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Abstract—IoT-Cloud environments are being increasingly
adopted for the deployment of applications and particularly
resource-oriented ones. However, ensuring correct communica-
tions during the execution of IoT applications is not guaranteed.
In fact, a substantial class of applications is intended to run on
constrained IoT networks. Moreover, IoT devices exchange the
data derived from various Cloud providers and in accordance
with different protocols. In this paper, we propose a formal
approach to model and verify the applications deployed over
IoT-Cloud environments. The proposed model encompasses four
verification levels: the Structural, Functional, Operational and
Behavioral levels. Therefore, we opted for the Event-B formal
method that allows gradual problems decomposition by relying
on its refinement capabilities. The proposed approach has proven
its efficiency for the modeling and the verification of IoT
applications. We applied mathematical proof-based method to
verify the model since it provides rigorous reasoning. We also
employed the ProB animator to proceed in the validation of the
model.

Index Terms—IoT applications, Cloud, Behavioral Verification,
Operational, Functional, Structural Verification, Event-B.

I. INTRODUCTION

The Internet of Things (IoT) [1] has emerged over the

past decade as a dynamically growing data acquisition infras-

tructure that is being driven by the dynamic rise in a wide

range of things including virtual services, physical devices and

so on. Currently, it has become more relevant to the world

given its provision with advanced technology pillars: Cloud

Computing [2], Blockchain [3], Big Data and AI. Besides,

IoT things are equiped with Internet connectivity to enable the

development of intelligent applications through the collection

and exchange of data.

Recently, there has been a growing interest in IoT com-

munications during the execution of applications especially

resource-oriented applications that follow the REST [4] archi-

tectural style. In fact, a considerable class of such applications

is intended to interact and run on constrained IoT networks

that may exhibit so sever constraints with unreliable channels,

low throughput and insufficient wireless bandwidth. Further,

they frequently encounter serious disruptions in end-to-end

connectivity, which may in turn lead to deadlock situations

while executing IoT applications. Moreover, IoT networks may

involve a substantial portion of nodes [5] that are in a tight

of processing resources, energy budget and storage, hence,

they may face troubles when they attempt to exchange their

data through the network. Indeed, many mediators [6] (e.g

proxy, gateway) are implicated at various locations to aid the

constrained devices to communicate however they may end up

in deadlock situations since the number of devices they can as-

sist simultaneously is limited. The constrained devices are also

normally-off and reattached to the network only when required

to save their available energy, Even so, they may be exhausted

and definitely discarded at any point in time which poses

serious issues of non-reachability during IoT communications.

Besides, IoT devices implement a wide variety of data formats

and communication protocols to exchange the data that are

in turn derived from various Cloud providers. Consequently,

additional incompatibility issues may occur especially with the

emergence of Cloud paradigm and the challenges it poses.

As a result of the described accumulate issues, we propose

an approach to formally model and verify the resource-

oriented applications deployed on IoT-Cloud environments,

and also to check the correctness of the communications

during their execution. Indeed, this task is not trivial. In fact,

several verification axes of IoT applications are covered by our

model in order to avoid the inconsistency of their interactions

and possible deadlock situation that may occur. The major

contribution of this work is a model that comprises four sub-

models in respect to four verification axes: the Structural,

Functional, Operational and Behavioral models. The suggested

approach is new in a sens that it guarantees that the IoT-Cloud

environment on which runs a resource-oriented application is

properly structured and designed. Also, the required resource

is available and the device that hosts it is reachable to avoid

deadlock situations while interacting with the endpoints that

are exhausted or down.

The remainder of this paper is organized as follows: In sec-

tion 2 we present our motivations. Section 3 summarizes the

related works. In Section 4, we go over the main requirements

considered in this article. In Section 5, we expose the Event-B

detailed to the extent needed. Section 6 presents our proposed

Event-B model. In Section 7, we detail the model verification

and validation. Finally, section 8 concludes this paper and

presents future works.
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II. MOTIVATIONS AND PROBLEM STATEMENT

Let us consider the safety-critical Fire Alarm (FA) applica-

tion that improves the degree of protection in a smart city [7].

As shown in Fig. 1, the FA application is deployed and exe-

cuted on a constrained IoT system (system1) that consists of a

constrained-node network (CNN1) and a low-power, lossy net-

work (LLN1). The characteristics of the CNN1 are influenced

by being composed of a considerable portion of constrained

things (e.g sensor3, building1, QN,. . . ), that exhibit severe

limits on memory, processing resources, available power and

remain unreachable for extended periods. However, the LLN1
involves a portion of constrained devices (e.g sensor1,. . . ) with

additional aspects steaming from the network as well namely a

high degree of packet loss and interruptions in the connectivity.

The IoT devices are responsible for the following resources

that encapsulate their functionalities and expose their services:

1) Gas Sensing Service: hosted on the sensor3.

2) Window/Door Control Service: offered by the sensor3.

3) Emergency Notification Service: hosted on the sensor3.

4) Smoke Sensing Service: offered by the sensor2.

5) Temperature Record Service: hosted on the sensor2.

6) Water Sprinkling Service: hosted on the sensor2.

The resource-oriented FA application is executed on the sys-
tem1 that emerges Cloud paradigm. Commonly, an IoT device

(e.g sensor3) within system1 is expected to communicate in a

shared manner with another device (e.g QN) or a cloud service

and it is intended to manipulate (update, create) its hosted

resources (the key abstraction of information in REST [4])

to ascertain whether there is a risk of fire (see Fig. 1). The

following FA communications mainly occur:

– QN to sensor3: QN queries the sensor3 about its hosted

resource ‘Gas Sensing Service’ that is identified by URI1.

The request is satisfied without the interference of me-

diators (e.g proxy1) since QN employs CoAP protocol

[8] specially designed to transmit and retrieve the data

of constrained nodes. Hence, the sensor3 responds with

a payload containing the resource value.

– sensor3 to UnN1: sensor3 exhibits severe limits and can-

not talk directly to unconstrained UnN1 that employs full

protocol stack (e.g HTTP [9]). So as the interference of

proxy1 is required to make protocols translations and send

JSON state of the captured ‘Emergency Notification’.
– UnN1 to a global Internet node: gateway1 is set up at

system1-system2 boundary to perform viable translations.

– sensor1 to Cloud: a Cloud service retrieves the data from

the sensor1 and commands the actuator UnN2.

The aforementioned FA application is in charge of analysing

the resources’ contents retrieved in real-time from the sensor1
and sensor3 that detect smoke and gases and so on. These

readings are evaluated against a predetermined threshold to

determinate whether there is a risk of fire. In the event that a

risk is identified, the Water Sprinkling Service will be enforced

to rapidly extinguish the fire and avoid tragic aftermath.

However, developing the FA resource-oriented application

properly and ensuring its correct and consistent behavior dur-

Fig. 1: IoT-Cloud Fire Alarm (FA) Application

ing device-to-device, cloud-to-device and/or device-to-cloud

communications is an arduous task. In fact, diverse issues may

occur when developing and executing the IoT application.

• Non-interoperability: The format of a resource may be

not recognizable by the device that queries about it. The

reason for this is due to the mismatch and disparity in

data types that each device supports. For example, QN
attempts to capture the current or intended state of the

resource Gas Sensing Service in the format JSON that

understands it. If it receives the resource in a different

format, the resource retrieval will be erroneous.

• Looping: If a request is invoked by sensor1, it may not

reach the endpoint (e.g QN). This is due to an end-loop

that occurs at a stage during the execution of FA appli-

cation on LLN1 such as interruptions in the connectivity

that prevent the package from being delivered.

• Non-reachability: The constrained device (sensor3) has

a limited energy budget and it is normally-off and

reattached to the network when requisite. However, the

sensor3 may became unreachable when it is exhausted,

definitely discarded and down or due to technical failures.

• Device Capability: A highly-constrained device (sen-
sor3), most likely does not have the resources required to

interact with the unconstrained device UnN1 that supports

HTTP. For instance, the available capacity of sensor3 in

terms of storage (5 GB) does not fit the needed capacity

(12 GB) to communicate with UnN1 in a reliable manner.

• Mediator capacity and conflicts: A non-elastic inter-

mediary, for example, the shareable proxy1, cannot be

allocated by the sensor3 while its available capacity in

terms of tasks it can handle in parallel (3 tasks) has been

exceed. Such that, exceptionable conflicts may occur.

To overcome these problems, we propose an Event-B formal

model that covers the requirements organized in four levels :

The first, allows the checking of the overall architecture of

constrained IoT-Cloud environments.The second checks the

proper functioning of resource-based applications deployed on

IoT domain. The third checks the correctness of the appli-

cation’s communications while tackling their operational fea-

tures (Reachability, Availability, Compatibility). And, the last
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level verifies the interactions behavioral properties (Deadlock-

freeness, brokers interference).

III. RELATED WORK

Research interest for IoT application systems has recently

grown, resulting in many studies working on their specification

and verification. In this section, we focus on the relevant ones.
In [10], a BiAgents* model based on the judicious com-

bination of bigraphs and formal agents is proposed. In fact,

the Bigraphs model the physical part for IoT systems in a

mathematically sound way. Subsequently, their behaviors are

expressed by means of Reaction Rules. In this work, the key

demerit is that the functional and the operational aspects are

not considered. Moreover, the approach is unsatisfactory as

no mechanism of verification was evoked. Hence, any proofs

on the model’s reliability are given. In [11], an approach

leveraging Thing-In-the-Loop is devised to verify the inter-

actions of IoT components. Thereby, The key limitation is

that authors do not model IoT components that appear with

peculiar constraints, but instead just focus on their structural

requirements. Further, the proposal has no analysis of the

operational aspect.
We notice [12] that focuses on the functional and non-

functional characteristics of IoT systems by binding them as

UML diagrams that enable an intuitive graphical vision of their

elements’ relationship. Costa et al. [13] introduce a Model-

Based methodology furnishing high-level abstractions. In [12],

[13] authors pretend abstracting the complexity. However,

such systems are sufficiently critical. Thereby, they impose

a determinate level of precision. The major drawback of all

the stated works that they do not model the systems following

REST despite its suitability for IoT newer context.
Meanwhile, we highlight [14] that introduces a novel

methodology articulated with event-Calculus, to verify IoT

communications during the applications’ execution. Similarly,

numerous approaches [15], [16] and [17] involve the analysis,

of Request/Response events that occur in MQTT and MSC

systems. In recent studies by Song, et.al [18], a formal mod-

eling method based on process algebra and lattice structure is

introduced to abstract the collective behavior of IoT Systems

as a sequence of actions. The major demerit of this study,

is that it does not consider the third party infrastructure

(e.g mediators interference) while designing the behavioral

requirements.
Despite the feasibility indicated through experimental stud-

ies, the key shortcomings of all stated works that they treat

each side of the verification separately. In this sense, we

position our contribution that combines the modeling and

verification of four axes of verification: Structural, Functional,

Operational and Behavioral. Further, this work (1) addresses

some properties (e.g compatibility), (2) deals with the conflicts

of interfered mediators, (3) is based on rigor Event-B formal

model and (4) does not suffer from the state-space explosion.

IV. MODELING REQUIREMENTS

In this section, we furnish insight into the major concepts

related to the verification of resource-oriented applications

executed on IoT-Cloud environments. Modeling requirements

are gradually excerpted from the presented concepts.

A. Structural Requirements

The structure of IoT systems is crucial and constitutes the

primary artefact of applications life cycle including develop-

ment and execution. In the following, we verify and address

the design concerns of IoT architectural components (systems,

networks, nodes) in order to ensure correct execution for IoT

applications. Table I lists the IoT structural requirements

deduced from [8] that our proposed model would fully satisfy.

TABLE I: Structural Requirements

S-RQ1 An IoT system includes a set of sub-systems Rsy where
REST guidelines are applied to their design, a set of
Non-REST sub-systems NRsy and a set of gateways.
IoT system involves at least one sub-system Rsy �= ∅.

S-RQ2 REST system rst is made up of a set of constrained
networks CN and unconstrained networks UN. Each
CN is classified as either Constrained-Node Network
CNN, Challenged Network CHN (have certain network
constraints) or both (Low-Power Lossy Network LLN).

S-RQ3 CNN contains a set of nodes classified according to
their degree of constraints as unconstrained, less/quite-
constrained, highly-constrained or proxy.

S-RQ4 A node belongs to at most one CNN that involves at
least two constrained devices and one proxy.

S-RQ5 The dominant nodes in a CNN are the quite and
highly-constrained nodes. (card(high) +card(quite) >
(card(less) + card(unconstrained) + card(proxy).

For instance, in our motivating example (Fig. 1), the FA

application is executed on an IoT system that consists of a

constrained REST sub-system called system1,a general internet

sub-system called system2 and a gateway1 in respect to the re-

quirement S-RQ1. The system1 includes two networks (LLN1,

CNN1) in regard to S-RQ2. The constrained-node network

CNN1 within system1 involves two highly-constrained nodes

(building1, sensor3), one quite-constrained node (QN), one

unconstrained node (UnN1) and two proxies (proxy1, proxy4)

in respect to S-RQ3 and S-RQ4. The characteristics of CNN1
are influenced by being composed of a significant portion

of constrained nodes (3 devices) which is greater than the

remaining unconstrained nodes of the same cluster (S-RQ5).

B. Functional Requirements

Substantially, resource-oriented applications are being de-

ployed on IoT-Cloud environments. Table II outlines the

functional requirements that will be covered by our suggested

model to address the concerns of such application’s elements.

Back to our motivating example, the resource ’Gas Sensing’
should be hosted on at least one device (sensor3) that must

in turn be responsible for at least one resource (F-RQ1).

Likewise, the F-RQ2 requires the same URI1 to only identify

the resource ’Gas Sensing’ as it is not able to designate

another resource (e.g ’Smoke Sensing’). Additionally, the F-
RQ3 requires the device sensor3 to support at least one

protocol (CoAP) and one data format (JSON). A highly-

constrained node, for example building1, should not employ

heavyweight protocols such as HTTP which is ensured by
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modeling F-RQ5. Finally, the F-RQ6 imposes the proxy1 to

implement client and server roles at the same time.

TABLE II: Functional Requirements

F-RQ1 A resource runs on at least one node that must host at
least a relevant resource.

F-RQ2 A resource is named by at least one URI that designates
exactly one resource.

F-RQ3 Each node (device) must support at least one protocol
and one data format.

F-RQ4 A node that belongs to a Non-REST system is never
able to support CoAP.

F-RQ5 Highly Constrained nodes cannot employ full protocol
stack such as using HTTP and XML.

F-RQ6 A node excluding brokers must commonly have at least
one role: Client, Server. However, the mediators should
implement both roles simultaneously.

C. Operational Requirements

In the following, we tackle the fundamental operational

requirements that our proposed model would fully satisfy to

ensure successful and consistent interactions for IoT resource-

oriented applications(see Table III). To do so, we analyse

and check the operational properties of connected devices

(Reachability, Availability, Compatibility) that are expected to

exchange data during the execution of IoT applications. Such

that, we find out deadlock situations that mainly occur.

For instance, in our motivating example, we consider the

actuator QN that attempts to capture the state of the resource

’Gas sensing’ hosted on the constrained sensor3. Through that,

QN should implement client role in respect to O-RQ1 and the

sensor3 should act as a server. Likewise, the O-RQ2 requires

the sensor3 to be reachable despite its limited energy budget.

Noteworthy, the sensor3 may be powered-off at any point in

time and may became unreachable when it is exhausted or

down or due to technical failures. Accordingly, the O-RQ3
requires the ’Gas sensing’ service to be available, in other

words, it needs to be directly offered or dynamically link-

able (navigable) by another resource running on the sensor3.

Indeed, the FA application cannot be executed if one of its

mandatory resources is not available. Finally, the compatibility

concept is employed to verify the matching of data formats

supported by the endpoints (sensor3, QN) and the captured

resource. For example, the JSON representation of the resource

’Gas Sensing’ should be understandable by both endpoints,

which is ensured by modeling the O-RQ4.

TABLE III: Operational Requirements

O-RQ1 Sender node must implement Client role and the re-
ceiver implements Server role.

O-RQ2 Each endpoint (e.g server) must be reachable against
another device (e.g client) seeking access to its hosted
resources (Reachability).

O-RQ3 The resource queried by a client is hosted on a server
(Availability).

O-RQ4 The endpoints support the resource’s media type men-
tioned in their associated URIs (Compatibility).

D. Behavioral Requirements

In order to guarantee proper communications for IoT appli-

cations, the connected devices must be behaviorally compati-

ble. In fact, IoT devices appear with a peculiar heterogeneity

among other factors as they might own various constraints

degrees and interact according to different protocols. In the

following, we describe how analyzing the protocols and the

resources constraints of a device aid us in identifying any

potential interoperability problems. Indeed, we check the de-

vices constraints (e.g processing capability) and the matching

of protocols that must be deadlock-free. Two devices have

a behavioral mismatch if their protocols get stuck during

their interactions. In some cases where behavioral mismatches

are detected, it is necessary to interfere brokers in the form

of proxies and unconstrained servers to alleviate the devices

incompatibility and assist their interactions. Table III sums up

the behavioral requirements tackled by our suggested model.

TABLE IV: Behavioral Requirements

B-RQ1 If the sender is highly-constrained & the sender and
the receiver are encompassed into the same CNN
⇒ whatever is the sender’s protocol (CoAP, HTTP),
proxies of the same cluster must assist the interaction.

B-RQ2 If the sender is quite-constrained & the receiver has
no restrictions with respect to the constraints degree
⇒ If the sender applies CoAP, it talks easily to the
receiver that uses full protocol stack (HTTP, XML, . . . ),
otherwise, the brokers’ support is required.

B-RQ3 If the sender is less-constrained or unconstrained
⇒ The interference of intermediaries is not necessary
and the interaction can be directly satisfied.

For instance, in our motivating example, the highly con-

strained sensor3 most likely cannot communicate with QN
in a reliable manner. Therefore, the B-RQ1 requires this

incompatibility task to be supported by neighbour proxies

(proxy1, proxy4) or unconstrained devices acting as servers

(UnN1). The mediator choice is considered according to its

capacity. In fact, it is limited in terms of tasks it can handle

simultaneously. Thus, we propose to check all the available

brokers’ capacities. Each time a proxy (proxy1) has exceed its

maximum capacity, the system passes the task to a contiguous

proxy (proxy4). If all proxies have reached their maximum

capacity, the task is handled by unconstrained servers (UnN1).

V. OVERVIEW OF THE EVENT-B METHOD

Event-B [19] is a formal technique based on the set theory,

that adopts mathematical tools known for their rigour when

dealing with safety-critical and complex IoT applications. An

Event-B model is organised in terms of two basic constructs

representing the context and the machine. A context specifies

the static part of a representation; it includes CONSTANTS,

carrier SETS along with AXIOMS, and finally THEOREMS

which express some properties derivable from the axioms.

Regarding the machine, it involves the dynamic portion that

describes behavioral properties of a model. Such machine

includes VARIABLES describing the state of a machine, IN-

VARIANTS constraining that state by restricting the possible
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values to hold by the variables, and EVENTS allowing such

state update. An event is modelled through a set of guards and

actions following this form: ANY X WHEN Grd THEN Act

END. An event is activated when the guard’s substitution is

evaluated to true. However, the actions maintain the variables

evolution at each event call.

VI. THE PROPOSED IOT APPLICATIONS EVENT-B MODEL

In this section, we detail our Event-B approach for the

verification of the correctness of resource-oriented applications

to avoid their erroneous communication and execution on IoT-

Cloud environments. As depicted in Fig. 2, Our model is

broken down into its constituent sub-models, while covering

four verification axes: Structural, Functional, Operational and

Behavioral Models.

Fig. 2: An Event-B formal approach for IoT applications

A. Modeling the Structural Requirements

Preliminary, we model the elements that constitute the IoT

structure to guarantee correct execution for IoT applications.

For instance, it is axiomatic to define that an IoT system is

made of a non empty set of networks, that a CNN network

involves a significant portion of constrained nodes. At this

level, we construct IoT systems following REST as they are

lightweight and enable loose coupling of IoT elements.

To reach such goal, we primarily define in the first abstrac-

tion level the “Structural Context” (Fig. 3). IoT elements are

introduced thanks to Event-B as SETS named IoTSystems,

Networks, Gateways and Nodes, to model the structure of

IoT systems. However, the relations between IoT elements are

given in the AXIOMS clause where the constants are typed.

S-RQ1 is modeled in the following axm1, axm2 and axm3:

– axm1 specifies that all the defined sets are finite.

– The constant SysStyles denotes the architectural style of

each IoT system (axm2, axm3). It is modeled by a partial

function as a network is not required to follow a style.

– IoT includes at least one REST sub-system (axm3).

S-RQ2 is modeled in the following axm4, axm5 and axm6:

– NetKinds is a constant that maps a given network to its

kind (e.g constrained-node network CNN) (axm4, axm6).

CONTEXT Structural Context
SETS
IoTSystems Networks Nodes Gateways . . .
CONSTANTS
SysNetworks NetNodes NodDeg . . .
AXIOMS
axm1 : finite(IoTSystems) ∧ finite(Networks)

∧finite(Nodes) ∧ finite(Gateways)
axm2 : ArchiStyles = {REST,NonREST}
axm3 : SysStyles ∈ IoTSystems �→ArchiStyles

∧SysStyles ∼ [{REST}] �= ∅

axm4 : Kinds = {CNN,LLN,CHN,UN}
axm5 : SysNetworks ∈ Networks �� IoTSystems
axm6 : NetKinds ∈ Networks �→Kinds
axm7 : Deg ={High,Quite, Less, Unconstrain, Proxy}
axm8 : NetNodes ∈ Nodes ��Networks
axm9 : NodDeg ∈ Nodes �→Deg
END

Fig. 3: The Event-B Structural Context

– SysNetworks correlates each network to its potential

system (axm5). It is modeled by a surjective function

since each IoT system must involve at least one network.

S-RQ3 is modeled in the following axm7, axm8 and axm9:

– NodDeg denotes the constraints degree of IoT node (e.g

quite-constrained, unconstrained) (axm7, axm9).

– The constant NetNodes associates each node to its

corresponding network (axm8).

The above context is seen (clause SEES) by “Struc-
tural Machine” (Fig. 4) that introduces some variables in

INVARIANTS to model the dynamic elements of IoT systems

designed using REST. For instance, highly-constrained nodes

(resp. unconstrained) within CNN clusters, are considered to

be dynamic as they designate a migratory nature. In fact,

IoT nodes can move autonomously without even knowing

in advance mobility parameters such as destination locations.

Therefore, a CNN may turn into an unconstrained network UN
if the majority of its constrained nodes have left the network.

– We have defined the variable rstSys to model the subset

of REST systems (inv1).

– The CNN networks within REST systems are denoted by

the total relation rstCNN (inv2).

– To each CNN cluster, we have respectively associated

its highly and quite-constrained nodes denoted by the

relations cnnHigh and cnnQuit (inv3, inv4).

– Similarly, the less-constrained, unconstrained nodes and

proxies are denoted by cnnLess, cnnUnconst and

cnnProxy (hidden for a better readability).

S-RQ4 and S-RQ5 are respectively covered in inv5 and

inv6. In fact, inv5 permits to check whether each avail-

able CNN includes at least two constrained devices and

one proxy. Subsequently, inv6 tackles the density of the

fulfilled CNN clusters, while monitoring the amount of con-

strained/unconstrained nodes within them.
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MACHINE Structural Machine
SEES Structural Context
VARIABLES
rstSys rstCNN cnnHigh cnnQuit . . .
INVARIANTS
inv1 : rstSys ⊆ SysStyles ∼ [{REST}]
inv2 : rstCNN ∈ rstSys←↔NetKinds ∼ [CNN ]
inv3 : cnnHigh∈ ran(rstCNN)←→NodDeg∼[{High}]
inv4 : cnnQuit∈ ran(rstCNN)←→NodDeg∼[{Quite}]

. . .

inv5 : ∀c · c ∈ ran(rstCNN) ⇒
card(cnnHigh[{c}]) + card(cnnQuit[{c}]) ≥ 2

∧cnnProxy[{c}] �= ∅

inv6 : ∀c · c ∈ ran(rstCNN) ⇒
card(cnnHigh[{c}]) + card(cnnQuit[{c}]) ≥

card(cnnLess[{c}]) + card(cnnUnconst[{c}])
END

Fig. 4: The Event-B Structural Machine

The structure of IoT environment over which runs the FA

application of our motivating example (Fig. 1) is modeled by:

SETS
IoTSystems = {system1, system2, . . .}
Networks = {CNN1, LLN1, . . .}
Nodes = {sensor3, QN, proxy1, UnN1, LN,UnN2 . . .}
CONSTANTS
SysStyles = {system1 �→ REST, system2 �→ REST, . . .}
SysNetworks = {CNN1 �→ system1, . . .}
NetKinds = {CNN1 �→ CNN,LLN1 �→ LLN, . . .}
NetNodes = {sensor3 �→ CNN1, QN �→ CNN1, . . .}
NodDeg = {sensor3 �→ High,QN �→ Quite, proxy1 �→
Proxy, UnN1 �→ Unconstrained, . . .}
VARIABLES
rstSys = {system1}, rstCNN = {system1 �→ CNN1}
cnnHigh = {CNN1 �→ sensor3, CNN1 �→ building1}
cnnQuit = {CNN1 �→ QN}

B. Modeling the Functional Requirements

So far, we have modeled the basic structure of IoT systems

that adhere to REST. In this part, we focus on checking

the functional features and requirements of REST elements.

Hence, we guarantee a satisfactory development for IoT re-

source oriented applications as they cannot be executed with-

out their required functions. These features consist mainly on

the resources hosted on IoT nodes, their supported protocols

and URIs designating them. For this aim, we extend “Struc-
tural Context” by “Functional Context” (Fig. 5) and refine

“Structural Machine” by “Functional Machine” (Fig. 6).

In the second abstraction level, we model F-RQ1, F-RQ2,

F-RQ3 and F-RQ6 in the “Functional Context”. To do so,

we add some sets and axioms, that are defined as follows:

– axm1 associates a given resource to its potential REST

node, by means of a total surjective relation since a node

should host at least one resource (in respect to F-RQ1).

CONTEXT Functional Context
EXTENDS Structural Context
SETS
Resources Protocols Roles URIs MediaTypes
CONSTANTS
NodRsc EmbeddedRsc CoAP . . .
AXIOMS
axm1 : NodRsc ∈ Resources↔↔NetNodes ∼

[SysNetworks ∼ [SysStyles ∼ [{REST}]]]
axm2 : EmbeddedRsc ∈ Resources ↔ Resources
axm3 : ResourcesURIs ∈ URIs←↔Resources
axm4 : Protocols = {CoAP,HTTP,MQTT,DTN}
axm5 : ProtSupport ∈ Nodes ↔ Protocols
axm6 : Roles = {Client, Server}
axm7 : NodesRoles ∈ Nodes ↔ Roles
axm8 : MediaTypes = {JSON,XML,HTML}
axm9 : RepSupport ∈ Nodes ↔ MediaTypes
END

Fig. 5: The Event-B Functional Context

– axm2 allows linking a resource to its embedded resources.

– ResourcesURIs refers to the URIs that enable naming

a resource (axm3). It is modeled as a total relation since

an URI designates exactly one resource (F-RQ2).

– To each node, we have assigned at least one protocol

(axm4, axm5) and a data format (axm8, axm9) (F-RQ3).

– Likewise, NodesRoles is a relation that affects at least

one role (e.g client) to each node (axm6, axm7) (F-RQ6).

The “Functional Machine” is seen by the “Func-
tional Context” to check whether F-RQ4, F-RQ5 and F-RQ6
are preserved, respectively through inv1, inv2 and inv3. In

fact, inv1 detects the nodes that run on non-REST systems,

while checking whether they support CoAP (in respect to F-
RQ4). However, inv2 monitors the protocols employed by

highly-constrained nodes, since heavyweight protocols (XML,

HTTP) are forbidden for such nodes that exhibit severe limits

(F-RQ5). Regarding inv3, it allows checking whether the

intermediaries (e.g proxy) implement both client and server

roles, as stated in F-RQ6.

The functional elements of FA (Fig. 1) are modeled by the

following sets and constants:

Resources = {SmokeSensingService, Temperature,
EmergencyNotification,GasSensingService, . . .}
NodRsc = {GasSensingService �→ sensor3,
EmergencyNotification �→ UnN1, . . .}
ProtSupport = {sensor3 �→ CoAP,QN �→ CoAP, proxy1
�→ HTTP, proxy1 �→ CoAP,UnN1 �→ HTTP, . . .}
RepSupport = {sensor3 �→ JSON, sensor3 �→
HTML,QN �→ HTML, proxy1 �→ JSON, . . .}

C. Modeling the Operational Requirements

Up to this level, we have modeled the architecture of IoT-

based systems following REST to check that are properly

structured. Subsequently, we have modeled the functional
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MACHINE Functional Machine
REFINES Structural Machine
SEES Functional Context
INVARIANTS
inv1 : ∀n · (n ∈ dom(ProtSupport) ∧ n �∈ ran(NodRsc))

⇒ ProtSupport(n) �= CoAP
inv2 : ∀high · high ∈ cnnHigh

⇒ (ran({high}) �⊂ RepSupport ∼ [{XML}])∧
ran({high}) �⊂ ProtSupport ∼ [{HTTP}])

inv3 : ∀proxy · proxy ∈ NodDeg ∼ [{Proxy}])
⇒ (NodesRoles ∼ [{Client}] ∩ {proxy} �= ∅)∧

(NodesRoles ∼ [{Server}] ∩ {proxy} �= ∅)
END

Fig. 6: The Event-B Functional Machine

properties of REST elements to guarantee a correct execution

for IoT resource-oriented applications. Indeed, IoT elements

(devices) are expected to exchange and collect the data during

the applications’ execution. In this section, we model the oper-

ational requirements of the connected devices to ensure their

consistent communications. Three operational properties are

analysed at this level: Reachability, Availability and Com-
patibility. Wherefore, in this section, we introduce the ’Check-
Reachability’ event to check whether the connected endpoints

are attainable. For instance, they may remain unreachable

when interruptions in end-to-end connectivity are encountered.

Such event enables us to avoid deadlock situations where for

example a device is exhausted in terms of energy, discarded

and not willing to communicate. Subsequently, we perform

the ’CheckAvailability’ event to ensure that the mandatory

resources to manipulate by a device are available. In fact, they

must be directly accessible or dynamically navigable by other

resources. We also define the ’CheckCompatibility’ event to

verify the matching of data formats supported by the endpoints

and the circulating resources. This event enables us to avoid

incompatibility issues that may occur when for example the

format of a resource is not recognized by the device that

queries about it. Therefore, we define the extended “Opera-
tional Context” (Fig. 7) and refined “Operational Machine”
(Fig. 8), to add operational features to the model.

Initially, we model O-RQ1 in the “Operational Context”
where we define new constants typed in AXIOMS as follows:

– Exchange denotes the pairs of connected devices

(sender, receiver), where the sender should implement

client role and the receiver acts as a server (O-RQ1).

– NodesModes is a partial function that associates to a

given node a Sleep or a Sleepless mode (axm2, axm3).

– To each node, we have assigned a sleepT iming and an

estimated maximum sleeping time EMST (axm4, axm5).

– QueriedRep and RscLookFor correlate respectively a

given node to data types and resources that queries about.

– RscRep denotes the resource media type (axm8).

The above context is seen by “Operational Machine”. In

this third refinement level, we define new variables as follows:

CONTEXT Operational Context
EXTENDS Functional Context
CONSTANTS
Exchange QueriedRep EMST RscLookFor . . .
AXIOMS
axm1 :Exchange∈Nodes↔Nodes ∧ (∀r · r ∈ Exchange

⇒ (NodesRoles ∼ [{Client}] ∩ dom({r}) �= ∅)
∧(NodesRoles ∼ [{Server}] ∩ ran({r}) �= ∅))

axm2 : Modes ∈ {Sleep, Sleepless}
axm3 : NodesModes ∈ Nodes �→Modes
axm4 : sleepT iming ∈ Nodes �→ N

axm5 : EMST ∈ Nodes �→ N

axm6 : QueriedRep ∈ Nodes �→MediaTypes
axm7 : RscLookFor ∈ Nodes ↔ Resources
axm8 : RscRep ∈ Resources �→MediaTypes
END

Fig. 7: The Event-B Operational Context

– communication is a subset of the Exchange set that

refers to the current communicating devices (inv1).

– Reachability, Compatibility are evaluated to TRUE if

both sender and receiver are reachable and compatible.

– Availability indicates whether the resource is accessible.

MACHINE Operational Machine
REFINES Functional Machine
SEES Operational Context
VARIABLES
communication Sender Reachability . . .
INVARIANTS
inv1 : communication ⊆ Exchange
inv2 : Sender ⊆ Nodes ∧Receiver ⊆ Nodes
inv3 : Reachability ⊆ BOOL
inv4 : Availability ⊆ BOOL
inv5 : Compatibility ⊆ BOOL
END

Fig. 8: The Event-B Operational Machine

Both connected endpoints must be reachable to avoid possi-

ble deadlock situations that occur during IoT communications.

Namely, for each device waiting to receive a required message

there will be a receiver willing to send it. Such constraint is

ensured by modeling O-RQ2 while performing the ’Check-
Reachability’ event (Fig. 9) that we proceed to its description.

During the current communication (grd1), the receiver

(grd2) can move freely without knowing in advance mobility

parameters and can even definitely disappear from the IoT

system. In the grd3, we assume that the receiver physically

exists while evaluating the variable existed to TRUE. The

receiver is considered to be reachable (reachable = TRUE)

(grd5) when the following requirements are fulfilled : (1)
it is awake at a given instant or it is into a sleep mode

but its estimated maximum sleeping time has not been yet

reached (exhausted �= TRUE) and, (2) (existed = TRUE).
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CheckReachability =̂
ANY com receiver sender existed exhausted reachable

WHERE
grd1: com ∈ Exchange \ communication
grd2: receiver ∈ ran({com}) ∧ sender ∈ dom({com})
grd3: NetNodes[{receiver}] �= ∅ ⇒ existed = TRUE
grd4: (receiver ∈ NodesModes ∼ [{Sleep}]

∧sleepT iming(receiver) > EMST (receiver))
∨existed �= TRUE
⇒ reachable = FALSE ∧ exhausted = TRUE

grd5: (receiver ∈ NodesModes ∼ [{Sleepless}]
∨exhausted �= TRUE) ∧ existed = TRUE
⇒ reachable = TRUE

THEN
act1: communication := communication ∪ {com}
act2: Receiver :={receiver} act3: Sender :={sender}
act4: Reachability := reachable

END

Fig. 9: The event ’CheckReachability’

However, the receiver is unreachable (reachable = FALSE)

(grd4) when (1) it is asleep and its associated EMST has

been exceed or, (2) simply when (existed �= TRUE). Once

triggered, the variable Reachability is evaluated (TRUE or

FALSE) (act4) and the event verification is launched for

next interactions (act1). If the variable Reachability of the

above event is evaluated to TRUE, it automatically activates

the event ’CheckAvailability’ (grd1)(Fig.10) that in turn checks

the availability of the resource hosted on the Receiver (act2)

that the Sender(act3) queries about it, while covering O-RQ3.

CheckAvailability =̂
ANY available found

WHERE
grd1: Reachability = TRUE
grd2: RscLookFor[Receiver] ⊆ NodeRsc ∼ [Receiver]

∨(∃r, e.(r �→ e ∈ EmbeddedRsc ⇒
RscLookFor[Receiver] = {e}
∧NodeRsc ∼ [Receiver] = {r}))

⇒ available = TRUE ∧ found = TRUE
grd3: found �= TRUE ⇒ available = FALSE
THEN

act1: Availability := available
END

Fig. 10: The event ’CheckAvailability’

To confirm the accessibility of the resource looking for

(available = TRUE) (grd2) (Fig. 10), the following prop-

erties should be satisfied: (1) the resource running on the

receiver is directly offered or, (2) it is dynamically navigable,

it means there exist a resource r hosted on the receiver that is

linked to an embedded resourceethat in turn conforms to the

queried resource. After lookup, if the resource is not found

(found �= TRUE), available is set to FALSE (grd3). Once

launched, this event evaluates the variable Availability (act1).

If TRUE, the event ’CheckCompatibility’ (Fig.11) is activated.

To guarantee correct communications for IoT devices, we

formalise the matching process through ’CheckCompatibil-
ity’ event in respect to O-RQ4. IoT devices are compatible

(compatible = TRUE) (grd4) if the content negotiation is

fully meet as follows (negotiation = TRUE): (1) the media

format of the captured resource rscLookRep (grd2) matches

with the media type queried by the Sender (client) (grd3)

and, (2) rscLookRep is supported by the Receiver and, (3)
there exist a data format supported by the Sender that matches

with rscLookRep. If a mismatch is detected, compatible is

set to FALSE (grd5). Once the negotiation is performed, act1
is triggered and the variable Compatibility is evaluated.

CheckCompatibility =̂
ANY rscLookRep compatible negotiation

WHERE
grd1: Reachability = TRUE ∧Availability = TRUE
grd2: rscLookRep = RscRep[RscLookFor[Receiver]]
grd3: QueriedRep[Sender] = rscLookRep
∧RepSupport[Receiver] ∩ rscLookRep �= ∅

∧(∃r.r ∈ {RepSupport[Sender]} ⇒ r = rscLookRep)
⇒ negotiation = TRUE

grd4: negotiation = TRUE ⇒ compatible = TRUE
grd5: negotiation �= TRUE ⇒ compatible = FALSE
THEN

act1: Compatibility := compatible
END

Fig. 11: The event ’CheckCompatibility’

D. Modeling the Behavioral Requirements

So far, we have modeled the operational properties of the

connected IoT devices. In some cases, it is necessary to

interfere mediators in the form of proxies to assist IoT devices

that do not have the resources required to communicate. At this

abstraction level, two behavioral properties are studied: Proxy
Interference and Proxy Conflicts. We preliminary introduce

the ’ProxyInterference’ event to analyse the degree of devices’

constraints and the matching of their protocols to detect the

behavioral mismatches and model the cases where the brokers

aid is required. Subsequently, we carry out the ’ProxyConflicts’
event to handle exceptionable conflicts that may occur when

a shared proxy assists many devices simultaneously, while its

capacity in terms of tasks it can handle in parallel is lim-

ited. Therefore, we define the extended “Behavioral Context”
to add a constant called PrxCapacity denoting the proxy

capacity. The context is seen by the “Behavioral Machine”
where we define PrxTasks (PrxTasks ∈ Nodes → N)

and PrxLinks (PrxLinks ∈ Nodes ↔ Nodes) that refer

respectively to the number of tasks handled by a given proxy

at an instant and the links that join the Sender and Receiver
to the proxy.
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Fig. 12 illustrates the ’ProxyInterference’ event. To ascertain

whether a device does not have the capacity to establish direct

communications, we locate the networks over which it runs

and we eventually recognize its relative informations (e.g

supported protocols, constraints degrees, etc). To sum up, a

proxy behaves toward assisting the device (proxy = TRUE)

if the requirements B-RQ1 and B-RQ2 are fully satisfied as

follows: (1) the Sender is so severely constrained (highly-
constrained) and it belongs to the same CNN cluster of the

Receiver as well (grd1) or, (2) the Sender is classified as

a quite-constrained node and it does not support the protocol

CoAP that is especially designed to cope with the devices that

have limited resources. A device that is able to interact directly

without the mediators’ interference (proxy = FALSE)

should meet the following requirements : (1) the Sender is

quite-constrained but employs CoAP protocol to interact or,

(2) it is less-constrained (resp. unconstrained) (grd2). Once

triggered, this event evaluates the variable Proxying (act1).

ProxyInterference =̂
ANY proxy

WHERE
grd1: (cnnHigh ∼ [Sender] = NetNodes[Receiver])

∨((cnnQuit ∼ [Sender] �= ∅)
∧(∀p.p ∈ {ProtSupport(Sender)} ⇒ p �= CoAP ))
⇒ proxy = TRUE

grd2: ((cnnQuit ∼ [Sender] �= ∅)
∧(∃p.p ∈ {ProtSupport(Sender)} → p = CoAP ))
∨cnnUnconst ∼ [Sender] ∪ cnnLess ∼[Sender] �= ∅

⇒ proxy = FALSE
THEN

act1: Proxying := proxy
END

Fig. 12: The event ’ProxyInterference’

As stated above, the proxies assist the devices that are not

capable to communicate. However, each proxy is limited by

a given maximum capacity which may pose serious conflicts

when dealing with parallel tasks. In the event ’ProxyConflicts’
(Fig. 13) the selection of the appropriate neighbour proxy

(grd1) is principally based on the proxies capacity. Each time

a proxy has exceed the maximum capacity (grd2); the system

passes the task to the next neighbour proxy included in the

same Sender network. The variable neighborsProxy stores

all the candidate proxies. However, the final winner proxy,

which is selected for the inter-mediation, is modeled through

the variable proxy (grd4). Afterwards, the proxies tasks in

progress and the internal proxies/devices links are updated for

each event trigger (act1, act2).

VII. VERIFICATION AND VALIDATION

A. Proof Obligations (POs)

As a result of the mathematical sound way that Event-B

model possesses, it is simple to supply experiments that check

our proposed model consistency. In fact, The use of formal

ProxyConflicts =̂
ANY prxNearSender neighbourProxy Links proxy t

WHERE
grd1: prxNearSender=cnnProxy[NetNodes[Sender]]
grd2: neighbourProxy ∈ prxNearSender

∧PrxTasks(neighbourProxy) <
PrxCapacity(neighbourProxy)

grd3: Links ∈ Sender → {neighbourProxy}
∧proxying = TRUE ∧ t ∈ N

grd4: proxy ∈ ran(Links) ∧ Compatibility = TRUE
THEN

act1: PrxTasks(proxy) := PrxTasks(proxy) + t
act2: PrxLinks := PrxLinks ∪ Links

END

Fig. 13: The event ’ProxyConflicts’

methods is nowadays a necessity to provide a rigorous rea-

soning and mathematical proofs to create reliable applications

for complex IoT systems and to avoid their incorrect behavior.

POs are produced by Rodin platform to formally prove

the Structural, Functional, Operational and Behavioral prop-

erties, in respect to four verification axes. Indeed, vigorous

tools assist the proof process established to ensure that the

events related to four sub-models preserve their invariants.

Our verified model has successfully fulfilled its 57 POs, where

70% of them are automatically discharged by the automatic

prover. Fig. 14 shows the proof statistics of the Operational

and Behavioral sub-models. As given, the POs denoted by ”A”

symbol are automatically discharged. However, the remaining

POs are interactively discharged.

Fig. 14: POs of the Operational and the Behavioral Models

B. ProB Animation

The second validation of our model is accomplished through

the use of ProB-based Rodin that enables us to carry out

an automated animation of its specification. It offers the

possibility to play different scenarios by shown at each step

the variable’s values and by distinguishing the specification

behavior and distinguishing activated events from deactivated

ones. Before proceeding with the animation, we gave values
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to carrier sets, constants and variables. The animation consists

of the following steps (see Fig. 15):

1) We first trigger the SETUP-CONTEXT event which gives

values to the constants and context’s carrying sets.

2) Then, we trigger the INITIALIZATION event to place

our model in its initial state.

3) We finally proceed to the steps of the scenario to be

verified. Considering the communication (sensor3 �→
UnN1) of our motivating example. Once triggering the

event ’CheckReachability’, the variable Reachability
is evaluated to True since both the Sender and Receiver
are attainable. Hence, the event ’CheckAvailability’

is automatically activated (The green one). Simi-

larly, the variable Availability is set to TRUE since

the resource to manipulate by the sender sensor3
(’EmergencyNotification’) is available. And thus, the

event ’CheckCompatibility’ is activated. Given that the

connected endpoints match in respect to their supported

data formats and the captured resource format (JSON )

and so on, the variable Compatibility is also set to

TRUE. Up to this stage, this communication is par-

tially satisfied, as it fully preserves the INVARIANTS

and GUARDS related to “Operational Machine”. Subse-

quently, the event ’ProxyInterference’ of the “Behav-
ioral Machine” is activated seeing that Compatibility =
TRUE. Once triggered, the variable Proxying is set

to TRUE, since the proxies should assist the interac-

tion. Therefore, the message will be routed to proxy4
(PrxTasks(proxy4) = 2) since proxy1 is saturated

(PrxTasks(proxy1) = 1) after calling the event

’ProxyConflicts’. The same process is applied to check

the consistency of the next interaction (QN �→ sensor3)

that is directly satisfied without the proxies interference.

Fig. 15: Validation of the proposed Model

CONCLUSION

In this paper, we proposed an Event-B based model to verify

the architecture of IoT-Cloud environments over which the

resources-oriented applications are deployed. Subsequently,

we check the correctness of communications that occur during

the execution of IoT applications, in order to avoid possible

deadlock situation that may occur. Our model comprises four

abstract levels with respect to four verification levels: Struc-

tural, Functional, Operational and Behavioral. We succeeded

to rigorously verify and validate our approach by means of the

PROB animator and the POs. We are continuing to work on

the remaining issues and will present them in future papers.

We plan in the near future, to extend this work by examining

the elasticity of IoT communications in order to improve non-

functional properties related to QoS and performance.

REFERENCES
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