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Abstract—This paper addresses the issue of decoding time
estimation aiming to reduce the power consumption of software
decoding via Dynamic Voltage and Frequency Scaling (DVFS)
techniques. Some high level syntax elements information is
extracted alongside with each picture decoding time measured
from a real-time software video decoder. Relationships between
these syntax elements and decoding time are analyzed to select
appropriate parameters for regression methods. Finally various
regression methods are compared with regards to practical
inference time and estimation accuracy required by a theoretical
VVC Video decoding DVFS setup.

Index Terms—VVC, DVFS, decoding time, FPS...

I. INTRODUCTION

With the advent of video services such as Video-on-
Demand, web TV, video sharing sites and live streaming,
digital video has become ubiquitous in our lives. Technological
advances make it possible to capture, broadcast and view dig-
ital video anytime, anywhere. As new video formats emerge,
the amount of video data will continue to grow over time.
According to a Cisco study [1], video traffic has quadrupled in
five years to 81% of all Internet traffic. This massive increase
in video traffic has led the Motion Picture Experts Group
(MPEG) of ISO to propose the new Versatile Video Coding
(VVC/H.266) standard [2] in 2020. This standard shows bit
rate distortion (BD-BR) gains of up to 40% over HEVC [3] [4].
However, this bitrate reduction comes with the introduction
of advanced tools that increase the overall complexity of the
codec. In fact, the complexity of VVC is estimated to be up to
27 times greater than HEVC on the encoder side, and 2 times
greater on the decoder side [4]. The decoding process being
carried out at each viewing, minimizing the decoding energy
consumption is of the utmost importance.

The most energy efficient solution for video decoding in
mobile devices is to integrate a hardware (HW) decoder in
the system on a chip (SoC). However, from a sustainability
perspective, energy-efficient software decoding might become
an interesting substitute. This latter allows to extend the life of
the handset and avoid technological obsolescence by providing
a software decoder whenever a given codec is not supported
by the HW decoder. The challenge is therefore to provide
energy-efficient software VVC decoding. Energy consumption
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can be reduced by exploiting the processor’s different levels
of parallelism to lessen the overall time required to decode
the video. Energy savings can also be achieved by running the
decoder at lower power levels during periods of low processing
demand and scaling the processor frequency its actual work-
load. However the decoding time may fluctuate considerably
from one picture to another due to variations in the underlying
content. This variability annihilates the efficiency of classical
CPU frequency governors available in operating systems.
Nevertheless if the decoding time of each picture could be
estimated, the decoder could intelligently adjust its frequency
based on an estimation of the complexity of the upcoming
pictures sequence, enabling efficient frequency scaling and
optimizing power consumption. This approach requires the
development of an accurate estimation model that estimates
the decoding time of each picture, taking into account the
various factors that influence the decoding process.

In [5], two models for decoding energy are constructed
on the characteristic of each Coding Unit (CU). Among the
respectively 230 and 67 proposed features most of them
correspond to syntax elements only accessible during picture
decoding process, which prevents from an a priori picture
decoding time estimation. To counter this issue, [7] proposes
some VVC green metadata to be computed by the encoder
and embedded within the bitstream. Provided with the green
metadata content, the decoder can use an appropriate model
to estimate picture decoding time.

This paper proposes a new lightweight VVC decoding
time estimator which provides a good balance between the
inference time and the estimation quality. Compared to the
state-of-the-art, this estimator requires no metadata, temporal
information are exploited and only a few features are used.
These features are associated with each picture and extracted
by parsing the high-level syntax of the bitstream, allowing
estimation of the decoding time of a picture before its actual
decoding. This estimator may consist in a key element to a
closed-loop system adjusting the processor clock frequency to
minimize the decoder energy consumption.

This paper is structured as follows: Section 2 presents the
background and the the existing approaches. Section 3 gives
an overview of the data generation and preparation process.
Section 4 presents decoding time statistics. The tested models
to estimate the decoding time are detailed in Section 5. Finally,
Section 6 concludes this paper.



II. BACKGROUND AND STATE OF THE ART

A. Dynamic Voltage and Frequency Scaling approaches

In modern Systems-on-a-Chip (SoC), the high computing
capabilities make room for reducing the power consumption
of a decoder by dynamically tuning its processor’s voltage and
frequency. Dynamic Voltage and Frequency Scaling (DVFS)
techniques optimize power consumption by adjusting in real-
time the processor operating voltage and frequency according
to changing workload and processing requirements. Never-
theless, typical DVFS strategies fail to adapt efficiently the
processor clock frequency to the decoder load due to the
high variation of the decoding time from one picture to
another. As shown in our experiment (see Figure 2), for a
given resolution, frame-rate and bitrate, the decoding time
can vary up to a factor of 50 between the lowest and the
highest decoding time. To overcome, this dynamic behavior,
a hypothetical closed-loop system in which the processor
clock is controlled according to the decoding process load is
described in Figure 1.

Fig. 1: Block Diagram of a hypothetical DVFS System Inte-
gration inside a video Player System

The decoder reconstructs each picture of the video from
the data contained in the bitstream. Meanwhile, the display
manager expects the decoded pictures for presentation at a
fixed rate Fd set by the system. To find the minimum working
frequency, and thus, run as slow as possible, estimating the
incoming picture decoding time is essential. The following
section describes the different approaches proposed to estimate
the decoding time.

B. Techniques for decoding time estimation

In [7], the use of green metadata to vary the operating
frequency and reduce decoder power consumption is dis-
cussed. Complexity Metrics (CM) metadata are proposed to
feed the decoder with information about the complexity of
decoding a picture. CM metadata may include information
such as the level of details in video pictures, the amount
of motion in the scene, and the complexity of the coding
algorithms. In [5] the objective of minimizing decoder power
consumption is addressed by developing precise models based
on bitstream features. These models can be used for decoding-
energy-rate-distortion optimization (DERDO) [6] to reduce the
decoder energy demand. This research paper introduces two
models to estimate the decoding energy of the VVC Test
Model (VTM) decoder: the feature-based versatile model (FV)
and the feature-based simple versatile model (FVS). These
models incorporate a series of features classified according to
different aspects of video coding, including intra-prediction,

inter-prediction, transform, and loop filter. The FV model
comprises 230 features, while the FVS model comprises 67
features. It should be noted that these models, even though
have achieved significant results, are primarily focused on
energy consumption reduction. Real-time decoding would
require additional considerations beyond the scope of these
models.

In [8], a machine-learning model that estimates the decoding
time of individual pictures is proposed. This model is built
on the ExtRaTrees regressor that accurately estimates the
decoding time of 1080p video pictures with a low relative error
of 5.58% and a high R2 score of 94%. This model entails the
utilization of picture-related data that is readily reachable by
the decoder, allowing estimating the decoding time of a picture
just before its decoding.

Compared to [8], the model proposed in this paper is not
dedicated for a specific resolution but is valid for different
resolutions. In addition to features extracted from the ”high-
level syntax”, the temporal information of previous pictures
decoding times are also considered. Finally, the model infer-
ence time has been taken into account and evaluated with an
optimized C source code.

III. DATASET CONSTITUTION

This section describes the coding configurations used in
our experiments. The first subsection discusses the video se-
quences datasets and coding configuration selection, while the
second section details the picture decoding time measurements
and feature extraction procedure.

A. Coded Video Data Sequences Generation

TABLE I: Dataset Coding Parameters

Resolution Target rates Frame-rate CTU sizes
UHD 4K (3840x2160) 1 Mbps 120 Hz 128

FHD 1080p (1920x1080) 2 Mbps 60 Hz 64
HD 720p (1280x720) 4 Mbps 30 Hz 32
SD 544p (960x544) 8 Mbps

Video Sequences
BVI-HFR UVG DataSet

bobblehead guitarfocus pond Beauty
books hamster pour Bosphorus

bouncyball joggers sparkler HoneyBee
catch lamppost typing Jockey

catchtrack leaveswall waterripples ReadySetGo
cyclist library watersplashing ShakeNDry

flowers martialarts YachtRide
golfside plasma

To achieve sufficient diversity in both spatial and temporal
characteristics various video sequences have been used. The
original video sequences considered in this work were taken
from both the UVG DataSet [10] and BVI HFR [11]. To
increase the diversity of content UHD (3840×2160) sequences
with a frame-rate of 120 FPS were down-sampled to FHD
1080p (1920 × 1080), HD 720p (1280 × 720) and SD 544p
(960×544) at both 60 and 30 Hz using FFmpeg. The VVEnc
encoder [12] with slow preset was selected as a good trade-off



Fig. 2: Evolution of the picture decoding time according to Picture Unit size in bytes for the different resolutions

between the encoding speed and bit-rate performances. Indeed,
most of VVC tools are exploited and this encoder is faster than
the VTM reference software. Thus, such an encoder is more
likely to be used at a large scale than the reference software
when it comes to video content distribution.

VVC Common Testing Condition (CTCs) [13] uses fixed
Quantized Parameters (QP), to assess compression efficiency
of a specific coder tool. However, when it comes to decoder
performance assessment use cases, it is more common to target
a specific bit-rate range where a rate control algorithm selects
a Quantization Parameter (QP) at a thinner grain. The aim
is to achieve the best compromise for the Rate Distortion
Optimization (RDO) process targeting a specific bit rate. This
is why four arbitrary rate control targets were set to 1, 2, 4 and
8 Mbps. As allowed by the VVC standard, Coding Tree Unit
(CTU) of sizes equal to 32, 64 or 128 have been considered.
The list of selected sequences as well as a summary of the
coding parameters used in the dataset composition can be
found in table III-B.

B. Decoded Video Data Information

To provide machine learning algorithms with some data to
derive decoding time estimators, the OpenVVC decoder [9]
has been modified to extract the data needed for the regression
process. For each picture, the decoding times (in µs) were
computed from the difference between timestamps taken at
the start and the end of the PU decoding. Note that the PU
decoding start and end times may differ from the PU entrance
and the reconstructed picture output times because of the delay
implied by Random Access pictures reordering. Indeed, in this
configuration the reordering delay may cause the decoding
time of a picture to also include the decoding time of all
leading pictures which entered the decoder after this picture
in display order.

Alongside picture decoding time, information related to the
picture decoding is extracted by parsing the high-level syntax
elements. Extracted information contains: 1) pu size : the sum
of the number of bytes read in the Picture Unit (PU) NALUs;
2) alf flags : gathering together the activation status of the
ALF filter on the luma and chroma planes; 3) picture resolution
(in our set the sequences are consistent but this may change in

case VVC Reference Picture Rescaling (RPR) tool is activated
or if streams of different resolution are concatenated such as
in Dynamic Adaptive Streaming over HTTP using a bitrate
ladder); 4) the Slice Quantization Parameter (QP) selected by
rate control; 5) the NAL Unit Type to get information on
refresh picture (IDR CRA) 6) the Temporal Layer Id of each
PU

The picture decoding times were measured on an Intel Core
i7-7700 running @ 3,6 GHz. To avoid interference on time
measurements the decoder was configured to use only one
thread and TurboBoost (which is a DVFS tool) was disabled
from the OS.

Next section discusses this data and last section compares
estimators efficiency in terms of estimation accuracy and
inference time.

IV. DECODING STATISTICS

A. Picture Unit Size and Picture decoding times

In this section, the relation between the decoding time and
the Picture Unit size (pu size) is analyzed. The pu size corre-
sponds to the number of bits occupied by the encoded data of
the picture unit. In figure 2, the decoding time of a picture is
represented according to the pu size of the associated encoded
picture for different resolutions. For low resolutions (HD 720p,
SD 544p), there is a clear relation between the decoding
time and the pu size. For higher resolutions with HD 1080
& UHD 4K, a relation between the decoding time and the
pu size remains visible for high values of pu size. For low
pu size value, the decoding time and the pu size are weakly
correlated. This phenomenon is particularly pronounced for
UHD 4K resolution. In conclusion, the correlation between the
decoding time and the pu size decreases when the resolution
increases and the pu size decreases

B. Temporal characteristics

In this section, the temporal characteristics of decoding
time are observed through the decoding time auto-correlation.
A key element to analyze the temporal characteristics of
decoding time is the Group of Picture (GoP) structure and
the hierarchy of picture for the inter prediction process. Each
picture is associated with a Temporal-layer Identifier (TID)



(a) per temporal layer id (b) per resolution (c) per frame-rate

Fig. 3: Evolution of the picture decoding time auto-correlation for 10 lag values according to different temporal layer id (a),
resolutions (b) and frame-rates (c)

which defines the temporal layer of the considered picture in
a video coding hierarchy. The pictures belonging to a temporal
layer x only use as reference for inter prediction pictures
belonging to temporal layers lower than x. In the considered
experiments, the GoP uses an Intra-Picture period of 32, 64
and 128 pictures according to the sequences frame-rates.

Figure 3.a compares the auto-correlation of the decoding
times by temporal layer for videos with a fixed resolution
of 1280x720 and a fixed frame-rate of 60 fps. Results show
that the first temporal layer is a specific case compared to
other temporal layer for which the temporal correlation is low.
Indeed, pictures from temporal layer 0 correspond to I-Pictures
(using intra prediction only) and these pictures are the furthest
away. From temporal layer 1 to temporal layer 5, pictures
rely more on inter-prediction. Their correlation is relatively
higher and decreases when the lag τ increases. The higher
the temporal layer, the closer in time are the reference images
used for prediction. This increase in correlation according to
the layer shows that the decoding times of picture are similar
when the pictures are close in display order.

Figure 3.b compares the evolution of the auto-correlation of
the decoding time by their resolution for a fixed frame-rate of
60 fps and from a fixed temporal layer 3. The results show that
the correlation decreases when the resolution increases and
especially for 4K UHD resolution for which the correlation
levels are significantly lower.

Figure 3.c compares the auto-correlation of the decoding
time by their frame-rate for a fixed resolution of 1280x720p
and a fixed temporal layer 3. The results show that the
correlation decreases when the frame-rate diminishes. Indeed,
when the frame-rate is lower, the pictures are spaced further
apart in time and thus, the correlation is weaker.

V. MODELS FOR DECODING TIME ESTIMATION

In our approach, three supervised machine learning algo-
rithms were considered to estimate the decoding time : ExtRa-
Trees, Support Vector Regressor and XGBoost Regressor.
ExtRa-Trees (Extremely Randomized Trees) [14] and XG-
Boost Regressor [15] both belong to ensemble supervised
machine learning methods that uses decision trees. With the
ExtRa-Trees algorithm, many decision trees are created and the
sampling for each tree is random, without replacement. With

XGBoost Regressor from the gradient boosting frameworks,
the model is based on an ensemble of weak estimation models
which are considered for building a stronger global model.
Support vector regression (SVR) [16] is a regression analysis
exploiting Support Vector Machines (SVM) to fit a model
to data. SVR searches the hyperplane in a high-dimensional
feature space that maximally separates the data points by
minimizing its distance to the data points.

The model selection is driven by two aspects: the estimation
model accuracy and the model inference time. The model
accuracy is evaluated through the Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE). With regards
to a decoding frame-rate of 120 Hz a picture decoding must
be done within a time of less than 8.33ms and 16.66ms
considering 60 FPS sequences. The model inference must
consume significantly less resource compared to the decoding
process. Thus, the inference time have to be limited to a small
fraction of the actual decoding time. The three supervised
machine learning algorithms considered in this paper have
been selected based on their ability to provide an optimized
C-source code library able to limit the model inference time.

The number of features considered by the machine learning
process has been adapted to explore the trade-off between the
inference time and the estimation quality. To take into account
the statistical characteristics and especially the correlation
between pictures having the same temporal layer, the models
were provided with the decoding times of the 7 previously
decoded pictures. In addition to the temporal informations, 3 to
8 features, extracted from the HLS associated with the picture,
have been tested. For a considered number of features n, an
exhaustive search is performed to select the n best features
leading to the minimal MAPE.

To evaluate estimator accuracy we used both MAE an
MAPE distortion metrics. Selecting either MAE or MAPE
depends on the precision for the DVFS. While MAPE gives
information regarding the estimator accuracy when working
with independent pictures, MAE stays useful when it comes
to keep the actual decoding time target in check. Indeed when
working with pictures of different decoding time magnitudes
(this is especially true for picture of temporal layer 0 against
higher temporal layers) what can be regarded as a small error



Fig. 4: Estimation Mean Absolute Error (MAE) according to
the inference time

Fig. 5: Estimation Mean Absolute Percentage Error (MAPE)
according to the inference time

percentage on a picture with a large duration can dominate the
estimation error measured on a picture with a smaller duration
even if the error percentage on this latter was significant.

All models were trained using 1% of our dataset as a
training set. The complement of the training set was used as
a validation set. The C objects were obtained by exporting
the various models via the m2Cgen module of scikit-learn
and built with gcc before inclusion to a C program. The
whole validation set was then used to measure the estimation
errors on each points while also measuring the actual inference
times. Figure 4 and 5 display respectively the Mean Absolute
Percentage Error and the Mean Absolute Error of the tested
estimators in function of the inference time. ExtRa-Trees based
methods perform well when it comes to the actual estimation
accuracy, ranging from 9.60 to 16.59% in MAPE however
they are less performant when it comes to inference times
with regards to XGBoost and SVR performances. The SVRs
outperform all other methods when it comes to inference speed
with an average inference time of 0.03 µs. However it performs
the worst when it comes to both MAPE and MAE results. The

XGBoost Regressors seem to work well on both distortion
metrics while always maintaining average inference times
lower than 1 µs. Given these results among tested methods
XGboost Regressor seems to satisfy our requirements for a
practical VVC Video Decoding DVFS setup.

VI. CONCLUSION AND FUTURE WORK

This work paves the way to an actual VVC DVFS setup
in a video player. After studying the picture decoding time
statistics in a typical video distribution configuration. estima-
tors were tested with particular attention given to the practical
inference time needed. After multiple estimators comparison
it appears XGBoost Regressor seems to match the needs
for a practical DVFS setup in a real time decoder such as
OpenVVC achieving an MAPE accuracy of 10.04%, while
maintaining an inference time of 1.03 µs. There is still work to
be done considering the challenge of decoding time estimation
in a threaded environment when decoding multiple pictures in
parallel.
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