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A Survey of Emerging Approaches and Advances
in Video Generation

Elnaz Soleimani*, Ghazaleh Khodabandelou†

Abstract—The field of AI-driven video generation is evolving
rapidly, with remarkable advancements achieved over the past
two years. These developments have markedly enhanced the abil-
ity to transform human imagination into realistic visual content
across various domains. This survey provides a comprehensive
review of contemporary research in video generation, delving into
foundational principles—including diverse generation strategies
and key generative frameworks—as well as state-of-the-art mod-
els encompassing video synthesis, editing, and enhancement tech-
niques. We present a comparative analysis of critical components
such as core technologies, video quality attributes, hardware
prerequisites, openness, and essential evaluation metrics and
datasets. The survey concludes by discussing open challenges
and emerging directions in the field, such as the role of LLMs
(Large Language Model) and VLMs (Vision-Language Model)
in advancing the sophistication of video generation frameworks.
We intend for this survey to serve as a useful resource for
researchers and practitioners, offering a structured overview
of recent advancements and a clear depiction of the current
landscape in video generation research.

Index Terms—Generative AI, Video Generation, Diffusion
Models, Flow Matching

I. INTRODUCTION

THE task of Video Generation has recently attracted
significant attention from both academic and industrial

researchers. This heightened interest can be attributed to pro-
jections that the global media market will reach approximately
$64.5 billion by 2031, with a compound annual growth rate
of 14.8% from 2023 to 2031. This growth is propelled by the
rising demand for high-quality video content, the expansion of
video streaming services, and an increasing need for automated
content generation [1]. Video is expected to become one of the
dominant formats of communication across various domains
-such as entertainment, marketing, and education- due to its
engaging nature [2].

In recent years, video generation has made remarkable
strides, accelerating the path toward achieving Artificial Gen-
eral Intelligence (AGI) and large-scale automatic generation of
high-quality visual content. The intersection of breakthroughs
in visual content generation and large models—such as Large
Language Models (LLMs), Vision-Language Models (VLMs),
and Large-Action Models (LAMs)— has accelerated video
generation to new levels of creativity and efficiency. While
LAMs have been briefly discussed in association with LLMs
and VLMs in the context of video generation, they likely hold
greater applicability in task-specific or action-driven video
generation [3]–[5]. Specifically, LAMs are suited to usecases
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that necessitate the generation of coherent, contextually accu-
rate sequences of actions. The integration of LAMs into video
generation frameworks offers the potential to generate action-
specific video content, enabling dynamic control over video
outputs to adhere to predetermined action sequences. This
capability is particularly pertinent in multimodal generation
tasks, where the inclusion of structured action elements can
significantly enhance realism and alignment with contextual
requirements across domains such as simulation, robotics, ed-
ucation, and entertainment. A more comprehensive exploration
of LAMs underscores their potential to advance sophisticated
control mechanisms within video generation models, thereby
establishing them as essential components in multimodal and
action-centric video synthesis.

With the advent of diffusion models [6] surpassing Gen-
erative Adversarial Networks (GANs), coupled with major
advancements in Natural Language Processing (NLP), a new
era of video content creation has ushered. Video generation
has been explored through various schemes including Text-
to-Video(T2V), Image-to-Video(I2V), Video-to-Video(V2V),
and Multi-modal video generation (X2V). Among these, text
and image are considered the most prevalent modalities used
for video generation. To leverage the advances in Text-to-
Image (T2I) generation, T2V video generation is sometimes
factorized into a two-stage process: First creating images
through T2I generation, followed by an I2V generation pro-
cess, using training free or few-shot [7], [8] learning methods.
The growing interest in versatile and highly controllable video
content generation has underscored the significance of multi-
modal video generation approaches. Drawing inspiration from
the multi-sensory nature of human learning, where the integra-
tion of different senses enhances comprehension, multi-modal
video generation incorporates diverse data types—such as
text, audio, images, video, depth, and body pose—to achieve
finer control over various aspects of video creation. However,
the effective fusion of these modalities continues to pose
significant challenges.

Training large generative models is highly resource-
intensive and the computational and memory requirements
escalate dramatically as the complexity and dimension of
the data increase, making it challenging to scale models
effectively [9]. For instance, training Llama 3-70B LLM
model, required 6.4 million H100 GPU hours [10]. Similarly,
given the demand for high-resolution, long-duration videos,
training video models could require hundreds of thousands to
millions of GPU hours, depending on the model architecture
and scale. For example, to train the Open-Sora1.2 [11]- a
model with 1.1B parameters generating 97-frames videos-
4.8k Ascend and 37.8k H100 GPU hours was required [12].
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To alleviate these challenges, a promising line of research
focuses on developing techniques that can be integrated into
existing open-source models to enhance their performance
with minimal additional training [13]. Moreover, researchers
are working on optimizing the training as well as inference
process by introducing more efficient architectural designs,
refined training strategies, quantization techniques, and better-
curated datasets, all aimed at reducing computational costs
while maintaining or improving model performance.

This survey presents a comprehensive review of contem-
porary research in video generation, providing a structured
overview of the field’s latest advancements to foster its future
development. As illustrated in Fig. 1, the rest of the paper
is structured as follows. Chapter II offers a review of video
generation fundamentals. Chapter III delves into state-of-the-
art models for video generation in three main topics: video
synthesis, video editing, and enhancement techniques. Chapter
IV and V discuss evaluation metrics and datasets pertinent to
video generation, respectively. Finally, chapter VI addresses
key challenges and outlines potential directions for future
research in this rapidly evolving domain.

II. VIDEO GENERATION FUNDAMENTALS

A. Generation strategies

From a problem-solving perspective, the video generation
task can be tackled through various strategies.

1) Divide & conquer (Cascade): In this strategy, the model
begins by generating distant keyframes that outline the overall
video storyline of the video. The gaps between keyframes will
be later filled using Spatio-Temporal super-resolution modules.
A key advantage of this scheme is its memory efficiency as the
modules in the cascade can be trained independently and in
parallel. However, maintaining global temporal coherence re-
mains challenging, especially in cases of fast motion which can
lead to temporal aliasing. Additionally, the super-resolution
modules may suffer from a domain gap as they are trained on
real frames but applied to synthetic frames during inference
[14]. Notable models using this approach include LaVie [15],
Nuwa-XL [16], and ImagenVideo [17].

2) Brute-force: This approach processes all frames si-
multaneously, often at a lower spatial resolution, to ensure
globally coherent motion across the entire video. Spatial Super
Resolution (SSR) models are then applied to generate high-
resolution outputs [14].

3) Auto-regressive: This strategy focuses on directly gener-
ating detailed frames conditioned on preceding ones. Examples
of model following this approach include CogVideo [18],
Nuwa-Infinity [19], MCVD [20].

4) Hybrid: Each of these strategies has distinct strengths
and weaknesses. Autoregressive approaches excel at capturing
long-range dependencies and ensuring coherent motion. How-
ever, as the videos are generated sequentially, they can be
computationally expensive and prone to quality degradation
due to cumulative errors. Divide & Conquer strategy offers
greater efficiency and scalability through parallelization but
struggles to maintain coherence across video segments for
longer video generation. Some models like Nuwa-XL [16]

adopt a hybrid approach by generating distant key-frames and
filling in the gap between keyframes autoregressively.

B. Core frameworks

1) Diffusion Models: Once a strategy is selected, various
machine learning frameworks can be utilized to implement
it effectively. Fig. 3, illustrates some of the most widely
used GenAI frameworks in the video generation, including
Diffusion models, Generative Adversarial Networks(GAN)
[21], Variational Auto Encoders (VAEs), and Flow-Based
Generative models.

Preliminary: Diffusion models are the most dominant
choice among existing video generation frameworks. One of
the most popular approaches for implementing diffusion mod-
els is Denoising Diffusion Probabilistic Models (DDPM) [6]
that encompasses a forward and a backward process. During
training, the forward diffusion process involves iteratively
adding sampled noise to the initial input x0 over T steps,
following a Markov chain. The Markov property guarantees
that the noisy frame xt at time step t only depends on the
frame xt−1:

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) (1)

where I is the identity matrix and βt is calculated by a
variance-preserving noise scheduler, to gradually intensify the
noise. Ho et al [6] proposed a formula to directly calculate the
distribution at a given step t:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

Whereas ᾱt =
∏t

s=1 αs and αt = (1− βt).
In the backward process (inference time), the objective is to

iteratively denoise the noise image xT back to a clear image
x0. We can approximate q(xt−1|xt) by a parametrized model
pθ:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

The reverse process model is trained with the variation lower
bound on negative log-likelihood of x0 which involves the
KL divergence between q and pθ. Putting in place a few
simplifications (such as Σθ = 1) [6], µθ can be approximated
by a denoising neural network ϵθ. Thus the training loss
would be simplified to a mean-squared error between the
predicted noise ϵθ(xt) and the ground truth sampled Gaussian
noiseϵ:

Lsimple
t = Ex0,t,ϵ[∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2] (4)

Backbone architecture: There are multiple variations of
diffusion models, each differing based on the architecture
chosen for the denoising neural network. A common approach
among researchers is to use a convolutional U-Net architecture
as the default backbone. Some works such as Make-a-Video
[22] opted for 3D or pseudo-3D convolutions to incorporate
temporality into these architectures. However, Vision Trans-
formers (ViTs) [23], have gained prominence in models like
Sora [24] and Latte [25], due to their superior scalability and
performance in computer vision tasks compared to traditional
convolutional networks [26]. A ViT takes as an input the image
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Fig. 1. A taxonomic overview of fundamental concepts and state-of-the-art in video generation from the survey

I ∈ RH×W×C that is reshaped into a sequence of 2D patches
Ip ∈ RN×P×P×C where W , H and C represent the spatial
dimensions, and number of channels respectively. (P, P ) is
the resolution of each image patch and N = HW/P 2 which
are then flattened and linearly embedded into tokens. Diffusion
Transformers (DiTs) [26] explores incorporating ViTs into the
standard diffusion model pipeline to improve performance as
an alternative to U-Net.

Tokenizer: When using vision transformers, one crucial
component is the visual tokenizer which maps pixel-space in-
puts into discrete tokens suitable for the transformers. This step
is critical for enabling the attention mechanism (discussed in
section II-C) of transformers to effectively process visual data.
The VQ-VAE (Vector Quantized Variational Autoencoder) is a
pivotal work in this regard which employs vector quantization
to learn discrete representation of image data. It includes
a fixed codebook of vectors, where the encoder’s output is
matched with the closest vector based on Euclidean distance.
[27]. Tokenizing video data presents greater challenges com-
pared to images. Models such as MAGVIT [28] and MAGVIT-
v2 [29] have aimed to extend and enhance VQ-VAE to address
these challenges.

Pixel spaces vs latent space: It’s important to note
that for diffusion models operating directly in pixel space,
both training optimization and inference process can become
resource-intensive because of the need for sequential evalu-
ations [30]. Latent Diffusion Models [30] address this issue

by first learning an auto-encoder to compress images into a
lower-dimensional latent space. With the auto-encoder frozen,
the diffusion model is trained on this latent representation,
significantly reducing the computational burden.

2) Generative Adversarial Networks: GANs consist of two
main components; a generator that generates synthetic data
given a random noise, and a discriminator that distinguishes
between synthetic and real samples. The objective is for the
generator, once training is over, to produce highly realistic
samples. The overall loss function for the framework is
formulated as:

max
D

min
G

(Ex[logD(x)] + Ez[log(1−D(G(z))]) (5)

where x represent real data and z is a noise sampled from a
prior distribution pz(z). While the video synthesis capabilities
of GANs have been investigated in works such as MoCoGAN
[31] and StyleGAN-V [21], these methods face challenges
when dealing with complex scenes and multiple objects.

3) Variational Auto Encoders: VAEs, utilize an encoder E
to map the input data into a distribution in the latent space,
which the decoder then uses to sample from and reconstruct
the input:

E : q(z|x),D : p(x|z) (6)

where maps E the input data x to a latent space distribution,
and D generates data from a point sampled from the latent
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Fig. 2. Video generation strategies overview

distribution. The learning objective function for VAE can be
formulated as follows:

LV AE(x, z) = Lreconstruction +DKL(q(z|x), p(z)) (7)

Lreconstruction = Eq(z|x)[log p(x|z)] (8)

where DKL measures how much the latent distribution q(z|x)
approximated by the encoder, deviates from the prior distribu-
tion p(z) which is typically a standard normal distribution. In
practice, this often reduces to the MSE between the original
data x and the reconstructed data. VAEs can be divided into
two groups, discrete and continuous latent based on the types
of the quantization. Continuous VAEs have no quantization,
while discrete VAEs learn a codebook for quantization and
use it to convert the continuous latent features to discrete
indices, called VQ-VAE.In video generation, 2D VAEs are
often extended into 3D by incorporating 3D convolution or
temporal attention mechanisms, as discussed in section II-C.

4) Flow-Based Generative Models: Flow-based generative
models employ a series of invertible transformations to model
the data distribution directly. They offer exact log-likelihoods,

Fig. 3. An overview of most common generative AI core technologies

contrasting with approaches such as GANs and VAEs, which
rely on approximate likelihoods. Given input data x, a flow-
based model aims to map it to a latent variable z through a
composition of invertible functions f = f1 ◦ f2 ◦ · · · ◦ fK ,
yielding z = f(x). This invertibility allows us to express the
likelihood p(x) through a change of variables rule:

log p(x) = log pθ(z) + log

∣∣∣∣det(∂f

∂x

)∣∣∣∣ (9)

where pθ(z) is a prior distribution, often Gaussian, defined
over z, and the term ∂f

∂x is the Jacobian matrix of the
transformation f with respect to x. The determinant of this
Jacobian plays a crucial role as it adjusts the density under the
transformation. However, calculating the Jacobian determinant
becomes computationally intensive for high-dimensional data,
especially in video generation tasks, due to the need for precise
frame-by-frame consistency.
Continuous Normalizing Flows (CNFs): Continuous Nor-
malizing Flows (CNFs) [32] offer an innovative approach by
modeling the transformation f as a continuous flow. Rather
than applying discrete transformations, CNFs parameterize
the data transformation as a time-dependent process using an
ordinary differential equation (ODE):

d

dt
ϕt(x) = vt(ϕt(x)) (10)

where t ∈ [0, 1] and ϕ0(x) = x represents the initial condition.
The vector field vt then can be modeled with a neural network
v(x, t; θ) that acts as a time-varying vector field. In essence,
v(x, t; θ) defines the instantaneous direction and speed at
which ϕt(x) should evolve. By treating transformation as a
continuous function, CNFs allow for more flexible modeling
of complex distributions. Training CNFs involves solving
this ODE, which requires expensive numerical integration.
This integration step, typically performed by an ODE solver,
makes it challenging to scale CNFs to high-resolution or high-
dimensional data, such as video frames.
Flow Matching (FM): Flow Matching (FM) [33] is an
alternative approach designed to simplify the training of CNFs
by circumventing the need for direct ODE simulation. Instead
of solving the ODE explicitly, FM defines a target probability
path from a simple initial distribution (e.g., standard Gaussian)
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Fig. 4. Attention mechanism comparison- The red patch represents the query patch, while the blue tokens indicate those interacting with the query. For
simplicity, only the unidirectional scan is depicted in Mamba attention and darker blue shades represent more intense interactions with the query patch.

to a complex target distribution. The objective function of
FM is to align the model’s vector field vt(x) with the target
vector field ut(x) that describes the desired evolution of the
probability density over time. The training objective is:

LFM (θ) = Et,pt(x)∥vt(x)− ut(x)∥2 (11)

where ut(x) represents the target vector field that enables the
probability density path pt(x) to transform smoothly from
a simple base distribution p0 (e.g., N (0, 1)) to a complex
distribution approximating the data. A challenge here is that
the closed forms of pt(x) and ut(x) are typically unknown.
To address this, the Conditional Flow Matching (CFM) [33]
approach provides a simple simulation-free training objective:

LCFM (θ) = Et,q(x1),pt(xt|x1)∥vt(xt)− ut(xt|x1)∥2 (12)

where ut(xt|x1) represents a time-variant conditional proba-
bility path pt toward target data sample x1. Similar to diffusion
models, training samples can be generated by sampling data
points from a known distribution and linear interpolation
between data points and noise:

xt = tx1 + (1− t)x0 (13)

where x1 ∼ q is a sample from the target data distribution and
x0 ∼ N (0, I). The CFM loss regresses the model vector field
vt(x; θ) onto ut(x), focusing on matching flows rather than
directly learning probability density functions.
Applications in Video Generation: Flow-based models,
particularly in conjunction with Flow Matching techniques,
demonstrate considerable potential in video generation by
modeling the complex distributions of high-dimensional video
data [12], [34], [35] . The invertible nature of these mod-
els supports precise control over transformations, offering
a promising direction for generating temporally consistent
frames. Nevertheless, computational limitations persist, as
flow-based methods require high memory and computational
resources, especially for long-duration or high-resolution video
sequences. The development of efficient flow-based tech-
niques, such as Flow Matching, provides a path forward for
enhancing video generation capabilities in multimodal and
dynamic contexts.

C. From Stills to Motion: Advancing Image Models for Video
Generation

AI models achieve high performance in T2I generation
taking as input batches of 3D tensors of images of shape

I ∈ Rb×h×w×c. However, video generation tasks are cou-
pled with treating batches of 4-dimensional video tensors
V ∈ Rb×f×h×w×c. Several approaches to incorporating the
temporal dimension into models include employing 3D and
pseudo-3D convolution, factorization, temporal attention, and
positional embedding [36]. Training architectures containing
3D convolutions are often considered computationally expen-
sive. On the other hand, the pre-trained image layers in the T2I
models capture high-quality content priors that are desirable to
be leveraged into T2V generation task. Therefore, one prefer-
able way to bring the temporal aspect into the game is to inflate
T2I networks and let these spatial layers deal with batches of
video frames independently. For example in AnimateDiff [37],
similar to [38], [39], for training the temporal modules data
is reshaped into b.h.w × c × f , whereas for training spatial
modules it is reshaped into b.f × c × h × w so that T2I
spatial layers interpret the video as a batch of independent
images. Video Latent Diffusion Model(V-LDM) [38] proposes
a slightly different approach in which the temporal modules
consist of temporal attention as well as residual blocks based
on 3D convolutions that can process the output of the spatial
modules in video format b× c′× f ×h′×w′ (where c′, h′, w′

represent dimensions of spatial feature space).
As for attention mechanisms, several ideas have been ex-

plored in the literature. Fig. 4 illustrates some of the popu-
lar attention mechanisms. Factorized attention is a common
approach that separates spatial and temporal attention to
reduce computational complexity and facilitate fine-tuning,
a.k.a Axial Attention [40]. Instead of computing attention over
the entire 2D or 3D space at once, axial attention computes
attention along one axis at a time (1D). In the context of im-
age/video processing, since the length of any single axis -that
is, the height or width of an image- is typically much smaller
than the total number of elements, an axial attention operation
brings in a significant saving in computation and memory over
standard self-attention. For instance, authors in [22], decouples
the spatial and temporal dimensions and processes video data
using a combination of 2D spatial attention (which operates
on each frame individually) followed by 1D temporal attention
(which captures dependencies between frames).

Full Attention: Separating spatial and temporal attention
requires extensive implicit transmission of visual information,
significantly increasing the learning complexity and making
it challenging to maintain the consistency of large-movement
objects. To address these issues and inspired by long-context
training in LLMs, authors in [41] propose 3D Full Attention,
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a 3D text-video hybrid attention mechanism that can be
accelerated by parallelization techniques.

Sparse Attention: As the full attention mechanism remains
heavy in computation, some researchers have tried to come
up with a hybrid approach that maintains the 3D attention
span to some extent. Sparse attention is a family of attention
mechanisms, that aims to reduce the number of tokens pro-
cessed during attention to improve computational efficiency.
For instance, 3D Nearby Attention [42] focuses on local
regions within a three-dimensional space. This mechanism
enhances the model’s ability to capture fine-grained spatial
details by attending primarily to nearby tokens or features.
This localized approach helps reduce computational complex-
ity while maintaining relevant contextual information. Three-
dimensional sparse attention from Godiva [43] is another
example, where each token in the input sequence can attend to
a limited number of other tokens based on predefined strategies
allowing a mix of local and controlled global attention.

Mamba Attention: Mamba [44] is a State-Space Model,
that has recently gained prominence in deep learning for
its universal approximation capabilities and efficient long-
sequence modeling. That makes it particularly interesting for
the video domain as it inherently involves long temporal
sequences. ZigMa [45] introduces a simple zigzag scanning
method that rearranges the scan path of Mamba in a heuristic
manner to improve spatial and temporal continuity. Authors
of Matten [46] demonstrated the effectiveness of combining
Mamba and temporal attention to capture global and local
temporal relationships respectively.

Cross Attention: is also widely used in video generation
models to facilitate interaction between different modalities or
sequences by enabling tokens from one sequence to attend to
another. This enhances multi-modal learning by allowing the
model to build richer associations between diverse inputs. For
example, in the joint image and text-to-video generation, cross-
attention enables the model to align relevant visual features
from the image with corresponding linguistic elements from
the text, driving a more coherent and context-aware generative
process, which leads to higher-quality and more accurate
outputs [47].

III. STATE-OF-THE-ART

We categorized state-of-the-art video generation methods
into three primary categories: video synthesis, video editing,
and enhancement techniques. The video synthesis section
covers models that generate videos from alternative modalities,
while the video editing section focuses on models designed
for video-to-video generation. The enhancement section high-
lights techniques and models to address specific limitations in
existing video generation approaches. Table II summarizes the
characteristics of the mainstream video generation models.

The video generation task can be formalized as follows.
Given an input X and a set of conditions C, we aim to generate
a video V ∈ RT×C×H×W , where T denotes the number of
frames, W and H represent the spatial dimensions of each
frame, and C is the number of channels, typically 3 for RGB

videos. We define a model Fθ parameterized by θ that maps
the input and conditions to the target video:

Fθ : (X,C) → V (14)

To train the model, the objective is to minimize a loss function
L(Fθ(X,C), V ) that quantifies the difference between the
generated and target video. Inputs X and conditions C may
include modalities such as text, images, video sequences, pose
information, or depth maps. The optimization goal is then:

θ∗ = argmin
θ

L(Fθ(X,C), V ) (15)

The goal is to find optimal parameters θ such that Fθ generates
V by effectively interpreting X and C as guiding inputs.

A. Video synthesis

Video synthesis involves generating new videos from vari-
ous input sources- such as text and images- ideally producing
coherent and dynamic visual content. The problem formulation
follows Eq. 15 where X is a text sequence X ∈ Rd for
text-to-video and an image X ∈ RC×H×W for image-to-
video generation schema. In this section, we review various
video synthesis approaches including general-purpose and
task-specific video generation and video infilling models.

1) Mainstream open-domain video generation models:
Text2Video (Text-conditional video generation): One of the
primary challenges in training video generation models is the
scarcity of large high-quality paired video-text datasets. In
contrast, vast and diverse datasets [48] are readily available for
T2I generation tasks. Several studies have attempted to over-
come this limitation by leveraging the existing highly efficient
models in the T2I domain. Nevertheless, these models inher-
ently lack the temporal aspect required for video generation.
To address this issue, researchers have adapted the architecture
of T2V models by different means such as 3D or pseudo 3D
convolutions or temporal attention mechanisms(section II-C).
For example, CogVideo [18] uses a frozen pre-trained T2I
model for autoregressive transformer-based T2V generation.
Incorporating temporal layers into the frozen spatial layers,
reduces memory usage during training, requiring only a few
trainable parameters.

Make-a-Video [22] on the other hand, fine-tunes the T2I
base model and establishes a joint text-image prior, eliminating
the need for paired text-video data. To enhance the temporal
consistency of the generated videos, the authors propose a
spatio-temporal factorized diffusion-based architecture, using
pseudo-3D convolution and temporal attention layers. These
temporal layers are fine-tuned on unlabeled video data, while
the other modules are trained on image data alone.

Imagen video [17] employs a cascading architecture that
enables the progressive generation of higher-resolution, longer
videos. The base video diffusion model is conditioned on text
embeddings from a large frozen language model. To ensure
temporal consistency with lower memory and computational
demands, temporal convolutions are applied in the super-
resolution modules, while a temporal attention mechanism is
implemented in the base diffusion model to maintain global
coherence. The model is jointly trained on both image and
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Fig. 5. Timeline of release of mainstream video generation models

video datasets, with individual images treated as single-frame
videos.

Phenaki [49] introduces C-ViViT, an autoregressive
transformer-based autoencoder that compresses variable-
length videos into tokens using a causal attention mechanism.
To generate video tokens from text, it utilizes a bidirectional
masked transformer conditioned on pre-computed text tokens
produced by a frozen pre-trained text encoder. These video
tokens are at the end de-tokenized to create the actual video.
The model progressively fills in tokens through an iterative
process, starting with all tokens masked and predicting a subset
of them at each step. By incorporating a new text prompt along
with the last few frames of the preceding video segment, the
model can extend the video’s duration. For training, Phenaki
leverages a large corpus of image-text pairs, supplemented
with a smaller set of video-text data. To further enhance spatio-
temporal resolution, temporal interpolation and video super-
resolution techniques are applied.

Text2Video-zero [50] introduces a training-free method to
animate a pre-trained T2I model through latent wrapping based
on a predefined affine matrix. This approach enriches the
latent codes of generated frames with motion dynamics to
ensure temporal consistency. Additionally, frame-level self-
attention is reprogrammed by applying a novel cross-frame
attention mechanism, where each frame attends to the first
frame, thereby preserving the overall context.

AnimateDiff [37] proposes a plug-and-play motion module
that can be integrated into any personalized T2I model without
model-specific fine-tuning. The training of AnimateDiff in-
volves 3 components: a domain adapter, a motion prior, and an
optional MotionLoRA module. To avoid learning the quality
discrepancies between T2I and T2V datasets in the motion
module, the authors propose to fit the domain information to
a domain adapter network, which can be partially or integrally
discarded during inference, mitigating any negative effects.
To model motion dynamics, the approach inflates the T2I
model as detailed in section II, and introduces a temporal
transformer module with several self-attention blocks along the
temporal axis. Finally, MotionLoRA, a lightweight fine-tuning
technique, is optionally proposed to adapt pre-trained motion
modules to new patterns such as camera zooming, panning,
and rolling. This adaptation requires as few as 20-50 reference
videos, 2000 training iterations (approximately 1-2 hours), and
minimal storage space (∼30MB). The integration of existing
controllable generation methods, such as ControlNet, is also
possible due to the decoupling of visual content and motion
priors. However, the model’s generated motions are often
constrained by the motions present in the training data, leading

to generic motion patterns that may not always align with the
provided text prompts.

LaVie [15] is a cascade Latent Diffusion Model (LDM) built
on a pre-trained T2I foundation. It captures temporal infor-
mation through temporal self-attentions with rotary positional
encoding and pseudo-3D convolution in its LDM. Fine-tuned
jointly on images and videos, LaVie also includes an LDM
upsampler, utilizing a diffusion-based image x4 more upscale
as prior, to boost video resolution up to 1280x2048 pixels.

EmuVideo [51] adapts a T2I U-Net prior augmented with
temporal parameters (Pseudo-3D conv and temporal attention).
Identity initialization of these parameters improved the model
convergence by a factor of two. The model employs two frozen
text encoders (CLIP and 5-XL) to encode text prompts. During
training on video-text pairs, the model samples an initial
frame, I , and predicts subsequent frames based on the text
prompt and the conditioning image I . This approach allows
EmuVideo to generate videos conditioned on given text and
image prompts. Fine-tuning on a small set of high-motion
videos proved to further enhance the motion quality in the
generated videos.

Stable Video Diffusion [52] is a Latent Video Diffusion
model designed for T2V / I2V generation, with adaptabil-
ity to camera motion-specific LoRA modules. The authors
introduce a three-stage training process encompassing text-to-
image pre-training, video pre-training, and high-quality video
fine-tuning. Underscoring the critical role of data curation,
they present a systematic workflow comprising several key
steps. A cut detection pipeline is employed to remove cuts
and transitions, resulting in x4 more clips. Each clip is then
annotated using three synthetic captioning methods: middle-
frame image captioning, video-based captioning, and an LLM-
based summarization of the first two captions. Clips with
excessive on-screen text or motionless ones are further filtered
out using optical character recognition and optical flow score,
respectively.

Videocrafter1 [53] is built upon a T2I model by incorporat-
ing temporal attention layers into the SD UNet architecture to
capture temporal consistency. It proposes a full patch visual
tokens conditioning using CLIP last layers that represent more
details, to maintain higher fidelity to the conditioning image.
Its joint image-video training schema includes low resolution
pertaining, then progressively fine-tuning on higher resolu-
tions. Image and text conditioning inputs are leveraged via a
cross-attention mechanism. Videocrafter2 [54] is an improved
version designed to address the limitations posed by high-
quality data scarcity. Unlike previous approaches that begin
with high-quality image-based pretraining, Videocrafter2 first
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trains a video model using a large volume of low-quality
videos, followed by fine-tuning with high-quality images.
Experimental results indicate that the strong spatial-temporal
coupling in the video model, achieved by fully training both
spatial and temporal layers, allows the model to tolerate pa-
rameter perturbations in both layers without significant motion
degradation.

ModelScopeT2V [55] initializes the spatial part from the
Stable Diffusion model, and proposes the factorized spatio-
temporal blocks that empower the capacity of temporal depen-
dencies. The core of this model is an LDM using VQGAN
latent space and cross-attention blocks for text conditioning
using CLIP embedding of the text prompt.

CogVideo [18] builds on the pre-trained T2I model,
CogView2, by introducing a multi-frame-rate hierarchical
training strategy aimed at better-aligning text with video clips.
This approach involves two key components: a sequential gen-
eration model and a frame interpolation model. The sequential
model generates keyframes based on the input text, while the
interpolation model recursively fills in the intermediate frames
by adjusting the frame rates, ensuring smooth and coherent
video sequences. Additionally, the incorporation of the Swin
attention mechanism improves parallel generation across dis-
tant regions of different frames, significantly accelerating the
auto-regressive generation process. CogVideoX [41] pushes
further the quality in terms of visual context, motion, and
duration. It is a large-scale diffusion transformer that uses a
3D Variational Autoencoder (VAE) architecture to compress
videos across both spatial and temporal dimensions, and expert
transformers to facilitate the deep fusion between the two
modalities. To further improve the transformers’ performance,
CogVideo extends RoPE encoding to video, by applying 1D-
RoPE independently to each dimension of the video latent
(x, y, t) and then concatenating the results along the channel
dimension to create the final 3D-RoPE encoding. Its pro-
gressive training techniques, which involve initial training on
short videos followed by fine-tuning on longer ones, enable
the model to generate extended video sequences. The authors
introduced a pipeline for dense video caption data generation
to enrich training data.

Unlike the common divide & conquer cascade architecture
typically used for T2V generation, Lumiere [14] processes all
frames simultaneously, without relying on a cascade of Tem-
poral Super-Resolution models, to ensure globally coherent
motion across the entire video. Then to achieve high-resolution
output, a Spatial Super Resolution(SSR) model is applied on
overlapping windows. Lumiere’s Temporal UNet architecture
is built upon a pre-trained T2I model, which is kept fixed dur-
ing training, by interleaving temporal blocks (temporal conv
+ temporal attention) and up/down scale modules. Lumiere
is also capable of image-conditional video generation and
stylization.

More recently, the Flow Matching paradigm has demon-
strated superior performance and faster generation speeds
compared to traditional diffusion models, along with increased
robustness to noise schedule choices. One notable example is
Video Gen [35], a 30B parameter transformer model trained
with a maximum context length of 73K video tokens using

flow-matching paradigm. Meta Video Gen follows multi-stage
training including joint image-video training, followed by su-
pervised fine-tuning on a curated set of high-quality text-video
pairs. This approach allows it to generate personalized videos,
including those conditioned on an individual’s face through
additional post-training. Additionally, Video Gen incorporates
a camera motion classifier to predict 16 distinct types of cam-
era motion. Pyramid Flow [12] is another example, introducing
the pyramidal flow matching algorithm, which breaks down the
video generation process into multiple stages where only the
final stage operates at full resolution, resulting in significantly
reducing computational demands.

In addition to research advancement in open-source, several
commercial models - such as Runway Gen3 [47], [56], Pika
[57], Haiper [58], Kling [59], Vidu [60], Sora [24], Veo [61]-
and Minimax [62] have emerged, offering diverse tools for
high-quality video creation and editing. While these models
bring powerful video generation capabilities, details about
their underlying technologies are often not disclosed.

Image-to-Video generation: I2V represents another major
paradigm in video synthesis, where the main challenge is to
preserve the identity of the entities in the reference input image
while producing high motion dynamic with high temporal con-
sistency. Researchers have explored I2V generation through
various methods. One approach is to use physical simulation,
which despite its accuracy lacks generalisability. Some other
methods animate still images by leveraging explicit or implicit
image-based rendering, often guided by estimated motion
fields or geometric priors. Alternatively, some methods predict
future video frames from single images by learning spatiotem-
poral priors - either from a T2V model or through temporal
guidance from a conditional signal, such as video or pose.
Novel View Synthesis methods could also be used for I2V
generation by synthesizing different viewpoints from given
source images, following a specified camera pose trajectory
[63]. Yet, many of these techniques are constrained by their
focus on specific types of motion or objects.

I2VGen-XL [64] is an I2V model that employs a cascade
of 2 LDMs. In the base stage and at lower resolution, two
hierarchical encoders are employed to simultaneously capture
high-level semantics and low-level details of input images. In
the refinement stage, a separate LDM is utilized to enhance
the resolution and temporal continuity of videos. This model
however faces challenges in terms of runtime as well as
preserving visual details of the input image, due to insufficient
context understanding and loss of information of the input
image. To address this, DynamiCrafter [65], introduces a
diffusion model-based I2V framework, builds on the T2V
model VideoCrafter [53], to animate a still image using
T2V generative priors. It integrates the input image into the
generative process as guidance, using a dual-stream image
injection mechanism via cross-attention. This mechanism is
designed to retain visual details and process the input image
in a context-aware manner. To further enhance the model’s ca-
pacity to incorporate image conditions across different layers,
learnable coefficients are introduced to fuse text and image-
conditioned features. This design is based on the observation
that intermediate U-Net layers are more associated with object
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shapes and poses, while the outermost layers are more closely
linked to appearance. Moreover, guiding the denoising U-Net
with the conditional image and per-frame initial noise has been
shown to significantly improve visual coherence. PIA [66] is
a Plug-n-Play image animator that excels in aligning with
condition images built upon a base T2I model. It achieves
motion controllability by text using its temporal alignment
blocks.

Building I2V models upon T2V models often involves full
or partial training of the core weights in a large T2V model
which is both costly and restrictive. To mitigate this issue,
I2V-Adapter [67] proposes a lightweight plug-n-play adapter
that transfers the input image to subsequent noisy frames via
a cross-frame attention mechanism, preserving the identity
of the input image without modifying the pre-trained T2V
model. This approach is conceptually similar to IP-Adapter
[68] in T2I. Additionally, the I2V-Adapter incorporates a
Frame Similarity Prior, which regulates the balance between
motion amplitude and video stability through two adjustable
control coefficients.

Another challenge is to effectively integrate image features
into the T2V base model. A common approach is to use the
CLIP visual encoder to extract semantic features from images.
However, this method often compromises the preservation of
content and structure from the input image in the generated
videos. Since CLIP is primarily trained to align visual and lin-
guistic features, it prioritizes high-level semantics, potentially
at the cost of fine-grained details. To address this limitation,
some methods have introduced supplementary features, such
as incorporating full visual tokens from the last layer of the
CLIP image encoder or utilizing learnable features to retain
the intricate details of the original images more effectively
[64], [65].

Multi-modal video generation: Although diffusion-based
approaches are dominant for video synthesis tasks, recently
some frameworks have emerged exploring the potential of
Large Language Models (LLMs), to generalize the task of
X-to-X or multimodal-conditioned generation and address the
appetite for a multi-usage foundation model in video/image
generation. The advantage of this approach is that LLMs can
flexibly incorporate numerous tasks. However, the challenge
is that as the model size grows, training data must grow.
Lumina-T2X is a Flow-based Large Diffusion Transformers
[69] proposing a unified framework for T2X (e.g., text-to-
image, text-to-video, text-to-audio) generation, targeting to be
a chatGPT for vision. It tokenizes any modality regardless
of resolution, aspect ratio, or even temporal duration into a
unified 1-D token and then processes the one-dimensional
sequences, similar to the way LLMs process natural lan-
guage. VideoPoet [70] is a model for synthesizing videos
from a variety of conditioning signals such as text, image,
depth, and optical flow. Its autoregressive Transformer-based
framework is trained in two stages of pretraining and task-
specific adaptation, similar to LLMs. It employs the MAGVIT-
v2 [29] tokenizer for joint image and video tokenization
to reduce the sequence length required by the LLM. The
SoundStream tokenizer is used for audio and the text modality
is embedded by a T5-XL text encoder. After converting the

image, video, and audio modalities into discrete tokens within
a shared vocabulary, a language model with a decoder-only
architecture is directly used to generate videos and audio,
in the token space. A non-autoregressive video transformer
super-resolution is then applied in token space, as the sequence
length can get too long to be processed in an autoregressive
manner.

2) Video Infilling / Prediction: : The problem of video
synthesis is viewed in the form of video infilling or frame
interpolation [71], where the objective is to predict the missing
frames between the given start and end frames. To formalize
this more precisely, Eq. 14 should be reformulated as follows:

Fθ : (Is, Ie,C) → V (16)

Where V = {Is, I1, I2..., IN , Ie}. This can also be seen as a
way to augment the quality of generated videos by comple-
menting a video generation model that does not have a high
enough frame rate. Similarly, video prediction(completion)
could be defined as:

Fθ : (Is,C) → V (17)

Where V = {Is, I1, I2..., IN}. Recently, several diffusion-
based frame interpolation models, building upon T2V and
I2V frameworks, have emerged. For instance, SEINE [72],
based on the pre-trained T2V diffusion model LaVie [15],
recursively uses the last few frames of a generated video
to predict subsequent ones, ensuring semantic consistency
with the initial frame while preserving temporal coherence
and text alignment. However, this approach can produce
uncanny morphing effects, especially with humans, when
consecutive frames lack strong similarity. ToonCrafter [73],
built on DynamiCrafter, is a diffusion model tailored for car-
toon interpolation. Similarly, I2V models like DynamiCrafter
[65], SparseCtrl [74], and PixelDance [75] show adaptability
for video interpolation/transition tasks, by concatenating two
input frames with noisy frame latent [65], [75] or using
an auxiliary frame encoder [75]. MCVD [20] uses random
frame masking, making it capable of handling a range of
video generative modeling tasks, including video prediction
and interpolation. However, the output videos can still become
blurry or inconsistent when the number of generated frames
is very large. FILM [71] is a prominent frame interpolation
algorithm, especially adept at managing large motion. The
algorithm initiates by predicting bidirectional optical flow and
context maps, which serve to capture both motion dynamics
and occlusions between consecutive frames. Following this, a
multi-scale warping mechanism is employed to align features
across various resolutions, thereby effectively accommodating
large displacements. Finally, a refinement network is applied
to enhance the quality of intermediate frames, significantly
reducing artifacts. Vidim is a Video interpolation [76] with
a two-stage cascade diffusion, where it first generates a low-
resolution video and subsequently refines it to high resolution,
enhancing detail and fidelity in the output.

3) Down-stream task-specific video generation models:
Similar to the recent trend toward the development of smaller,
specialized large language models (LLMs), video generation
models are increasingly being tailored for specific downstream
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tasks. These models are designed to perform specialized func-
tions, such as panorama text-to-video generation [77], time-
lapse video generation [78] or word visualizer [79]. Another
prominent application is character or face animation, driven
by various input signals such as video, audio, images, text, or
pose sequences.

Character animation models are particularly focused on
generating videos from static images, with the driving signals
guiding the motion. These characters may represent real hu-
mans, animated figures [80]–[83], or animals [84]. Depending
on the nature of the target motion, some models specialize in
generating dance sequences [85]–[87] while others are trained
to create fashion pose videos [88]. Face and portrait animation
models, on the other hand, face distinct challenges, such
as accurately capturing the nuances of human facial expres-
sions, preserving the unique attributes of individual faces, and
maintaining identity fidelity, and accurate lip synchronization
with driving audio, video, or input text [89]–[100]. Training
models for downstream tasks often necessitates the use of
task-specific labeled datasets. To mitigate this requirement,
reward-based fine-tuning techniques have been developed to
adapt foundational video generation models [101], [102]. For
instance, VDA [102] utilizes reward gradients derived from
pre-trained discriminative models to refine video diffusion
processes. This approach enhances the alignment of generated
videos with specified inputs, such as text or images, while
streamlining the training procedure by minimizing reliance on
large-scale labeled datasets.

In summary, several innovative approaches have emerged to
address the challenges of video synthesis. Techniques such as
frame rate conditioning [18], [22], [53] and factorization [18],
[22], [51], [52] are widely utilized to adapt T2I models for
video generation. Another significant approach involves using
expert models to produce visual content at a coarse frame
rate, followed by interpolation techniques to enhance this to
smoother, high-frame-rate outputs.
Training strategies for integrating T2I models into T2V syn-
thesis often follow one of two approaches: partial training,
where only temporal modules are fine-tuned while spatial
modules remain fixed; and full training, in which both spatial
and temporal components are trained together, using image-
model weights as initialization. However, a significant chal-
lenge remains in the scarcity of high-quality paired video-text
datasets, posing a limitation for model training. To address
this, several solutions have been explored in the literature, in-
cluding multi-stage training, image-video mixed training, and
mixed-duration video training. These methods allow models
to learn more effectively from available data, though training
solely on video-text pairs can restrict semantic diversity and
sometimes lead to forgetting of image-domain expertise during
training [103]. Fine-tuning on higher-quality video subsets
has been shown to mitigate these issues, underscoring the
need for better video data resources. Another challenge is
that most video generation models are trained with a fixed
video duration, which necessitates discarding short videos and
truncating longer ones, preventing the full utilization of videos
with varying frame counts. To address this, mixed-duration
training techniques [41] have been introduced. Additionally,

some models treat images as still-frame videos, though this
often creates a significant domain gap, especially when using
bidirectional attention mechanisms.
Looking forward, as vision-language models (VLMs) and mul-
timodal large language models (LLMs) gain influence in video
synthesis, they offer new potential to address these limitations
and extend the video generation into other applications such as
video conversation and video question-answering [104]–[106].

B. Video Editing / Video to Video generation

TABLE I
SUMMARY OF V2V GENERATION MODELS

Model Tuning-free Backbone
AnyV2V [107] ✓ Any I2V
Tune-a-Video [108] x Stable Diffusion
Video-P2P [109] x Stable Diffusion
UniEdit [110] ✓ Any T2V
CoDeF [111] x ControlNet
TokenFlow [112] ✓ Stable Diffusion
InsV2V [113] x Stable Diffusion
FateZero [114] ✓ Stable Diffusion
Revideo [115] x Stable Diffusion
StableVideo [116] x Stable Diffusion

Different from video synthesis, in Video-to-Video (V2V)
generation, the input is a video in which certain edits are
supposed to be applied. Controlling the localization of the
edits typically involves additional input guidance such as a
segmentation mask, text-based editing prompt, or even another
video. Due to the ambiguity of the natural language, text-based
video editing is an ill-posed problem as numerous possible
edits can satisfy the target text. The masking on the other
hand adds additional steps of preparation into the pipeline.

Another significant challenge, similar to the video syn-
thesis domain, is the scarcity of data. Training a large-
scale video editing model is particularly difficult due to the
limited availability of paired data (video-edit instruction) and
the extensive computational resources required. To overcome
this issue on the data level, using a synthetic paired video
dataset has been proposed [113] by taking captions from
video and image datasets and using the Prompt-to-Prompt
approach and existing T2V models to generate pairs of original
and edited videos. InsV2V [113] trained on this dataset, is a
diffusion-based model that enables video editing using only
text editing instruction. Its Long Video Sampling Correction
(LVSC) mechanism employs the previous batch’s final frames
as a reference to guide the generation of subsequent batches,
facilitating consistent long video editing. Although the effort
of creating such a dataset will be compensated at the infer-
ence time as authors avoid per-video-per-model tuning, this
approach faces the same limitations as T2V models, reflected
in the generated videos.

Hence, to bypass the limitation of the data with other means
rather than the data itself, most models follow two common
strategies; zero-shot adaptation from pre-trained T2I models
[112] (training-free) or fine-tuned motion module from pre-
trained T2V models [108], [117] (one or few-shot tuning). The
former approach often suffers from flickering issues because it
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lacks a deep temporal understanding, while the latter requires
more time and computational overhead to edit videos.

One effective video decomposition and representation ap-
proach for video editing is Neural Layered Atlases (NLA).
It involves decomposing a video into a series of 2D atlases,
each serving as a unified representation of the background or
foreground objects across the entire video. Edits made to these
2D atlases are automatically projected back onto the video,
ensuring temporal consistency with minimal effort. Based on
this technique, Text2Live [118] introduces a technique where
an edit layer (color + opacity) is composited over the original
input, rather than directly generating the edited output. This
approach allows Text2Live to achieve high fidelity without
relying on user-provided edit masks, unlike most appearance
transfer models which are limited to global artistic styliza-
tions or specific image domains. However, atlas representation
works best with videos featuring simple motion and is suitable
for localized edits driven by straightforward text prompts,
such as altering an object’s texture or adding complex semi-
transparent effects like smoke or fire. Besides, this approach
still requires extensive training time.

Employing a pre-trained T2I diffusion model for the task
of video editing would alleviate the need for extra training.
StableVideo [116] combines atlas representation and pre-
trained T2I model and employs an inter-frame propagation
mechanism. To achieve temporal an aggregation network is
designed to generate the edited atlases from the keyframes.

A common approach among training-free models involves
applying image editing techniques (e.g., style transfer) on a
frame-by-frame basis, followed by a post-processing stage
to address temporal inconsistencies in the edited video. For
instance, AnyV2V [107] simplifies video editing through a
tuning-free paradigm that operates in two primary steps. First,
an off-the-shelf image editing model is used to modify the first
frame and next an existing I2V generation model propagates
the edits across the entire video by injecting temporal features.
This approach supports an extensive array of video editing
tasks, including prompt-based editing, reference-based style
transfer, subject-driven editing, and identity manipulation. The
advantage of this approach is that it can leverage the advance-
ment of a wide range of pre-trained image editing models.
Similarly TokenFlow [112] offers a training free framework
that leverages existing models by explicitly propagating dif-
fusion features, based on inter-frame correspondences, readily
available in the model. The method exploits the observation
that small patches in a natural video extensively repeat across
frames and thus consistent editing can be simplified by editing
a subset of keyframes and propagating the edit across the
video by establishing patch correspondences. This principle
holds in diffusion feature space as well, allowing TokenFlow
to generate high-quality, text-guided videos that preserve the
spatial layout and motion of the original content.

UniEdit [110] presents another tuning-free solution for
motion and appearance editing using text guidance. It follows
an inversion-then-generation pipeline with three branches. The
reconstruction branch produces source features for content
preservation, and the motion-reference branch yields text-
guided motion features for motion injection. The source fea-

tures and motion features are injected into the main editing
branch through spatial and temporal self-attention modules
respectively.

Pix2Video [119], offers a training-free video editing tech-
nique that begins with a pre-trained structure-guided (e.g.,
depth) image diffusion model to make text-guided edits on
an anchor frame. These changes are then progressively propa-
gated to future frames through self-attention feature injection,
adapting the core denoising step of the diffusion model.

FateZero is another zero-shot video editing method without
per-prompt training or use-specific mask [114], using source
and editing text prompts. At the heart of this model is the
Attention Blending Block. All the attention maps in the
DDIM inversion pipeline are stored and then at the editing
stage of the DDIM denoising, the Attention Blending Block
fuses the editing attention maps with the stored inversion
attention maps. More precisely, it replaces the cross-attention
maps of unedited words with their attention maps using the
source prompt during inversion. While for the edited words, it
blends the self-attention maps during the inversion and editing
process, with an adaptive spatial mask that represents the areas
that the user wants to edit.

Although training-free methods require no heavy training
procedure, yet spatiotemporal consistency remains challenging
and the models hold the same limitation as their T2I/T2V
pre-trained base model. Few-shot tuning is another paradigm
that aims at combining zero-shot and training-based models.
Tune-A-Video [108] motion editing, involves fine-tuning a T2I
model to achieve video editing by learning the continuous
motion using a tailored spatiotemporal attention mechanism
and a one-shot tuning strategy, where only one text-video pair
is presented. More precisely, it overfits some diffusion model
parameters to a specific video. Then, it uses the overfitting
parameters to produce the editing result conditioned on the
target prompt.

Video-P2P [109] achieved local editing via video-specific
fine-tuning and unconditional embedding optimization. The
key innovation of this model lies in the optimization of a
shared unconditional embedding for video inversion (inversion
of video content into a latent space by text-to-set model),
using different guidance for the source and edited prompts,
and incorporating their attention maps. However, this model
is restricted to only word-swapping prompts due to the reliance
on cross-attention.

CoDeF [111] composed of a Canonical Content Field and a
Temporal Deformation Field. The former aggregates the static
contents of the entire video into a single representation, like
a distilled version of the video that captures the essential,
unchanging elements across all frames. The latter records
the transformations required to convert the canonical image
(rendered from the canonical content field) into each frame
of the video. CoDeF allows the application of image pro-
cessing algorithms to the canonical image, which can then be
propagated to the entire video using the temporal deformation
field. While this model demonstrates high performance in
terms of temporal consistency, it struggles with complex
scenes involving significant scale changes, sudden emergence
of new objects, and multiple fast-moving entities. While the
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method aims to improve temporal consistency, there may still
be challenges in maintaining perfect consistency across all
frames, especially for longer videos or more complex scenes.

Most techniques explained so far, focus primarily on limited
local visual content editing while ignoring the motion aspect.
Re-Video is a video editing [115] model allowing precise con-
trol over the visual content and motion within a video, which
can be easily extended to multi-area editing without specific
training. It encompasses a three-stage training strategy that
progressively decouples these two aspects from coarse to fine.
A spatiotemporal adaptive fusion module is also introduced to
integrate content and motion control across various sampling
steps and spatial locations. The regeneration quality though is
limited by the base model. Motion control/editing models are
discussed more in detail in section III-C2.

In summary, video editing methods generally fall into three
main paradigms. Training-based approaches are often limited
by the scarcity of paired video editing datasets, constraining
their applicability in diverse scenarios. Zero-shot(training-free)
methods entail using pre-trained T2I or T2V models, adapting
these for video editing tasks without additional training. One
or few-shot tuning approaches involve fine-tuning a pre-trained
T2I model to generate videos that align closely with desired
motions or content. While this tuning demands greater training
effort, it offers enhanced flexibility over zero-shot methods.
This adaptability is especially valuable in tasks like motion
transfer, which will be explored further in Section III-C2.
Many current methods are restricted to specific edit types,
limiting their flexibility across a broader range of tasks from
appearance adjustments, such as style transfer [120] and
identity manipulation, to more complex transformations like
novel-view synthesis [121].

C. Enhancement techniques

We have analyzed a variety of video generation models and
discussed their pros and cons. In this section, we will more
especially look into the research works that tried to address
existing shortcomings and bring enhancement through their
innovations. The improvement can be in terms of temporal or
spatial consistency, video motion, and dynamism, optimizing
training or inference time, or the duration of the video.

1) Spatio-Temporal quality augmentation: Given a video
sequence V = {I1, I2..., IT } ∈ RT×C×W×H , super-
resolution (SR) techniques could be applied along both the
temporal and spatial axes. For spatial super-resolution(SSR),
the goal is to generate a new sequence V↑SSR =
{I ′1, I ′2..., I ′T } ∈ RT×C×W ′×H′

while W ′ > W and H ′ > H
thereby increasing the resolution of each frame. Temporal
super-resolution on the other hand, aims to upscale the video
along the time axis by a factor of m, producing V↑TSR =
{I ′1, I ′2..., I ′T×m}. It is important to note that TSR results
are evaluated also in terms of temporal consistency which
considers motion quality and flickering as well.

Traditional video super-resolution methods often rely on
fixed degradation models to synthesize training data pairs,
which can lead to performance degradation in real-world
scenarios. To address this, more advanced data augmen-

tation techniques have been proposed to vary the gener-
ation of low-frame-rate and low-resolution video frames
from the high-resolution samples. For example, authors in
[125], introduce a random downsampling factor m across
the temporal axis to generate low-frame-rate sequence V =
{I1, I1+m, I1+2×m..., IT }. Similarly, spatial degradation is
simulated by applying a random downscaling factor followed
by bilinear interpolation.

Various super-resolution methods exist to enhance spatial,
temporal, or spatio-temporal resolution. These methods can
be integrated within the video generation process or applied
as post-processing [126], [127]. In this study, we focus on
embedded super-resolution techniques, possibly offering the
advantage of leveraging intermediate features and conditioning
inputs from the generation model. For instance, [128] em-
ploys optical flow as a conditional input to enhance spatio-
temporal quality, by generating temporally coherent optical
flow sequences in latent space that are used to warp the input
frames. The model consists of a latent flow auto-encoder for
spatial content generation and a 3D U-Net-based diffusion
model for temporal latent flow generation. These components
are trained separately to decouple spatial content generation
from temporal dynamics.

Venhancer [125] improves existing T2V generation outputs
by enhancing spatial details and synthesizing smoother motion
in the temporal domain while mitigating spatial artifacts and
flickering. Similar to ControlNet for images, it proposes a
conditioning network that injects conditioning features into
the base T2V via zero convolutional layers.

VideoElevator [129] is a training-free plug-n-play method
that divides the video generation process into two stages.
First, in the temporal motion refinement stage, a low-pass
frequency filter is applied to enhance the consistency of the
video latents which are then processed by a T2V diffusion
model to generate natural motion. In the second stage, the
denoised latents are deterministically inverted back to noise
latents and passed through the spatial quality enhancement
stage which uses an inflated T2I model to improve the spatial
quality of each frame, resulting in more photorealistic and
detailed visuals. Following this design, VideoElevator also
supports stylistic customization by integrating personalized
T2I models, allowing users to generate videos with specific
artistic styles. Similarly, FreeInit [130] proposes an iterative
refinement of the initial noise during inference to improve
temporal consistency. Interestingly they found out that during
training, the initial noises corrupted from real videos retain
temporal correlation in the low-frequency bands, while i.i.d
Gaussian noise used during inference lacks such correlation.
To address this gap, they introduce a novel inference-time
sampling method that progressively refines the low-frequency
components of the initial noise, enhancing temporal consis-
tency and subject appearance without introducing additional
learnable parameters.

In summary, we have observed several trends among studies
aimed at enhancing spatial and temporal quality within the
video generation pipeline. One common approach is to adopt
cascaded pipelines where base video generators that produce
low-frame-rate and/or low-resolution outputs, are followed
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TABLE II
OVERVIEW OF MAINSTREAM VIDEO GENERATION MODELS - LDM: LATENT DIFFUSION MODEL, SO: SAMPLE VIDEOS ONLYS

Model Modality Length Frame Length Resolution Core technology Open Open Open
(s) rate(fps) (#frames) (W ×H) Code Weight Demo

ImagenVideo [17] T2V 5.3 24 128 1280× 768 Divide & Conquer Diffusion × × SO
Make-a-Video [22] T2V/I2V - - 76 768× 768 Divide & Conquer Diffusion × × SO
Phenaki [49] T2V/I2V 1.4 8 infinite* 1280× 720 AutoRegressive Transformer × × SO
AnimateDiff [37] T2V 2 8 16 512× 512† Diffusion Transformer ✓ ✓ ✓
LaVie [15] T2V 2 - 16-61 ⋄ 2048× 1280 Divide & Conquer LDM × ✓ ✓
EmuVideo [51] T2V/I2V 4 16 64 512× 512 Brute-force LDM × × SO
Stable Video Diffusion [52] T2V/I2V 2-5 3-30 14-25 1024× 576 LDM ✓ ✓ ✓
VideoCrafter1 [53] T2V/I2V 2 8 16 1024× 576 LDM × ✓ ✓

1024× 640
VideoCrafter2 [54] T2V 2 8 16 512× 320 LDM × ✓ ✓
DynamiCrafter [65] (I+T)2V 2 8 16 1024× 576 LDM ✓ ✓ ✓
ModelScopeT2V [55] T2V 2 8 16 256× 256 LDM ✓ ✓
CogVideo [18] T2V 4 8 32 480× 480 AutoRegressive Transformer ✓ ✓ ✓
CogVideox [41] T2V/I2V 10 16 160 768× 1360◁ Diffusion Transformer ✓ ✓ ✓
Lumiere [14] T2V/I2V 5 16 80 1024× 1024 Brute-force Diffusion × × SO

/V2V
Movie Gen [35] T2V/T2I 16 16 256 1920× 1080 Flow Matching Transformer × × SO
I2VGen-XL [64] (I+T)2V - - 32-64 1280× 720 LDM ✓ ✓ ✓
Gen3 [56] T2V/I2V 10▷ 24 - 1280× 768 LDM × × ✓

/V2V
Luma Dream Machine [122] T2V/I2V 5▷ 24 - 1360× 752 Transformer × × ✓
KlingAI [59] T2V/I2V 5-120 30 - 1920× 1080 - × × ✓
OpenAI Sora [24] T2V/I2V 60 - - 1920× 1080 LDM × × SO
Open Sora1.2 [11] T2V/I2V 16 24 - 1280× 720 Diffusion Transformer ✓ ✓ ✓
Pyramid Flow [12] T2V/I2V 10 24 241 1280× 768 Flow Matching Transformer ✓ ✓ ✓
Mochi1 [123] T2V 5.4 30 - 640× 480 Diffusion Transformer × ✓ ✓

1280× 720
Allegro [124] T2V 6 15 88 1280× 720 VAE Transformer × ✓ ✓
* Theoretically infinite (autoregressive)
† Follows T2I base model
⋄ By interpolation
◁ Open-sourced version generates 6s, 720× 480 @ 8fps
▷ Extendable by 5s intervals

by temporal and spatial upsampling blocks [15], [17], [38],
[64]. Another approach incorporates temporally coherent con-
ditional signals, such as optical flow [128], [131] during gen-
eration to enhance motion consistency and temporal alignment
between frames. Additionally, plug-in modules are becoming
popular for leveraging pre-trained video generation models
and avoiding resource-intensive retraining. These modules can
be classified into two main groups: those requiring limited
training or fine-tuning, such as ControlNet-inspired methods
[125], and training-free methods [129], [130] which provide
flexible, plug-and-play enhancements without additional train-
ing or fine-tuning required.

2) Motion control: In recent years, customization of video
generation via various conditioning inputs has been extensively
explored to address the need for finer control over object
appearance and motion. While text and image signals provide
strong guidance for appearance, they are often insufficient to
express temporal aspects of video, such as camera movements
or complex object trajectories. To overcome this, researchers
have experimented with a range of conditioning inputs, from
sparse signals like sketches and trajectories to dense inputs
such as masks, human poses [132], and depth maps. For
instance, SparseCtrl [74] is a plug-n-play controller that injects
temporally sparse control signals (e.g., sketch, depth, RGB im-
age) into the diffusion process, using an additional encoder on

top of the base T2V model, enabling the base model to be used
for various applications, such as sketch-to-video, depth-guided
generation, and image animation. VideoComposer [133] ex-
tends this by enabling the composition of various modalities,
offering even greater control over generated videos.

Camera motion control: A simple way to model camera
motion in 3D space is through a camera movement vector,
denoted by (cx, cy, cz) which corresponds to x-pan, y-pan, and
zoom ratio, respectively. This has been simplified to a 2D dis-
placement of the camera in some papers. A more sophisticated
approach involves using the camera pose, which in computer
vision refers to the position and orientation of the camera in
three-dimensional space relative to a world coordinate system.
Mathematically it is represented by intrinsic matrix K ∈ R3×3

and extrinsic matrix E = [R; t], where R ∈ R3×3 describes
the camera’s rotation, and t ∈ R3×1 represents the translation
vector. Most video generation models lack precise control over
camera viewpoints, making it challenging to adjust or simu-
late camera motion effectively. Various methods have been
explored to introduce camera motion control by incorporating
different control or conditioning signals at multiple levels,
including basic motions (e.g., zoom, pan), hybrid motions, or
complex trajectories. Typically, these signals are fed into an
additional encoder, which is then injected into the video gen-
eration model. However, controlling camera motion presents
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Fig. 6. Examples of input signal for object motion guidance: (a) Strokes (b) Point trajectory (c) Bounding box trajectory (d) Optical flow. Examples of input
signals for camera motion guidance: (e) Camera pose[R,t] (f) 2D/3D displacement vector

several challenges, such as the scarcity of annotated data,
particularly data that contains precise descriptions of camera
movements. Moreover, due to the complexity of training
models, it is desirable for camera motion to be seamlessly
integrated into existing video generation frameworks without
compromising frame quality or temporal consistency.

One strategy to address the data limitation is through data
augmentation [134], which simulates camera movements in
videos. However, relying solely on this approach limits the
scope of control to simple motions such as zooming or
trucking .

Another promising approach involves fine-tuning plugin
modules on specific types of camera motion. For example,
AnimateDiff [37] introduces an efficient fine-tuning method
known as MotionLoRA, which allows for personalized motion
control. MotionLoRA layers can be fine-tuned using as few as
20–50 reference videos over 2,000 training iterations. These
layers’ low-rank structure enables composability, allowing for
combinations of individually trained MotionLoRA models to
produce complex, composite motion effects. Similarly, Mo-
tionDirector [135] controls motion by extracting it from one
or more template videos, using temporal and spatial LoRA
modules.

Another common method is to embed camera parameters
into diffusion models via learnable encoders, followed by ex-
tensive fine-tuning on large-scale datasets containing detailed
camera trajectories. For instance, CameraCtrl [136], utilizes a
Plücker embedding to associate each pixel in a frame with
both the camera’s center and the direction vector pointing
from the camera to that pixel. This embedding facilitates
comprehensive camera pose descriptions and easier learning,
as its components tend to have uniform value ranges Although
the camera features can be easily integrated into pre-trained
T2V models via temporal attention layers, the approach is
still limited by the need for a diverse dataset with complex
camera trajectories. A training-free alternative is CamTrol
[137], a plug-and-play camera control module that follows
a two-stage process. First, explicit camera movements are
modeled using 3D point cloud representations to render a
series of images based on a predefined camera trajectory. Then,
a layout prior derived from noisy latents—obtained via the
diffusion inversion process on the rendered images—guides
the generation of videos with camera movements. While this
method avoids the need for training, it introduces a trade-off
between the fidelity and diversity of generated videos, due

to the limitations in separating appearance and motion in the
noise latent space. In general, Noise distribution plays a critical
role in the dynamism of generated videos. In diffusion-based
image-to-video (I2V) models, conditional image leakage is a
notable issue, where models over-rely on the input image,
leading to videos that lack dynamic motion. To address this,
authors in [138] propose two strategies: 1) a training-free
inference method that initiates the generation process at an
earlier time step, to avoid the unreliable late-time steps of
I2V diffusion models, 2) an initial noise distribution with
optimal analytic expressions. Additionally, a time-dependent
noise distribution can be introduced during training to interfere
with the conditional image, ensuring that high noise levels
at later time steps sufficiently disrupt the input image and
encourage the model to generate more dynamic video content.

Object motion control: MCDiff [139] controls the motion
through sparse flow (strokes) inputs. Its flow completion model
first predicts dense flows representing that represent per-
pixel momentary motion. The model synthesizes future frames
autoregressively, based on both the previous frame and the
predicted dense flow, in a conditional diffusion process. Nev-
ertheless, the model can only control motion from humans as
it relies on human body key points extraction for each person
to construct data. MotionI2V [131] focuses on first predicting
the plausible motions in the form of pixel-wise trajectories
by tuning a pre-trained video diffusion model for optical flow
prediction using an input image and textural description. The
predicted 2D displacement maps, which contain the optical
flow between the reference frame and future frames, are then
used to warp the features of the reference frame. These features
are injected into the synthesized frames through cross-attention
mechanisms, thereby enhancing the temporal receptive field.
Additionally, the authors introduce sparse trajectory guidance,
which is refined using their proposed trajectory ControlNet
for more accurate motion prediction. DragAnything [140]
challenges the assumption made in previous works [141],
[142], that a single point on the target is sufficient to represent
the target for motion prediction. A novel Entity Representation
method is proposed to achieve precise motion control for any
entity in a video, using the latent features of a diffusion model.
First, the latent noise of the input image is obtained through
diffusion inversion. Then, a denoising U-Net is employed to
extract the corresponding latent diffusion features. Having
these features and the entity mask, the entity embeddings
are retrieved by indexing the appropriate coordinates. Finally,
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these entity embeddings get associated with the corresponding
trajectory points, and the encoders are used to encode them
into the latent feature space. It is important to note that
trajectory-based motion control is inherently limited to 2D,
making it difficult to handle more complex 3D motion, such as
precise body rotations or movements involving turning around.

Camera and object motion control: To achieve finer
control over generated content, some methods focus on the
simultaneous control of both object and camera motion. One
such approach is Direct-a-Video [134] which decouples object
motion from camera movement. It introduces a camera em-
bedder to control the camera pose during video generation and
a training-free spatial cross-attention modulation for objects’
motion control. Although this model offers control over both
the camera and multiple objects in a scene via bounding boxes,
it is limited to conditioning only three camera parameters. As
a result, the complexity of the camera trajectory is constrained
to basic movements such as panning and zooming. MotionCtrl
[142] Incorporates a camera and object motion controllers that
accept a sequence of camera poses and object trajectories
as input, generating features that are then injected into the
temporal and convolutional modules of the video generator.
However, the need to fine-tune part of the video diffusion
model can reduce its generalization capabilities.

DragNUWA [141] stands out by handling complex curved
trajectories and managing multiple object movements along-
side camera motion simultaneously. It achieves this by warping
images through a combination of densified sparse strokes and
pixel fusion. To address the challenge of limited trajectory
ground truth data, DragNUWA introduces a Trajectory Sam-
pler that directly samples trajectories from video optical flow,
enabling the model to learn a wide range of possible trajec-
tories in an open-domain setting. To address the challenge of
limited trajectory ground truth data, DragNUWA introduces
a Trajectory Sampler that directly samples trajectories from
video optical flow, enabling the model to learn a wide range
of possible trajectories in an open-domain setting. Likewise,
VideoComposer [133] leverages MPEG-4 to extract motion
vector information from videos, using these vectors as condi-
tions during training. However, due to the lack of high-level
semantic information within motion vectors, this method only
allows for reproducing simple object movements.

Boximator [143] proposes a plug-and-play control module
that simplifies the challenge of long-range spatial-temporal
information propagation by factorizing it into two more man-
ageable tasks. First, the model generates a bounding box for
each object with a dedicated color. Second, it aligns these
boxes with Boximator constraints in each frame. Initially,
the model is trained to generate videos with visible colored
bounding boxes around objects; in a subsequent phase, it is
further trained to stop producing these visible boxes, while
preserving the motion. Additionally, Boximator introduces the
concept of soft boxes for flexible object shaping and motion
paths, alongside hard boxes for precise object positioning and
shape definition.

Video-to-Video motion transfer (one-shot customiza-
tion): Another way to bring the motion to video generation
is by motion transfer from another video or sequence as

a prior [144]–[146]. For instance, MotionClone [144] is a
training-free framework that enables the cloning of motion
from a reference video to control T2V generation. This method
allows for motion transfer across different object categories
while preserving essential motion characteristics. However, the
authors highlight limitations in out-of-distribution scenarios,
where the combination of target objects and input video
motions may lead to visual artifacts. Similarly, authors in [145]
utilize a pre-trained, fixed T2V diffusion model combined
with a novel space-time feature loss, derived directly from
the model, ensuring that the generated video adheres to the
overall motion of the input while complying with the target
object in terms of shape and fine-grained motion trait.

Control-A-Video [117] infuses motion priors from a ref-
erence video through residual-based and optical flow-based
noise initialization, promoting coherence among frame la-
tents, thereby reducing flickering across frames. Additionally,
this model incorporates a Spatio-Temporal Reward Feed-
back Learning algorithm, which optimizes the video diffusion
model using multiple reward functions to enhance video qual-
ity and motion consistency. Another noteworthy approach is
Customize-A-Video [146], which adapts motion from a single
reference video to new subjects and scenes by employing
Low-Rank Adaptation (LoRA) on temporal attention layers.
The method first trains an appearance absorber module on
unordered reference frames to capture spatial information
from each frame. Afterward, with the help of the trained
appearance absorber, a Temporal LoRA module is trained to
focus specifically on the motion from the reference video.
During inference, the appearance absorber is discarded, and
only the trained Temporal LoRA module is used for motion
transfer.

VMC [147] offers a different approach by distilling motion
trajectories from the residual between noisy latent frames. It
fine-tunes only the temporal attention layers of the keyframe
generation model based on these motion trajectories. Once
training is complete, the customized key-frame generator is
leveraged for target motion-driven video generation with new
appearances. To enhance this process, the model uses an
appearance-invariant prompt to filter out background infor-
mation that might interfere with motion extraction. However,
VMC struggles to generalize when the appearance of the
target object differs significantly from the reference object.
A common challenge faced by these one-shot methods is
their relatively high inference time effort, as each video
requires specific model tuning. While these techniques excel at
customizing motion for individual videos, they can be compu-
tationally demanding, especially when applied to diverse and
complex video generation tasks.

Video Personalization: Subject customization in video
generation is typically achieved through either a few-shot fine-
tuning of the model (using images) or textual inversion (via
a learnable text embedding), without the need for model fine-
tuning. MotionBooth [148] employs a few-shot approach to
fine-tune a T2V model, allowing it to capture the object’s
shape and attributes. Additionally, it introduces a training-
free technique that manipulates cross-attention maps to control
subject motion, along with a novel latent shift module for
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TABLE III
SUMMARY OF MODELS AND TECHNIQUES AIMING AT MOTION CONTROL

Model Camera control Object control Training requirement Year
Tune-a-Video [108] using a reference motion video using a reference motion video one-shot tuning 2023
Video-P2P [109] using a reference motion video using a reference motion video one-shot tuning 2024
AnimateDiff [37] composition of basic movements × required for MotionLoRA module 2024
CameraCtrl [136] camera pose × required for control module 2024
CamTrol [137] camera pose × zero-shot 2024
Direct-a-Video [134] composition of basic movements bounding boxes required 2024
MotionCtrl [142] camera pose trajectory required for motion modules 2024
MotionDirector [135] using a reference motion video using a reference motion video required for LoRA module 2023
DragNUWA [141] implicitly by custom trajectories trajectory required 2023
Control-A-Video using a reference motion sequence using a reference motion sequence required 2023
DragAnything [140] basic motions trajectory (bg and fg control) required 2024
Boximator [143] implicitly by custom trajectories bounding boxes/trajectory required for control module 2024
VideoComposer [133] reference motion video/strokes reference motion video/strokes required 2024
MotionI2V [131] × text/sparse trajectory required 2024
MotionClone [144] using a reference motion video using a reference motion video zero-shot 2024
Space-Time Diffusion [145] using a reference motion video using a reference motion video zero-shot 2024
Customize-A-Video [146] using a reference motion video using a reference motion video one-shot tuning 2024
VMC [147] using a reference motion video using a reference motion video one-shot tuning 2024
MotionBooth [148] camera displacement bounding boxes one-shot tuning 2024
DreamVideo [149] using a reference motion video using a reference motion video few-shot tuning for adapter module 2023

camera movement control.
Inspired by Dreambooth [132] -a personalized image gener-

ation method that binds a word to a subject through complete
fine-tuning of an image diffusion model- DreamVideo [149]
extends this concept to video generation. DreamVideo uses a
few-shot approach, creating personalized videos from a small
set of static images of the desired subject and a few videos
illustrating the target motion. The task is decoupled into two
distinct phases of subject and motion learning. In the subject
learning phase, the model captures the subject’s fine details
from the provided images by fine-tuning an identity adapter
module. In the motion learning phase, a motion adapter is fine-
tuned to model the target motion pattern effectively. These
lightweight adapters, together with a randomly selected image
of the target (used as appearance guidance), are used on top of
a frozen video diffusion model to generate customized videos.

In contrast to DreamVideo, which is limited by predefined
motion types and lacks flexibility in handling text-driven input,
MotionBooth offers greater control over both subject and cam-
era motions without relying on predefined motion prototypes.
Similarly, VideoBooth [150] generates videos based on sub-
jects specified in image prompts, using an image encoder that
integrates the image prompts into text embeddings, mapping
them to multi-scale latent representations. This controls the
generation process via cross-frame attention layers within T2V
models. However, the generalization capacity of VideoBooth
to diverse subjects, such as human figures, remains limited.

To summarize, most video generation models still lack pre-
cise control over motion and temporal consistency, particularly
in complex scenarios involving both camera and object motion.
Furthermore, traditional 1D temporal attention mechanisms
often fail to capture long-range temporal dependencies due
to their narrow receptive field, resulting in inconsistency,
especially in the presence of large motion. Researchers have
explored various paradigms to address these challenges, listed
in Table III:

• Customized motion by data augmentation and plug-and-

play modules: Simple camera motions can be learned
through data augmentation [134] or plug-and-play mod-
ules like MotionLoRA using few-shot learning to mimic
specific movements [37].

• Motion Transfer: Methods that transfer motion from ref-
erence videos offer another solution, although real-world
applications are limited by the difficulty of obtaining
dense motion guidance.

• Motion Feature Injection: By injecting motion pri-
ors—such as dense optical flow or sparse point tra-
jectories—into video generation models, finer control
over motion can be achieved. Sparse point trajectories
are commonly used for both implicit camera motion
control and explicit object manipulation, typically in two
paradigms: Trajectory Map (point) and bounding box
representation. The challenge with using point trajectories
is that a single point sometimes fails to adequately
represent an entire entity. Additionally, pixels closer to
the drag point tend to receive a greater influence which
sometimes leads to deformation in appearance. The box
representation, on the other hand, is limited to instance-
level objects and cannot account for backgrounds. An
alternative approach involves extracting entity-level latent
features and incorporating them into the video generation
process. Another promising strategy is embedding camera
pose or trajectory directly into the diffusion process [136],
[142].

• Video Personalization: Few-shot fine-tuning or textual
inversion techniques (through a learnable text embedding
without model fine-tuning) allow for the customization of
a given subject’s motion and appearance.

• Latent Space Optimization: Manipulating the initializa-
tion of latent distributions, as seen in training-free ap-
proaches [137], [144], can enhance video dynamism
without requiring extensive fine-tuning. This technique
is also applicable for fine-tuning the video generation
model.
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3) Long duration: Video generation output is charac-
terized by interleaved factors such as frame count, fram-
erate, and duration (since framecount = duration(s) ×
framerate(fps)). Conventionally, videos are considered long
if they contain more than 100 frames or equivalently, or if
their duration exceeds 10 seconds at a framerate of 10fps [9].
Generating long videos presents several challenges. One key
difficulty is preserving temporal consistency and continuity in
the synthesized motion while maintaining realism, consistency
in the appearance of entities, and limiting computational
resource usage. Data scarcity for long video datasets adds
further complications. Additionally, training models on long
videos is extremely expensive, and without sufficient train-
ing, the quality degrades during inference. This is especially
problematic for attention blocks, which are typically trained
to focus on a limited number of neighboring frames. Some
approaches have been inspired by the large context capabilities
of large language models (LLMs). For instance, ExVideo [36]
proposes to fine-tune the parameters within the temporal layers
of a pre-trained T2V model, as well as incorporating learnable
positional embeddings to handle larger contexts. This strategy
enables the temporal layers to process longer temporal context
and generate up to 128 frames. Despite these enhancements,
the approach remains constrained by the inherent limitations
of its base T2V model.

To address these challenges, several techniques have been
proposed, primarily following two paradigms: autoregressive
generation and divide-and-conquer generation. In the divide-
and-conquer approach, the model first generates keyframes
that define the main narrative and then fills the gaps between
these keyframes. This method can take advantage of paral-
lelization for the infilling process, which accelerates the overall
video generation. However, maintaining coherence between
chunks of the video across different keyframes remains a
challenge.

On the other hand, the autoregressive paradigm sequentially
generates small chunks of video, each conditioned on the
previous frame(s) (and/or its clip embedding) of the previous
chunk(s). Conditioning solely on the last frame can lead to
video stagnation and longer conditioning could cause the
error accumulation effect. Ideally, long-term memory (for the
appearance of entities) and short-term memory (for temporal
dynamics) are needed to create diverse motions and narratives.
This is often achieved through conditioning mechanisms or
mask modeling. Masked visual modeling is a technique to
selectively obscure parts of video frames to enhance the
model’s learning process. The model then learns to predict
these masked parts based on the visible context and the
sequence’s temporal dynamic. For example, authors in [38]
propose using probabilistic masks based on the Bernoulli
distribution or predetermined patterns to selectively obscure
parts of input frames during training.

Figure 7 illustrates several examples of long video gener-
ation conditioning schemes. One simple method (Figure 7-
a)involves using temporal sliding windows so that the temporal
attention module can consistently process a fixed number
of frames. For instance, Gen-L-Video [154] generates long
videos by merging overlapping chunks using a sliding-window

method during denoising. It treats long videos of arbitrary
lengths and multiple semantic segments as collections of short
videos with temporal overlap, resulting in smooth temporal
transitions, yet it struggles with maintaining long-range visual
consistency. In contrast, authors in [155] introduce a more
flexible generative model that can sample any arbitrary subset
of video frames, conditioned on any other subset during
inference time. This permits the choice to extend videos either
autoregressively or via a hierarchical generation(Figure 7-d).

Divide-and-conquer approaches: NUWA-XL [16] em-
ploys a ”Diffusion over Diffusion” architecture to generate
long videos. A global diffusion model first creates the storyline
by generating L keyframes based on L prompts. Then, local
diffusion models fill the gaps between these keyframes. One
significant advantage of this setup is that it enables training on
long videos, eliminating the training-inference gap. Typically,
models are trained on fixed-length clips as small as 16 frames
and forced to extend generation to larger scales, leading to
a domain gap. However, this approach requires extensive
pretraining on large long-video datasets and demands a per-
formant global diffusion model to produce initial keyframes.
Moreover, its generalization capability for open-domain video
generation remains untested due to the limited dataset used.

Autoregressive approaches: StreamingT2V [151] incorpo-
rates a long-short-term conditioning mechanism built on a
frozen T2V model. It consists of three main components:
a conditional attention module as a short-term memory, an
appearance preservation module as a long-term memory, and
a randomized blending approach for seamless blending of
overlapping video chunks. Each frame is synthesized based
on features extracted from the previous chunk using an
attention mechanism to ensure smooth transitions. NUWA-
infinity [19] takes a different approach by splitting long visuals
into non-overlapping patches, using an ordered patch chain
as a complete training instance. A rendering model then
autoregressively predicts each patch based on its context. [157]
proposes Frame-Level Noise Reversion to reuse the initial
noise from previously generated clips. This helps preserve
temporal coherence as the reverse sequence is still temporally
consistent, yet promotes visual diversification, avoiding frame-
level jittering and disjointed transitions. FIFO-Diffusion [156]
employs training-free iterative diagonal denoising to generate
infinitely long videos using a pre-trained video generation
model. This diagonal denoising process applies increasing
noise levels to consecutive frames, unlike traditional methods
that use uniform noise levels. Interestingly, FIFO-Diffusion
maintains a constant memory footprint regardless of video
length, making it ideal for parallel inference on multiple GPUs.
FreeNoise [152] is a training-free approach that resched-
ules noise sequences for long-range correlations instead of
initializing noises for all frames at once. It is challenging
for the temporal modules to achieve global coherence when
independently sampled noises are combined for longer video
generation. Therefore, temporal attention is performed over
these noise sequences using a window-based fusion method.
Despite their novel motion injection method to support multi-
prompt conditional generation, the model tends to produce
near-static global motion in long videos.
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TABLE IV
OVERVIEW OF LONG VIDEO GENERATION MODELS. #FRAMES IS PROVIDED BASED ON THE LONGEST PLAUSIBLE EXAMPLES PROVIDED BY AUTHORS

Model Mode #Frames Resolution Tech
StreamingT2V [151] T2V 1200+ 720× 720 AutoRegressive
NUWA-XL [16] T2V 3376+ 256× 256 Divide-and-conquer
Phenaki [49] T2V/I2V 2+ minutes - Autoregressive
FreeNoise [152] T2V 512 follows T2V base model Autoregressive
Vlogger [153] T2V/I2V 5+ minutes 320× 512 Divide-and-conquer
Gen-L-Video [154] T2V hundreds follows T2V base Hybrid
FDM [155] V2V 15000 128× 128 Hybrid
FIFO-Diffusion [156] T2V 1000 follows T2V base model AutoRegressive

Multi-Scene / prompt generation: One limitation of mod-
els like FIFO-Diffusion [156] is that although they produce
long and relatively consistent videos, the storyline remains
static. A single text condition is often inadequate and ambigu-
ous to fully describe evolving content. To address this, some
works have explored multi-scene long video generation [153],
[158], [159]. Ideally, a model should maintain the identity of
entities throughout the entire video while varying their ac-
tions, background, and story. For example, VideoDirectorGPT
[159] offers explicit control over spatial layouts and maintains
temporal consistency of entities across multiple scenes. This
framework integrates knowledge from large language models
(LLMs) for video content planning and grounded video gen-
eration, expanding initial text prompts into a detailed video
plan including scene descriptions, entities, background details,
and consistent groupings. Similarly, Vlogger [153] converts
user stories into scripts through rounds of interaction with
an LLM. Based on this script, the model generates actor
reference images using a T2I model and assigns actors to
scenes. MEVG [160] employs a last-frame-aware diffusion
process to preserve visual coherence between consecutive
videos. Each video consists of different events based on the
text generated by the prompt generator LLM and a pre-trained
T2V. It simultaneously adjusts noise in the latent to enhance
the motion dynamic in a generated video.

Fig. 7. Examples of long video generation condition schemes. a: Chunk Auto-
regressive, b: FIFO Auto-regressive [156], c: Long range Auto-regressive,
d: Flexible Auto-regressive [155] Red represents conditioning frames(already
generated), and the blue frames are gradually getting denoised(white) while
gray frames wait for the next steps to get denoised.

4) Training/Inference Efficiency: The efficiency of the
training and inference pipeline is a key challenge, particu-
larly for video generation models, which are often resource-
intensive. This issue is even more pronounced for diffusion-
based models which rely on iterative inference pipelines.

Efforts to optimize efficiency span several aspects of the video
generation process:

• Data: The quality of training data plays a crucial role in
the final output excellence. Filtering the dataset to include
high-quality data has been shown to enhance model per-
formance. For instance, as recommended in [52], [161],
excluding motionless clips or those with excessive on-
screen text improves the model’s performance. Motion-
less clips could be identified using optical flow relying on
the significant correlation between a video’s optical flow
score and motion intensity, with low scores indicating
static frames and high scores indicating intense emotion.
Likewise, optical character recognition techniques could
be applied to identify the clips containing large amounts
of written text (e.g. watermarks).
However, high-quality training videos are scarce and
when training with fixed-duration videos, short clips may
need to be discarded, and longer videos truncated, leading
to under-utilization of data with varying frame counts. To
address this, the authors of [41] propose a mixed-duration
training strategy called Frame-Pack, which allows the
use of variable-length videos during training. This ap-
proach eliminates the need to trim or discard videos,
enabling better utilization of data and improving the
model’s generalization capabilities. Additionally, most
existing datasets lack detailed video captions. Captions
are often limited to high-level descriptions such as ”A
dog running” without including temporal or detailed
compositional information. Enriching video captions us-
ing Vision-Language Models (VLMs) can generate more
granular descriptions, such as detailed body movements
[162]. This technique not only enhances caption diversity
but can also be used for data augmentation.

• Training strategy: Progressive training is a method
where the spatial and/or temporal resolution of the videos
increases as training progresses [41], [51]. For example in
EmuVideo [51], most of the training occurs on 1-second
long 256 × 256 videos at 8 fps, reducing per-iteration
training time by 3.5x. The model is then progressively
trained on 2- and 4-second long, 512 × 512 resolution
videos for fewer iterations. Progressive training allows
the models to learn coarse-grained details early and
fine-grained details later through high-resolution training,
all while reducing overall training time and effectively
utilizing videos of various resolutions. Another strategy
involves pre-training models on large-scale text-image
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datasets before fine-tuning on video datasets. This allows
for leveraging large high-quality image datasets publicly
available, to improve video generation with minimal re-
liance on video data. Additionally, unsupervised training
frameworks can further reduce dependency on paired
text-video data. For example, TF-T2V [163] is a plug-
and-play paradigm that employs separated content and
motion branches, with the former learning text/image
conditional appearance generation from image-text pairs
and the latter synthesizing motion dynamics from text-
free videos.

• Quantization: Mainstream quantization methods can be
categorized into two groups: quantization-aware train-
ing(QAT) and post-training quantization(PTQ). QAT in-
corporates quantization simulation during the training
phase to preserve performance under reduced precision.
However, this approach necessitates substantial computa-
tional resources, extended training time, and access to the
original dataset. In contrast, PTQ does not require fine-
tuning and can be implemented with minimal computa-
tional effort, using only a limited set of unlabeled data
for calibration. PQT is an effective technique for reducing
memory usage, computational complexity, and latency
in video generation models. Compressing high bit-width
floating-point data into lower bit-width integers helps
accommodate lower-memory GPUs while maintaining
minimal video quality degradation [164]–[166].

• Model design:

– Diffusion process optimization: The v-
parameterization technique improves stability
during inference with fewer sampling steps and
it is useful for avoiding color shifting artifacts,
particularly for high-resolution diffusion models
[17]. In v-parametrization, instead of predicting the
noise ϵt or the clean data x0 directly, the model
predicts an intermediate latent variable v which is
designed as a blend of both the clean image x0

and the Gaussian noise ϵt at timestep t, striking a
balance between the two: vt = αtϵt + σtx0

Progressive distillation [167] is another technique
that accelerates diffusion models by iteratively re-
ducing the number of sampling steps. This process
distills a high-step ”teacher” model into a ”student”
model that can generate samples with fewer steps. To
enhance the distillation output, T2V-Turbo [168] fur-
ther integrates reward feedback from multiple models
during distillation, optimizing human preference and
the temporal coherence of the generated video.

– Transformer optimization: CogVideoX [41] utilizes a
video-adapted version of Rotary Position Encoding
(RoPE-3D), a relative positional encoding method
proven to capture inter-token relationships effec-
tively in large language models particularly excelling
in modeling long sequence. 3D-RoPE accelerates
model convergence compared to traditional sinu-
soidal encodings.

– Lightweight plug-and-play modules: To avoid the

computational burden of extensive fine-tuning, plug-
and-play modules offer an alternative. For instance,
MotionLoRA from animatediff [37] enables efficient
tuning of text-to-video models without modifying
the base model architecture. LoRA is a technique
for accelerated fine-tuning of large models. Instead
of updating the entire weight matrix of a model
W ∈ Rm×n during fine-tuning, LoRA decomposes
the weight updates into smaller, lower-rank matrices
and optimizes only these newly introduced matrices:

W ′ = W +∆W = W +ABT (18)

where A ∈ Rm×r and B ∈ Rn×r are a pair of
rank-decomposition matrices, r is the rank of LoRA
layers.

IV. EVALUATION METRICS

Video quality evaluation methods can be classified into
two principal categories: quantitative (objective) and qualita-
tive (subjective) approaches. Qualitative assessments typically
involve human evaluation, where groups of evaluators score
videos based on various criteria such as photorealism, text
alignment, temporal coherence, and aesthetic appeal. Despite
the labor-intensive nature of human evaluation, it remains
indispensable due to the human capacity to recognize tempo-
ral coherence, interpret ambiguity, and understand real-world
physics—capabilities that quantitative metrics often fail to
fully replicate due to their inherent limitations in frame-level
comprehension [35].

Quantitative evaluation methods can be further categorized
into three primary types: text-video alignment, spatial quality,
and temporal quality assessment. Additionally, these metrics
can be classified based on their reliance on ground truth
(paired or set), distinguishing between standalone(unary) and
comparative metrics.

A. Text-to-video alignment

This category of metrics assesses the degree to which
generated videos correspond with their associated textual
descriptions/prompt. CLIP-based methods, including CLIP
[170], BLIP [171], and viCLIP [103] score are prevalent in the
literature. These models are trained to maximize the similarity
between pairs in extensive text-image/video datasets. However,
these approaches often exhibit inconsistencies with human vi-
sual perception, leading to increased interest in Learning from
Human Feedback (LHF). This has encouraged the creation
of large human-rated datasets for alignment purposes. Conse-
quently, new alignment models such as ImageReward [172],
PickScore [173], and VideoScore [174] have emerged, aiming
to facilitate automatic quantified video quality assessments that
maintain a high correlation with human preference.

B. Spatial quality assessment

Common metrics for measuring image quality include In-
ception Score (IS) and Fréchet Inception Distance (FID).
However, these metrics often demonstrate a weak correlation
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TABLE V
COMPARISON OF HARDWARE REQUIREMENTS FOR VARIOUS STATE-OF-THE-ART VIDEO GENERATION MODELS. THE TRAINING HARDWARE

SPECIFICATIONS COLUMN DETAILS THE COMPUTATIONAL POWER USED BY AUTHORS TO TRAIN THE PUBLISHED MODEL WEIGHTS, OR THE MINIMUM
HARDWARE NEEDED TO INDEPENDENTLY TRAIN OR FINE-TUNE EACH MODEL.

Model Name Training Hardware Specification Inference Hardware Specification #Parameters
T2V-Turbo-v2 [168] 8 × A100 GPU for 10K — —
VEnhancer [125] 16 × A100 GPU 80GB VRAM for 4 days Minimum A100 80G VRAM —
Pyramid Flow [12] A100 GPU for 20.7K hours (minimum 8 × A100 GPU needed) Less than 8GB VRAM† ⋄ 2B
CogVideoX-5B [41] 1 × 4090 GPU 24 GB VRAM 18-26GB VRAM (Desktop GPUs

like RTX 3060)
5B

Allegro [124] 256 × H100 for total of 252k iterations in different phases 1 × GPU 9.3GB VRAM † ▷ VAE: 175M
DiT: 2.8B

CogVideoX-2B [41] 47-62 GB VRAM required 4-18GB VRAM 2B
VideoCrafter-2.0 [54] 32 × A100 GPU for 270K iterations (Training) + — —

8 × A100 GPU for 30K iterations (Finetuning)
OpenSora V1.2 [11] H100 GPU for 35K hours More than one GPU 80G VRAM 1.1B
Mochi1 [169] — Minimum 4 × H100 GPU VAE: 362M

DiT: 10B
Movie Gen [35] Up to 6144 × H100 GPU — 30B*

Stable Video Diffusion [52] 8 × A100 GPU 80GB VRAM for 12K iterations(16 hours) — 1.5B
† With CPU offloading
⋄ To generate a 5s, 768p, 24fps video, takes 5.5 minutes on 1 × A100 GPU, or 2.5 minutes on 4 × A100 GPU
▷ To generate a 6s, 720p, 15fps video, takes 20 minutes on 1 × H100 GPU, or 3 minutes on 8 × H100
* Transformer only (other modules such as text embedded or TAE not included)

with human visual perception. Other metrics frequently em-
ployed for image-level video assessment include Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM).
PSNR quantifies the peak signal-to-noise ratio relative to Mean
Squared Error, while SSIM evaluates differences in bright-
ness, contrast, and structure between reference and generated
videos. Although these metrics were initially developed for
image tasks such as super-resolution, they have been adapted
for video evaluation without necessitating pre-trained models.
Newer metrics, such as UNIQUE [175] and MUSIQ [176] have
shown potential in effectively capturing perceptual quality in
natural images.

C. Temporal quality assessment
Temporal quality is primarily evaluated using metrics such

as Fréchet Video Distance (FVD), which measures feature
disparities between generated and real videos through the
application of Inflated-3D ConvNets (I3D). Additionally, Ker-
nel Video Distance (KVD) evaluates the quality of generated
videos by comparing the distributions of real and generated
videos within a feature space, utilizing kernel functions (e.g.,
Gaussian kernel) to measure similarity. While FID, FVD, and
KVD compare the distribution of features of generated frames
against real images/videos, they may overlook distortion-level
and semantic-level quality characteristics. The Fréchet Video
Motion Distance (FVMD) specifically focuses on evaluating
the motion quality. Unlike FVD, which assesses both spatial
and temporal quality more broadly, FVMD emphasizes the
dynamics of motion, capturing the coherence, fluidity, and
realism of object movement across frames. Deep Objective
and Visual Evaluation for Robustness (DOVER) [178] assesses
video quality from two perspectives: the aesthetic aspect,
which considers content, composition, and other non-technical
factors, and the technical aspect, which focuses on the percep-
tion of distortions and technical characteristics such as blur and
artifacts.

D. Leaderboard benchmarks
To facilitate fair comparisons across video generation mod-

els on a common basis, several benchmarks have emerged.
These benchmarks often include a variety of text prompts cov-
ering distinct concepts (e.g., different subjects, landscapes, and
motion levels) [35], [179]–[181]. Commonly used benchmarks
include VBench [182] and EvalCrafter [183] each providing
extensive datasets of text prompts, as well as a combination
of various evaluation metrics to evaluate T2V models with a
final scalar score.

VBench proposes a comprehensive set of fine-grained video
evaluation metrics to assess temporal and spatial video quality,
as well as video-text consistency in terms of semantics and
style, using a list of 800 prompts. It decomposes video
generation quality into 16 dimensions such as subject identity
inconsistency, motion smoothness, and temporal flickering,
and proposes the evaluation metrics with fine-grained levels.
Figure and Table VII illustrate the performance of several
state-of-the-art models on VBench. Notable performance dif-
ferences emerge in metrics like multiple object handling
and dynamic degree, while the models demonstrate similar
performance levels on metrics such as background consistency.
EvalCrafter benchmark consists of 700 prompts for T2V gen-
eration. The generated videos are assessed in terms of visual
qualities, content qualities, motion qualities, and text-video
alignment using 17 selected objective metrics. A human align-
ment method is used to find the best coefficients to combine
those metrics instead of simply averaging. I2V-Bench [180]
is a comprehensive evaluation benchmark for Image-to-Video
(I2V) generation models, features 2,950 curated YouTube
videos based on strict resolution and aesthetic standards and
organized across categories like scenery, sports, animals, and
portraits.
Although existing benchmarks primarily address temporal
consistency and continuity, they frequently neglect content
dynamics, essential for evaluating visual vividness and align-
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Fig. 8. Evaluation score of state-of-the-art models on VBench [177] - Left: High-variance metrics, Right: Low-variance metrics

TABLE VI
SUMMARY OF EVALUATION METRICS

Assessment Metric Need ref. Need ref. What does it measure?
target data model
Spatial ↓FID ✓(Set) × similarity between the generated and original images’ distribution

↑PSNR ✓(Pair) × reconstruction quality
↑IS × ✓ image quality & diversity using a pretrained Inception network & conditional label distribution
↑SSIM ✓(Pair) × brightness, contrast, and structural attributes

Temporal ↓FVD ✓(Set) ✓ similarity of feature space distribution of the generated video and the real ones
↓KVD ✓(Set) ✓ appearance and motion
↓FVDM ✓(Set) ✓ motion consistency
↑DOVER × ✓ aesthetic and technical perspectives

Text-Video ↑CLIP-score × ✓ alignment of images and text using CLIP embedding
Alignment ↑BLIP × ✓ feature space similarity between text and image

↑viCLIP × ✓ feature space similarity between text and generated video

ment with textual prompts. DEVIL [184] is an evaluation
protocol that specifically targets the dynamics dimension in
T2V models. It proposes a benchmark encompassing various
dynamic complexity levels and evaluates videos through a set
of dynamics scores, including dynamics range, controllability,
and dynamics-based quality. The dynamics range measures
the T2V model’s capability to handle subtle and dramatic
changes, while dynamic controllability assesses the model’s
ability to manipulate video dynamics based on text prompts.
The dynamics-based quality metric evaluates the visual quality
of generated content, via a composite quality score obtained
by averaging the scores of various quality metrics correlated
with dynamics.

V. DATASETS

Training datasets for the video generation task are no-
tably scarce, especially in comparison to those available for
image generation. In image generation, large-scale datasets
like Laion-5B [48] are publicly available. By contrast, video
generation models inherently require larger datasets and more
computational resources for training, a demand that is es-
pecially pronounced in transformer-based models, which are
known for their high data requirements. For instance, Movie
Gen [35] training dataset consists of O(100)M video-text
pairs and O(1)B image-text pairs. Similarly, Open-Sora [11] is

trained on 30M videos, totaling roughly 80K hours of footage,
and VideoPoet [70] utilizes a dataset of 1B image-text pairs
in addition to approximately 270M videos.

Despite the scale, these datasets generally lack the detailed
annotations necessary for more nuanced video generation tasks
and often only describe scenes without capturing the camera
motion or the temporal information crucial for understanding
text-action dynamics in videos. Table VIII outlines some of
the most widely used datasets currently available for video
generation tasks.

VI. CHALLENGES AND FUTURE DIRECTIONS

Despite the unprecedented progress achieved in the field of
video generation, several significant challenges persist. One
major issue is long duration generation. Current video gen-
eration models are capable of producing plausible video clips
ranging from 2 seconds to one minute. While some models
have managed to generate videos extending several minutes,
their spatial resolution, temporal consistency, and capacity for
thematic generalization remain markedly limited. To create
engaging video content, it is imperative to avoid the monotony
associated with simple autoregressive extensions and instead
develop compelling storylines and smooth semantic evolution.
Notable challenges associated with extended durations include
effective scene transitions, character development, and the



PREPRINT, NOVEMBER 2024 22

TABLE VII
COMPARISON OF STATE-OF-THE-ART MODELS ON VBENCH

Model Name Total Score Quality Score Semantic Score Motion Smoothness Overall Consistency
T2V-Turbo-v2 [168] 83.52 85.13 77.12 97.07 28.26
MiniMax-Video-01 [62] 83.41 84.85 77.65 99.22 27.10
Gen-3 [56] 82.32 84.11 75.17 99.23 26.69
Vchitect-2.0 (VEnhancer) [125] 82.24 83.54 77.06 98.98 27.57
Kling [59] 81.85 83.39 75.68 99.40 26.42
LaVie-2 [15] 81.75 83.24 75.76 98.42 27.39
Pyramid Flow [12] 81.72 84.74 69.62 99.12 26.23
CogVideoX-5B [41] 81.61 82.75 77.04 96.92 27.59
Allegro [124] 81.09 83.12 72.98 98.82 26.36
Emu3 [185] 80.96 84.09 68.43 98.93 24.79
CogVideoX-2B [41] 80.91 82.18 75.83 97.73 26.66
Pika-1.0 [57] 80.69 82.92 71.77 99.50 25.94
Gen-2 [56] 80.58 82.47 73.03 99.58 26.17
VideoCrafter-2.0 [54] 80.44 82.20 73.42 97.73 28.23
AnimateDiff-V2 [37] 80.27 82.90 69.75 97.76 27.04
OpenSora1.2 [11] 79.76 81.35 73.39 98.50 26.85

TABLE VIII
OVERVIEW OF THE MOST COMMONLY USED DATASETS FOR VIDEO GENERATION TASK

Dataset Year #Clips Clip Length(avg) Total Duration(h) Resolution Modality
FineVideo [186] 2024 43.7K 4.7min 3.43K diverse video + text⋄

HowTo100M [187] 2019 136M 3.6s 134.5K 240p video + text(instruction)
HD-VILA-100M [188] 2022 103M 13.4s 371.5K 720p video + text
Webvid-10M [189] 2021 10M 18s 52K 360p video + text
UCF-101 [190] 2012 13K 7s 27 240p video + text(class label)
Kinect-600 [191] 2018 480K 10s 1.4K - video + text (action label)
MSR-VTT [192] 2016 10K 15s 41.2 240p video + text
SkyTimelapse [193] 2018 35K 32 frames - 640× 360 video
Youtube-8M [194] 2016 8M 120-500s 350K - video + class label
X4K1000FPS [195] 2021 4.4K 65 frames - 4096× 2160 video w/ extreme motion(1000fps)
InternVid [103] 2023 234M 11.7s 760.3K 720p video + text
Panda-70M [196] 2024 70.8M 8.5s 166.8K 720p video + text
LSMDC [197] 2017 118K 4.8s 158 1080p video + text
Youku-mPLUG [198] 2023 10M 54.2s 150K - video + text(Chinese)
VidGen-1M [199] 2024 1M 10.6s - 720p video + text
VidProM [200] 2024 6.7M 1.6-3s 4K - synthetic video + text
GenVideo [201] 2024 1M 2-6s - 512 to 1280 px synthetic video
COCO Caption [202] 2015 330K - - 640× 480 image + text
LAION-5B [48] 2022 5.6B - - 256 to 1024 px image + text
⋄ Detailed video description such as characters

enrichment of both action and plot.
To address these challenges, emerging methodologies involv-
ing multi-prompt/multi-scenario video generation [158], [159],
[161] aim to compose coherent scenarios and maintain consis-
tent personas. However, the content produced by these models
often lacks aesthetic appeal and spatiotemporal quality. While
entity-driven techniques have demonstrated promising results
within the domain of image generation [132], similar progress
in video generation remains elusive due to the additional
constraints of maintaining temporal consistency. In both image
and video generation, achieving fidelity and consistency in the
representation of human entities is particularly challenging, as
human observers exhibit heightened sensitivity to facial details
compared to other objects.

High spatial and temporal resolution video generation poses
further challenges in terms of quality and resource consump-
tion. State-of-the-art closed-source video generation models
have achieved resolutions of 1920× 1080 @30 fps and open-
source models reached ≈ 1280× 768 @30 fps. Nevertheless,
rendering sharp high-frequency details as depicted in Fig.

9-d, continues to be a challenge. Despite ongoing research
on flexible resolution and aspect ratio vision transformers
[203], [204], most existing video generation models do not
yet provide this flexibility. Moreover, running inference for
most state-of-the-art models requires cutting-edge GPUs with
high VRAM capacity, which motivates research focused on
training and inference optimization.

Consistency is another critical challenge in video genera-
tion, manifesting in various forms. Temporal consistency is
especially vital when generating high-frequency details, such
as leaves on trees as illustrated in Fig. 9-d. Similarly, semantic-
level consistency remains an issue for many generative models.
Often, the generated content fails to adhere to the rules of
physics; for instance, solid objects may transform inappro-
priately during interactions with other objects - e.g., a brush
melting into a canvas upon contact or chopsticks deforming
when placed in the mouth as illustrated in Fig. 9-e. Besides,
certain entities, such as human teeth or fingers, present par-
ticular difficulties in rendering, often resulting in deformed or
inconsistent representations(Fig. 9-a and c). To mitigate these
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issues, works such as GPT4Motion [205] propose leveraging
large language models (LLMs) to generate Blender scripts
based on user prompts. These scripts can then be used to create
coherent motion and depth maps, aligning with physical rules
through the Blender physics engine. However, this approach
requires additional resources to run Blender and lacks scalabil-
ity. Understanding and controlling semantic-level composition
remains a challenge for most T2V generation models. As
depicted in Fig. 9-b, these models frequently struggle to
adhere to instructions regarding the semantic composition of
scenes. While conditional video generation approaches aim to
resolve these issues, providing additional input conditions in
real-world applications can be limiting and not user-friendly,
highlighting the interest of text-driven compositional video
generation [161] as an open area of research.

Another major concern pertains to dynamic level and motion
control. In general, T2V models tend to generate videos with
low dynamism to achieve higher scores on quality metrics
such as naturalness, motion smoothness, subject consistency,
and background coherence [184]. Techniques for camera and
motion control have been extensively explored in the literature,
each presenting its advantages and disadvantages, as discussed
in detail in Chapter III-C2. Notably, achieving sophisticated
text-driven camera movements or coordinating multiple object
motions while maintaining visual coherence remains an open
area for development.

Multi-modal video generation represents an emerging re-
search direction, paving the way toward Artificial General
Intelligence (AGI) or human-level AI [185]. Vision-language
models (VLMs) have demonstrated impressive performance in
challenging tasks such as image/video captioning and visual
question answering, thereby opening new avenues for research
and enhancing existing applications. For instance, VLMs have
been utilized to enrich video training data with enhanced cap-
tions. Joint audio-video generation has also garnered attention,
expanding from audio-driven video generation to synthesizing
audio that is synchronized with visual content.

Finally, the rapid evolution of video generation technology
raises critical concerns regarding security and ethical impli-
cations. Generated videos may encompass illegal or uneth-
ical content, misinformation, or misattribution, and there is
currently a lack of comprehensive quantitative understanding
regarding their safety, thereby posing challenges to their relia-
bility and practical deployment. It is essential to implement
measures at multiple levels, including prompt filtering to
prevent the generation of inappropriate content and post-
generation filtering to detect and block unsafe videos. How-
ever, these safety measures are primarily applicable to service
providers and are not enforceable on open-source models that
could potentially be exploited by malicious individuals. Conse-
quently, researchers have proposed techniques for embedding
signatures within AI-generated content [206], [207], which
are imperceptible by humans but critical for detection and
consequently foster trust in the information.
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TABLE IX
COMPARISON OF STATE-OF-THE-ART MODELS ON VBENCH ON CHALLENGING METRICS

Model Name Semantic Dynamic Aesthetic Imaging Object Multiple Human Color Spatial Scene
Score Degree Quality Quality Class Objects Action Relationship

T2V-Turbo-v2 77.12 90.00 62.61 71.78 95.33 61.49 96.2 92.53 43.32 56.40
MiniMax-Video-01 77.65 64.91 63.03 67.17 87.83 76.04 92.4 90.36 75.50 50.68
Gen-3 75.17 60.14 63.34 66.82 87.81 53.64 96.4 80.90 65.09 54.57
Vchitect-2.0 (VEnhancer) 77.06 63.89 60.41 65.35 86.61 68.84 97.2 87.04 57.55 56.57
Kling 75.68 46.94 61.21 65.62 87.24 68.05 93.4 89.90 73.03 50.86
LaVie-2 75.76 31.11 67.62 70.39 97.52 64.88 96.4 91.65 38.68 49.59
Pyramid Flow 69.62 64.63 63.26 65.01 86.67 50.71 85.60 82.87 59.53 43.20
CogVideoX-5B 77.04 70.97 61.98 62.90 85.23 62.11 99.40 82.81 66.35 53.20
Allegro 72.98 55.00 63.74 63.60 87.52 59.92 91.40 82.77 67.15 46.72
Emu3 68.43 79.27 59.64 62.63 86.17 44.64 77.71 88.34 68.73 37.11
CogVideoX-2B 75.83 59.86 60.82 61.68 83.37 62.63 98.00 79.41 69.90 51.14
Pika-1.0 71.77 47.50 62.04 61.87 88.72 43.08 86.20 90.57 61.03 49.83
Gen-2 73.03 18.89 66.96 67.42 90.92 55.47 89.20 89.49 66.91 48.91
VideoCrafter-2.0 73.42 42.50 63.13 67.22 92.55 40.66 95.00 92.92 35.86 55.29
AnimateDiff-V2 69.75 40.83 67.16 70.10 90.90 36.88 92.60 87.47 34.60 50.19
OpenSora V1.2 73.39 42.39 56.85 63.34 82.22 51.83 91.20 90.08 68.56 42.44
Variance 8.55 326.73 7.99 9.70 16.55 124.26 31.39 18.77 185.76 28.45
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APPENDIX
BENCHMARKING

Table IX summarizes the performance of state-of-the-art
models on VBench’s challenging quality metrics, emphasizing
areas where model behaviors diverge most. For example, the
dynamic degree metric, which assesses the motion level in
generated videos, reveals a substantial performance gap among
models. It appears that models often prioritize consistency
over motion, as even completely static videos can achieve high
scores on other temporal consistency metrics.
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Fig. 9. Example of failed cases in state-of-the-art video generation models. Video a, b-top, c, and d are generated by Runway. Video b-bottom is generated
by CogVideoX-2B and video e is generated by Haiper.
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