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Abstract—Image restoration aims at recovering a clean image
from degraded observations. This paper presents a novel Bayesian
framework for image restoration using a regularization-by-
denoising (RED) prior. It introduces a probabilistic counterpart to
the RED paradigm, and proposes a new Monte Carlo algorithm
to efficiently sample from the resulting posterior distribution.
The proposed method benefit from the recent developments of
deep learning-based denoisers. Extensive numerical experiments
illustrate the efficiency of the proposed method, showcasing its
competitive performance against state-of-the-art methods.

Index Terms—Inverse problems, Bayesian inference, deep
learning, Markov chain Monte Carlo algorithms.

I. INTRODUCTION

Image restoration (IR) is an inverse problem that aims at
recovering an unknown image x ∈ Rn from a degraded version
y ∈ Rm. The degraded image y is generally observed according
to the linear model y = Ax+ n where A is the degradation
matrix and n is assumed to be additive white Gaussian noise
(AWGN). By specifying this degradation matrix, various image
restoration tasks can be considered. The relationship between
x and y can be described by a statistical model prescribed by
the likelihood function

p(y|x) ∝ exp [−f(x,y)] (1)

where f(x,y) = ∥Ax− y∥22/(2σ2) is a fidelity term, i.e., it
accounts for the consistency of x with respect to the measured
data y. Since IR is generally an ill-posed or, at least, ill-
conditioned problem, the Bayesian paradigm assigns a prior
distribution to x that encapsulates the prior knowledge about
x. This distribution can be expressed as follows

p(x) ∝ exp [−βg(x)] (2)

where g : Rn → R stands for the regularization term with
regularization parameter β > 0. From the likelihood p(y|x)
and the prior p(x), the posterior distribution p(x|y) is derived
from the Bayes’ rule

p(x|y) ∝ exp [−f(x,y)− βg(x)] . (3)
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Bayesian inference exploits this posterior distribution to derive
various estimators. In particular, the maximum a posteriori
(MAP) solution is obtained by solving a minimization problem

x̂ = argmin
x

f(x,y) + βg(x). (4)

Traditional methods often use explicit regularizations g(·)
such as total variation (TV) promoting piecewise constant
behavior [1], Sobolev favoring smooth content [2], or ℓp-
norm with p ≤ 1 promoting sparsity [3], [4]. However their
design is subjective and may not fully capture complex image
structures. To overcome these limitations, Venkatakrishnan
et al. introduced the concept of plug-and-play (PnP) as an
implicit prior [5]. Most PnP approaches leverage a variable
splitting strategy such as half-quadratic splitting (HQS) [6]
or the alternating direction method of multipliers (ADMM)
[4], to explicitly exhibit a proximal mapping. This mapping
is subsequently interpreted as a denoising step, which allows
the underlying optimization subproblem to be replaced by an
off-the-shelf denoiser. PnP has demonstrated its effectiveness
in various imaging applications [7]–[10] by capitalizing on the
inherent benefits of deep neural network-based denoisers, such
as DnCNN [11] or DRUNet [7]. In the same spirit as PnP,
the regularization-by-denoising (RED) framework defines an
explicit image-adaptive Laplacian-based prior that relies solely
on the ability to perform a denoising task [12].

However, all the optimization algorithms mentioned above
treat x in a deterministic way and generally produce only point
estimates. An alternative to these approaches is to solve inverse
problems in a fully Bayesian framework. This latter treats x
as a random variable, offering a richer description thanks
to the posterior distribution p(x|y) which allows uncertainty
quantification to be performed [13], [14]. Markov chain Monte
Carlo (MCMC) methods are commonly used to explore this
distribution. However most of the works devoted to the
development of MCMC algorithms for inverse problems in
imaging rely on conventional model-based prior distributions.
Like their deterministic counterpart, they encode the expected
image characteristics on the basis of empirical arguments.
Recent works have explored data-driven regularization methods,
such as deep generative models like variational autoencoders or
normalizing flows [15], [16]. While a probabilistic counterpart



of PnP has been devised for Monte Carlo sampling [17], a
corresponding formulation for the RED paradigm is still lacking.
Although RED has demonstrated its superiority over PnP in a
variational context, its derivation within a Bayesian framework
to embed Monte Carlo algorithms remains unexplored.

This paper presents a framework for Bayesian inference
using a RED prior. Section II proposes a probabilistic
interpretation of RED, defining a new distribution that can
serve as a prior in Bayesian inversion tasks. This section also
introduces a new Monte Carlo algorithm specifically designed
to efficiently sample from the resulting posterior distribution.
Extensive numerical experiments described in Section III
show that the proposed approach competes favorably with
state-of-the-art variational and Monte Carlo methods on
ubiquitous inversion tasks. Section IV concludes the paper.

II. PROPOSED METHOD

Motivated by PnP, Romano et al. introduced regularization
by denoising (RED) [12], a PnP-like framework to exploit
denoisers as an implicit regularization. Given a denoiser
Dν : Rn → Rn with ν controlling the denoising strength,
the regularization term associated with RED is expressed as

gred(x) =
1

2
x⊤ (x− Dν(x)) . (5)

Although it offers great flexibility in the choice of denoisers
that can be used, RED requires to satisfy the so-called RED
conditions: Dν(·) should be differentiable, locally homoge-
neous, with a symmetric Jacobian and ensuring the passivity
condition [12], [18]. Under these conditions, the gradient of
gred(·) is expressed as the denoising residual

∇gred(x) = x− Dν(x) (6)

which bypasses the need to differentiate the denoising operator
itself. As PnP, RED appears to be particularly appealing since
it can take benefit from recently designed efficient denoisers,
boosted by the advances achieved by deep learning.

A. RED prior and posterior distributions

The formulation of RED-based inversion into a fully statisti-
cal framework requires the definition of a new prior distribution.
It is derived from the RED potential gred(·) as

pred(x) ∝ exp

[
−β

2
x⊤ (x− Dν(x))

]
. (7)

It is worth noting that the functional pred(·) does not necessarily
define a probability density function (pdf). For pred(·) to define
a proper pdf, some conditions must be met. This point is
discussed in what follows.

Assumption 1. The matrix Λ(x) = In −∇Dν(x), ∀x ∈ Rn,
has at least one non-zero eigenvalue.

This technical assumption is generally not restrictive, typi-
cally applicable except in trivial cases where all eigenvalues
of Λ(x̄) are zero, meaning x̄ is already a noise-free image
and requires no further denoising. The following result states

that this assumption combined with the RED conditions are
sufficient to guarantee that the function (7) defines a proper
distribution.

Proposition 1. If Assumption 1 and RED conditions hold, then
pred(·) in (7) defines a proper pdf.

Proof. Under the RED conditions, the RED prior (7) can be
rewritten according to the pseudo-quadratic form

pred(x) ∝ exp
[
−β

2x
⊤Λ(x)x

]
with Λ(x) = In −∇Dν(x). From Assumption 1, there exists
λmin > 0 such that λminIn ⪯ Λ(x), ∀x ∈ Rn. This implies
that λminx

⊤x ≤ x⊤Λ(x)x and∫
Rn

pred(x)dx ≤
∫
Rn

exp
[
−β

2λmin∥x∥2
]
dx < ∞.

Combining the RED prior pred(x) defined by (7) and the
likelihood function p(y|x) defined by (1), the RED posterior
distribution of interest is written as

π(x) ≜ p(x|y) ∝ exp [−f(x,y)− βgred(x)] . (8)

Sampling from this posterior is not easy, due to the use of the
denoiser. In the next section, we propose a dedicated Monte
Carlo algorithm that is particularly well suited to this task.

B. Monte Carlo sampling

The proposed sampling strategy consists first in subjecting
the target posterior (3) to an asymptotically exact data augmen-
tation (AXDA) [19]. In a fashion similar to HQS and ADMM,
this procedure introduces an auxiliary variable z ∈ Rn and
considers the augmented distribution

πρ(x, z) = p(x, z|y; ρ2) (9)

∝ exp

[
−f(x,y)− βgred(z)−

1

2ρ2
||x− z||2

]
where ρ is a positive parameter controlling the dissimilarity
between x and z. This data augmentation (9) is approximate in
the sense that the marginal distribution πρ(x) =

∫
Rn πρ(x, z)dz

coincides with the target posterior distribution π(x) only in
an asymptotic regime ρ → 0. Then the split Gibbs sampler
(SGS) [20], [21] alternatively samples according to the two
conditional distributions associated to the augmented posterior
πρ(x, z), and defined as follows

p(x|y, z; ρ2) ∝ exp

[
−f(x,y)− 1

2ρ2
||x− z||2

]
(10)

p(z|x; ρ2) ∝ exp

[
−βgred(z)−

1

2ρ2
||x− z||2

]
. (11)

This splitting allows the two terms f(·,y) and gred(·) defining
the full potential to be dissociated and involved into two distinct
conditional distributions, leading to a simpler and more efficient
sampling algorithm. Given the quadratic form of the data-fitting



term f(x,y) = 1
2σ2 ∥Ax − y∥22, the conditional distribution

(10) writes

p(x|y, z; ρ2) = N (x;µ(z),Q−1) (12)

where the precision matrix Q and the mean vector µ(·) are
Q =

1

σ2
A⊤A+

1

ρ2
I

µ(z) = Q−1

(
1

σ2
A⊤y +

1

ρ2
z

)
.

(13)

When the potential function is not quadratic, the proposed
framework can embed proximal Monte Carlo algorithms to
sample from (10), as in [22], [23]. Besides, one can notice
that equation (11) corresponds to the posterior distribution
associated with a Bayesian denoising task aimed at estimating
the quantity z from a noisy observation x contaminated by an
additive white Gaussian noise. Sampling from this conditional
is challenging, mainly due to the regularization potential gred(·)
which incorporates the denoiser Dν(·). We propose to take
advantage of the property (6) by sampling from (11) using a
Langevin Monte Carlo (LMC) step, i.e.,

z(t+1) = z(t) + γ∇log p
(
z(t) | x; ρ2

)
+
√
2γε(t)

= z(t) − γβ
(
z(t) − Dν(z

(t))
)

+
γ

ρ2

(
x− z(t)

)
+
√
2γε(t) (14)

where
{
ε(t)

}
t∈N is a sequence of independent and identically

distributed n-dimensional standard Gaussian random variables
and γ > 0 is a fixed step-size that controls a trade-off
between asymptotic accuracy and convergence speed. Due to
the discretization, the samples produced by (14) are biased and
not exactly distributed according to (11). This approximation
error could be mitigated at the extra cost of combining
(14) with a Metropolis-Hastings correction step, resulting in
a Metropolis adjusted Langevin algorithm [24]. This paper
rather adopts an LMC step without any MH adjustment.
The proposed algorithm, instantiated to sample according to
the RED posterior (8), is called Langevin-within-SGS using
RED priors (RED-LwSGS). The convergence of the proposed
algorithm is deeply investigated in the extended report [25].

III. EXPERIMENTS

A. Experimental setup

Experimental protocol – The proposed method is evaluated
using the Flickr Faces High Quality (FFHQ) [26] and Imagenet
[27] data sets, comprising 100 RGB images with dimensions
of 256 × 256 pixels (n = 2562). Two restoration tasks are
considered, namely image inpainting and single image super-
resolution. The corresponding tasks are specified as follows.
For image inpainting, the operator A stands for a binary
mask with m ≪ n. It is designed such that 80% of the total
pixels are randomly masked across the three color channels.
Conversely, for single image super-resolution, the operator A is
decomposed as A = SB where the n× n matrix B stands for
a spatially invariant Gaussian blur of size 7× 7 with standard

TABLE I
VALUES OF THE PARAMETERS USED DURING THE EXPERIMENTS.

NMC Nbi β γ ρ2 ρ21 ρ22

Inpainting 10000 4500 0.125 0.99
2β+1/ρ2

1.5 − −

Super-res. 12500 3500 1.0 0.8
2β+1/ρ22

− 0.2 1

deviation 1.6 and the operator S is a m× n binary matrix
which performs a regular subsampling of factor d = 4 in each
direction (i.e., m = nd2). For all tasks, the degraded images
have been corrupted by an additive Gaussian noise to reach
a SNR =30dB. All images are normalized to the range of [0, 1].

Compared methods – The proposed method has been compared
to several state-of-the-art optimization-based methods, includ-
ing ADMM with RED (RED-ADMM) [12], HQS algorithm
with RED (RED-HQS) and ADMM with a PnP regularization
(PnP-ADMM) [5]. It has also been compared to state-of-the-
art Monte Carlo methods, including the unadjusted Langevin
algorithm (ULA) with a PnP regularization (PnP-ULA) [17],
SGS with a TV regularization (TV-SP) [20] and Moreau-
Yosida ULA with TV regularization (TV-MYULA) [28]. We
have also considered a denoising diffusion model for PnP
image restoration (DiffPIR) [29]. To conduct fair comparisons,
the same pre-trained deep denoiser DRUNet [7] has been
employed for all PnP- and RED-based algorithms, namely RED-
ADMM, RED-HQS, PnP-ADMM, PnP-ULA and RED-LwSGS.
DRUNet has been taken directly from an open repository1

and applied without further fine-tuning for the inversion tasks.
The test images have never been seen by the model during
training, to avoid any bias due to potential over-fitting. It
is worth noting that the optimization-based methods provide
only point estimates of the restored images, following the
MAP estimation (4). Conversely, the results obtained by the
Monte Carlo methods and reported below correspond to the
minimum mean square error (MMSE) estimators approximated
by averaging the generated samples, i.e.,

x̂MMSE =
1

NMC −Nbi

NMC∑
t=Nbi+1

x(t) (15)

where Nbi is the number of burn-in iterations and NMC is the
total number of iterations.

When tackling the super-resolution task, the proposed
RED-LwSGS algorithm should be slightly adapted to follow
a double splitting [25]. The regularization parameter β and
the coupling parameters have been adjusted to reach the best
performance. Table I details the parameter values for all tasks.

Figures-of-merit – To quantitatively compare the algorithm
performance, two standard distortion metrics are considered,
namely Peak Signal-to-Noise Ratio (PSNR) (dB) and Structural
Similarity Index (SSIM) [30], with higher scores indicating

1Available online at https://github.com/cszn/DPIR

https://github.com/cszn/DPIR


Ground Truth Observation RED-ADMM PnP-ULA RED-LwSGS RED-LwSGS (std)
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Fig. 1. Images recovered by the compared methods for inpainting (top) and super-resolution (bottom).

better reconstruction. In addition, the Learned Perceptual Image
Patch Similarity (LPIPS) [31] is also considered as a proxy of
the human-perceived similarity. Additionally, all methods are
compared in terms of computational times when the algorithms
are implemented on a server equipped with 48 Intel 2.8GHz
CPU cores, 384GB RAM, and Nvidia A100 GPU.

B. Experimental results

Table II reports the average PSNR (dB), SSIM and LPIPS
results of different methods when performing image inpainting
and single image super-resolution. These results show that for
the both tasks, the proposed RED-LwSGS method performs
quite competitively. In the inpainting experiment, algorithms
relying on data-driven regularizations, such as RED-LwSGS
and PnP-ULA, appear to include more informative priors
when compared to TV-MYULA and TV-SP which rely to the
same model-based regularization. Concerning super-resolution,
a more challenging problem than inpainting, RED-LwSGS
exhibits similar performance to DiffPIR, RED-ADMM, and
RED-HQS when other MCMC algorithms are shown to be
ineffective. Table II also includes the computation times of each
compared algorithm for different restoration tasks. Noticeably,
the computational time of RED-LwSGD is similar to that of
TV-SP. It remains within a factor of less than 50 compared with
PnP-ADMM, RED-ADMM, RED-HQS and DiffPIR. The price
to pay to get quantified uncertainties appears very reasonable.

Visual comparisons of the results reached by RED-ADMM,
PnP-ADMM and RED-LwSGS can be conducted from Figure 1.
The proposed method produces high-quality, sharp and realistic
images for the two considered tasks. As already stated, the
proposed RED-LwSGS generates samples asymptotically dis-
tributed according to the posterior distribution. These samples
can be used to measure estimation uncertainty. Figure 1
illustrates this advantage by depicting the estimated pixel-wise
standard deviations obtained by the proposed algorithm. As
expected, pixels located within uniform regions exhibit lower
uncertainty, whereas those within textured areas, edges, or
intricate structures tend to be estimated with higher difficulty.

TABLE II
FFHQ DATASET: AVERAGE PERFORMANCE AND CORRESPONDING

STANDARD DEVIATIONS. BOLD: BEST SCORE, UNDERLINE: SECOND SCORE.

PSNR (dB)↑ SSIM↑ LPIPS↓ Times (s)↓

In
pa

in
tin

g
Observation 7.2069 0.0678 0.5831 -
RED-LwSGS 30.73±2.932 0.908±0.028 0.023±0.017 74±1

PnP-ULA 31.46±2.650 0.906±0.026 0.020±0.013 79±1
TV-MYULA 27.71±1.881 0.830±0.040 0.056±0.026 150±7

TV-SP 27.27±1.781 0.815±0.041 0.061±0.027 71±1
RED-ADMM 31.63±2.672 0.911±0.024 0.019±0.013 3±0

RED-HQS 31.36±2.293 0.901±0.025 0.021±0.014 2±0
PnP-ADMM 31.32±3.142 0.915±0.042 0.019±0.015 2±0

DiffPIR 31.26±2.25 0.890±0.025 0.021±0.005 2±0

Su
pe

r-
re

so
lu

tio
n

RED-LwSGS 30.43±2.161 0.872±0.036 0.035±0.021 115±25
PnP-ULA 29.01±2.013 0.847±0.037 0.050±0.024 128±40

TV-MYULA 28.99±2.017 0.847±0.037 0.049±0.024 133±26
TV-SP 28.94±2.019 0.846±0.037 0.051±0.024 112±23

RED-ADMM 30.49±2.222 0.875±0.036 0.034±0.020 3±1
RED-HQS 30.54±2.206 0.876±0.036 0.034±0.020 3±1

PnP-ADMM 30.13±2.184 0.867±0.037 0.035±0.021 3±1
DiffPIR 30.99±2.212 0.868±0.034 0.011±0.008 2±0

IV. CONCLUSION

This paper presented a Bayesian formulation of the reg-
ularization by denoising paradigm, enabling a data-driven
approach to define prior distributions to solve inversion tasks.
To sample from the resulting posterior distribution, a new
algorithm was developed. It leveraged an asymptotically exact
data augmentation scheme and could be interpreted as a
particular instance of the split Gibbs sampler (SGS). It provided
a comprehensive description of the posterior distribution,
enabling uncertainty to be quantified. Extensive numerical
experiments demonstrated that the proposed approach competed
favorably with state-of-the-art variational and Monte Carlo
methods when performing inpainting and super-resolution
tasks. This framework was shown to benefit from the most
recent advances in deep learning at the price of a reasonable
computational cost.
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