
HAL Id: hal-04774965
https://hal.science/hal-04774965v1

Submitted on 9 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Exploration-Driven Reinforcement Learning for Avionic
System Fault Detection (Experience Paper)

Paul-Antoine Le Tolguenec, Emmanuel Rachelson, Yann Besse, Florent
Teichteil-Koenigsbuch, Nicolas Schneider, Hélène Waeselynck, Dennis Wilson

To cite this version:
Paul-Antoine Le Tolguenec, Emmanuel Rachelson, Yann Besse, Florent Teichteil-Koenigsbuch, Nicolas
Schneider, et al.. Exploration-Driven Reinforcement Learning for Avionic System Fault Detection
(Experience Paper). ISSTA ’24: 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis, Sep 2024, Vienne, Austria. pp.920-931, �10.1145/3650212.3680331�. �hal-04774965�

https://hal.science/hal-04774965v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Exploration-Driven Reinforcement Learning for Avionic System
Fault Detection (Experience Paper)

Paul-Antoine Le Tolguenec
ISAE SUPAERO

France
paul-antoine.le-tolguenec@isae-

supaero.fr

Emmanuel Rachelson
ISAE SUPAERO

France
Emmanuel.RACHELSON@isae-

supaero.fr

Yann Besse
Airbus
France

yann.besse@airbus.com

Florent Teichteil-Koenigsbuch
Airbus
France

�orent.teichteil-
koenigsbuch@airbus.com

Nicolas Schneider
Airbus
France

nicolas.schneider@airbus.com

Hélène Waeselynck
LAAS-CNRS

France
helene.waeselynck@laas.fr

Dennis Wilson
ISAE SUPAERO

France
Dennis.WILSON@isae-supaero.fr

Abstract

Critical software systems require stringent testing to identify possi-

ble failure cases, which can be di�cult to �nd using manual testing.

In this study, we report our industrial experience in testing a re-

alistic R&D �ight control system using a heuristic based testing

method. Our approach utilizes evolutionary strategies augmented

with intrinsic motivation to yield a diverse range of test cases, each

revealing di�erent potential failure scenarios within the system.

This diversity allows for a more comprehensive identi�cation and

understanding of the system’s vulnerabilities. We analyze the test

cases found by evolution to identify the system’s weaknesses. The

results of our study show that our approach can be used to improve

the reliability and robustness of avionics systems by providing

high-quality test cases in an e�cient and cost-e�ective manner.

CCS Concepts

•Computer systems organization→Reliability; •Computing

methodologies→Reinforcement learning; •Applied comput-

ing→ Avionics; • Software and its engineering→ Software

testing and debugging.

Keywords

Reinforcement learning, intrinsic motivation, genetic algorithms,

evolutionary strategies, diversity, software reliability, physical sys-

tem, critical software system, automated testing

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680331

ACM Reference Format:

Paul-Antoine Le Tolguenec, Emmanuel Rachelson, Yann Besse, Florent

Teichteil-Koenigsbuch, Nicolas Schneider, Hélène Waeselynck, and Den-

nis Wilson. 2024. Exploration-Driven Reinforcement Learning for Avionic

System Fault Detection (Experience Paper). In Proceedings of the 33rd ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

’24), September 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3650212.3680331

1 Introduction

High-assurance systems must be designed to tolerate faults and

prevent the occurrence of critical failures. The architectural solu-

tions are based on redundancy and on the introduction of detection

and protection mechanisms. While such solutions are necessary

to meet dependability requirements, they add complexity to the

system, which introduces new risks. There may be cases where

dependability mechanisms cause system failures that would not

exist without them. The problem may be illustrated by a �rst ex-

ample from the railway domain. In Essame et al. [19], the authors

addressed a scenario involving redundant units to control a sec-

tion of railway track, in a primary/secondary con�guration. In the

studied scenario, the primary unit fails and control is passed to the

secondary one. However, due to an inconsistency between the two

units (the primary has detected a new train that the other has not

yet seen), the handover operation ends with an unregistered train,

making the system unable to ensure the no-collision property. Inter-

estingly, in this architecture, each unit is fail-safe: no collision could

occur if the unit was alone. It is the improper management of re-

dundancy that creates the safety issue. A second example of failure

comes from false positives of detection mechanisms. For instance,

in the automotive domain, self-driving vehicles are reported to

su�er from spurious emergency braking, a phenomenon known as

"phantom braking". It has been a persistent issue for Tesla vehicles

and is currently under investigation by the U.S. safety regulators

[1].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

920

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3650212.3680331
https://doi.org/10.1145/3650212.3680331
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680331&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Le Tolguenec, Rachelson, Besse, Teichteil-Koenigsbuch, Schneider, Waeselynck, Wilson

In this paper, we report on the search for false positives in an

avionic system, yielding the unexpected disengagement of auto-

mated control functions. This case study uses the command (COM)

and monitoring (MON) COM/MON architecture typical of Airbus

systems [59], which uses command and monitoring units to inde-

pendently compute orders to send to aircraft actuators, allowing

for comparison between the two units. When a disagreement is

detected, the units are reported as faulty. The units may have a

di�erent view of the physical environment (like in the previous

example in the railway domain), due to asynchrony. As such, a

small discrepancy in the computed values is accepted. However,

there is a risk for corner cases, where the units are properly func-

tioning and yet the discrepancy exceeds the detection threshold.

Finding such corner cases is considered as very di�cult by test

engineers. Formal methods may not help, because the problem cu-

mulates many aspects that would make formal analysis challenging.

From a study on model checking at Airbus, these aspects are the

following [9]: (i) the multiprocessor architecture, which requires

accounting for communication delays and clocks asynchrony, (ii)

the multiple computation periods inside a unit, di�erent pieces

of code being cyclically executed at di�erent periodicity, (iii) the

numerical �oating point calculation. Hence, testing methods are

more realistic candidates. Ideally, the test method should aid the

engineer in their ability to: identify potential corner cases if they

exist, categorize them if multiple exist, and even characterize other

dangerous cases where the system is close to fail but does not.

Our study investigates the potential e�ectiveness of new Re-

inforcement Learning (RL) algorithms to meet these needs. More

speci�cally, our study focuses on the use of the recently published

Curiosity-ES algorithm [31], which is a policy search algorithm

designed to tackle Reinforcement Learning problems where ex-

ploration is crucial. This algorithm enhances the agent’s ability

to explore its environment by incorporating a curiosity-driven

component, encouraging the agent to seek out novel states. The

contributions of this paper can be summarized as follows:

• A study on identifying failure cases in a realistic COM/MON

industrial system, developed by an R&D department.

• The formalization of searching for these failure cases as a

sequential decision-making problem.

• The comparison between di�erent baselines which highlight

the bene�ts of using highly exploratory approaches such as

Curiosity-ES.

• A detailed discussion of the results obtained and an identi�-

cation of the key features leading to disagreement.

• The application of a statistical post-processing technique to

categorize generated failure cases into clusters, enhancing a

�ner analysis of their diversity.

Our implementations are available in the replication package.

2 Related Work

In this part, we explore the existing literature on automated soft-

ware testing in di�erent critical systems. More speci�cally, We

mostly focus on the methodologies used to test reactive systems

that continuously interact with their environment. These systems

are typically tested in X-in-the-loop con�gurations, where X can

represent software, hardware, or model elements. In the pursuit to

uncover corner cases within these systems, there has been a signi�-

cant reliance on heuristic methods, which employ experience-based

techniques for problem-solving and decision-making. These meth-

ods are particularly valued for their ability to navigate the complex,

often unpredictable nature of reactive systems, guiding the testing

process toward scenarios that might reveal hidden vulnerabilities.

In this section, we will focus on two major categories of these

methods: "Sample-based Testing" approaches and "Reinforcement

Learning" techniques, beginning with the former.

Search-based testing approaches often treat the test sequence as

a whole, meaning that each test scenario is conditioned by a set of

parameters. It is these parameters that are optimized to approach

a failure case and expose a �aw if one exists. These methods re-

quire to de�ne a ’�tness’ score for each test case and this �tness is

maximized by employing an evolutionary algorithm to sample the

parameters adaptively. This �tness can often be understood as the

opposite of a distance between the executed scenario and a potential

failure case. Choosing the right �tness function is critical for testing

success, but it can be challenging and small changes on this function

can greatly impact results. McMinn [42] provides an overview of

various search-based testing approaches that have been successfully

used in various areas such as temporal testing [48, 61–63], func-

tional testing [11, 62] and structural testing [3, 58, 60], including

concrete examples of �tness functions employed. Recently, the �eld

of cyber-physical systems has delved deeply into these methods,

especially for evaluating the robustness of autonomous vehicles.

[4, 26, 37, 54, 55]. Recent advancements include using adaptive

importance sampling and Bayesian optimization in autonomous

vehicle software to identify and analyze potential critical system

failures [2, 46], o�ering deeper insights into system behaviors and

vulnerabilities. Moreover, when searching for optimal parameters,

these heuristic search-based approaches are known for their need

to maintain a balance between exploration and exploitation. The

evolutionary community has thoroughly investigated the question

of massive exploration and the balance with exploitation through

concepts like Novelty Search[33–35] and Quality Diversity [16, 17].

This idea has been applied in search-based testing, and numerous

studies have supported its relevance [10, 22, 41]. These approaches

hold even greater value as it has been tested and proven in real-

world industrial contexts [21, 40]. The limiting aspect of search-

based testing approaches is that by treating the testing sequence as

a whole they are not designed to react sensitively to every system

behavior, but rather to e�ectively explore a prede�ned parameter

space. An alternative to these approaches is to frame the testing

problem as a sequential decision-making one. This formulation then

allows for the application of Reinforcement Learning algorithms

(RL). Reinforcement Learning [49, 57](RL) is a subset of machine

learning wherein an agent optimizes its policy/strategy through

interactions with an environment, aimed at achieving speci�c objec-

tives. The learning mechanism is driven by feedback, manifesting

as rewards or penalties, contingent on the actions taken, rather

than direct instruction. This iterative process allows the agent to

formulate a policy that incrementally maximizes the total expected

reward over time. The concept of using RL to identify �aws in

systems was recently formalized as "Adaptive Stress Testing" by

[27, 28, 32]. The approach views the link between the system under

test and the physical environment simulated as the environment

921

https://anonymous.4open.science/r/ast_replication_package-5B94/README.md

Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper) ISSTA ’24, September 16–20, 2024, Vienna, Austria

itself, with the agent’s actions introducing disturbances in that loop.

This formulation enables the use of the variety of RL algorithms;

for example, in a discrete state space environment, well-understood

methods like Q-Learning can be particularly e�ective as they pro-

vide theoretical guarantees that the strategy found is the best for a

given criteria. These methods have been widely used to assess the

robustness of various cyber-physical systems such as the transmis-

sion system, power system with automatic voltage controls, or even

to asses a system availability against DoS attacks (Distributed De-

nial of Service) [13, 18, 30, 36, 39, 64, 65]. In complex systems where

simple state abstraction isn’t viable, Deep Reinforcement Learning

uses neural networks as function approximators to determine the

optimal policy [44]. The study by Liu et al. [38] provides a compre-

hensive look at how these methods are applied in Cyber-Physical

Systems (CPS), particularly in the transportation and industrial

�elds. Recently, [43] further explored DRL for uncovering soft-

ware defects in various CPS . [20] developed a speci�c experience

replay method for e�ciently training policies targeting faults in

autonomous driving systems. Similar to evolutionary approaches,

numerous methods stemming from deep reinforcement learning

have been developed to extensively explore the state space of an en-

vironment. These methods are often based on an exploration bonus

added to the reward [6, 12, 47]. This type of exploration technique

has proven to be e�ective in recent testing applications[25, 66].

Finally, recently numerous studies have highlighted the bene�ts

of hybridizing evolutionary strategies and Reinforcement Learn-

ing algorithms. Practically speaking, evolutionary approaches [50],

whose evaluation is easily parallelized, can be used to optimize the

parameters of neural networks themselves [14, 15, 52]. The advan-

tage of using evolutionary approaches for parameter optimization,

rather than action sequences as in Search-Based Testing (SBT), lies

in the inductive bias capabilities of neural networks. Our study

employs the recently published Curiosity-ES algorithm [31] that

falls within this category of methods. This algorithm, which com-

bines evolutionary strategies with a curiosity-driven exploration

bonus, has demonstrated remarkable exploration capabilities across

various benchmarks. We demonstrate the relevance of this method

for searching false positive in a COM/MON system, which will be

explained in detail in the following section.

3 Avionic System Testing: A Reinforcement
Learning Perspective

3.1 Testing Architecture Overview

Our testing approach aims to uncover false positives in a simulated

COM/MON system. The testing architecture is depicted in Figure

1. The simulator we used includes aircraft dynamics modeling, for

which JSBSIM is employed, along with a model of the aircraft sys-

tem itself. These two components interact in a closed-loop system.

The simulator operates synchronously and deterministically. Tem-

poral asynchrony between the two units is simulated by adjusting

each unit’s internal clock. Following the framing of Adaptive Stress

Testing [32], we study the inclusion of an agent which interacts with

this closed-loop system. At each timestep, this agent collects com-

prehensive state information of the system and physical state data

Figure 1: Test architecture overview

of the aircraft (JSBSIM state). Using this information, the agent can

in�uence the closed-loop by altering the aircraft’s control surface

positions and the asynchrony between the two units by adjusting

their clocks. The agent acts as an oracle, serving both as the pilot

and controlling the system’s asynchrony rate.

3.2 COM/MON Modeling

The COM/MON is an architecture which enables a constant mon-

itoring of the orders sent by the EFCS (Electrical Flight Control

System) to the aircraft surfaces controller. The COM computes a

command to send to the controller based on data from the multiple

sensors. The MON recomputes the order, based on its own inputs,

but potentially sampled at a di�erent time. The orders from the two

units should be consistent, but if the COM/MON order di�erence

is maintained above a certain threshold for enough time, the EFCS

triggers a fault.

The COM and MON units have almost the same software and

hardware architecture, although they may di�er on some very spe-

ci�c points. The two units are almost fully independent and each

uses an independent clock. This independence guarantees e�cient

monitoring, but it can also induce random (bounded) asynchronic-

ity between the two units. This temporal shifting combined with

certain events can produce an unwanted COM/MON disagreement

leading to an EFCS fault. Identifying the spurious events which

could cause COM/MON disagreement during the development of

the unit logic is a challenging task due to the many confounding

factors: the inputs from the di�erent sensors, the command sent by

the pilot, and the synchronization of the two units. In this article,

we study the use of reinforcement learning to �nd such faults by

reward disagreement between the COM and MON units.

We model the COM/MON architecture contained in the �ight

controller using a realistic version of a common aircraft system

design. An overview of the architecture is presented in Figure 2.

Speci�cally, we aim to test the part of the software which acts on

the longitudinal evolution of the plane during the landing phase,

hence the elevator position X@ .

We refer to the physical environment as � and the system in-

teracting with it as M. M can be seen as a function which takes

as input a pitch rate order D ¤\ , the actual pitch rate ¤\ , an internal

memory state, and a boolean 1 indicating impact, which is based

on the compression of the front gear. The functionM then outputs

a position command on the elevator surface X@ . The logic used

922

ISSTA ’24, September 16–20, 2024, Vienna, Austria Le Tolguenec, Rachelson, Besse, Teichteil-Koenigsbuch, Schneider, Waeselynck, Wilson

Figure 2: The COM architecture, which calculates control

orders for the elevator surface X@ . The MON architecture is

equivalent and provides the binary variable 1"
#�

to the COM.

(Flight/Ground) to compute the order of surface positions is con-

ditioned by the impact boolean 1� , which indicates whether the

plane has touched the ground or not. To ensure both units adhere

to the same rule, a mechanism is in place to resynchronize them.

The COM and MON units of M use di�erent clock times C� and

C" , for COM and MON respectively. The order calculated by the

COM X�@ is the one used by the system M. The MON recalculates

the order and the disagreement between the COM and the MON

is calculated as Δ
�/"

X@
= |X�@ − X"@ |. The internal calculations of

the COM/MON units are executed sequentially with distince fre-

quencies per calculation. These calculations can be split into three

groups: sampling, consolidation, and order production.

Sampling In each unit, the variables D ¤\ ,
¤\ , and 1 are sampled

from � with a speci�c C; and stored in memory. For example, every

10ms the COM samples D ¤\ (C) and the MON samples D ¤\ (C + Δ
�/"
C),

where Δ
�/"
C is the phase shift between the two units. For a given

unit = (� or"), we refer to the stored variable as D=¤\
, ¤\= and 1=

#�
.

#� stands for non-consolidated 1, as explained just below.

Consolidation Although COM and MON are independent, the

critical variable 1 is consolidated between the two units: 1� = 1=
#�

| | 1
>?
#�

where >? indicates the opposite unit. Through this consoli-

dation, both units are made aware of an impact, even if one unit

has not yet been informed of the impact in the 1=
#�

variable due

to phase shift. We model the time delay of the communication

between the units as C3 ∈ [2.8, 3.2]ms.

Order production Two orders, X
5
@ and X

6
@ , are generated using

the �ight and ground control laws, ;5 (D ¤\ ,
¤\) and ;6 (D ¤\ ,

¤\), respec-

tively. These control laws are Proportional Integral Derivative (PID)

controllers with di�erent gains. The various gains are summarized

here:

Flight Ground

 ? 5 5

 8 10 0

 3 0.01 0.01

It is important to note that these gains were speci�cally designed

to reach an optimal response on the pitch rate order. The orders are

then consolidated by a synchronization unit which is conditioned

by 1� : sync(X
5
@ , X

6
@, 1�) = X

sync
@ . This consolidation unit is intended

to produce a temporally linear transition between the two orders.

Finally, the consolidated order is passed through a rate limiter,

rlim(X
sync
@) = X@ , to ensure that it is 1-Lipschitz continuous with

respect to time.

Each operation is executed at a frequency of time C5 , which is

di�erent per operation. For D ¤\ and ¤\ , C5 = 10ms. The order X@
produced by M and given to � is refreshed every 40ms and the

impact boolean 1#� is sampled with C5 = 120ms.

In this work, the environment � is an instance of JSBSim [8],

which simulates a realistic �ight pattern of the aircraft and the

environment. It should be noted that in this context, D ¤\ and 1#�

are derived directly from the simulation without any noise or mal-

function. Therefore, if a disagreement event arises, it is not due to a

malfunction in an upstream computer. The dynamics used are those

of a commercial aircraft. The �ight scenario is shown in Figure 3

and represents a standard landing pattern with a slight bounce,

depending on the pilot actions.

Figure 3: The �ight scenario studied in this work. The aircraft

is initialized in a landing pattern where bouncing is possible

based on the given controls. The di�erent activation phases

of the �ight control law ;5 and ground control ;6 are shown

in background color.

3.3 Reinforcement Learning for Testing
COM/MON Disagreement

Despite its simplicity, the system described can take on many states

and physical conditions, making �aw detection a non-trivial task.

We formulate the problem of �nding COM/MON disagreement as

a sequential decision-making problem, as in [27]. We con�gure

the state space and transition model to create a fully observable

Markov Decision Process [7]. Formally, we consider the process

E = ⟨S,A,P,R⟩, where S is the set of states, A is the set of

actions, P is the transition function from each state to the next one

depending on the action, and R is the reward function. We detail

each component below.

For each time step C , the state BC ∈ S contains both the state of the

simulated airplane environment � and the state of the COM/MON

units M. Formally, we note that a state BC = {B�C , B
M
C } ∈ (� ×

(M , with (� and (M being respectively the set of states of the

environment � and the system M.

The state of the COM/MON system BM contains all of the sam-

pled variables, which are stored in the memory of the two units.

In addition, it contains the state variables of the �ight and ground

923

Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper) ISSTA ’24, September 16–20, 2024, Vienna, Austria

control laws ;5 and ;6 , the consolidator synchronization function

sync, and the rate limiter function rlim. Finally, it also contains

the current COM/MON desynchronization Δ
�/"
C . The state of the

environment B� contains the variables which de�ne the physical

state of the aircraft, such as \, ¤\, ℎ,D ¤\ . We note that the variables
¤\ and D ¤\ are sampled by the COM and MON units; these vari-

ables are therefore present in both BM and B� . However, the sam-

pled values in BM are the most recently sampled values from the

COM and MON, whereas the values in B� are the current values

of the simulated airplane. The total state space is of dimension

45: B ∈ R
45. A reinforcement learning agent c is trained to �nd

the optimal action 0C = (mD ¤\ (C) , mΔ
�/"
C) ∈ A, where mD ¤\ (C) is

a change on the pitch rate order and mΔ
�/"
C is a change of the

desynchronization of the two units. To ensure that the agent only

explores possible trajectories, we add physical constraints to the ac-

tion space A: |
3D ¤\

3C
| < 100

◦/s, D ¤\ ∈ [−45◦, 45◦], |
3Δ

�/"
C

3C
| < 5ms/s

and max(|Δ
�/"
C |) < 40 ms. As such, there are six possible actions,

three for D ¤\ and three for Δ
�/"
C :

mD ¤\ mΔ
�/"
C

+0.1° +5`B

-0.1° −5`B

0° 0`B

Every 1ms, an action for D ¤\ and an action for Δ
�/"
C are taken

using argmax(0C) over the possible actions for each type.

Our goal is to �nd feasible yet unlikely sequences of actions, or

trajectories, which lead to the maximum disagreement between the

COM and MON units. As such, the agent is rewarded based on the

current disagreement between the two units R(BC , 0C) = Δ
�/"

X@
(C).

Once the agent has taken an action, the transition model P

determines the next state. Speci�cally, we use the JBSim simulator

of the environment and our simulation of the COM/MON model to

calculate BC . We con�gure the �ight scenario shown in Figure 3 to

follow a standard landing pattern. We use a PID to �nd the optimal

command: D
opt
¤\

(C)C ∈{0,...,� } � being the horizon of the evaluation

(in our experiments, � = 15s.). The actual command used in the

environment is therefore : D ¤\ (C) = D
opt
¤\

(C) + Dc
¤\
(C), where Dc

¤\
(C)

is the pitch order given by the agent. Hence, when the agent acts

on the pitch, it alters the trajectory of the predetermined standard

scenario. This is to allow the agent to focus on learning failure cases

without needing to learn a standard landing pattern.

4 Method and Implementation

The previous section outlined how the challenge of maximizing

disagreement between two COM/MON units can be framed as a

decision-making problem, opening the door to a myriad of poten-

tial algorithms for resolution. This section presents our chosen

methodology. In this work, the state space which the agent can

explore is technically in�nite due to being continuous. We propose

the use of neural networks to model policies as they are capable

function approximators, even on continuous problems. We use the

same neural architecture for all experiments: the neural network

has 45 inputs (the state variables BC), two fully-connected hidden

layers of 64 neurons each with ReLU activation, and an output

layer with 6 neurons, which encode the action 0C . Experiments

on architectural parameters showed that deeper neural networks

enhance performance but also increase computational cost. The

chosen architecture presents an optimal balance between e�ciency

and computational resource requirements. We note the policy as

cq : S ↦→ A and denote its parameters q .

The objective we aim to maximize is the sum of reward from the

environment cumulated by an agent along the trajectory :

argmax
q

� (q) =

�∑

C=0

AC =

�∑

C=0

R(BC , cq (BC)) (1)

We propose to optimize the parameters of the network using

three di�erent methods. As a baseline, we use a Monte Carlo (MC)

sampling method to generate policy networks which we refer to

as “naive MC”. We note that this baseline is commonly used in

the literature of software testing. Speci�cally, we sample in _#

networks q8 ∈ R
= uniformly in [−10, 10]= , where _ is the number

of sampled policy networks in a given epoch and # is the number

of epochs.

Additionally, we study the use of Evolutionary Strategies (ES)

[50] to optimize policies c . These methods have shown competitive

results in policy search [52] and tend to drive the exploration of

diverse policies. Speci�cally, we use a state of the art ES, CMA-ES

[24] in its separable form [51]. These methods sample _ policies,

also referred to as a population, from distribution N(`, f) which

is updated over iterations, or generations, in order to maximize an

estimated gradient.

Finally, we propose to further encourage exploration of the state

space by using the recent Curiosity-ES algorithm [31]. This algo-

rithm combines Evolutionary Strategies with uncertainty bonuses,

facilitating exploration in generic state spaces [5, 29, 47]. Speci�-

cally, Curiosity-ES uses the Intrinsic Curiosity Module (ICM) [47]

to produce an intrinsic motivation. The ICM contains a neural net-

work model which learns the dynamic of the environment and

uses the error of the model’s predictions as an intrinsic reward.

For unseen areas, the error of the dynamic model are high, while

in previously seen areas, these errors are expected to be low. This

mechanism rewards agents for going in areas where the dynamics

are not yet modelled accurately by the ICM.

In our implementation, the ICM is updated using samples of a

replay bu�erD which is �lled with the trajectories of all policies q8
sampled during evolution. For Curiosity-ES, the �tness is aweighted

sum of the extrinsic and intrinsic �tness:

5q8
= [5 8

q8
+ (1 − [) 5 4

q8
, (2)

where the extrinsic �tness 5 4
q8

is the normalized sum of reward

de�ned in Equation 1 and [∈ [0, 1] determines the importance of

exploration. 5 4
q8

and 5 8
q8

are also normalized over the current gener-

ation, allowing for better control on the exploitation/exploration

trade-o�. Our neural network for the Curiosity Module (ICM) main-

tains a uniform architecture across experiments, featuring an en-

coder with three dense ReLU-activated layers of 64 and 32 neu-

rons, ending in an 8-neuron linear output layer. The inverse model

includes two ReLU-activated dense layers of 32 and 16 neurons,

924

ISSTA ’24, September 16–20, 2024, Vienna, Austria Le Tolguenec, Rachelson, Besse, Teichteil-Koenigsbuch, Schneider, Waeselynck, Wilson

branching into ’pitch’ and ’shift’ action layers with softmax acti-

vation. The forward model, with a 32-neuron ReLU layer and an

8-neuron linear layer, predicts environmental dynamics from the

encoder’s space.

Furthermore, we experimented with standard reinforcement

learning baselines Proximal Policy Optimization (PPO) [53] and

Soft Actor Critic (SAC)[23]. Despite hyperparameter tuning, these

methods were unable to �nd high levels of COM/MON disagree-

ment. As such, we exclude these methods from our analysis.

5 Experiments and Results

We �rst present the optimization processes of the three methods

studied, showing that evolutionary strategies can �nd policies

which create a high level of disagreement between the COM and

MON units. We then evaluate the best policies from each method

to understand how the agents create disagreement.

5.1 Policy Optimization

We evaluate the optimization of naive Monte Carlo sampling (naive

MC), sCMA-ES, and Cusiosity-ES. All three methods are run for

= 10000 generations. We use the same population parameters for

sCMA-ES and Curiosity-ES: f = 0.002 and _ = 50. We performed

optimization 5 times for each algorithm for statistical signi�cance.

Figure 4: (top) Maximum �tness per generation during evo-

lution for the three di�erent methods. (bottom) Maximum

�tness accumulated over evolution. Lines indicate the mean

over 5 trials, and ribbons the standard deviation.

For Curiosity-ES, we split the search process between successive

phases of hard exploration [= 1 and phases of extrinsic reward

maximisation (reinforcement) [= 0. Each hard exploration phase

lasts #4 = 500 generations, while the reinforcement phases last

#A = 1000. The population distribution of Curiosity-ES is randomly

reinitialized at the end of each reinforcement phase, but the replay

bu�er and ICM are preserved. The ICM isn’t restarted during evolu-

tion in order to keep track of what has been explored and to drive

the exploration towards new scenarios.

In Figure 4, we note that the two ES methods are able to �nd

highly rewarding policies which MC is unable to �nd. sCMA-ES

is able to quickly �nd highly rewarding policies consistently over

the �ve trials. While the evolution of Curiosity-ES has a higher

standard deviation per generation than sCMA-ES, it outperforms

sCMA-ES overall in cumulative maximum �tness, �nding more

rewarding policies during exploitation phases. The high variance

in some phases of Curiosity-ES is due to the fact that the di�erent

trials might not focus on the exploration of the same area during

the same phases, with some exploring areas of low reward. The

oscillation of the phases of Curiosity-ES, between exploration and

reinforcement, is seen in the top part of Figure 4 as the sharp drops

of �tness when evolution is restarted.

Figure 5: Temporal progression of the disagreement ΔX
�/"
@

for the best policy found by each method

To better understand how the two methods control the system,

we plot the progression of ΔX
�/"
@ for the best policy found by

the three methods. As can be seen in Figure 5, the disagreement

between COM and MON is almost always larger for the Curiosity-

ES policy. We also note that ΔX
�/"
@ increases greatly for both ES

policies at similar moments; we next present a detailed analysis of

their behavior to understand how this disagreement is created.

5.2 Policy Evaluation

To understand the scenarios which generate high disagreement, we

evaluate the best policy found by the di�erent optimizationmethods

while recording the states visited by each policy. We �nd that the

policies use three main features principally to create disagreement:

triggering bounces on landing, in�ating the PID integrator, and the

use of high-frequency signals which exploit the COM/MON phase

shift.

5.2.1 Inducing Landing Bounces. As explained in subsection 3.3,

we initialize the simulation in order to have the smoothest landing

possible. However, we can see in Figure 6 that the best policies found

by sCMA-ES and Curiosity-ES produce a landing with multiple

bounces.

925

Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper) ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 6: Temporal progression of the front gear compression

for the three best policies. Both ES methods create many

bounces to exploit the synchronization function.

This is an e�ective strategy for creating disagreement as, when

1� changes, the synchronizer sync(X
5
@ , X

6
@, 1�) initiates a linear tran-

sition from one control law, ground or �ight, to the other. Quick

repeated bounces make this transition happen multiple times, and

when COM and MON are out of phase, they do not start this tran-

sition at the same time. As such, the COM and MON may follow

separate logic, one using the ground control law and the other the

�ight law, at di�erent phases of synchronization.

Figure 7: Temporal progression of the disagreement Δ
�/"

X@

(bottom) according to the impact 1� over time (top) following

the best policy found by Curiosity-ES. Areas where 1� is true

are highlighted in gray.

As we can see in Figure 7, following each change in 1� , the

disagreement between COM and MON leaps, speci�cally after a

short bounce. While there are other factors which contribute to the

disagreement, the bounces have a direct in�uence on increasing

Δ
�/"

X@
.

Finally, it is interesting to note that the best policy found by

naive MC does not have this feature, making small bounces similar

to the original control scenario. This indicates that the bouncing

behavior was not easy to �nd with random search. As this is a

counter-intuitive behavior for a human pilot, we also consider that

it demonstrates the ability of ES to �nd dangerous failure cases

without human bias.

5.2.2 High-Frequency Signals. A second strategy which is indis-

pensable for producing disagreement is the exploitation of the

di�erent sampling times between the two units to produce di�erent

inputs. While the two units follow the same logic, except in the

previously seen case of repeated bounces, they can receive di�erent

inputs if there is a temporal shift between the units. As seen in

Figure 2, each system updates its state variables by sampling, but

when there is a temporal shift between the two units, they may

sample di�erent values of a variable. For example, every 10<B the

COM samplesD ¤\ (C) and the MON samplesD ¤\ (C +Δ
�/"
C). Therefore,

a good strategy is to create a temporal di�erence dynamic on D ¤\ (C)

so that the di�erence between two close samples is maximum.

Figure 8: Temporal progression of D ¤\ , D
�$"
¤\

and D"$#
¤\

, fol-

lowing the best policy from Curiosity-ES

In Figure 8, we observe D ¤\ (C) during a small time window of

150ms. We note that the agent varies the value of D ¤\ (C) at an ap-

propriate frequency so that the signal sample by COM (in blue) is

always slightly above the signal sample from MON (in red). This

strategy performed over the full trajectory of 15000ms largely con-

tributes to the disagreement seen in Figure 5 as the control decisions

are made using di�erent state values.

It is also important to note the physical constraint on the change

of D ¤\ described in subsection 3.3, designed to be realistic. Agents

optimized without these constraints produced a signal with greater

oscillations that resulted in a much greater di�erence in state val-

ues. This highlights the exploration of behaviors that may seem

unnatural to a human tester and approach the physical limits of

the system.

926

ISSTA ’24, September 16–20, 2024, Vienna, Austria Le Tolguenec, Rachelson, Besse, Teichteil-Koenigsbuch, Schneider, Waeselynck, Wilson

5.2.3 Inflation of the PID Integrator. A �nal strategy for producing

a high disagreement between COM and MON is to increase the

values used to compute X�@ and X"@ . While these variables increase

in both units, as COM and MON compute the order following the

same logic, the magnitude of possible error X
�/"
@ increases with the

magnitude of each unit’s order. Speci�cally, when these variables

are sampled at di�erent times, the di�erence between the units

increases as the magnitude of the state variables increases.

In a given unit, the variables that are most likely to diverge are

the PID integrators. To in�ate these variables, a policy can produce

a pitch rate order that the system will not be able to respect. For

example, a pitch rate order D ¤\ < 0 is physically impossible to

respect when the front gear of the aircraft is compressed. As another

example, in case of bounces with high amplitude (with the throttle

in idle mode as is the case here), when the maximum amplitude of

the bounce has been reached and the aircraft starts to come down,

a pitch order rate D ¤\ > 0 is physically impossible.

The policies found by sCMA-ES and Curiosity-ES exploit this

pattern. In Figure 9, we see the progression of D ¤\ and 1� which

indicates when the front gear is compressed. From C = 5000<B to

the end, the agent produces an average pitch order rate D ¤\ < 0

when 1� = 1 (front gear compressed) and D ¤\ > 0 when 1� = 0

(bounce phase). We postulate that the agent begins this feature

at C = 5000ms, after the �rst bounce, as the control signi�cantly

a�ects the approach of the aircraft before the �rst bounce .However,

after the �rst bounce, physically impossible controls are sometimes

given in order to in�ate the integrator values.

Figure 9: Temporal progression of D ¤\ (bottom) with respect

to the temporal evolution of the import boolean 1 (top), fol-

lowing the best policy from sCMA-ES

In Figure 9, we see the three main behaviors of the integrator:

the bounces represented by the variable 1, the high-frequency os-

cillations of the D ¤\ variable which gives di�erent state values to the

two units, and the opposed pitch rate orders D ¤\ that are physically

impossible and increase the integrator values. We now study how

the best policies found by the two methods di�er in their use of

these patterns.

5.3 Comparison of Methods

While the best policies found by sCMA-ES and Curiosity-ES exploit

the same patterns to create disagreement, they rely on the di�erent

patterns to di�erent degrees. As shown in Figure 6, both ES policies

create similar bounces, only truly diverging at the end. However,

their use of the sampling phase shift and integrator in�ation pat-

terns are di�erent.

Figure 10: Temporal progression of integrated error Y� con-

tained in the PID of the �ight law. sCMA-ES increases the

integrator value more than Curiosity-ES.

In Figure 10, we show the evolution of the integrated error in the

PID of the �ight law Y� = 8
∫ C

0
Y (G)3G , where 8 = 10 for the �ight

law and 0 for the ground law. We note that the integrator grows

signi�cantly faster for the best policy found by sCMA-ES and is

consistently larger than that of Curiosity-ES. Also, in Figure 6, we

can see that the sCMA-ES policy is the only one for which the front

gear is not compressed at the end of the simulation, resulting in a

“wheeling”. This is interesting, because when 1� = 0 (the case here),

X
5
@ (�ight law) is used to compute X@ . Since X

5
@ > X

6
@ because of the

integrator, we can infer that the sCMA-ES policy has a tendency

to focus principally on increasing the order of magnitude of X@ so

that when there is a disagreement, it is large.

However, when looking at the di�erence between the integrated

error ΔY
�/"
�

in COM and MON, in Figure 11, we can see that

the di�erence keeps growing for the Curiosity-ES policy and is

signi�cantly above that of the sCMA-ES policy. Hence, we can infer

that the Curiosity-ES policy focuses on producing a signal that

maximises the di�erences between the variables contained in the

two units. While the value of the integrator is lower than that of

sCMA-ES’s best policy, the Curiosity-ES policy exploits the phase

shift sampling pattern more, resulting in a larger di�erence in state

variable values.

Analysing the best policies from the two methods permitsunder-

standing the patterns used to create high disagreement. However,

lower levels of COM/MON disagreement can still result in unit

failure, and understanding the variety of cases which lead to failure

is important for rigorous testing. We therefore evaluate the ability

of the proposed optimization methods to �nd a diversity of failure

cases.

927

Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper) ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 11: Temporal progression of the di�erence between

the integrated error in the COM/MON �ight law ΔY
�/"
�

.

Curiosity-ES maintains a higher di�erence by exploiting

shifted sampling.

6 Diversity of Failure Cases

To understand the diversity of failure cases found by the ES meth-

ods, we evaluate all policies which surpass a �xed threshold of

disagreement between the COM and MON. Speci�cally, we record

all the policies for which the �tness is above �g = 450000. We then

analyze these policies in Figure 12, �rst analyzing the diversity of

actions chosen by the policies and then the states visited.

6.1 Diversity of Chosen Actions

We �rst evaluate the diversity generated by the two methods by

analyzing the D ¤\ actions taken by the various policies. We use only

the D ¤\ actions as all policies showed similar behavior on the phase

shift Δ
�/"
C action, which is to maximize the phase shift from the

very beginning.

Analyzing the direct D ¤\ over the horizon of � = 15000ms across

multiple policies is intractable. Instead, we apply a Fourier trans-

form to each signal and keep the 500 highest amplitude frequencies,

describing each signal by these frequencies and their corresponding

amplitudes (1000 total dimensions). We then use Principal Compo-

nent Analysis (PCA) on the frequency representation of each policy

to project it as a point in two dimensions, which we consider as the

“policy space”.

We can see in Figure 12 the result of this projection in the top

three �gures. The leftmost �gure shows the projection of the poli-

cies found by sCMA-ES in green and the policies found during

the hard exploration phases of Curiosity-ES in red. In the center

�gure, we add the policies found by Curiosity-ES during the reward

maximisation phase in blue. In the right-most �gure, we show poli-

cies from the three methods with their corresponding �tness value

indicated in color.

As wewould expect, the policies generated by Curiosity-ES cover

much more of the policy space, especially during the Curiosity max-

imisation phase. When considering policies from the reinforcement

phases, we see three clusters appear: one shared with sCMA-ES

and two on the left which are only found by Curiosity-ES. Notably,

one such cluster achieves maximum �tness. As the policy space fo-

cuses on the frequencies ofD ¤\ , we interpret this group of policies as

those similar to the Curiosity-ES policy in Figure 11, exploiting the

sampling phase shift maximally with high-frequency oscillations.

6.2 Diversity of Visited States

Curiosity-ES is able to generate diversity in the policy space of cho-

sen actions. However, in a constrained environment, two di�erent

policies may create the same sequences of visited states. There-

fore, we also analyze the states sampled by all policies above the

�tness threshold �g . For this comparison, we choose the = = 20

most rewarding states over the full episode as a representation of

the trajectory. We �atten this = states vector and again use PCA

to evaluate how the policies are distributed. We see in the bottom

row of Figure 12 that Curiosity-ES visits a new part of the state

space unexplored by sCMA-ES, represented by the cluster on the

left of each �gure. While these states were most likely found in an

exploration phase, they lead to the highest reward found by either

ES. This shows not only that Curiosity-ES can lead to discovering

new failure states, but that exploration can also lead to regions of

higher reward. This also demonstrates the advantage of exploration,

as this group of failure states were only reached through explicit

exploration. These reveal a di�erent set of critical conditions for

the control system.

7 Lessons Learned

Drawing from our �ndings, we now turn to the critical insights

gained through our study. From an industrial perspective, our ap-

proach highlights a method that works very e�ectively in identify-

ing these failure cases, while there was no automated solutions up

to now on this speci�c system. This tool is particularly relevant as

we were able to validate the key features employed by the agent

to harm the system through discussions with industrial experts on

COM/MON. In other words, the features identi�ed by the agent are

indeed the most relevant found to date on real systems. Naturally,

these systems are designed to be robust against such challenges, but

this underscores the credibility of the results obtained. Additionally,

our latest study on identifying di�erent clusters through PCA anal-

ysis was very enlightening for the engineers to whom the study was

presented. This approach allows for a straightforward structuring

of the post-analysis of results obtained by evolutionary methods.

Identifying clusters using algorithms like K-means, followed by

replaying the most e�ective cases based on the �tness criterion

of each cluster, simpli�es the evaluation process. From an imple-

mentation standpoint, our approach also highlights the robustness

of evolutionary methods. In an industrial context, the complexity

of testing methods may be a challenge due to the requirement of

expertise, especially when using reinforcement learning for auto-

mated testing. In our study, we found that evolutionary approaches,

which require simple management of relatively few hyperparam-

eters, were easier to implement for an operational use-case than

deep reinforcement learning approaches, which have more hyper-

parameters and require �ner tuning. However, one drawback of

evolutionary methods is that they are less sample-e�cient than

standard RL approaches and signi�cant computational resources

may be needed. In this study, we used a three-machine cluster,

928

ISSTA ’24, September 16–20, 2024, Vienna, Austria Le Tolguenec, Rachelson, Besse, Teichteil-Koenigsbuch, Schneider, Waeselynck, Wilson

Figure 12: (top) PCA on frequency signal of actions. (bottom) PCA on = = 20 most rewarding states. (left) Test cases when

Curiosity-ES maximizes curiosity. (center) Test cases including when Curiosity-ES also maximizes reward. (right) Fitness values

of all identi�ed test cases. In all �gures, each dot represents the test cases sampled during the execution of each algorithm.

Clusters illustrate the correlation between policies after the PCA transformation. Axes represent the dimensionless values of

the �rst and second principal components.

each with an Intel Core i9, 64 GB RAM, and Red Hat Enterprise

Linux, parallelized via the Ray library [45]. All experiments were

conducted on CPUs, and there was no need for GPU utilization,

and a computation time of 12 hours was required for �ve runs for

each of the algorithms. In a continuation of this study, we are now

focusing on replicating this study using an internal industrial sim-

ulator which is computationally more demanding. Our preliminary

experiments on the more realistic industrial simulator indicate that

to achieve the same results, a duration of one week (168 hours) will

be necessary. This duration remains extremely reasonable given

the criticality of the system and the time required for validating

such a system.

8 Conclusion

In this article, we formulate the problem of testing a critical avionic

system as a decision making problem. Speci�cally, we simulate a

system based on a realistic aircraft �ight control architecture and

�nd possible failures in the COM/MON system based on subsystem

disagreement. We show that ES can �nd a variety of policies which

lead to critical unit failure and analyze the strategies of the best

policies.

We propose the use of the recent Curiosity-ES [31] to enhance

exploration and demonstrate its bene�ts in the context of test case

coverage and explainability. We evaluate the diversity of actions

and states in critical policies, showing that exploration can lead to

more comprehensive testing and even more rewarding policies.

In this work, we used a fully simulated COM/MON unit and

�ight dynamics. While the short evaluation time in this simulation

allowed the use of evolutionary strategies, the proposed methods

can be computationally expensive and therefore may not be feasible

for testing systems with high evaluation cost. In order to overcome

this limitation, approaches that focus on improving the sample e�-

ciency of ES methods with RL, such as [56], could allow for the use

of these methods on other systems without incurring prohibitive

computational costs. Preliminary testing with standard deep RL

methods (speci�cally Soft Actor-Critic [23]) did not show su�cient

exploration to surpass the naive MC baseline, but further study of

929

Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper) ISSTA ’24, September 16–20, 2024, Vienna, Austria

exploration in sample-e�cient RL methods could aid in application

to other systems.

While the proposed methods are able to �nd a diversity of failure

cases, we note that these cases remain highly improbable. Indeed,

results from the naive MC method show how uncommon a large

disagreement between the COM and MON is. This further high-

lights the potential of Curiosity-ES to identify extremely unlikely

events.

Finally, while our current focus is on aircraft control, the prin-

ciples we lay out here have a wider applicability. They can be

employed in various critical systems that require in-depth testing

as long as a formulation as a sequential decision task is possible.

The exhaustive exploration capabilities of Curiosity-ES could be

especially useful in systems where a thorough investigation of po-

tential failures is vital. Furthermore, the versatility of our approach

enables its application across diverse systems. Practical applications

could range from autonomous driving systems to control systems

in industries like nuclear power, or even complex software systems.

As with other RL methods, the key challenge is in framing the

testing issue as a sequential decision-making problem.

Looking ahead, we plan to expand our research to apply these

methods to additional critical avionic systems beyond the testing of

Control/Monitoring disagreements. By doing so, we aim to demon-

strate the broader applicability of our approach and contribute to

improving safety precautions in a variety of system testing scenar-

ios.

References
[1] 2022. ODI RESUME. https://static.nhtsa.gov/odi/inv/2022/INOA-PE22002-4385.

PDF. Accessed: 23/03/2024.
[2] Yasasa Abeysirigoonawardena, Florian Shkurti, and Gregory Dudek. 2019. Gen-

erating adversarial driving scenarios in high-�delity simulators. In 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 8271–8277.

[3] Andrea Arcuri. 2010. It does matter how you normalise the branch distance in
search based software testing. In 2010 Third International Conference on Software
Testing, Veri�cation and Validation. IEEE, 205–214.

[4] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2016. Test
case prioritization of con�gurable cyber-physical systems with weight-based
search algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016. 1053–1060.

[5] Arthur Aubret, Laetitia Matignon, and Salima Hassas. 2019. A survey on intrinsic
motivation in reinforcement learning. arXiv e-prints (2019), arXiv–1908.

[6] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal
Piot, Steven Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel,
Andew Bolt, et al. 2020. Never give up: Learning directed exploration strategies.
arXiv preprint arXiv:2002.06038 (2020).

[7] Richard Bellman. 1957. A Markovian Decision Process. Indiana University
Mathematics Journal 6, 4 (1957), 679–684.

[8] Jon Berndt. 2004. JSBSim: An open source �ight dynamics model in C++. In
AIAA Modeling and Simulation Technologies Conference and Exhibit. 4923.

[9] Thomas Bochot, Pierre Virelizier, Hélene Waeselynck, and Virginie Wiels. 2009.
Model checking �ight control systems: The Airbus experience. In 2009 31st Inter-
national Conference on Software Engineering-Companion Volume. IEEE, 18–27.

[10] Mohamed Boussaa, Olivier Barais, Gerson Sunyé, and Benoit Baudry. 2015. A
novelty search approach for automatic test data generation. In 2015 IEEE/ACM
8th International Workshop on Search-Based Software Testing. IEEE, 40–43.

[11] Oliver Bühler and Joachim Wegener. 2008. Evolutionary functional testing.
Computers & Operations Research 35, 10 (2008), 3144–3160.

[12] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. 2018. Explo-
ration by random network distillation. In International Conference on Learning
Representations.

[13] Ying Chen, Shaowei Huang, Feng Liu, Zhisheng Wang, and Xinwei Sun. 2018.
Evaluation of reinforcement learning-based false data injection attack to auto-
matic voltage control. IEEE Transactions on Smart Grid 10, 2 (2018), 2158–2169.

[14] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2018. Back to basics:
benchmarking canonical evolution strategies for playing Atari. In Proceedings of
the 27th International Joint Conference on Arti�cial Intelligence. 1419–1426.

[15] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth
Stanley, and Je� Clune. 2018. Improving exploration in evolution strategies for
deep reinforcement learning via a population of novelty-seeking agents. Advances
in neural information processing systems 31 (2018).

[16] Antoine Cully. [n. d.]. Autonomous Skill Discovery with Quality-Diversity and
Unsupervised Descriptors. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (New York, NY, USA, 2019-07-13) (GECCO ’19). Association for
Computing Machinery, 81–89. https://doi.org/10.1145/3321707.3321804

[17] Antoine Cully, Je� Clune, Danesh Tarapore, and Jean-Baptiste Mouret. [n. d.].
Robots That Can Adapt like Animals. 521, 7553 ([n. d.]), 503–507. Issue 7553.
https://doi.org/10.1038/nature14422

[18] Minghui Dai, Zhou Su, Qichao Xu, and Weiwei Chen. 2019. A Q-learning based
scheme to securely cache content in edge-enabled heterogeneous networks. IEEE
Access 7 (2019), 163898–163911.

[19] Didier Essame, Jean Arlat, and David Powell. 1999. Padre: A protocol for asym-
metric duplex redundancy. In Dependable Computing for Critical Applications 7.
IEEE, 229–248.

[20] Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen,
and Henry X Liu. 2023. Dense reinforcement learning for safety validation of
autonomous vehicles. Nature 615, 7953 (2023), 620–627.

[21] Federico Formica, Nicholas Petrunti, Lucas Bruck, Vera Pantelic, Mark Lawford,
and Claudio Menghi. 2023. Test case generation for drivability requirements of
an automotive cruise controller: An experience with an industrial simulator. In
Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1949–1960.

[22] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing self-
driving cars with search-based procedural content generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
318–328.

[23] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: O�-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[24] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely derandomized
self-adaptation in evolution strategies. Evolutionary computation 9, 2 (2001),
159–195.

[25] Junda He, Zhou Yang, Jieke Shi, Chengran Yang, Kisub Kim, Bowen Xu, Xin Zhou,
and David Lo. 2024. Curiosity-Driven Testing for Sequential Decision-Making
Process. In 2024 IEEE/ACM 46th International Conference on Software Engineering
(ICSE). IEEE Computer Society, 949–949.

[26] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. 2021. Quality metrics and
oracles for autonomous vehicles testing. In 2021 14th IEEE conference on software
testing, veri�cation and validation (ICST). IEEE, 194–204.

[27] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J Kochenderfer. 2018. Adaptive
stress testing for autonomous vehicles. In 2018 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 1–7.

[28] Mark Koren and Mykel J Kochenderfer. 2019. E�cient autonomy validation in
simulation with adaptive stress testing. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE, 4178–4183.

[29] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
2016. Hierarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation. Advances in neural information processing systems 29
(2016).

[30] Alexandr Kuznetsov, Yehor Yeromin, Oleksiy Shapoval, Kyrylo Chernov, Mariia
Popova, and Kostyantyn Serdukov. 2019. Automated software vulnerability
testing using deep learning methods. In 2019 IEEE 2nd Ukraine Conference on
Electrical and Computer Engineering (UKRCON). IEEE, 837–841.

[31] Paul-Antoine Le Tolguenec, Emmanuel Rachelson, Yann Besse, and Dennis G.
Wilson. 2023. Curiosity Creates Diversity in Policy Search. ACM Trans. Evol.
Learn. Optim. (jun 2023). https://doi.org/10.1145/3605782

[32] Ritchie Lee, Mykel J Kochenderfer, Ole J Mengshoel, Guillaume P Brat, and
Michael P Owen. 2015. Adaptive stress testing of airborne collision avoidance
systems. In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC).
IEEE, 6C2–1.

[33] Joel Lehman and Kenneth O Stanley. [n. d.]. Exploiting Open-Endedness to Solve
Problems through the Search for Novelty.. In ALIFE (2008). 329–336.

[34] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary computation 19, 2 (2011),
189–223.

[35] Joel Lehman and Kenneth O Stanley. 2011. Evolving a diversity of virtual creatures
through novelty search and local competition. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation. 211–218.

[36] Chao Li, Wen Zhou, Kai Yu, Liseng Fan, and Junjuan Xia. 2019. Enhanced secure
transmission against intelligent attacks. IEEE Access 7 (2019), 53596–53602.

[37] Bing Liu, Shiva Nejati, Lucia, and Lionel C Briand. 2019. E�ective fault localization
of automotive Simulink models: achieving the trade-o� between test oracle e�ort
and fault localization accuracy. Empirical Software Engineering 24 (2019), 444–
490.

930

https://static.nhtsa.gov/odi/inv/2022/INOA-PE22002-4385.PDF
https://static.nhtsa.gov/odi/inv/2022/INOA-PE22002-4385.PDF
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1038/nature14422
https://doi.org/10.1145/3605782

ISSTA ’24, September 16–20, 2024, Vienna, Austria Le Tolguenec, Rachelson, Besse, Teichteil-Koenigsbuch, Schneider, Waeselynck, Wilson

[38] Xing Liu, Hansong Xu, Weixian Liao, and Wei Yu. 2019. Reinforcement learning
for cyber-physical systems. In 2019 IEEE International Conference on Industrial
Internet (ICII). IEEE, 318–327.

[39] Zengguang Liu, Xiaochun Yin, and Yuemei Hu. 2020. CPSS LR-DDoS detection
and defense in edge computing utilizing DCNN Q-learning. IEEE Access 8 (2020),
42120–42130.

[40] Reza Matinnejad, Shiva Nejati, and Lionel C Briand. 2017. Automated testing of
hybrid simulink/state�ow controllers: industrial case studies. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. 938–943.

[41] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2016.
Automated test suite generation for time-continuous simulink models. In pro-
ceedings of the 38th International Conference on Software Engineering. 595–606.

[42] Phil McMinn. 2011. Search-based software testing: Past, present and future. In
2011 IEEE Fourth International Conference on Software Testing, Veri�cation and
Validation Workshops. IEEE, 153–163.

[43] Paulina Stevia Nouwou Mindom, Amin Nikanjam, and Foutse Khomh. 2022. A
comparison of reinforcement learning frameworks for software testing tasks.
arXiv preprint arXiv:2208.12136 (2022).

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[45] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging {AI} applications. In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). 561–577.

[46] Justin Norden, Matthew O’Kelly, and Aman Sinha. 2019. E�cient Black-box
Assessment of Autonomous Vehicle Safety. arXiv e-prints (2019), arXiv–1912.

[47] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. 2017.
Curiosity-driven exploration by self-supervised prediction. In International con-
ference on machine learning. PMLR, 2778–2787.

[48] Peter Puschner and Roman Nossal. 1998. Testing the results of static worst-case
execution-time analysis. In Proceedings 19th IEEE Real-Time Systems Symposium
(Cat. No. 98CB36279). IEEE, 134–143.

[49] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[50] Ingo Rechenberg. 1978. Evolutionsstrategien. In Simulationsmethoden in der
Medizin und Biologie. Springer, 83–114.

[51] Raymond Ros and Nikolaus Hansen. 2008. A Simple Modi�cation in CMA-
ES Achieving Linear Time and Space Complexity. In Proceedings of the 10th
International Conference on Parallel Problem Solving from Nature—PPSN X-Volume
5199. 296–305.

[52] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution Strategies as a Scalable Alternative to Reinforcement Learning. arXiv
e-prints (2017), arXiv–1703.

[53] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347

(2017).
[54] Andrea Stocco, Brian Pulfer, and Paolo Tonella. 2022. Mind the gap! a study on

the transferability of virtual vs physical-world testing of autonomous driving
systems. IEEE Transactions on Software Engineering (2022).

[55] Andrea Stocco, Brian Pulfer, and Paolo Tonella. 2023. Model vs system level test-
ing of autonomous driving systems: a replication and extension study. Empirical
Software Engineering 28, 3 (2023), 73.

[56] Jörg Stork, Martin Zae�erer, Nils Eisler, Patrick Tichelmann, Thomas Bartz-
Beielstein, and AE Eiben. 2021. Behavior-based neuroevolutionary training in
reinforcement learning. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion. 1753–1761.

[57] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[58] Nigel Tracey, John Clark, Keith Mander, and John McDermid. 1998. An auto-
mated framework for structural test-data generation. In Proceedings 13th IEEE
International Conference on Automated Software Engineering (Cat. No. 98EX239).
IEEE, 285–288.

[59] Pascal Traverse, Isabelle Lacaze, and Jean Souyris. 2004. Airbus �y-by-wire: A
total approach to dependability. In Building the Information Society: IFIP 18th
World Computer Congress Topical Sessions 22–27 August 2004 Toulouse, France.
Springer, 191–212.

[60] Joachim Wegener, André Baresel, and Harmen Sthamer. 2001. Evolutionary test
environment for automatic structural testing. Information and software technology
43, 14 (2001), 841–854.

[61] Joachim Wegener and Matthias Grochtmann. 1998. Verifying timing constraints
of real-time systems by means of evolutionary testing. Real-Time Systems 15
(1998), 275–298.

[62] Joachim Wegener and Frank Mueller. 2001. A comparison of static analysis and
evolutionary testing for the veri�cation of timing constraints. Real-time systems
21 (2001), 241–268.

[63] Joachim Wegener, Harmen Sthamer, Bryan F Jones, and David E Eyres. 1997.
Testing real-time systems using genetic algorithms. Software Quality Journal 6
(1997), 127–135.

[64] Junhui Zhang and Jitao Sun. 2019. A game theoretic approach to multi-channel
transmission scheduling for multiple linear systems under DoS attacks. Systems
& Control Letters 133 (2019), 104546.

[65] Tao Zhang, Xiaohui Kuang, Zan Zhou, Hongquan Gao, and Changqiao Xu. 2019.
An intelligent route mutation mechanism against mixed attack based on security
awareness. In 2019 IEEE Global Communications Conference (GLOBECOM). IEEE,
1–6.

[66] Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu.
2021. Automatic web testing using curiosity-driven reinforcement learning. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 423–435.

Received 2024-04-12; accepted 2024-07-03

931

	Abstract
	1 Introduction
	2 Related Work
	3 Avionic System Testing: A Reinforcement Learning Perspective
	3.1 Testing Architecture Overview
	3.2 COM/MON Modeling
	3.3 Reinforcement Learning for Testing COM/MON Disagreement

	4 Method and Implementation
	5 Experiments and Results
	5.1 Policy Optimization
	5.2 Policy Evaluation
	5.3 Comparison of Methods

	6 Diversity of Failure Cases
	6.1 Diversity of Chosen Actions
	6.2 Diversity of Visited States

	7 Lessons Learned
	8 Conclusion
	References

