
HAL Id: hal-04775133
https://hal.science/hal-04775133v1

Submitted on 9 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Performance-cost trade-offs in service orchestration for
edge computing

Daniel Balouek

To cite this version:
Daniel Balouek. Performance-cost trade-offs in service orchestration for edge computing. SSDBM 2024
- 36th International Conference on Scientific and Statistical Database Management, Edge Computing;
Resource Management; Computing Continuum; Trade-offs; Urgent Computing, Jul 2024, Rennes,
France. pp.1-4, �10.1145/3676288.3676307�. �hal-04775133�

https://hal.science/hal-04775133v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Performance-cost trade-offs in service orchestration
for edge computing

Daniel Balouek
IMT Atlantique, Nantes Université, École Centrale Nantes
CNRS, Inria, LS2N, UMR 6004, F-44000 Nantes, France

ABSTRACT
Low latencies connections and decentralized servers are currently
showcasing a new potential for distributed computing. By moving
away from traditional centralized cloud models and toward edge
computing, which allows for more autonomy and decision-making
at the network’s edge, almost any physical thing can be turned
into an Internet of Things (IoT) device that can elaborate on data it
senses from its environment. In this context, service management
and adaptation routines in a highly dynamic and geographically
distributed federation depends on a large number of factors ranging
from performance to cost and the fluctuation of the data quality.

This paper presents mechanisms for monitoring resources at the
edge in real-time, orchestrating service provisioning, performing
data-driven decisions on behalf of applications, adapting service lo-
cations, and coordinating sensing tasks. The demonstration focuses
on autoscaling of containers, service placement and distributed
sensing, while considering utility metrics to help achieve a fluid
workload in Kubernetes clusters.

ACM Reference Format:
Daniel Balouek, IMT Atlantique, Nantes Université, École Centrale Nantes,
CNRS, Inria, LS2N, UMR 6004, F-44000 Nantes, France . 2024. Performance-cost
trade-offs in service orchestration for edge computing. In 36th International
Conference on Scientific and Statistical Database Management (SSDBM 2024),
July 10–12, 2024, Rennes, France. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3676288.3676307

1 INTRODUCTION
Low latencies connections and decentralized servers are currently
showcasing a new potential for distributed computing. This shift
from traditional centralized Cloud models enables distributed ana-
lytics spanning resources at the edges, in the core and in-between,
also referred to as the Computing Continuum [3, 4]. The Computing
Continuum aggregates the architectural and algorithmic challenges
of its individual layers while presenting new challenges related to
their control and adaptation.

The Computing Continuum is an ideal platform for supporting
urgent computing, i.e., computing under strict time and quality
constraints to support decision making with the desired confidence
within a defined time interval [5, 11]. However, it represents ex-
treme heterogeneity in the capabilities and capacities of systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SSDBM 2024, July 10–12, 2024, Rennes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1020-9/24/07
https://doi.org/10.1145/3676288.3676307

furthered coupled with extreme uncertainty arising from the avail-
ability and quality of data, resources, and services [13]. Thus, the
end-to-end performance of applications deployed across the con-
tinuum relies both on the understanding of application models and
components, as well as the resources available during execution.

Processing capacity

Latency
Data size per computing unit

In-transitEdge Core

Figure 1: An abstract view of the Computing Continuum.
Traversing the data path from the network edges, via in-
transit resources, to the core, resources typically increase
in scale and processing capacity, but also imply increasing
latency and data movement costs.

Such applications benefit from a computing environment built
on top of mixed, heterogeneous and even mobile resources, that
promises to map user expectations and constraints in terms of
response time, solution quality, data resolution, cost, energy, etc.
Particularly, pervasive applications will need a flexible and dynamic
provisioning of computing services , that is, a provisioning system
capable of orchestrating (activating, deactivating, updating, inte-
grating, etc.) processing, storage and networking resources.

This work focuses on adaptation routines for data-driven ap-
plications using Kubernetes, the de facto standard, for service or-
chestration. The demonstration consists in a (1) deployment of an
edge-cloud cluster on Kubernetes, (2) a service placement defined
by the location of data products and performance of data process-
ing, and (3) an autoscaling mechanism for adapting the number of
services instances with regards to over-provisionning.

2 MOTIVATION
2.1 Urgent Computing
Urgent science describes time-critical, data-driven scientific work-
flows that can leverage distributed data sources in a timely way
to facilitate important decision making. Examples of urgent sci-
ence span various domains ranging from applications that aim to
improve quality of life, monitor civil infrastructures, respond to
natural disasters and extreme events, and accelerate science. Ur-
gent science workflows present requirements and constraints due

https://doi.org/10.1145/3676288.3676307
https://doi.org/10.1145/3676288.3676307
https://doi.org/10.1145/3676288.3676307
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676288.3676307&domain=pdf&date_stamp=2024-08-23


SSDBM 2024, July 10–12, 2024, Rennes, France Daniel Balouek

to the nature and distribution of the data, the complexity of the
models involved, the stringent error thresholds, and the strict time
constraints [2].

The Earthquake Early Warning (EEW) application [7] is repre-
sentative of that class of problems, with two important data pro-
cessing steps: a by-sensor time-series classification and a by-region
combination of sensor predictions, as illustrated in Figure 2.

Figure 2: An illustration of the Distributed Multi-Sensor
Earthquake Early Warning use-case [7]. Seismic sensors lo-
cated in the Edge send measurements to gateways in the net-
work which pre-process the data. Those preprocessed data
are sent to cloud servers which complete the data processing
and eventually broadcast earthquake alerts.

Such Cyber-Physical System (CPS) combines physical and com-
putational components to monitor and control physical processes.
CPSs integrates physical processes, control algorithms and commu-
nication networks to deliver alerts within an information-sharing
network. In other words, our vision for Urgent Computing aims at
taking advantage of a broad computing landscape that mixes Cloud
Computing, Edge Computing and IoT resources.

It is essential in this setting to effectively integrate edge devices
and cloud servers in order to quickly and accurately address any
scenario and minimize the volume of data sent to the cloud. This
necessitates the implementation of a reliable adaptation mechanism
that consistently monitors, understands, and adjusts in response to
the changing conditions of the computing environment.

3 METHODOLOGY
3.1 Data quality adaptation strategy
The system comprises a set of distributed and finite resources with
varying computational and network capabilities. To analyze sensor
data from numerous sources on these resources, one must select a
system that balances latency and accuracy. This section describes
an approach for adapting data quality in applications that rely
on sensor data. This approach determines the allocation of data
characteristics across the current data sources. It assesses whether
the system is capable of handling the original data qualities of all
data sources, or if a drop in quality is necessary. This approach
ensures the quality of the produced data while ensuring that the
system accuracy is above a predetermined threshold 𝑎𝑚𝑖𝑛 . The
service responsible for implementing this strategy is deployed on
the Edge.

Let 𝐵 = {𝑏1, ..., 𝑏𝑚} be the set of possible quality distributions
among data sources. Each distribution 𝑏𝑖 is formulated as {𝛽 · 𝑞𝑙 |

1 ≤ 𝛽 ≤ 𝑘 and 𝑞𝑙 ∈ 𝑄}, where 𝛽 represents the number of data
sources having the data quality 𝑞𝑙 and 𝑘 is the total number of
data sources in the system. 𝑞𝑙 might corresponds to their original
or reduced data qualities. In the object detection use case 𝑄 =

{512𝑝, 416𝑝}. For n=3, a possible data quality distribution can be
𝑏1 = {(2) ·𝑄512𝑝 , (1) ·𝑄416𝑝 }.

The suggested technique chooses the distribution from the set 𝐵
that has the shortest analysis latency and highest accuracy, while
still meeting the minimum criterion 𝑎𝑚𝑖𝑛 . However, in certain spe-
cific scenarios, the chosen distribution of data quality may not be
the most efficient. The system achieves a balance between latency
and accuracy, considering the scenario where there is an alternative
distribution that offers a latency improvement of less than 10ms but
a decrease in accuracy of 20% or more. The strategy is presented in
Algorithm 1.

Algorithm 1: Select the quality distribution with a latency-
accuracy trade-off.
Result: quality distribution with the optimal trade-off.

1 begin
2 initialization;
3 for b in B do
4 L← getEstimatedLatency(b)
5 A← getEstimatedAccuracy(b)
6 if A ≥ 𝑎𝑚𝑖𝑛 then
7 add({b, L, A}, list);

8 if isEmpty(list) == TRUE then
9 return ∅

10 best← getMinLatency(list);
11 for x in list do
12 if △(𝑥 [𝐿], 𝑏𝑒𝑠𝑡 [𝐿]) < 10 and
13 △(𝑥 [𝐴], 𝑏𝑒𝑠𝑡 [𝐴]) ≥ 20% then
14 best← x;

15 return(best);

In steps 2-6, it calculates the estimated latency and accuracy of
each possible data quality distribution. Then, in step 5, it filters
those with unacceptable accuracy. If no configuration provides ac-
ceptable accuracy, the data source can’t join the system at that
time period (steps 7 & 8). Otherwise, the preferred data distribution
among the acceptable configurations is the one with the fastest
analysis (step 9). In steps 10-12, it checks if there is another distri-
bution that matches the use case presented above. If so, it will be
selected as the preferred quality distribution in the system.

3.2 Resource adjustment strategy
Algorithm 2 is employed to minimize the resource demands of
demanding jobs in situations where it is not feasible to provide the
complete amount of required resources. It optimizes the utilization
of system resources while guaranteeing a minimal threshold that
is equivalent to 50% of their estimated requirements.

Algorithm 2 accepts as input the category of the work to be
allocated and the list of resources allocated for high-demand tasks.



Performance-cost trade-offs in service orchestration for edge computing SSDBM 2024, July 10–12, 2024, Rennes, France

In steps 2 and 3, it gets the remaining free resources on the Cloudlet-
Cloud tiers and selects the one with the maximum remaining capac-
ity. If the remaining capacity selected is greater than or equal to the
minimum threshold, the resource is reserved (steps 3-5). However,
if not, the algorithm attempts to reach the minimum threshold by
adjusting the computing capacity of the other reservations on the
same selected resource (steps 6-13). In step 7, it gets the remaining
capacity needed to reach the minimum threshold. The reservations
on the selected resource that can handle a resource adjustment are
those that remain above the minimum threshold even if their com-
puting capacity is reduced (step 8). In steps 9 and 10, it reduces the
remaining capacity needed evenly from the reservation list. After
adjustment, the list of reserved resources is updated (steps 11-13).

Algorithm 2: Resource adjustment for tasks.
Data: listLI, listHI, category
Result: Adjust required resources of intensive tasks

1Void Adjust_res(listLI, listHI, category)
2 begin
3 listFree← getFreeResources();
4 res← getMAX(listFree, category);
5 if res ≥ 50% × requiredResources then
6 entry← reserve(res, category);
7 updateReservedList(category, entry);
8 else
9 remain← getRemain(res);

10 listReservations←checkReservations(remain,
listLI, listHI);

11 part← (remain / size(listReservations));
12 newList← Reduce(part, listReservations);
13 updateReservedList(newList);
14 entry← reserve(res, remain);
15 updateReservedList(entry);

4 SERVICE ORCHESTRATION
This demonstration builds upon preliminary research on edge com-
puting and urgent science to providing attendees with the required
tooling for orchestrating services and adapting performance to
given constraints [14]. From an application development perspec-
tive, lowering the entry barriers for scientists from related domains
when mapping application expectations and constraints is essen-
tial. From a system perspective, improving resource orchestration
(activating, deactivating, updating, integrating, etc.) at the edge of
the network allows for better resource usage.

4.1 Demonstration Setup
We use Kubernetes for managing a containerized environment
describing an Edge-Cloud cluster over the Grid5000 platform [1].
The Cloud is composed of a single core node with 8 cores, and
the edge is composed of 1-core nodes, which the number can be
adjusted during the experiments. EnosLib [6] enables the scripting

of network emulation features that allows the specification of Edge-
to-Cloud communication constraints (delay, loss, and bandwidth).

4.2 Scenario
The overall idea of resource orchestration at the edge is to leverage
performance indicators such as performance or cost to manage the
service deployment and placement. Additionally, the application
data itself. through intelligent algorithm for training and inferenc-
ing, also influence the resource orchestration.

First, we will allow users to visualize the baseline performance
of our Edge-Cloud cluster using a synthetic dataset. Second, we
will showcase an adaptation routine for scaling the number of edge
nodes according to a target and dynamic performance indicator.
Third, wewill leverage a simplemachine learning process to identify
out-of-scope values across edge-nodes.

5 RELATEDWORK
Analyzing concurrentlymultiple data streamswith limited resources
forces resource-quality trade-offs [8, 16, 17]. As the incoming data
are processed concurrently, resources available to each data stream
are often unknown. Online/offline configurations adaptation is
currently a promising solution to address the issue of limited re-
sources [9, 10, 12, 15, 17]. In [15], Wang adopt an offline configu-
ration adaptation and bandwidth allocation strategies to address
the issue of limited resources between IoT devices and edge nodes.
Similar to the approach presented in this work, the adaptation is
triggered periodically. Systems in [9, 10] adopt an online configura-
tion adaptation algorithms for video analytics in Edge computing.
The configurations targeted are frame rate and resolution. However,
these systems only focus on the performance of the analysis stage
and not on a complete workflow. Additionally, they only target
Edge-based video analytics applications. In [12], they present an
Edge Network Orchestrator for Mobile Augmented Reality (MAR)
systems. It boosts the performance of an Edge-based MAR sys-
tem by optimizing the edge server assignment and video frame
resolution selection for MAR users.

6 CONCLUSION
Computing is shifting from the traditionally centralized cloud to
a distributed set of heterogenous resources located between the
edge, the cloud and in-between. As computing has moved to this
Computing Continuum, the tradeoffs between performance, avail-
ability and cost have become increasingly complicated. This paper
presents mechanisms for adapting the orchestration of containers
while considering utility metrics to help achieve a flexible resource
management in Kubernetes clusters.

As future work, we aim at augmenting common operations of
data-driven analytics (e.g. collection, filtering, processing, deliv-
ery) with similar adaptation and tunable parameters. This will
provide software abstractions that will be able to better orches-
trate operations by considering application context and real-time
infrastructure metrics.

ACKNOWLEDGMENTS
This work is partially funded through the French project OTPAAS
(BPiFrance).



SSDBM 2024, July 10–12, 2024, Rennes, France Daniel Balouek

REFERENCES
[1] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez,

Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas
Niclausse, Lucas Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel,
Cyril Rohr, and Luc Sarzyniec. 2013. Adding Virtualization Capabilities to the
Grid’5000 Testbed. In Cloud Computing and Services Science, Ivan I. Ivanov,
Marten van Sinderen, Frank Leymann, and Tony Shan (Eds.). Communications in
Computer and Information Science, Vol. 367. Springer International Publishing,
3–20. https://doi.org/10.1007/978-3-319-04519-1_1

[2] Daniel Balouek-Thomert and al. 2020. Harnessing the Computing Continuum
for Urgent Science. SIGMETRICS Perform. Eval. Rev. 48, 2 (Nov. 2020), 41–46.
https://doi.org/10.1145/3439602.3439618

[3] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Zamani, Anthony Si-
monet, and Manish Parashar. 2019. Towards a computing continuum: Enabling
edge-to-cloud integration for data-driven workflows. International Journal of
High Performance Computing Applications 33 (11 2019), 1159–1174. Issue 6.
https://doi.org/10.1177/1094342019877383/FORMAT/EPUB

[4] P Beckman and al. 2020. Harnessing the computing continuum for programming
our world. Fog Computing: Theory and Practice (2020), 215–230.

[5] Alexander V Boukhanovsky, Valeria V Krzhizhanovskaya, and Marian Bubak.
2018. Urgent computing for decision support in critical situations. , 111–
113 pages.

[6] Ronan-Alexandre Cherrueau, Marie Delavergne, Alexandre van Kempen, Adrien
Lebre, Dimitri Pertin, Javier Rojas Balderrama, Anthony Simonet, and Matthieu
Simonin. 2022. EnosLib: A Library for Experiment-Driven Research in Distributed
Computing. IEEE Transactions on Parallel and Distributed Systems 33, 6 (June
2022), 1464–1477. https://doi.org/10.1109/TPDS.2021.3111159

[7] K. Fauvel and al. 2020. A DistributedMulti-Sensor Machine Learning Approach to
Earthquake Early Warning. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence.

[8] Angela H. Jiang et al. 2018. Mainstream: Dynamic Stem-Sharing for Multi-Tenant
Video Processing. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).

USENIX Association, Boston, MA, 29–42.
[9] J. Jiang and al. 2018. Chameleon: Scalable Adaptation of Video Analytics. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. 253–266.

[10] Woo-Joong Kim and Chan-Hyun Youn. 2020. Lightweight Online Profiling-Based
Configuration Adaptation for Video Analytics System in Edge Computing. IEEE
Access 8 (2020), 116881–116899. https://doi.org/10.1109/ACCESS.2020.3004571

[11] Siew Hoon Leong and Dieter Kranzlmüller. 2015. Towards a General Definition
of Urgent Computing. Procedia Computer Science 51 (2015), 2337 – 2346. https:
//doi.org/10.1016/j.procs.2015.05.402 International Conference On Computational
Science, ICCS 2015.

[12] Q. Liu et al. 2018. An Edge Network Orchestrator for Mobile Augmented Reality.
In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. 756–764.
https://doi.org/10.1109/INFOCOM.2018.8486241

[13] Manish Parashar. 2024. Everywhere & Nowhere: Envisioning a Computing
Continuum for Science. arXiv preprint arXiv:2406.04480 (2024).

[14] Eduard Renart, Daniel Balouek-Thomert, and Manish Parashar. 2017. Pulsar:
Enabling dynamic data-driven IoT applications. In 2017 IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE
Computer Society, 357–359.

[15] C.Wang et al. 2020. Joint Configuration Adaptation and Bandwidth Allocation for
Edge-based Real-time Video Analytics. In IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications. 257–266. https://doi.org/10.1109/INFOCOM41043.
2020.9155524

[16] Ali Reza Zamani, Moustafa AbdelBaky, Daniel Balouek-Thomert, Juan J Villalo-
bos, Ivan Rodero, and Manish Parashar. 2020. Submarine: A subscription-based
data streaming framework for integrating large facilities and advanced cyberin-
frastructure. Concurrency and Computation: Practice and Experience 32, 16 (2020),
e5256.

[17] Haoyu Zhang et al. 2017. Live Video Analytics at Scale with Approximation and
Delay-Tolerance. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 377–392.

https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1145/3439602.3439618
https://doi.org/10.1177/1094342019877383/FORMAT/EPUB
https://doi.org/10.1109/TPDS.2021.3111159
https://doi.org/10.1109/ACCESS.2020.3004571
https://doi.org/10.1016/j.procs.2015.05.402
https://doi.org/10.1016/j.procs.2015.05.402
https://doi.org/10.1109/INFOCOM.2018.8486241
https://doi.org/10.1109/INFOCOM41043.2020.9155524
https://doi.org/10.1109/INFOCOM41043.2020.9155524

	Abstract
	1 Introduction
	2 Motivation
	2.1 Urgent Computing

	3 Methodology
	3.1 Data quality adaptation strategy
	3.2 Resource adjustment strategy

	4 Service Orchestration
	4.1 Demonstration Setup
	4.2 Scenario

	5 Related work
	6 Conclusion
	Acknowledgments
	References

