
HAL Id: hal-04774861
https://hal.science/hal-04774861v1

Submitted on 9 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FeD-TST: Federated Temporal Sparse Transformers for
QoS prediction in Dynamic IoT Networks

Aroosa Hameed, John Violos, Nina Santi, Aris Leivadeas, Nathalie Mitton

To cite this version:
Aroosa Hameed, John Violos, Nina Santi, Aris Leivadeas, Nathalie Mitton. FeD-TST: Federated
Temporal Sparse Transformers for QoS prediction in Dynamic IoT Networks. IEEE Transactions on
Network and Service Management, 2024, �10.1109/TNSM.2024.3493758�. �hal-04774861�

https://hal.science/hal-04774861v1
https://hal.archives-ouvertes.fr

1

FeD-TST: Federated Temporal Sparse Transformers
for QoS prediction in Dynamic IoT Networks
Aroosa Hameed, John Violos, Nina Santi, Aris Leivadeas (Senior Member, IEEE), Nathalie Mitton

Abstract—Internet of Things (IoT) applications generate
tremendous amounts of data streams which are characterized
by varying Quality of Service (QoS) indicators. These indicators
need to be accurately estimated in order to appropriately
schedule the computational and communication resources of the
access and Edge networks. Nonetheless, such types of IoT data
may be produced at irregular time instances, while suffering from
varying network conditions and from the mobility patterns of the
edge devices. At the same time, the multipurpose nature of IoT
networks may facilitate the co-existence of diverse applications,
which however may need to be analyzed separately for confi-
dentiality reasons. Hence, in this paper, we aim to forecast time
series data of key QoS metrics, such as throughput, delay, packet
delivery and loss ratio, under different network configuration
settings. Additionally, to secure data ownership while performing
the QoS forecasting, we propose the FeDerated Temporal Sparse
Transformer (FeD-TST) framework, which allows local clients
to train their local models with their own QoS dataset for
each network configuration; subsequently, an associated global
model can be updated through the aggregation of the local
models. In particular, three IoT applications are deployed in a
real testbed under eight different network configurations with
varying parameters including the mobility of the gateways,
the transmission power and the channel frequency. The results
obtained indicate that our proposed approach is more accurate
than the identified state-of-the-art solutions.

Index Terms—Internet of Things, QoS forecasting, Edge Com-
puting, Federated Learning

I. INTRODUCTION

THE proliferation of Internet of Things (IoT) applications
generated a continuous stream of time-stamped data of

various granularity. These data need to be analyzed in order
to take actions and add the necessary intelligence to the IoT
applications. Edge Computing can invoke this intelligence
much faster by placing communication and computational
resources closer to the source of data [1]. However, besides
the analysis of the content of the data, there is a second type
of analysis, the network analysis, which is equally important
[2]. Through this analysis, the traffic characteristics of the IoT
applications can be learned and the network conditions can
be estimated, in order to better schedule the resources of the
access and edge networks and to take preventive actions in
case of network performance deterioration.

However, this type of network analysis is a hectic and
challenging process for various reasons. First of all, IoT
devices belonging to different applications follow disparate

A. Hameed, J. Violos and A. Leivadeas are with the Depart-
ment of Software and Information Technology Engineering, École de
Technologie Supérieure, University of Quebec, Montreal, Canada. N.
Santi and N. Mitton are with INRIA Lille-Nord, France. E-mails:
{aroosa.hammed, ioannis.violos}.1@ens.etsmtl.ca, aris.leivadeas@etsmtl.ca,
{nina.santi, nathalie.mitton}.inria.fr

data generation modes (i.e., poll-based, periodic, event-driven,
etc.). Secondly, IoT access networks are usually wireless and
lossy, and they operate in unlicensed bands. This makes them
prone to interference and unstable connection. Lastly, the IoT
gateways or the devices themselves can be mobile (i.e., robots,
drones, etc.), which can also affect the performance of the
communication. These complexity levels could lead to a vary-
ing Quality of Service (QoS) behavior for each application.
Hence, it is important to propose an efficient QoS forecasting
model, which will use the time series data of how packets
are generated by the IoT devices (i.e., when packets are
transmitted/received) along with the network characteristics of
the access network (i.e., frequency channel, etc.).

Time series forecasting is the task of analyzing time-
stamped data, to make accurate future predictions that can
be used in strategic decision making. However, time series
forecasting becomes challenging when working with data that
contain variables that change frequently (as in the case of
IoT access networks) and events that cannot be controlled [3]
(as in the case of IoT data generation). In such scenarios,
it is important to utilize appropriate techniques to reduce
uncertainty and enhance the accuracy of the predictions.

However, due to the complexity and continuously shift-
ing patterns of IoT data under different controllable and
uncontrollable factors, it is difficult to apply traditional ML
approaches while dealing with the non-stationary QoS fore-
casting problems. Additionally, the most prominent Machine
Learning (ML) techniques used to predict QoS metrics, such
as [4]–[14], lack the ability to handle both long and short
term dependencies at the same time, as training over longer
sequences of past data degrades the accuracy of the prediction
[15]. Recently, transformer models have been applied for time
series forecasting [16], because of their ability to capture long-
term dependencies using the combination of positional encod-
ing and multi-head self attention mechanisms. Nonetheless,
the transformer model requires time and memory that grows
quadratically with the sequence length, which excludes their
use on long sequences. Consequently, this motivated us to
introduce a sparse transformer model, that entails less com-
plexity for long sequences without sacrificing performance.

Nonetheless, a typical problem of both transformer models
(sparse and traditional) is that they require large amount of
data to be trained. In the IoT context, this could lead to stress-
ing the computing entity that has to gather the time series data
and analyze them. Additionally, to increase local efficiency
and to respect confidentiality requirements, the data streams
of different IoT applications may have the exigency of being
treated separately. Accordingly, these two reasons inspired us
to resort to a more distributed machine learning approach

2

leveraging the Federated Learning (FL) technique. FL allows
multiple clients to train a shared global model, by aggregating
the local updates from decentralized and distributed clients, in
order to improve the global model’s accuracy, while tackling
data scarcity and preserving the privacy of clients data [17]. To
the best of our knowledge, this is the first work that introduces
an adaptation of federated sparse transformers to forecast the
QoS metrics of an IoT communication network.

More specifically, in this work, we deploy three different
IoT applications in a real testbed to predict typical QoS
metrics. For this prediction, a sparse transformer-based ar-
chitecture is introduced that efficiently leverages the time
dependency by investigating both the short and long input
sequence dependencies without any performance degradation.
Finally, we explore the effectiveness of our QoS forecasting
sparse transformer in a FL setting in order to enhance the
accuracy while coping with the data heterogeneity, scarcity
and privacy issues. Accordingly, the main contributions of this
work can be summarized as follows:

• We consider three real time IoT applications that present
different requirements in terms of number of devices
and data generation distribution. The applications are de-
ployed in a real testbed comprised of 100 IoT devices and
3 mobile robots connected over an IEEE 802.15.4 access
network, creating a lossy communication under a random
access network for different mobility, transmission power
and frequency channel configurations (Section IV).

• We design and implement a QoS predictor based on the
Sparse Temporal Transformer approach that models the
temporal dependencies within long input sequences of
data and computes the attention scores using only a subset
of the input positions (Section V-C). Both the univariate
and multivariate predictions of four major QoS metrics
such as Throughput, Packet Delivery Ratio (PDR), Packet
Loss Ratio (PLR) and Latency are provided (Section VI).

• We implement a FL scheme with multiple clients to en-
able the collaborative learning of our sparse transformer
models by leveraging the distributed historical data of
different IoT applications (Section V).

The remainder of the paper is structured as follows. Section
II highlights relevant works on QoS forecasting in an IoT/Edge
environment. Section III introduces the system model and
problem statement. Section IV describes the testbed implemen-
tation and the dataset generation. In Section V, the detailed
design of our proposed solution, named FeD-TST, is provided.
Section VI discusses the attained results, while section VII
summarizes our conclusions and offers some future directions.

II. RELATED WORK

QoS forecasting is a key concern for IoT applications as it
allows an efficient allocation and utilization of edge resources.
By predicting the future demand of IoT applications, edge re-
sources can be dynamically allocated to meet the specific QoS
requirements of each application [18]. Accordingly, traditional
ML approaches used to play a major role in QoS prediction for
their simplicity and interpretability. For instance, the authors
in [4] predicted the delay of IoT applications in a 802.15.4

access network using a Deep Neural Network (DNN) with
forward and backward passes. Similarly, the authors in [5]
proposed the use of several regression approaches to predict
the throughput of six IoT applications in a 802.15.4 network.
Additionally, the authors in [6] predicted the throughput of
audio, video and sensor data of an IoT healthcare application
using an ARIMA/GARCH model. For the throughput predic-
tion, a Convolutional Neural Network (CNN) with a target
vectorization technique was also used in [7].

In terms of both single and multi-step ahead prediction, the
authors in [8] predicted the delay of a simulated dataset of an
IoT environment using a nonlinear autoregressive exogenous
(NARX) Recurent Neural Network (RNN). A different type
of RNN called Echo State Network (ESN) was also employed
in [9], for QoS forecasting at the edge of an IoT network. The
authors also introduced random noise into the internal states
of the network in order to provide more robust forecasts, while
addressing the stability problem of ESNs.

Regarding QoS prediction at the Multi-Access Edge Com-
puting (MEC), Liu et al. [10] provided a multi QoS prediction
framework using contextual factors. Firstly, they introduced
a workload prediction mechanism for future scheduling ser-
vices using Support Vector Machine (SVM) and optimized
it with an Artificial Bee Colony (ABC) algorithm. Secondly,
they performed the multi QoS prediction using Case Based
Reasoning (CBR), which is a problem-solving methodology
that involves using past experiences (cases) to solve new
problems. This work was further extended in [11] providing
the QoS prediction for both real-time and future MEC services,
using CBR and an optimized SVM. In contrast, the authors
in [12] introduced a matrix factorization method that predicts
unknown QoS values using a location based user cluster’s
information and user’s reputation information.

So far, all of the above proposed methods are centralized,
while the data privacy is not considered. A privacy-aware
QoS forecasting model based on Long Short-Term Memory
(LSTM) and attention called Edge-PMAM (Edge QoS fore-
casting with Public Model and Attention Mechanism), was
proposed in [13]. This work consisted of public and private
models for privacy aware and personalized QoS forecasting.
The Edge regions were divided using the Miller projection
with k means clustering and for each region the model
consisted of an attention layer on top of a LSTM to improve
the performance of both models. Furthermore, Zhang et al.
[14] designed a QoS prediction model based on FL, by firstly
identifying the untrustworthy users and then processing the
unreliable data to predict the QoS in a MEC setting. Similarly,
the authors in [19] proposed a Federated Hierarchical Cluster-
ing for Distributed QoS Prediction (FHC-DQP) in which the
user extracted features are utilized for clustering them together.
Following, a location aware neural network is used to forecast
the QoS. Moreover, Li et al. [20] proposed a personalized
QoS prediction using federated tensor factorization, employing
tensors to represent QoS data and creating unique personalized
models for each edge server. A summary of the related works
reviewed in this section is also given in Table I.

However, the above mentioned studies have different limi-
tations that can be summarized as follows:

3

TABLE I
COMPARISON OF RELATED WORKS

Category Ref. Technique Predicted QoS
[4] Deep Neural Network Delay
[5] Regression methods Throughput
[6] ARIMA/GARCH Throughput

Centralized [7] CNN Throughput
Methods [8] NARX-Recurrent Network Delay

[9] Echo State Network RT & Throughput
[10] SVM+ABC+CBR Response Time
[12] Matrix Factorization Response Time

Decentralized [13] LSTM+Attention RT & Throughput
Methods [14] Matrix Factorization RT & Throughput

[19] Hierarchical Clustering RT & Throughput
[20] Tensor Factorization RT & Throughput

• The existing studies based on traditional ML approaches
in [4]- [7] and [19] do not consider the temporal aspect
of the prediction. In contrast, these studies employ static
models that treat each input sample independently, while
not considering the sequential or time-dependent nature
of the data. Furthermore, they only forecast one of the
two most typical QoS metrics i.e., throughput or delay.

• The RNN models used in [8], [9] and [13] can only
handle the short term sequence prediction efficiently.
Specifically, during back-propagation, where gradients
are propagated from the output to the input, the gradients
can diminish or vanish as they are repeatedly multiplied
by weight matrices and cause the vanishing gradient
problem. As a result, the network struggles to update
the weights effectively, particularly for earlier time steps,
limiting its ability to capture long-term dependencies.

• The CBR approach used in [10] and [11] is difficult to
be applied in the context of IoT, where a vast amount
of data is generated from various heterogeneous devices.
This could make building a comprehensive case base
challenging, while the selection of relevant cases from the
case base is difficult in large and heterogeneous datasets.

• The work in [12], [14] and [20] used matrix or tensor
factorization techniques, which heavily depend on the
data sparsity at the current time slots. Furthermore, the
proposed approach in [12] assumed that the user clusters
and user reputations remain fixed over time. However,
network conditions and user behavior can be dynamic,
which may require the model to be updated or retrained.
Moreover, the work in [14] used reputation mechanism
which relies on assigning reputation scores to clients
based on their trustworthiness. However, this process can
be subjective and prone to biases.

Herein, we solve the above mentioned challenges as follows:
(i) Firstly, we provide the detailed forecasting of four QoS
metrics such as throughput, PDR, PLR, and latency by consid-
ering the temporal aspects in both univariate and multivariate
settings; (ii) Secondly, to overcome the vanishing gradient
problem in the training of long QoS data sequences, we are
introducing a temporal transformer with sparse attention. The
particular architecture can efficiently model long sequences
by capturing dependencies between different positions without
suffering from the vanishing gradient problem. Additionally,

the sparse attention mechanism further optimizes the compu-
tational efficiency of our approach, particularly for resource-
constrained IoT environments. (iii) Thirdly, we employ a
FL approach that trains the client models on diverse IoT
devices and sensors data, resulting in a more comprehensive
QoS forecasting. Furthermore, our FL model continuously
updates the model using distributed data from IoT devices
ensuring that the model adapts to changing network conditions
and application dynamics. Finally, the FL aggregates model
updates from multiple clients providing a more objective and
collective perspective on client behavior and trustworthiness.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a set A of IoT applications such that, A =
{a1, a2, ..., ak}. For each application ak ∈ A, there is a
number of n static sensor nodes denoted by the set Sk =
{sk1 , sk2 , ..., skn} that generate data following a data distribution
Dk, with S1 ∪ S2 ∪ ... ∪ Sk = S. For each application, the
dataset is generated for a specific duration T . Each dataset can
be represented by a sequence of data points xk

n,t that describe
the data generated by sensor n, belonging to application k at
time step t ∈ T . To lighten the notation, the k superscript that
denotes the application which a sensor node n is associated
with will be dropped in the rest of the paper.

Similarly, we can represent the set of access points
(APs), that form the edge computing environment, as a
set of mobile robots R = {r1, r2, ..., rm}. Each mo-
bile robot rm ∈ R has a set of coordinates Gm =
{(xm,1, ym,1), (xm,2, ym,2), ..., (xm,T , ym,T)} that represent
its movement trajectory over a period of time.

The sensors belonging to an application ak ∈ A, send their
data to a unique robot rm for all time steps T , which is
represented as a binary function z : A × R × T → {0, 1}.
The function z(ak, rm, t) = 1 if application ak sends data to
robot rm at timestamp t, and z(ak, rm, t) = 0 otherwise.

B. Modeling of Network Uncertainties

One of the contributions of this work, is to find an appro-
priate prediction model that will be able to accurately estimate
major QoS metrics, under dynamic network conditions. Thus,
four different network dynamics/uncertainties are considered:

1) Interference: At each time slot that a pair of sensor
nodes sn, sn′ ∈ S utilizes the same frequency channel,
an interference level In,n′ = f(Pn, dn,n′ , ϵ) is created,
where Pn represents the transmission power of sensor
node sn, dn,n′ is the distance between sensors sn and
sn′ and ϵ represents the characteristics of the wireless
channel. In this work, we have tested two channel allo-
cation techniques: i) all applications can use the same
frequency channel (inter and intra-application interfer-
ence) or ii) each application is associated with a different
frequency channel (intra-application interference).

2) Transmission power: Each sensor sn ∈ S can be set
with a different transmission power Pn to find a balance
between transmission range and interference. Herein, the
transmission power can be either 0 or 12dBm.

4

3) Mobility: The robots acting as the mobile access points
can also create another level of communication uncer-
tainty. To evaluate the impact of mobility in the QoS
prediction, two mobility settings are available: i) static
robots (i.e. Gm = ∅) and ii) mobile robots (Gm ̸= ∅).

4) Heterogeneity of data: Finally, the QoS estimation can
be affected by the way the data are generated (i.e.,
event-based, periodic, or hybrid). Accordingly, during
the generation of the datasets all the above three data
generation distribution have been used.

Based on the above described complexities, there are two
interference models I , two power models P and two mobility
patters G. Hence, κ network configurations are examined, with
|κ| = |I| × |P | × |G| = 2× 2× 2 = 8. For all these network
configurations, the applications follow a heterogeneous data
generation with the three distributions mentioned above.

C. Problem Formulation of QoS Forecasting
In our proposed cross-device FL setting, the set C =

{c1, c2, ..., cl} represents the number of clients, which are
connected to a global server GS . Furthermore, the set Qκ =
{qt1, qt2, qt3, qt4}T represents the QoS metrics for all network
configurations κ, where qt1 is the throughput, qt2 is the PDR,
qt3 is the PLR and qt4 is the latency metric at timestamp t for
the different IoT applications. Then each client cl ∈ C has its
own local QoS dataset, which can be represented as Dl ⊆ Qκ.

Specifically, Dl is a multivariate QoS dataset, such as Dl =
{(q11 , q12 , q13 , q14), (q21 , q22 , q23 , q24), ..., (qti , qti , qti , qti)} where each
tuple (qt1, q

t
2, q

t
3, q

t
4) represents a single observation in the

dataset at time t. For a univariate setting (i.e., only throughput),
the QoS dataset is represented as Dl = {q11 , q21 , ..., qt1} and
similarly for the other metrics.

For each QoS dataset (either univariate or multivariate time
series), a fixed length input sequence of window size τ such
that τ ∈ N, is used to predict the next values. To generalize, for
any time series X the input sequence with a window size τ can
be represented as {(xt+i1 , xt+i2 , ..., xt+iτ) | 1 ≤ i1 ≤ T−τ+
1, 1 ≤ i2 ≤ T−τ+2, ..., 1 ≤ iτ ≤ T−τ+τ}. Given this input
sequence, we aim at performing a multi-step forecasting of ∆
QoS values in the future, i.e., X̃ = {x̃t

1, x̃
t+1
2 , ..., x̃T−1

∆−1, x̃
T
∆}.

If ∆ = 1 it becomes a one-step ahead problem. Hence, the
forecasting is performed using a learning model M, such as
M : X → X̃ which is parameterized by some weights W .
Thus, the goal is to minimize a loss function, between the
real X and predicted X̃ values. Hence, in the FL context,
each client cl will iteratively use its local training dataset Dl

and training model Ml in order to minimize the loss function,
such as:

argmin
Wk

l

Lk
l (Mk

l , D
k
l ,Wk

l) (1)

where Lk
l (.) represents the loss function at round/iteration k,

with K = {1, 2, 3, ..., k|k ∈ N}, with the Mk
l , Dk

l , and Wk
l

as its parameters. Each local weight Wk
l is then transmitted to

the server for updating the server’s global weight parameter
W∗

k at iteration k, which is called the global update. Then,
the learning problem tries to find an optimal model parameter
vector W∗

k and the goal is to minimize the global loss function
L∗ over the number of iterations k using a given dataset.

TABLE II
IOT APPLICATIONS PARAMETERS FOR DATA GENERATION

Application #Nodes Generation type Lambda Period(s)
VoIP 50 Periodic 0 0.0635
Surveillance 25 Exponential 196.74 1
Emergency Response 25 Hybrid 0.0333 30

IV. USE CASE AND DATASET GENERATION

In order to create the QoS datasets, we implemented an
IoT/Edge Computing use case with 100 static transmitting
sensor nodes that offload their data. Each sensor node be-
longs to one of the three available IoT applications: i) VoIP,
that emulates an automatic help desk virtual assistant, ii)
Surveillance, which includes a set of cameras for security,
and iii) Emergency Response, which monitors critical areas
of a building. The three applications produce data according
to different distribution modes as shown in Table Table II.
Specifically, the periodic mode generates data every ith time
instance, the event-based mode follows an exponential law
with an occurrence rate of λ, and the hybrid mode which is a
combination of both modes. Furthermore, each application is
associated with a unique mobile robot that receives this data
while moving according to a configured path.

The particular use case was implemented in the FIT IoT-
LAB [21], an open testbed that allows large-scale experiments
and provides openly programmable IoT nodes located on
several sites. Certainly, the generation of datasets through a
testbed may have limitations in capturing unforeseen events
of real-life scenarios. Additionally, there are not currently
available similar datasets from other testbeds or real IoT
network locations, to allow us to make direct comparisons.
Nevertheless, we selected the FIT IoT-LAB due to its provision
of diverse deployment settings for dedicated IoT sensors. This
enables us to produce a large volume of IoT data within a
controlled environment, essential for machine learning train-
ing. Finally, as will be explained below, the selection of the
access network, the IoT devices, and the mobile robots create
a close to reality experimentation setting.

In particular, we used the IoT-LAB M3 as sensor nodes
because they offer a diverse range of sensors and actuators to
simulate various IoT scenarios. Additionally, their low-power
consumption aligns with the energy constraints common in
IoT devices, providing an accurate representation of real-world
conditions. Additionally, we employed Turtlebots as mobile
access points due to their versatility and ease of integration
into the testbed, since they offer the necessary mobility cus-
tomization for our experiment. All nodes communicate with
each other through the 802.15.4 wireless protocol, which is
widely used in IoT applications. This protocol provides low-
power, short-range wireless communication capabilities, mak-
ing it well-suited for energy-efficient and resource-constrained
devices in IoT deployments. The locations of each sensor node
in the experimental setup are shown in Fig. 1.

It is to be noted that other access protocols could be
used, either IoT-specific, such as LoRaWAN, NB-IoT, etc.
or more traditional ones such as Wi-Fi, cellular, etc. The
choice of 802.15.4 was made due to its acceptance as the de

5

Fig. 1. Sensor nodes location deployed in FIT IoT-LAB

TABLE III
NETWORK CONFIGURATIONS WITH DIFFERENT COMPLEXITIES

Configurations Mobility tx power Channel Channel value
1 Mobile 0dBm Different {11,16,21}
2 Mobile 12dBm Different {11,16,21}
3 Mobile 0dBm Same {11}
4 Mobile 12dBm Same {11}
5 Static 0dBm Different {11,16,21}
6 Static 12dBm Different {11,16,21}
7 Static 0dBm Same {11}
8 Static 12dBm Same {11}

facto short to medium range protocol for IoT applications,
especially for those considered in this paper. In different
settings necessitating longer transmission ranges LoRaWAN
could be considered as a viable alternative.

As stipulated by the selected access protocol (i.e., 802.15.4),
the payload size was set to 127B for all applications in all
configurations. For the latter, and as explained in Section III-B
there are eight network configurations, as shown in Table III.

We collected all the data transmitted by the sensor nodes
and the data received by the robots. Specifically, at the
sending side we collected the timestamp at which a message
is transmitted; the name of the sensor node that transmits the
message; the id of the transmitted message; the transmission
power; the frequency channel; the receiving robot; whether the
message was transmitted successfully or not; and the x and y
coordinates of the robot. At the receiving side, the following
features were collected: timestamp; the name of the receiving
robot; the message id; the name of the transmitting sensor; the
delay; the channel; and the robot coordinates.

Following, a feature engineer process was followed that
resulted into the final QoS time series datasets used for our
experimentation. Specifically, the features engineered using the
initial raw data are: timestamp; robot name; total transmitted
messages at specific timestamp; total received messages at
the specific timestamp; the time when the first message is
transmitted; the time when the last message is transmitted;
PLR; Delay; PDR; and Throughput.

V. PROPOSED MODEL

A. Overview of FeD-TST

To forecast the QoS metrics of varying network uncer-
tainties, we present FeD-TST, which combines the Federated
Learning with Temporal Sparse Transformer (TST). FeD-
TST is a secure distributed system for both univariate and
multivariate Time Series Forecasting (TSF) as shown in Fig.2.

In this framework, there is a central server and multiple
client nodes. The clients will first train their models locally
based on the TST and then share their model weights with
the other clients via the central server. For each connected
client and for each network configuration, the hidden layer
weights and parameters of the client model (i.e., TST) are
represented as ω. After the uploading of this information,
the global aggregation is performed at the FeD-TST server
and the global model parameters are sent back to each client.
Following, each client loads these global weights to its TST
model’s hidden layers.

The TST model of each local client is illustrated in Fig. 3.
In the proposed TST, we first generate the real time IoT data
of the three different applications and eight different network
configurations as discussed in Section IV. Following, these
datasets are pre-processed using normalization, down sampling
and cleaning procedures and are prepared as univariate or
multivariate inputs. The third step is to divide the dataset into
training, validation and testing. The training involves several
components, such as the encoder module (Fig. 3a), the decoder
module (Fig. 3b), the multihead sparse attention module
(Fig. 3c) and a sparse attention module (Fig. 3d). Both the
encoder and decoder modules consist of multiple identical sub-
layers that are stacked to each other. Finally, uni/multivariate
forecasts are produced along with the evaluation based on the
test dataset. In the rest of this section, we provide the details
of each of the component of our proposed model.

B. Sparse Scaled Dot-Product Attention

The traditional transformer model utilizes the self-attention
which is a form of a global attention to model the long-
term dependencies [22]. However, global attention attends all
the positions in the input QoS sequence leading to attend
irrelevant or noisy information that might not be beneficial for
the QoS forecasting task. In this work, the sparse scaled dot-
product attention is employed to overcome this shortcoming by
introducing sparsity, which allows each position to attend only
to a subset of positions within a certain input QoS sequence.
In this way, it reduces the computational complexity from
quadratic to linear with respect to the QoS sequence length and

6

Fig. 2. Federated learning driven IoT QoS Forecasting System

Fig. 3. Proposed Temporal Sparse Transformer (TST) Model for IoT QoS Forecasting

enables more efficient memory usage. This makes our model
more suitable for QoS forecasting of real time IoT applications
compared to traditional attentions.

As shown in Fig. 3d, a sparse scaled dot-product attention
based on top-p selection is used to reserve the most important
QoS segments. The attention mechanism consists of three
main parameters named query, key and value, which consist
the input of the sparse attention. Specifically, the query,
Q ∈ Rm×dq is a query vector of a given input sequence
of a certain QoS metric at a specific time step to retrieve
information from the key-value pairs. Each query vector is a
transformed version of the corresponding time step in the QoS

input sequence and is computed using a linear transformation.
The key, K ∈ Rn×dk is a vector for each time step in the
QoS sequence to determine the relevance of each element
in the sequence with respect to the query. Finally, the value,
V ∈ Rn×dv is a vector containing information associated with
each time step in the QoS sequence to compute the output of
attention mechanism. The n denotes the length of the key-
value pairs, m is the length of the query vector, d is the
dimension of the corresponding QoS vector, and dq = dk.
To be more specific, Q, K and V are the linear mappings of
the input QoS sequence, such as {x1

1, x
2
2, x

3
3, ..., x

t
i}, so that,

Q = WQx
t
i, K = WKx

t
i, V = WVx

t
i, where WQ, WK and WV

7

denote the learned weight matrices. To generate the attention
scores, F , the dot product of Q and K is performed which is
then divided by

√
dk as follows:

F = QKT /
√
dk (2)

The attention scores computed using the above equation rep-
resent the relation between different QoS values e.g., x1

1 and
x2
2 in the input sequence. For example, the larger the attention

score values are, the higher the relevance of the QoS values
will be at a specific time step. After computing the attention
scores, the sparse attention performs a masking operation M(.)
on the scores to select the top-p contributing values as follows:

M(F , p)ij =

{
Fij ifFij ≥ θi

−∞ otherwise
(3)

The θi represents the pth largest element of each row i of the
score matrix F . After obtaining the highest attention values
through the top-p selection, the softmax operation is applied
to normalize the scores as:

SA scores = SoftMax(M(F , p)) (4)

where SA scores denotes the normalized sparse attention
values and M(.) is assigned a negative infinity value if the
attention scores are less than the threshold value.
C. Temporal Sparse Transformer

1) Input and output of the TST Model: The QoS values
are both the input and output of the TST, since past QoS
values (input) will be used to predict the future ones (output).
Additionally, some contextual features are added only to the
input to help with the prediction of the future QoS values.
Specifically, during the training of the TST model, the input
to the encoder module consists of n contextual features, such
as {F1, F2, ..Fn}, along with the QoS values, both forming a
set of XT input samples. Similarly, the input samples for the
decoder module consists of the same contextual features with
however, the actual (target) QoS values for a defined forecast
horizon. In contrast, the output of the decoder consists of the
predicted QoS values.

If it is a univariate forecasting setting, then the input sample
consists of only one contextual feature i.e., timestamp and a
forecasting feature (i.e., throughput), thus, n = 2. In case of
multivariate forecasting, the QoS metric (i.e., throughput) will
be forecasted based on the previous time steps of all contextual
features, namely the timestamp (F1), total transmitted mes-
sages (F2), total received messages (F3), time first message
transmitted (F4), time last message transmitted (F5), PDR
(F6), PLR (F7), latency (F8) and throughput (F9) itself, and
thus, n > 2. However, the final forecasting output generated by
the TST model will be the throughput values for the specific
forecasting horizon. The same approach will be applied for
the other three QoS metrics, such as, PDR, PLR and latency.

The contextual features along with the QoS values form
the time series vectors, and they need to be converted into
a suitable format to be used by the TST model. For this, the
sliding window technique is used where the time series vectors
are divided into smaller windows of fixed length, also called
input samples, and each window is passed as an input to the

TST model. Related to these input samples/windows, there are
two important parameters i) the rolling window size, which is
the length of the sliding window that determines the number
of time series data values in each window and ii) the forecast
horizon, which is the number of future steps to be predicted.

2) QoS Temporal Positional Embedding: The TST model
encodes the temporal position information to extract the long-
term temporal dependencies from the time series QoS input se-
quences. The traditional attention mechanism can also capture
the relations among the QoS input sequence [23], however,
it neglects the ordering information in such time-series data.
Therefore, in order to make use of the order of the input
sequence, there is a positional encoding added in the TST
model to add the location information to each input sequence
value. The positional encoding can be described as follows:

PEpos,2i = sin
(pos

α2i/d

)
(5)

PEpos,2i+1 = cos
(pos

α2i/d

)
(6)

where pos is the positional index of the QoS value in the input
sequence, i is the length of the QoS input sequence, α is a
user defined scalar and d is the dimensionality of the encoded
position in the input sequence.

3) Long-Term Temporal QoS Extraction: To solve the long-
term QoS forecasting problem, we propose a TST network to
extract the long-term temporal relations from the entire QoS
input sequence. The TST model consists of ρ number of QoS
TST encoders and the corresponding ρ number of QoS TST
decoders, and its architecture is shown in Fig. 3a and Fig.
3b. Each QoS forecasting encoder consists of the multi-head
attention, fully-connected feed forward network, dropout [24]
and layer normalisation [25] components. To express the ith

TST encoder, the abstract form is given as follows:

E(i) = TST (E(i−1)) = LN (FFN (Ẽ(i)) + Ẽ(i)) (7)

where E(i) is the output of the ith TST encoder, LN (.) is the
operation of normalization layer, FFN (.) represents the fully
connected feed-forward network and it can be expanded into:

FFN (Ẽ(i)) = max
(
0, Ẽ(i)W 1 + b1

)
W 2 + b2 (8)

where FFN (.) contains two fully-connected layers with
dropout and a ReLU activation with W 1, b1, W 2 and b2 as its
corresponding learnable parameters. The FFN (.) thus gives
the nonlinear transformation of its input. Additionally, Ẽ(i)

denotes the intermediate feature of the QoS encoder and can
be represented as follows:

Ẽ(i) = LN (MHSA(E(i−1)) + E(i−1)) (9)

where MHSA(.) is the multi-head sparse attention, which
uses m different linear transformations and analyzes the pre-
vious QoS encoder layer features i.e., E(i−1). The multi-head
sparse attention process can be written as:

MHSA(E(i−1)) = Concat (h0, h1, h2, ..., hm)W 0 (10)

8

where Concat is the concatenation operation performed on
all attention heads, W 0 is the linear transformation of the
concatenated output, and hm is the mth attention head:

hm = SA
(
QWQ

m ,KWK
m , V WV

m

)
(11)

where SA is the sparse attention as discussed in section V-A
and is computed using Equations 2-4.

The QoS decoder of the TST has the same structure as the
QoS encoder, however, two additional operations are added.
Firstly, a subsequent mask to the first attention block is
added, which ensures that the forecasting of the position i
in the input sequence can only rely on the known outputs
of positions which are less than i, thus avoiding the auto-
regressive behavior. This addition is given as:

D̃(i) = LN (˜MHSA(D(i−1)) +D(i−1)) (12)

where ˜MHSA is the masked multi-head attention for the
decoder and D(i−1) is the output from the previous decoder.

Secondly, an attention block is added to the decoder that
performs the attention operation on the output of the encoder
block. Based on these discussed additions, the QoS decoder
is given as:

D(i) = LN (MHSA(D̃(i), E(i)) + D̃(i))

D̂(i) = LN (FFN(D(i)) +D(i))
(13)

where E(i) is the output from the ith encoder and D̂(i) is the
output from the ith decoder.

D. Proposed FeD-TST

The key idea of FeD-TST scheme is that the clients co-train
the TST model presented above, while keeping the QoS data
locally for each network configuration. To be more specific,
FeD-TST, as shown in Fig. 2 consists of the following steps:

1) Initialization: The secure client and server connection
is first established, along with the server’s selection of a
subset of clients from all connected clients to participate in the
training for the following round/iteration. After all clients are
enumerated, the model parameters are initialized and broadcast
to each client. These parameters include the number of encoder
and decoder blocks ρ, the number of communication rounds
K, the number of local epochs E , the learning rate η, the loss
function L, the initial weight w0, which is the starting point
of the global model’s parameters before the training process
begins, and the time step size s.

2) Training of the local TST models on Clients: After the
initialization step, each local client trains a TST model using
their respective local QoS data for the kth round, and the
training results will be used for the next k + 1 round. The
same process is repeated at each round.

3) Uploading of the local TST model weights: When the
training of each client’s local TST model is completed, each
client extracts the respective TST weights and then uploads
them to the server for the next round k + 1.

4) Aggregation of the model weights: According to the
received TST model weights from each client, the server then
performs the aggregation mechanism, called Federated Aver-
aging (FeDAvg), which aggregates the local model updates
from the participating clients and computes a global model
update. FeDAvg actually combines stochastic gradient descent
(SGD) of each client (local gradients) with a server that per-
forms global model averaging (aggregation). The aggregated
results are then broadcast to each client. This iterative process
is repeated until the loss function converges or a maximum
number of rounds is reached. The algorithmic implementation
of all the components presented in this Section along with
their complexity analysis is provided in the Appendix A.

VI. EXPERIMENTAL EVALUATION

In this section, the evaluation of our proposed FeD-TST
framework is provided. First, a brief overview of the network
configurations is provided and their respective datasets. Fol-
lowing, the baseline comparative methods and the performance
metrics are outlined . Lastly, the results of all experiments are
provided along with their the comparative analysis.

A. Model Implementation and Frameworks

1) Network Configurations and Datasets: Under the time
series forecasting settings, we forecast the four following QoS
metrics as: (i) Throughput; (ii) PDR; (iii) PLR and (iv) Latency
in both univariate and multivariate settings. The window size
for both settings is set to be 30. For the network configurations
with mobility as a parameter, the duration of the corresponding
QoS datasets is 6 hours stipulated by the battery duration of
the robots. In contrast, for static access points, the duration
of the respective QoS datasets is 10 hours. Finally, it is noted
that we use 60% of the data for training, 20% of the data for
validation and the remaining 20% for testing purposes.

2) Baseline Methods: For comparison purposes, we eval-
uate our proposed FeD-TST model against the most popular
centralized and decentralized learning models that are appro-
priate for time series forecasting. Regarding the centralized
baselines we have used the i) LSTM, ii) Bidirectional LSTM
(Bi-LSTM), iii) Attention + BiLSTM, iv) Sequence to Se-
quence (Seq2Seq), v) Seq2Seq + Attention [26], vi) Temporal
Convolutional Networks (TCN) + BiLSTM [27], and vii)
Time2Vec + Transformer [28]. Finally, for the decentralized
comparison we have employed the i) FL + LSTM, and the ii)
FL + Multi-head Attention (MHA), which is a temporal trans-
former model [16] adapted to the FL setting. The description
of all these approaches along with the hyperparameters used
are provided in the Appendix B.

3) Performance Metrics: In order to evaluate the perfor-
mance of each method, three widely used metrics have been
selected: Mean Absolute Error (MAE), Mean Square Error
(MSE), and Root Mean Square Error (RMSE). Additionally,
to evaluate the effectiveness of the proposed approach, we
use the communication cost model as proposed in [29]. The
particular cost is modeled as 2 · K · N ·Ω ·Msize where K is
the total number of communication rounds, |LC| is the total
number of client nodes, Ω is the fraction of client nodes to be

9

Fig. 4. Network configuration impact on QoS forecasting

selected, Msize is the size of the ML model. The latter is equal
to the total number of trainable parameters PM multiplied by
the size of the parameters in bits Υ i.e., (4, 8, 16, 32 bits).

4) Implementation Details: We implemented the proposed
FeD-TST model and all baseline federated approaches using
the Flower Federated Framework [30] with 512 local clients
for four QoS datasets under eight network configurations,
respectively. For each of the QoS forecasting, we trained every
algorithm for 30 communication rounds. All the centralized
and decentralized models were executed in a Python envi-
ronment with open-source TensorFlow libraries. All models
were trained on high-performance Linux clusters offered by
Compute Canada namely, Cedar and Beluga. For the Beluga
cluster, we trained, validated and tested the models on a
NVIDIA V100 with 16GB GPU and for the Cedar cluster,
we utilized the NVIDIA P100 with 16GB GPU respectively.

5) Results: For both of the time series forecasting settings,
we present the accuracy efficiency of all four different QoS
metrics, while considering the eight different network config-
urations. In particular, the results will be assessed with respect
to the impact of network configurations, the communication
cost, and the forecasting efficiency of the FL model.

B. Impact of Network Configurations

To evaluate the impact of the network conditions on the
prediction accuracy, we first plot the MAE when using our
proposed FeD-TST solution under all eight network config-
urations. As shown in Fig. 4, the forecasting error for the
throughput is the least for the fifth network configuration
(i.e., Static diff channel 0dbm) followed by network configu-
ration 8 (i.e., Static same channel 0dbm). This is because the
robot access points remained stationary, which reduced the
variability in the network conditions leading to more stable
transmissions. Thus, the deep learning model can learn more
easily such scenarios.

Next for the PDR and PLR, the FeD-TST provides bet-
ter forecasting for the first network configuration (i.e., Mo-
bile diff channel 0dbm). The reason is that PDR and PLR
can be severely affected by the level of the interference. Thus,
when using different frequency channels, the likelihood of
interference between the applications is reduced, leading to
more reliable transmissions and improved forecast accuracy.

Fig. 5. Communication Cost

In contrast, when the interference becomes more important the
PDR and PLR change more significantly, affecting the overall
accuracy of the forecast. The same observation is drawn when
the transmission power increases, which also leads to higher
interference and the forecasting accuracy decreases for such
configurations.

Lastly for the latency, FeD-TST achieves the best fore-
casting for the third network configuration (i.e., Mo-
bile same channel 0dbm). In the particular configuration, we
expect to see an increased level of interference, which leads
to more retransmissions and thus longer delays. However, the
proposed model managed to learn such complex behaviors
providing good forecasting accuracy.

C. Communication Cost

In terms of communications cost, Fig. 5 provides the
comparison of the proposed FeD-TST with the rest of the
benchmarks, when varying the fraction of the dataset used by
the training process, from 10 to 100%. It should be noted, that
the particular Figure illustrates the communication of only one
network configuration (i.e., Mobile same channel 0dbm), due
to space limitations. Nonetheless, similar results were obtained
for the rest of the configurations as well.

The key observation of the communication cost, is that
for all federated learning based methods, such as FL+LSTM,
FL+MHA and our proposed FeD-TST, the cost remains con-
stant for all different fractions of the dataset used for the
training. This is attributed to the fact that there is no actual
datasets transferred between the clients and server. Instead,
only the updates of the global and local agents are exchanged,
resulting in a consistent and constant communication cost.
However, the communication costs of the centralized models
increase with the fraction of the dataset used in the training
process. Among the centralized models, TCN+BiLSTM shows
the highest communication cost, as it has the highest number
of trainable parameters compared to the other models. Finally,
the proposed FeD-TST gives the least communication cost
of 8.2056E + 08, compared to the other FL approaches, as
FL+MHA yields a communication cost of 9.43992E+08 and
FL+LSTM of 9.81624E + 08.

10

TABLE IV
UNIVARIATE FORECASTING RESULTS FOR THROUGHPUT, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Configurations 1 2 3 4 5 6 7 8
Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM
MSE 0.002180008 0.058064374 0.017221582 0.019661525 0.007008886 0.000043146 0.028044095 0.007652375
MAE 0.031486913 0.199266738 0.082996892 0.073941417 0.075111779 0.001767353 0.130296992 0.053803794

RMSE 0.046690557 0.240965503 0.131231025 0.140219554 0.08371909 0.006568581 0.167463712 0.087477852

BiLSTM
MSE 0.002149963 0.058196797 0.017138673 0.008286225 0.006855734 0.000059553 0.027234415 0.007399871
MAE 0.03109576 0.201700344 0.08100321 0.043326636 0.073171018 0.001759178 0.12784306 0.051513432

RMSE 0.046367696 0.241240122 0.130914755 0.091028704 0.08279936 0.007717055 0.165028528 0.086022505

ATT+BiLSTM
MSE 0.002113405 0.06045324 0.016387171 0.008071625 0.007019641 0.000026737 0.028635743 0.007840934
MAE 0.03286028 0.203475403 0.078651295 0.043766762 0.074738003 0.001766987 0.132077915 0.055272665

RMSE 0.045971786 0.245872406 0.128012387 0.089842222 0.083783299 0.005170763 0.169220988 0.088549048

Seq2Seq
MSE 0.002172816 0.058766967 0.017565562 0.007910387 0.006828733 0.000036975 0.028332603 0.007925499
MAE 0.034427306 0.202370203 0.082538805 0.045117619 0.074294335 0.001800946 0.131756 0.053090038

RMSE 0.046613471 0.24241899 0.132535134 0.088940356 0.082636146 0.006080671 0.168322913 0.089025274

Seq2Seq+ATT
MSE 0.002108766 0.057875243 0.017857116 0.007336685 0.007259331 0.000011513 0.027428818 0.007885314
MAE 0.031982373 0.201074426 0.094457217 0.042848431 0.072002338 0.00172142 0.125179741 0.054124594

RMSE 0.045921299 0.24057274 0.13363052 0.085654454 0.085201709 0.003393085 0.165616478 0.08879929

TCN+BiLSTM
MSE 0.00217524 0.05769644 0.016973583 0.007007257 0.007166868 0.000020477 0.02818864 0.008333666
MAE 0.035093832 0.198256349 0.081892429 0.045072616 0.076047148 0.001763019 0.133661025 0.062342796

RMSE 0.046639469 0.240200832 0.130282705 0.083709361 0.084657358 0.004525111 0.16789473 0.091288916

T2V+Transformer
MSE 0.002094785 0.059257085 0.016875335 0.006954281 0.006820699 0.000048149 0.03231086 0.008300878
MAE 0.032487425 0.204504672 0.080115092 0.0402296 0.074963033 0.001738727 0.139963191 0.053888586

RMSE 0.045768823 0.243427782 0.129905099 0.083392333 0.082587524 0.006938978 0.179752218 0.091109152

FL+LSTM
MSE 0.026109913 0.198509365 0.019059159 0.009396685 0.007740845 0.000105776 0.036035966 0.008500859
MAE 0.121700913 0.245523065 0.083601423 0.048500054 0.073999718 0.004875254 0.153384194 0.05503843

RMSE 0.161543608 0.444212198 0.13799575 0.096909925 0.087978683 0.010284722 0.189783856 0.092178144

FL+MHA
MSE 0.002752693 0.093995392 0.029476583 0.013653285 0.015197324 0.000150662 0.063143753 0.035793204
MAE 0.038101345 0.248628452 0.130680636 0.061146908 0.101738915 0.007402018 0.198087156 0.147313178

RMSE 0.052466109 0.306586683 0.171687454 0.116847269 0.123277426 0.01227443 0.251284212 0.189190924

FeD-TST
MSE 3.67E-05 0.007006747 0.000226781 0.006597863 3.48511E-05 0.001039662 0.003347858 0.001060865
MAE 0.004760905 0.079123348 0.001064445 0.040155964 0.000532004 0.027471544 0.001423224 0.000721199

RMSE 0.006055055 0.083706312 0.001505924 0.081227229 0.005090348 0.032243785 0.018297152 0.001002998

D. Univariate Results

In Table IV, the three error metrics i.e., MSE, MAE and
RMSE, when forecasting the throughput for all methods and
network configurations, are presented. From these results, the
following observations can be drawn. Firstly, the proposed
FeD-TST model outperforms the other two distributed solu-
tions (i.e., FL+LSTM and FL+MSA) in almost all network
configurations. There are two main reasons for this efficiency:
i) FL+LSTM can suffer from the vanishing gradients when
processing long sequences, which can make it difficult to
learn long-term dependencies. However, FeD-TST can avoid
this problem by using the attention module, which is used to
capture the dependencies between different throughput values
in the input sequence. This allows the FeD-TST model to
learn which parts of the input sequence are more relevant
for the throughput forecasting at each time step. By propa-
gating this information across the entire sequence using the
attention module, FeD-TST avoids the problem of vanishing
gradients. Furthermore, the attention module in FeD-TST is
more effective than the gating mechanism in FL+LSTM in
terms of capturing long-term dependencies and patterns in
the data, especially for longer throughput input sequences.
Moreover, FeD-TST uses the positional encoding mechanism
which encodes the position of each throughput value in the
input sequence. This empowers the FeD-TST to differentiate
between various throughput observations in the sequence,
even if they have the same value and better handle the
longer throughput sequences; ii) FL+MSA uses a self-attention
module, which computes the importance of each throughput

value in the input sequence based on its relationship with
all the other throughput values in the sequence. This means
that the self-attention considers all throughput values in the
sequence when computing the attention weights. Thus, this
can lead the self-attention to be affected by noisy or irrelevant
throughput values in the sequence, even if they are not relevant
for the forecasting. In contrast, the sparse attention in FeD-
TST only considers a subset of the throughput values in the
input sequence when computing the attention weights. This
subset of values is typically chosen based on their relevance
for the forecasting, which means that noisy or irrelevant QoS
values in the sequence may be ignored by the model making
FeD-TST more robust than FL-MSA.

The second observation from Table IV is that FeD-TST
also outperforms all centralized solutions and for almost all
network configurations. The reason is that the FeD-TST en-
ables the model to learn from multiple clients with potentially
different data distributions. This helps our model to better
adapt to new data and be more robust to changes in the data
distribution over time. Furthermore, FeD-TST can leverage the
collective knowledge of multiple clients at the same time, in
order to improve its performance on throughput forecasting.

The final observation, is that for network configuration 6, the
Seq2Seq+ATT model performed slightly better than FeD-TST.
This can attributed to the fact that the dataset for configuration
6 may not have been diverse enough in terms of the throughput
observations. This can adversely impact the learning, since FL
models are trained on data that are distributed across multiple
clients, which can help improve generalization. However, if

11

TABLE V
UNIVARIATE FORECASTING RESULTS FOR PDR, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Configurations 1 2 3 4 5 6 7 8
Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM
MSE 0.018257154 0.037851512 0.000608792 0.001952939 0.001112278 0.01857656 0.076177719 0.001061075
MAE 0.080767698 0.156077519 0.001516378 0.003028177 0.001499788 0.080090836 0.245758619 0.003359817

RMSE 0.135119038 0.194554657 0.024673704 0.044192069 0.033350831 0.136295855 0.276003114 0.032574153

BiLSTM
MSE 0.018449913 0.025352443 0.001411486 0.001915232 0.000599673 0.019455916 0.074454278 0.002206909
MAE 0.080295092 0.12848674 0.001740071 0.003789981 0.001141312 0.07880042 0.241632533 0.008116467

RMSE 0.135830455 0.159224505 0.037569752 0.04376336 0.024488231 0.139484464 0.272863113 0.046977751

ATT+BiLSTM
MSE 0.018410313 0.024726183 0.00088561 0.001182298 0.000512866 0.018651737 0.076006 0.000577173
MAE 0.080084426 0.125214189 0.001705488 0.003541321 0.001272777 0.079920708 0.245711249 0.002313198

RMSE 0.135684608 0.157245613 0.029759198 0.03438456 0.02264655 0.136571364 0.275691856 0.024024419

Seq2Seq
MSE 0.018686683 0.02546426 0.000627586 0.002250746 0.000353211 0.019352935 0.074024439 0.000891181
MAE 0.084082524 0.128587491 0.001882692 0.004034477 0.002321665 0.080620867 0.247234381 0.002561207

RMSE 0.136699243 0.159575247 0.025051661 0.047442024 0.018793907 0.139114827 0.272074326 0.029852654

Seq2Seq+ATT
MSE 0.017895584 0.02488008 0.000994254 0.002043545 0.000256814 0.018469424 0.072522882 0.000677193
MAE 0.079086621 0.125329378 0.001816939 0.004525415 0.001136588 0.078296446 0.235733602 0.002153011

RMSE 0.133774376 0.157734206 0.031531789 0.045205586 0.016025408 0.13590226 0.269300728 0.026022931

TCN+BiLSTM
MSE 0.018551141 0.024655612 0.000600939 0.001797786 0.000350983 0.019236453 0.074489966 0.001268126
MAE 0.082181067 0.125796429 0.00392316 0.003801887 0.001281348 0.081557265 0.2375388 0.007112032

RMSE 0.136202572 0.157021055 0.024514057 0.04240031 0.01873454 0.13869554 0.272928499 0.035610752

T2V+Transformer
MSE 0.018813977 0.02562528 0.000637369 0.001975316 0.016922135 0.018765976 0.074159335 0.001057309
MAE 0.086577267 0.130660705 0.001173224 0.005953995 0.055162054 0.079134315 0.243209761 0.006711487

RMSE 0.137164053 0.16007898 0.025246166 0.044444524 0.130085105 0.136988963 0.272322117 0.032516286

FL+LSTM
MSE 0.019515449 0.098753192 0.000603801 0.135606289 0.001285934 0.025663415 0.107867897 0.000866407
MAE 0.086151034 0.269703567 0.001251696 0.366929799 0.001705134 0.085382722 0.23624748 0.008104443

RMSE 0.139641225 0.314214915 0.024572313 0.368222237 0.035859846 0.160190925 0.32837072 0.029434759

FL+MSA
MSE 0.02645552 0.048118532 0.006903093 0.022831427 0.003011749 0.020869514 0.095742323 0.001933012
MAE 0.122321516 0.17536521 0.071824536 0.118473649 0.008171082 0.091781527 0.254539758 0.009358659

RMSE 0.162651524 0.219359368 0.083084859 0.151100725 0.054879408 0.144462854 0.309422553 0.043966036

FeD-TST
MSE 07.52E-13 0.024042883 4.86E-11 0.000736637 8.88E-11 0.023981718 5.03E-10 0.000481912
MAE 6.82E-07 0.123524003 6.07E-06 0.002928413 9.01E-06 0.089999422 1.95E-05 0.002050021

RMSE 8.67E-07 0.155057675 6.97E-06 0.027141048 9.42E-06 0.154860318 2.24E-05 0.021952493

the data distributions across the clients are too similar, the FL
model may not be able to effectively capture the underlying
patterns in the data. Finally, the Seq2Seq+ATT model is a data-
efficient model and it can achieve good performance even with
fewer homogeneous training samples.

Similarly, Table V presents the error metric results for PDR.
As it can be seen, the proposed FeD-TST model performs
better than all other models for all configurations except
for the network configuration 6 (i.e., static robots, different
channel allocation, and 12dBm transmission power). Once
more and for the reasons described above the Seq2Seq+ATT
model exhibited the best performance. This means that the
Seq2Seq+ATT model is able to well capture the temporal pat-
terns that affect the PDR dataset, such as changes in network
congestion or interference, and make more accurate future
forecasts. Furthermore, for other seven network configurations,
FeD-TST is better than all models as LSTMs with its variants
struggled with capturing long-term dependencies efficiently,
Seq2Seq and its variant models struggled handling com-
plex and diverse PDR patterns. Regarding T2V+Transformer
models they help to encode time-related information using
Time2Vector representations, but they may not be as effective
as the FeD-TST in capturing the nuanced temporal patterns
for these seven network configurations.

Regarding PLR, and as seen in Table VI, FeD-TST provides
the best results for 6 configurations. Specifically, for the
second (i.e., mobile robots, different channel, 12dbm) and
fourth network configuration (i.e., mobile robots, same chan-
nel, 12dbm), TCN+BiLSTM showcased the best performance.

In both configurations the access points are mobile and the
transmission power is high. Nonetheless, from the same Table
and for the first (mobile robots, different channel, 0dbm) and
third configuration (mobile robots, same channel, 0dbm), it can
be seen that FeD-TST performed better. By looking close into
these configurations, we can see that the transmission power
may have an impact on how the learning models perform.

Specifically, when a network configuration contains mobile
access points the network topology and data distribution can
change over time. This means that the data may not be as
sparse, as all access points may have relevant information
at different times. Also the sparsity of PLR datasets can be
influenced by the transmission power. When the transmission
power is set to 0dBm, the signals do not travel far, resulting
in a shorter propagation range, and higher PLR. Since the
FeD-TST model can handle large amounts of data more
efficiently, the model may have more information to work
with, when there is a noticeable amount of PLR, allowing
it to attend the subset of important PLR values using the
sparse attention. Therefore, it can perform well on this type
of PLR datasets. However, when the transmission power is
set to 12dBm, the signals can travel further, resulting in a
more sparse PLR dataset. Hence, TCN+BiLSTM, which uses
convolutional layers to extract the features from the PLR input
data, can capture well local patterns, while the BiLSTM layer
can effectively capture the longer-term temporal relationships
between the PLR values. Overall, TCN+BiLSTM performs
better than the FeD-TST model in scenarios where the dataset
is more sparse.

12

TABLE VI
UNIVARIATE FORECASTING RESULTS FOR PLR, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Configurations 1 2 3 4 5 6 7 8
Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM
MSE 0.021792671 0.033600801 0.000170506 0.003800143 0.000898948 0.006792275 0.028396553 0.004032325
MAE 0.082623192 0.150432311 0.007338254 0.023558733 0.013402833 0.030336409 0.13075646 0.032339007

RMSE 0.14762341 0.183305213 0.013057785 0.061645296 0.029982454 0.082415258 0.168512768 0.063500594

BiLSTM
MSE 0.020697191 0.034122424 0.000401793 0.004283569 0.000542852 0.006855659 0.041219532 0.003004725
MAE 0.080600034 0.151636813 0.008385715 0.024967082 0.012687792 0.027902375 0.158798501 0.031972674

RMSE 0.143865183 0.184722559 0.020044774 0.06544898 0.023299188 0.08279891 0.203025937 0.054815371

ATT+BiLSTM
MSE 0.020245053 0.033294998 0.00014359 0.00421118 0.000547313 0.006935762 0.028205546 0.003443814
MAE 0.080818832 0.151242344 0.007237762 0.023958626 0.013155007 0.028010578 0.132771995 0.032751093

RMSE 0.142285113 0.182469171 0.011982922 0.064893606 0.023394728 0.083281221 0.167945069 0.058684019

Seq2Seq
MSE 0.021252736 0.033916195 0.000523421 0.003230895 0.000885887 0.00682344 0.027612433 0.002580039
MAE 0.086687473 0.153022372 0.007574055 0.022760354 0.013292484 0.028000094 0.131795246 0.032047241

RMSE 0.145783182 0.184163502 0.022878392 0.056840967 0.029763853 0.082604119 0.166169893 0.050794084

Seq2Seq+ATT
MSE 0.020900074 0.032672588 0.000460761 0.003551169 0.000549879 0.006830279 0.028939158 0.00355437
MAE 0.085837735 0.148762972 0.009517111 0.022397076 0.012634716 0.032682136 0.131375186 0.032834303

RMSE 0.14456858 0.180755604 0.021465339 0.059591688 0.023449497 0.0826455 0.170115131 0.059618536

TCN+BiLSTM
MSE 0.020198194 0.031638767 0.000394537 0.002814738 0.000232801 0.006485215 0.028564665 0.003535622
MAE 0.078534621 0.148136144 0.008401207 0.022391848 0.012239431 0.02950272 0.132377563 0.033134242

RMSE 0.142120352 0.177872896 0.019862957 0.053054102 0.015257805 0.080530831 0.169010844 0.0594611

T2V+Transformer
MSE 0.020911002 0.034417311 0.000920884 0.004394198 0.000889586 0.006719895 0.030964824 0.002978452
MAE 0.085307551 0.153888459 0.009341288 0.02465749 0.013932025 0.031952691 0.137978923 0.030472741

RMSE 0.14460637 0.18551903 0.030346072 0.066288749 0.029825929 0.081974968 0.175968248 0.054575195

FL+LSTM
MSE 0.022094503 0.041293263 0.046052642 0.004675237 0.810819387 0.006800786 69.65638733 0.003036108
MAE 0.075020067 0.159862995 0.137425244 0.02439647 0.367824584 0.021475384 1.586332083 0.028901355

RMSE 0.148626059 0.203149363 0.214597806 0.068371393 0.867065966 0.082466155 8.330111504 0.055099569

FL+MSA
MSE 0.026332522 0.053814277 0.002095943 0.009201947 0.144768745 0.008289964 0.042631045 0.006102875
MAE 0.09593612 0.185807839 0.013791043 0.049586143 0.285889983 0.040396597 0.162858874 0.05424583

RMSE 0.16227299 0.231979042 0.045781475 0.095926777 0.380484879 0.091049239 0.206472874 0.078120902

FeD-TST
MSE 2.66E-14 0.038911376 1.91E-11 0.008929118 3.05E-05 3.67E-05 0.026158862 2.60E-11
MAE 1.37E-07 0.16107823 3.48E-06 0.070162557 0.00051405 0.004760905 0.127036972 3.57E-06

RMSE 1.63E-07 0.197259665 4.37E-06 0.094494008 0.005524271 0.006055055 0.161737015 5.10E-06

TABLE VII
UNIVARIATE FORECASTING RESULTS FOR LATENCY, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Configurations 1 2 3 4 5 6 7 8
Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM
MSE 0.024408949 0.06017804 0.088636216 0.056182637 0.017420559 0.009039901 0.100882114 0.040418583
MAE 0.080140304 0.214223589 0.248948097 0.201964768 0.049288355 0.033133292 0.291552399 0.167005577

RMSE 0.156233636 0.245312127 0.297718349 0.237028769 0.131986964 0.095078395 0.317619448 0.201043734

BiLSTM
MSE 0.024206015 0.0603612 0.088730471 0.084598273 0.01688086 0.009230823 0.101561174 0.041677659
MAE 0.079947131 0.214269641 0.249370197 0.198644096 0.047570767 0.033800875 0.291890608 0.165094546

RMSE 0.155582824 0.245685164 0.297876604 0.246165022 0.129926363 0.096077172 0.31868664 0.204151069

ATT+BiLSTM
MSE 0.024179881 0.084598273 0.089001176 0.057675521 0.01729584 0.009121923 0.102110922 0.040280716
MAE 0.080108745 0.246165022 0.240791322 0.203930682 0.046483801 0.03072686 0.293887956 0.14324601

RMSE 0.155498813 0.290857822 0.298330648 0.240157283 0.131513648 0.095508757 0.319547997 0.200700563

Seq2Seq
MSE 0.024997304 0.05980379 0.089389425 0.055409534 0.016375065 0.008770341 0.099581648 0.040978067
MAE 0.078904381 0.214706046 0.256589036 0.201288012 0.050110525 0.033967249 0.281536809 0.168885758

RMSE 0.158105358 0.244548135 0.298980642 0.235392298 0.127965093 0.093650097 0.315565599 0.202430399

Seq2Seq+ATT
MSE 0.024013291 0.60308408 0.086830182 0.057301211 0.017024882 0.008396982 0.103578993 0.041083115
MAE 0.081703762 0.21346644 0.254700822 0.202772912 0.049581186 0.035931874 0.295579004 0.170103562

RMSE 0.154962224 0.245577704 0.294669615 0.239376713 0.130479431 0.091635047 0.321836904 0.2026897

TCN+BiLSTM
MSE 0.032147098 0.062922512 0.09267886 0.054981224 0.016755645 0.009074548 0.103784816 0.04146944
MAE 0.11613974 0.213559675 0.255984481 0.199181873 0.046739142 0.034320761 0.29798527 0.16241555

RMSE 0.179296121 0.250843602 0.304432029 0.234480753 0.129443598 0.095260424 0.322156508 0.203640468

T2V+Transformer
MSE 0.024686465 0.064907747 0.09201476 0.055858478 0.016280688 0.008851462 0.103110644 0.040447623
MAE 0.082032614 0.222181234 0.266272543 0.199272798 0.052664447 0.031812765 0.298888429 0.166716834

RMSE 0.15711927 0.254769988 0.303339347 0.236343982 0.1275958 0.094082209 0.321108461 0.201115943

FL+LSTM
MSE 0.027547928 80687.98438 0.103246123 4.166488647 0.019056881 0.009888737 0.121394642 0.047525864
MAE 0.077818892 18.25476456 0.230045661 0.455275744 0.053534083 0.036810573 0.274667084 0.170613229

RMSE 0.165957242 283.6138611 0.32129097 2.016258478 0.138044104 0.099438779 0.348386973 0.217998505

FL+MSA
MSE 0.024906835 0.115047574 0.245384723 0.098320305 0.023086162 0.01547756 0.136887431 0.07021708
MAE 0.077157654 0.27891928 0.433125585 0.257558107 0.077514783 0.060696498 0.318601936 0.196365908

RMSE 0.157818988 0.339186639 0.495363235 0.313560694 0.151941314 0.124408841 0.369983017 0.264985055

FeD-TST
MSE 0.023777915 0.059448318 4.40E-05 0.054488377 0.001039662 7.52E-05 0.002381638 0.066853426
MAE 0.076379195 0.212089206 0.006626479 0.198644096 0.027471544 0.007280115 0.04880077 0.190088391

RMSE 0.15420089 0.243820257 0.006636661 0.233427456 0.032243785 0.00867211 0.048802029 0.2585603

For the latency dataset and as seen from Table VII, the
FeD-TST is well suited for all network configurations except

configuration 8 (static robots, same channel, 12dBm), where
the ATT+BiLSTM model gives the best performance. The

13

TABLE VIII
MULTIVARIATE FORECASTING RESULTS FOR THROUGHPUT, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Configurations 1 2 3 4 5 6 7 8
Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM
MSE 0.028607518 0.098101639 0.013346768 0.06513989 0.027364537 0.009801793 0.019369793 0.009325607
MAE 0.132310821 0.306853361 0.09260656 0.195485626 0.094224957 0.0679559 0.135783555 0.077761354

RMSE 0.169137572 0.313211812 0.115528215 0.255225175 0.1654223 0.099004003 0.139175403 0.096569184

BiLSTM
MSE 0.02742663 0.101624222 0.013520551 0.070678015 0.027028323 0.00956266 0.011623326 0.009524192
MAE 0.129706767 0.312485707 0.093181167 0.211890758 0.085585064 0.065992332 0.103169602 0.0786563

RMSE 0.165609873 0.318785543 0.116277903 0.26585337 0.16440293 0.097788856 0.107811532 0.097591965

ATT+BiLSTM
MSE 0.029332515 0.037467551 0.012400092 0.0409477 0.027625441 0.00918847 0.02887653 0.008108388
MAE 0.134291403 0.192225229 0.089390103 0.133535994 0.054213672 0.063080543 0.165644779 0.07195941

RMSE 0.171267378 0.193565365 0.111355702 0.202355382 0.166209028 0.095856508 0.169930955 0.090046588

Seq2Seq
MSE 0.029094397 0.222091576 0.013109092 0.078138339 0.087997502 0.075132291 0.002492687 0.007884014
MAE 0.133091282 0.469024161 0.091876588 0.265520788 0.2902785 0.216263738 0.043581509 0.070501437

RMSE 0.170570797 0.471265929 0.114494943 0.279532357 0.296643729 0.274102701 0.049926819 0.08879197

Seq2Seq+ATT
MSE 0.029802806 0.197385415 0.013370054 0.076762567 0.09746884 0.072463298 0.001641729 0.008784528
MAE 0.134996629 0.440116966 0.092956957 0.250004146 0.307147377 0.210497291 0.033518686 0.075263339

RMSE 0.172634893 0.444280784 0.115628948 0.277060583 0.3122 0.269190078 0.040518256 0.093725811

TCN+BiLSTM
MSE 0.028206558 0.049226831 0.013811762 0.05078849 0.032273292 0.011554496 0.004679834 0.008682814
MAE 0.131378731 0.219623558 0.093851078 0.145438506 0.061250018 0.078781507 0.061909672 0.074983242

RMSE 0.167948081 0.221871203 0.117523452 0.225363019 0.179647688 0.10749184 0.068409315 0.09318162

FL+LSTM
MSE 0.022230878 0.026630133 0.02434326 0.030587779 0.047000714 0.03989619 0.058205191 0.020379072
MAE 0.116344981 0.12812157 0.117841065 0.138585195 0.203050449 0.158704802 0.18743296 0.105792277

RMSE 0.148784027 0.162836522 0.155774087 0.17474249 0.216674656 0.199541911 0.241099924 0.142648384

FL+MSA
MSE 0.055654656 0.219694048 0.123248108 0.834618747 0.290231615 0.079888575 0.062982544 0.022085747
MAE 0.202963769 0.439056277 0.317067206 0.88365382 0.483849257 0.249765113 0.208570436 0.107883148

RMSE 0.235912398 0.46871531 0.351067096 0.913574696 0.538731515 0.282645643 0.250963241 0.148612738

FeD-TST
MSE 2.97E-05 0.000250346 0.002767468 1.40E-05 0.002059271 0.000360866 0.003959762 0.00255931
MAE 0.0043 0.012030067 0.039089505 0.003005067 0.041864872 0.015221067 0.050758883 0.034195092

RMSE 0.0054 0.015822316 0.052606728 0.003742877 0.045379192 0.018996468 0.062926643 0.050589621

reason is that when multiple robots are operating on the same
channel, they can interfere with each other’s signals. This
becomes more evident when the robots are static and they
use high transmission power, increasing this way the common
serving area, which however will suffer from more dense
interference levels. Inevitably, this high interference introduces
additional complexities in capturing the patterns associated
with increased latency. Such temporal complexities become
intricate as they are influenced by both short-term variations
and longer-term trends. Therefore, forecasting the latency in
such a network configuration is more challenging for federated
learning models.

E. Multivariate Results

Table VIII presents the multivariate results for the through-
put prediction for different network configurations. As in the
case of univariate prediction, our proposed model, Fed-TST
outperformed all of the rest methods and for almost all network
configurations. Additionally, the prediction errors are reduced
compared to the univariate setting, since in this second set of
results, the FeD-TST model does not only capture the tempo-
ral dependencies of the forecasting variable e.g., throughput
values but the temporal dependencies of all the other features
at the same time (i.e., throughput, PDR, PLR, latency, time
first packet transmitted, time last packet transmitted, total
transmitted packets, total received packets). By modeling the
temporal dependencies between these multiple features, the
FeD-TST is able to better forecast the future forecasting vari-
able e.g., throughput values. Furthermore, the sparse attention
mechanism is more useful in multivariate settings, as these
settings consist of multiple features which however, may or

may not be relevant to the target forecasting variable. Thus,
the sparse attention efficiently attends only relevant features
and the FeD-TST model learns a more accurate representation
of the input data, while providing more accurate forecasts than
the other models.

Only for the seventh network configuration (static robots,
same channel, 0dbm), the Seq2Seq+ATT centralized model
performed slightly better than the FeD-TST. By further analyz-
ing this behavior, we found that the size of the input sequence
had an impact on the final performance of the FeD-TST.
Due to the complexity of this configuration, temporal patterns
and dependencies might span across a larger number of data
points which necessitates longer input sequences for the model
to discern and capture meaningful patterns. However, the
input sequence length is not providing enough information
for the FeD-TST model to effectively capture the temporal
relationships among the multiple features. Thus, an increase
in the input sequence length may reduce the forecasting error
metrics.

Similar observations were drawn for PDR, PRL, and La-
tency, where the FeD-TST consistently gave the best perfor-
mance for the large majority of the network configurations.
Nonetheless, for page limitations purposes, we have decided
to include the Tables of these multivariate QoS forecasting in
the Appendix C. Overall, FeD-TST managed to find the best
accuracy performance with the minimum prediction error in 53
out of 64 univariate and multivariate experiments performed,
which proves that it can uniformly outperform the rest of
the centralized and distributed approaches in a dynamic and
uncertain network environment.

14

F. Limitations of proposed FeD-TST

The sparse attention introduced in the proposed TST model
may limit the model’s ability to capture more global context
information of QoS in scenarios where contextual information
of QoS metrics is more important. However, this makes the
TST model limited when applied in the centralized setting. In
contrast, in this work, a federated learning based training of
TST is performed. Thus, the TST model is trained collabora-
tively on decentralized clients and servers, each with its local
QOS dataset. This allows the TST model to learn from diverse
data sources, capturing a broader range of patterns and QoS
context more accurately than a TST model trained on a single
centralized dataset.

VII. CONCLUSION

In this work, we investigated the QoS forecasting problem
by formulating it as a univariate and multivariate time series
forecasting problem in a federated learning setting. In particu-
lar, a new framework, FeD-TST was introduced that promotes
an efficient QoS forecasting for a number of heterogeneous
network configurations with various IoT applications that
stress the IoT access network creating several levels of QoS
uncertainty. To evaluate our framework, we firstly generated
real-time datasets for eight different network configurations
that considered the mobility of access points, the frequency
channel, and the transmission power allocation as config-
uration knobs. Following, we presented a novel Federated
learning based sparse temporal transformer based architecture
(FeD-TST), which learns temporal representations and their
long term complex dependencies in a federated fashion, for
the forecasting of four QoS metrics, namely, throughput,
PDR, PLR and latency. Finally, we performed an extensive
experimental evaluation in which we proved that our proposed
FeD-TST outperforms several competitive benchmark methods
in both univariate and multivariate settings. As a future work,
we aim to explore alternative attention techniques, such as
compressed attention and investigate their impact on the
accuracy achieved. Furthermore, we would like to investigate
the aggregation strategies other than the FeDAvg at the server
side to improve future forecasts of several key QoS metrics.

ACKNOWLEDGMENTS

This work was supported in part by the CHIST-ERA-2018-
DRUID-NET project ”Edge Computing Resource Allocation
for Dynamic Networks”.

REFERENCES

[1] F. Saeik et al., “Task offloading in edge and cloud computing: A survey
on mathematical, artificial intelligence and control theory solutions,”
Computer Networks, vol. 195, p. 108177, 2021.

[2] D. Hanes, G. Salguiero, P. Grossetete, R. Barton, and J. Henry, IoT
Fundamentals: Networking Technologies, Protocol, and Use Cases for
the Internet of Things. Cisco Press, 2017.

[3] Y. Hahn, T. Langer, R. Meyes, and T. Meisen, “Time series dataset
survey for forecasting with deep learning,” Forecasting, vol. 5, no. 1,
pp. 315–335, 2023.

[4] M. Ateeq, F. Ishmanov, M. K. Afzal, and M. Naeem, “Predicting delay
in iot using deep learning: A multiparametric approach,” IEEE Access,
vol. 7, pp. 62 022–62 031, 2019.

[5] A. Hameed, J. Violos, N. Santi, A. Leivadeas, and N. Mitton, “A
machine learning regression approach for throughput estimation in an
iot environment,” in 2021 IEEE International Conferences on Internet
of Things (iThings) and IEEE Green Computing & Communications
(GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom)
and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics
(Cybermatics), 2021, pp. 29–36.

[6] P. Bardalai, H. Neog, P. E. Dutta, N. Medhi, and S. K. Deka, “Through-
put prediction in smart healthcare network using machine learning
approaches,” in 2022 IEEE 19th India Council International Conference
(INDICON), 2022, pp. 1–6.

[7] Y. Hou et al., “A study of throughput prediction using convolutional
neural network over factory environment,” in 2021 23rd International
Conference on Advanced Communication Technology (ICACT), 2021,
pp. 429–434.

[8] A. R. Abdellah, O. Abdulkareem Mahmood, and A. Koucheryavy,
“Delay prediction in iot using machine learning approach,” in 2020
12th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT), 2020, pp. 275–279.

[9] G. White and S. Clarke, “Short-term qos forecasting at the edge for re-
liable service applications,” IEEE Transactions on Services Computing,
vol. 15, no. 2, pp. 1089–1102, 2022.

[10] Z. Liu, Q. Z. Sheng, W. E. Zhang, D. Chu, and X. Xu, “Context-aware
multi-qos prediction for services in mobile edge computing,” in 2019
IEEE International Conference on Services Computing (SCC), 2019, pp.
72–79.

[11] Z. Liu, Q. Z. Sheng, X. Xu, D. Chu, and W. E. Zhang, “Context-aware
and adaptive qos prediction for mobile edge computing services,” IEEE
Transactions on Services Computing, vol. 15, no. 1, pp. 400–413, 2022.

[12] S. Li, J. Wen, and X. Wang, “From reputation perspective: A hybrid
matrix factorization for qos prediction in location-aware mobile service
recommendation system,” Mobile Information Systems, no. 1574-017X,
p. 8950508, 2019.

[13] H. Jin, P. Zhang, H. Dong, Y. Zhu, and A. Bouguettaya, “Privacy-
aware forecasting of quality of service in mobile edge computing,” IEEE
Transactions on Services Computing, vol. 16, no. 1, pp. 478–492, 2023.

[14] Y. Zhang, P. Zhang, Y. Luo, and L. Ji, “Towards efficient, credible
and privacy-preserving service qos prediction in unreliable mobile edge
environments,” in 2020 International Symposium on Reliable Distributed
Systems (SRDS), 2020, pp. 309–318.

[15] D. Bisht and M. Ram, Recent advances in time series forecasting. CRC
Press, 2021.

[16] A. Hameed, J. Violos, A. Leivadeas, N. Santi, R. Grünblatt, and N. Mit-
ton, “Toward qos prediction based on temporal transformers for iot
applications,” IEEE Transactions on Network and Service Management,
vol. 19, no. 4, pp. 4010–4027, 2022.

[17] U. Mangla, Application of Federated Learning in Telecommunications
and Edge Computing. Springer International Publishing, 2022, pp.
523–534.

[18] K. Papadakis-Vlachopapadopoulos, I. Dimolitsas, D. Dechouniotis, E. E.
Tsiropoulou, I. Roussaki, and S. Papavassiliou, “Blockchain-based slice
orchestration for enabling cross-slice communication at the network
edge,” in 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), 2020, pp. 140–147.

[19] G. Zou, S. Lin, S. Hu, S. Duan, Y. Gan, B. Zhang, and Y. Chen, “Fhc-
dqp: Federated hierarchical clustering for distributed qos prediction,”
IEEE Transactions on Services Computing, pp. 1–14, 2023.

[20] X. Li, S. Li, Y. Li, Y. Zhou, C. Chen, and Z. Zheng, “A personalized
federated tensor factorization framework for distributed iot services qos
prediction from heterogeneous data,” IEEE Internet of Things Journal,
vol. 9, no. 24, pp. 25 460–25 473, 2022.

[21] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, “Fit iot-lab: A large scale open experimental iot testbed,”
in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015,
pp. 459–464.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., 2017.

[23] S. Reza, M. C. Ferreira, J. Machado, and J. M. R. Tavares, “A multi-
head attention-based transformer model for traffic flow forecasting with
a comparative analysis to recurrent neural networks,” Expert Systems
with Applications, vol. 202, p. 117275, 2022.

[24] X. Pan, R. Coen-Cagli, and O. Schwartz, “Modeling neural variability
in deep networks with dropout,” bioRxiv, 2021.

15

[25] F. Liu, X. Ren, Z. Zhang, X. Sun, and Y. Zou, “Rethinking skip
connection with layer normalization in transformers and resnets,” ArXiv,
vol. abs/2105.07205, 2021.

[26] G. Li, F. Li, T. Ahmad, J. Liu, T. Li, X. Fang, and Y. Wu, “Perfor-
mance evaluation of sequence-to-sequence-attention model for short-
term multi-step ahead building energy predictions,” Energy, vol. 259,
p. 124915, 2022.

[27] Y. Chen, Y. Kang, Y. Chen, and Z. Wang, “Probabilistic forecasting with
temporal convolutional neural network,” Neurocomputing, vol. 399, pp.
491–501, 2020.

[28] M. Kazemi et al., “Time2vec: Learning a vector representation of time,”
arXiv e-prints, pp. arXiv–1907, 2019.

[29] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A survey of federated learning
for edge computing: Research problems and solutions,” High-Confidence
Computing, vol. 1, no. 1, p. 100008, 2021.

[30] D. J. Beutel et al., “Flower: A friendly federated learning research
framework,” 2022.

Aroosa Hameed is currently an Ericsson Postdoc-
toral Fellow at Carleton University, Ottawa, Canada.
She received her MPhil degree in computer science
from Quaid-i-Azam University, Islamabad, Pakistan,
in 2018, and the Ph.D. degree from École de tech-
nologie Supérieure (ETS), Universite du Quebec,
Montreal, Canada, in August 2023. She received the
best paper award in the IEEE iThings 2021. Her
primary research interests include Internet of Things
(IoT), edge computing, machine learning, federated
learning, and 5G communications.

John Violos is research associate in the Dept. of
Software Engineering and Information Technology
at ETS. His previous positions were research as-
sociate at National Technical University of Athens,
sessional lecturer at Harokopio University of Athens
and visiting lecturer at National and Kapodistrian
University of Athens. He was a member in the Eu-
ropean Commission’s Digital Single Market working
group on the code of conduct for switching and
porting data between cloud service providers. His
research interests include Deep Learning, Machine

Learning, Cloud and Edge computing.

Nina Santi is a PhD student under the supervision
of Nathalie Mitton in the Inria FUN team. Their
focus is on small computing devices like electronic
tags and sensor networks. She has received the MSc
degrees in Computer Science from University of
Lille, France, in 2020.

Aris Leivadeas (S’12-M’15-SM’21) is currently an
Associate Professor with the Department of Soft-
ware and Information Technology Engineering at the
École de technologie Supérieure (ETS), Montreal,
Canada. From 2015 to 2018 he was a postdoctoral
fellow in the Department of Systems and Computer
Engineering, at Carleton University, Ottawa Canada.
In parallel, Aris worked as an intern at Ericsson
and collaborated with Cisco in Ottawa, Canada. He
received his diploma in Electrical and Computer
Engineering from the University of Patras in 2008,

the M.Sc. degree in Engineering from King’s College London in 2009,
and the Ph.D degree in Electrical and Computer Engineering from the
National Technical University of Athens in 2015. His research interests
include Network Function Virtualization, Cloud and Edge Computing, IoT,
and network optimization and management. He received the best paper award
in ACM ICPE’18 and ’23 and IEEE iThings’21 and the best presentation
award in IEEE HPSR’20.

Nathalie Mitton received the MSc and PhD. degrees
in Computer Science from INSA Lyon in 2003
and 2006 respectively. She received her Habilita-
tion à diriger des recherches (HDR) in 2011 from
Université Lille 1. She is currently an Inria full
researcher since 2006 and from 2012, she is the
scientific head of the Inria FUN team which is
focused on small computing devices like electronic
tags and sensor networks. Her research interests
focus on self-organization from PHY to routing for
wireless constrained networks. She has published her

research in more than 30 international revues and more than 100 international
conferences. She is involved in the setup of the FIT IoT LAB platform
(http://fit-equipex.fr/, https://www.iot-lab.info), the H2020 CyberSANE and
VESSEDIA projects and in several program and organization committees such
as Infocom 2021 & 2020 & 2019, PerCom 2020 & 2019, DCOSS 2021 &
2020 & 2019, Adhocnow (since 2015), ICC (since 2015), Globecom (since
2017), VTC (since 2016), etc. She also supervises several PhD students and
engineers.

