)622)/R3

The x, and xkxf monomials may be expressed as function of the spherical harmonics (Egs. 3.3 and
3.5). Hence,

ne(E, v, "+ B )
— — 2 —

SR (1-3) ey [ DA | L
2+¢ e+2 10 2u+3) -

2 2
LR [ 2Es, 2K Z3,71+R2L SE M o Sk Z,_,
80(\ ¢+2 2u+3 16{ e+2 2u+3

(6.30)
_ _ZI,O POZ3,0 + pzz3,2
nA(FVI B - FO=RH| 0 +R*| p.Z,, (6.31)
Zl,l p123,1 + p323,3
with
H:ll_g(3J+1)+ 1+9u __ 3eu (6.32)
22+¢ 10(2u+3) 5(e+2)
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1(3cu 2-Tu
=— +
Po 40( j

E+2 2u+3
plz—po/z
1 3eu 2+3u
P8l a2 24+3
1 3g 6—
po=—| 2K OTH
16\ €+2 2u+3
_1-u
P2=5 43

(6.33)

Let's look at the left-hand side of the boundary condition (Eg.2.5).

The form of the boundary condition on the surface of the sphere (right-hand sides 6.30-6.31) suggests

a general solution for V, and Vz(i) involving spherical harmonics of degree /=1 and / =3 . We begin

by expressing the contribution of / =3 to V(V2 —geVz(i)) with e=0,1 . To simplify the writing, we

will note, as we did for [ =2 :

A = (R77L3,,,, - 5€K3,m )g3,m

m

Following Eq. 3.6, we have (¥ = R):

\Y (V2 = g"Vz(i)) =[4]A-7R"n 23: LY,

m=-3

with
A= (173 Ay, Ay A A4 4 23)
6xx, XX, —=2X,X, —6x,x,
A=|3x"-3x xx, 5x-r’-2x; —6x,x,
0 XX, 8x,X, 5x; =3 +4x;

The cross product n A V(V2 - Vz(i)) can be written as :

n/\V(Vz—Vz(i))zn/\[A]ﬂ:[B]i

(6.34)

5x;—r7=2x}  2xx, 3x’-3x
—2X,X, =2x,x;,  —6xXx,

2 2
8x, X, X =X, 0

(6.35)
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2 2 2 2 2 3 2
—3x3(x1 —xz) X, (x2 —x3) 10x;x, = 5x; +x,7

1
B=— 6x,x,x X, (x —x] —10x,x,x
R 14243 2( 3 1 ) 14243
2 2 2 2 2 2
3x, (xl —3x2) x3(x1 —xz) Sxx; —x,r (6.36)
15x,x; —3x,1° 10x,x, x, XX =X +2x,%5 6x,x,x,

—15x +3x77  —10x'x, +5x —x;r° x5 —x +2x% X, (3)612 —3x22)
0 —5x,%; +x,1 —4x,x,x, —9x’x, +3x;
37y, —(2,,+2,;)/4 -52,,-2Z,, 3Z,_, 10Z, , E(ZH +Z,,) 6Z,
1
B=R|6Z, , (Z,,—Z,,)/4 -10Z_, -3Z,, -5Z,,+2Z,, 5(—23,3 +7,,)  3Z,

323,3 Z3,2 Z3,1 0 _Zs 1 _4Z3 2 _323 3

(6.37)
We see that B does not contain spherical harmonics with degree one.
The scalar productn e V(V2 —8V2(i)) can be written as :
neV (v, -ev’)=ne[4] 2" LIRSS LY, (6.38)
m=-3
with
6x,x, X)X, -2x,x, —6x,x, 5x;—r’=2x0 2xx, 3x7-3x)
A=|3x}-3x xx, Sxj-r'-2x] —6x,x, —2x,X, —2x,x;, —6xx,
0 XX, 8x,x, 5x; =3r* +4x; 8x,x, X —x; 0
Hence,
Rne[A]A* (9)61 x, —3x; )1‘" L (31,0, ) A5 +(—2xlzx2 +13x,x; —7’x, —Zx;)/iffl
+(—6)c1 X, —6x7x, —3r°x, +9x; )/15’:1 +(—2x§x1 +13x,x; —r’x, —2x13)ﬂle
(6.39)
+(3xlzx3 -3x;x, )/12921 +(3x13 —9x1x22)ﬂ;:1
=3R(Z, A5 + 2y A5 + 2y AT+ 2y AT+ 2 AT+ 2,07+ 2,057
Finally,
. 3
nev (v, - )= Y (3R°Z,,A4" - TR L, Y, ) (6.40)

m=-3
If V, and V2(i) are expressed with spherical harmonics with degree 3, then n/\V(V2 —Vz(i)) and

noV(Vz—eVz(i)) only contain spherical harmonics with degree 3. However,
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no(F2'+VV2 "+ Ego) —8F2(i)) and n/\(F2 +VV, "+ Ego) —Fz(i)) also contain spherical harmonics

with degree one ; we deduce that V, and Vz(i) must contain spherical harmonics with degree one :

1
_ 2 3
V,= z Ll,mr Ylm =r (Ll,—lgl,flxz +Ll,0gl,0'x3 +L1,1g1,1x1)

m=t (6.41)
0 _ N
vy’ = z Kl,erI,m = Kl,—lgl,—le +K1,0g1,0x3 +K1,1g1,1x1
m=—1
hence (» =R)
7
V(Vz - 561/2(1) ) = \ra - 3R™ (Ll,—lgl,—lxz + L& 0% + Ll,lgl,lxl)n
Sl (6.42)
0

-3 e
7m = (R Ll,m —& Kl,m)gl,m
The corresponding cross product and scalar product are :

YoXa =V |Vl 77121,0
. = E Xy =YXy = 7121,0 =2, (6.43)
yaxXi =Xy |Vl =<,

nav(v,-v)

r=

nev (v, -er")

r=

= 7163:121,1 + 751=121,—1 + 7g=121,o ~3R™ (Ll,—lgl,—lzl,—l +L80Z o +1L,8,Z, )

L e . - -
= E(?’l ER AT ) -3R™ (Ll,—lgl,—lxz Ly 080X+ Ll,lgl,lxl)

(6.44)

The K|, and L, , constants are obtained from the boundary condition on the sphere surface (cross

product and scalar product) , knowing that the Z,,m form a set of orthogonal functions:

Yolio = V121 ~Zy, Vo= ~R’H
7/121,0 - 7/021,1 =-R’H| 0 = 7, =0 (6.45)
77121,1 - 7121,71 Zl,l 7n=0

71€=121,1 + 7E1=IZL—1 + 7g=121,0 -3R” (L1,—1g1,—121,—1 +1L,08 0210+ L84, )
=—R’H"'Z,_, (6.46)

e —3R73L1’_1g1’_1 =-R'H"
= 7/;:1 - 3R—3L1,0g1,0 =0
71€=1 _3R73L1,1g1,1 =0

with
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— J— 2 J—
H"zl:(l—3J)1 £y 3¢ | L+ I-u (6.47)
2+¢ E+2 10 2u+3

hence
, 2H+H | H —eH
K' =K _g_= R T L'\ =L_g_ = R T
K'\y=0 L',=0 (6.48)

K',=0 L' =0

Therefore the contribution of terms with degree 1 to V, and Vz(i) is :

R H ' -¢H
5 , (6.49)
; H+H”
Vz(l) =R’ i Xy
2+¢
Vz(i) does not contain J whereas V, can be written as:
v, :R_SE 1-¢ (—J+F(€,/J))x2 =R—2AZ)c2 (—J+F(g,y)) (6.50)
7 22+¢ r

It is the sum V, + ¥, " and not separately V,and V, "that has a physical meaning (as present in E,).

We note that, following 6.12-6.14 and 6.50, V, +V," = Azsz'(R,r,g,,u) does not depend on J ;

therefore, it is not necessary to determineJ .

The same procedure is used for the constants K, and L, :

3,m

Starting from the cross product (6.31 and 6.35-37) :

i 1
-3Z,, —(Z}’1 +Z,, ) /4 -57,,-2Z,, 3Z,, 10Z, 5(23)_3 +Z, ) 6Z,
1
R 6Z,_, (Z,,-Z,_)/4 -10Z,_, -3Z,, —5Z,,+2Z,, E(—Z“ +Zy,) 37y,
3Z3,3 Z3,2 Z3,1 0 _Z3 -1 _4Z3,72 _3Z3,73

pozs,o + pzzs,z
=-R’ p7223,72

p123,1 + p323,3

(6.51)
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L -0 —%&:O 3/10%42:0 A, =0....

104, +64, =0
....... _32;3_5/171:—172 _2/171:_p0
2,102, =p, 12,20 12,20 “3elao
- ! 14 2 (6.52)

=54+34,=0 22,=0 ——2,=0
A4 =0 —43,=0 -34=0

34,=-p; 4,=0 A4,=-p

We check that these equations are compatible with each other (20 equations for 7 unknowns), taking

into account redundancies and relationships between parameters p, .

A, =0 m=-2,0,123

1(38/1_6—/,1

=4, =—
P 48\ e+2 2u+3

_ b 35,u+2—7,u
80le+2 2u+3

] (6.53)

Starting from the scalar product (6.30 and 6.40):

23: (3R°Zz,,47 -TR Ly 8,2, ,,)

3,m”"m
m=-3
_ 2 _ 2
:—RZL O¢ K, 25ue 5 Z3_1—R2i 3¢ Koo Sue Z.,
80\ €+2 2u+3 ’ 16\ €+2 2u+3)
(6.54)
3R°A, —TR7L, .8, =0 m=-2,0,1,2,3
_ 2
S 3R ZTRPL, g, =R | DEH o SHE | por (6.55)
T 16\ €+2 2u+3
- _ 1 (-9¢& 2
SRPAS —TROL, g, =R | 26K 2o pop
T 80\ e+2 2u+3
We directly deduce that :
K, =L%,=0 m=-2,0,12,3
_ (6.56)
T, -44, . T, +3ed, R m=-1-3

K' =Zm m =
M 443g M 443
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Finally the contribution of terms with degree one and three to ¥, and Vz(i) is :

5 pre=l 7 7
v, :R3 H 6‘sz+711+36%71 R7 2(5x§—r2)+T‘3+38ﬁ"3 R7 x2(3x12—x22)
r 2+¢ 4+3¢ r 4+3¢ r (6.57)
. 2H+H" T, -42 T,-42 '
v = R? x, +—L Ly (5xF - )+ —=—x (3xF =7
? 24 0 4+3¢ 2( ’ ) 4+3¢ 2( ‘ 2)

7. Complete solution to second order

We directly deduce the internal field from Eqs 6.27 and 6.57 :

2

— — . e=l1
E@:ZQ_iQLX +Z;_ii;X3+(%aU¢%xﬁ+ﬁ)+l S Og_xﬁ+R22H+11 J%

443 T 443¢ 42u+3 2+¢
(6.58)
and the external field :
. ( ) 2x,x,/1° . ( )
R (1-¢ Bl ., o\, ., R (l-¢ 1( Wj R’ ( Vrj
E =— u +—\x;—x )/ r'——%—|u,—x,— |+—0| u, - 3x,—
? I"(8+2)ll’3(2 1) r(e+2)20" r3Q1 >y
X%, /7’ (6.59)
7 7
+T1+3gz1R—7(X_1—7X_IEJ+T_3+3M‘3R—7(X_3—7x_32j
4+3¢ r r 4+3¢ r r
with
2
0= I |1 8(1—5/2)+L 1+35,u +1 u & 1+%u
2+¢| 2+¢ 10 e+2) 2u+3 102u+3
X, =X, (5x32 —rz)
X, =X, (3x12—x22) (6.60)
—2x,x,
X, = V(r3Z3,_1) = V(x2 (5)632 —rz)) =4x] —x =3x;
8x,x,
6x,x,
X, :V(r3Z3)_3):V(x2 (3xl2 —xj))z 3()cl2 —xf)
0
ifu=1,
Egi)zi(l—gj l+¢& X1+i(1—8j5+3e){3
20 e+2)443¢ 12\e+2)4+3¢
(6.61)
3(l-¢)(1+&/10
+ 3_¢ (x12+x32)+l(xf—x§)+R2 ( 8)( f )u1
42+¢ 4 (e+2)
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R (1-¢) R (1-¢) 1( Vrj R°32-¢ 1—5( Vrj
=AU T — AT WX — [t ¢ u, —3x,—
r(e+2) r(e+2)2 r52+&2+¢

r

_ 7 _ 7

S L 1me R—7(X_l—7x_12j+—1 ‘ R—7(X_3—7x_32j
4044+3¢ r r 8(4+35) r r

(6.62)

Expressions 6.61 and 6.62 have been validated by comparison with the solution derived from Mie's
theory (see Van de Hulst).

We easily show that the above expressions satisfy the condition 2.6 of Stevenson:
InOEzdS:InO(E'+VI/2"+VV2)dS:O. F,' is defined within an additive constant (vector),

denoted d ; however, In e £,dS =0 is yet valid, because of In oddS=0.

We have just computed £, H,,E,ata (x,,X,,x;) point.In order to obtain H,,~E,, H, , we need
apply 2.7. Applying 2.7 to E, and H, poses no problem; the same cannot be stated for £, since its

expression has been obtained for particular unit vectors (of the incident field). To calculate /,, we

propose an alternative to 2.7, consisting of the following steps:
- dothetransform: x,'=x, x,'=x; x;'=-x,
- dothe exchange ¢ <> i
- apply the expressions for £, at (x1 X, X, ') point, the corresponding vector is called
E)’
- deduce H,, =E',, H,,=-E',; H,;=E'),
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