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1Université de Toulouse, IRIT/INP-ENSEEIHT, 31071 Toulouse, France
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ABSTRACT

This paper presents an online linear unmixing method lever-
aging Kalman filtering for real-time analysis of hyperspec-
tral data. Unlike traditional methods that require process-
ing of the entire data set, the proposed approach sequentially
updates pure spectra estimates as new data is acquired, that
is, on a spectrum-by-spectrum basis, thereby significantly re-
ducing computational cost. Experiments conducted on syn-
thetic and real Raman data sets demonstrate that the proposed
method achieves a favorable trade-off between unmixing ac-
curacy and computational efficiency, making it suitable for
real-time hyperspectral imaging applications.

Index Terms— multivariate curve resolution, pure spec-
tra extraction, online processing, Kalman filter

1. INTRODUCTION

Hyperspectral (HS) imaging is a technology used for sam-
ple analysis with applications in various fields [1, 2, 3]. Al-
though HS sensors have good spectral resolution, they suffer
from limited spatial resolution, leading to the measurement
of mixed spectra and making their interpretation challenging.
Under a linear mixing assumption, the observations can be
modeled as follows

D = CS⊺ +E, (1)

where D ∈ RN×L
+ contains N observations of spectral di-

mension L. Matrices S ∈ RL×K
+ , C ∈ RN×K

+ , and E ∈
RN×L represent the pure spectra, concentrations and error
term, respectively, with K denoting the number of pure spec-
tra. For analysis purposes, we seek to estimate S and C from
the measured spectra D. This problem, termed spectral un-
mixing (SU) or multivariate curve resolution, has been tack-
led in several ways.
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A well-known method addressing the SU problem is the
multivariate curve resolution (MCR-ALS)[4]. MCR-ALS es-
timates S and C via alternating minimization, fixing one vari-
able at a time and solving the resulting problem until conver-
gence. In addition to enforcing positivity on these variables,
other constraints can be incorporated, such as unimodality,
closure, among others.

Alternative SU approaches have been proposed in the re-
mote sensing literature, including geometric methods. Under
the sum-to-one (closure) constraint, observations lie within a
simplex whose vertices are the PS. This has led to a class of
geometric methods which assume the presence of pure spec-
tra among the data. Known methods making this assumption
are vertex component analysis (VCA) [5] and N-finder (N-
FINDR) [6]. However, this assumption is often violated in
real-world scenarios, leading to alternative methods such
as simplex identification via split augmented Lagrangian
(SISAL) [7] and minimum volume simplex analysis (MVSA)
[8], which seek to identify the smallest simplex enclosing the
observations.

The effectiveness of SU methods is closely tied to the
quality of data acquisition. However, obtaining high-quality
data can be challenging, as it often requires significant time
and may expose biological samples to harmful high-power
laser. Recent innovations [9, 10] have aimed to overcome
these hurdles by focusing on essential spectral pixels (ESs),
which represent the most distinct spectral components. The
authors in [9] proposed a Fourier domain approach to identify
ESs, which has proven to be well-suited for online processing.

SU methods typically operate in an offline mode, requir-
ing access to the full data set, which is impractical for real-
time applications such as in situ monitoring or fast-paced bi-
ological imaging. To fill this gap, this paper aims at deriving
an online SU algorithm able to operate on-the-fly. On-the-fly
SU can be interpreted as an online source separation prob-
lem. Existing methods for achieving this task include online
dictionary learning (DL) [11] and variants [12, 13]. These al-
gorithms update the basis matrix (analogous to PS in SU) as



new data are collected. However, they do not incorporate di-
mensionality reduction, which raises complexity issues when
dealing with HS data. Additionally, experiments indicate that
the online DL scheme proposed in [11] underperforms in the
context of online SU due to a suboptimal update rule.

This paper proposes an online SU method based on the
Kalman filter (KF) [14]. This method, referred to as KF-OSU,
addresses the aforementioned limitations of traditional SU ap-
proaches by allowing dynamic updates of pure spectra (PS)
estimates. Exploiting the concept of ES, the proposed method
incorporates Fourier-based dimension reduction to enhance
computational efficiency, making it well suited for real-time
applications.

2. PROPOSED METHOD

This work assumes that the number K of PS is known a pri-
ori. In addition, the mixing concentrations are assumed to
be subject to a sum-to-one constraint. It removes the scaling
ambiguity [15] and allows interpreting concentrations as pro-
portions. Note that this assumption is not very restrictive in
the sense that it can be imposed via a normalization of the
data.

2.1. The online mixing model

In an online context, one wants to update the pure spectra es-
timates as a new spectrum is acquired without reprocessing
all measured spectra so far. To achieve this, we introduce a
stochastic process of the form Sn = fn(Sn−1) to model the
evolution of the estimates, where n indexes the sequence of
observations. This approach enables the update of the PS es-
timates, leveraging the information from the newly acquired
spectrum dn and the current estimates Ŝn−1, without need
of reprocessing all previous observations. We therefore intro-
duce the following online mixing model:

dn = Sncn + en, (2)

Sn = Sn−1 + V n, (3)

where en ∼ N (0, σ2
e IL) represents the observation noise,

IL the identity matrix of size L and (V n)ij
i.i.d.∼ N (0, σ2

v) is
the process noise. Eq. (3) implies that the expectation of the
PS at time index n is equal to the one at n − 1, which is a
natural assumption.

The PS update can then be tackled within a Bayesian
framework by deriving the conditional probability density
function of Sn given the observations up to time index n, i.e.,
D≤n = [d1, . . . ,dn].

2.2. Online estimation of pure spectra

The concentrations are assumed to be known in this para-
graph; their estimation will be discussed later. After vector-
izing the online mixing model, using the vec operator which

stacks the columns of a matrix, the observation (2) and pro-
cess (3) models write

sn = sn−1 + vn, (4)
dn = Gnsn + en, (5)

with vec(Dncn) = (c⊺n⊗ IL)vec(Dn) = Gndn, where ⊗
is the Kronecker product operator. The sought posterior dis-
tribution is

p(sn|D≤n) ∝ p(dn|sn) p(sn|D≤n−1),

which is Gaussian, thus fully defined by its mean and covari-
ance matrix, which can be recursively computed through the
KF as described in Algo. 1. The minimum mean square es-
timate of the PS is then defined as the mean of this Gaussian
distribution.

The canonical form of KF imposes no constraint on the
estimates, as can be seen in Algo. 1. In the SU context, the
PS are expected to satisfy a positivity constraint, which can be
easily achieved by setting all negative values to 0. However,
Algo. 1 requires a matrix inversion of size proportional to the
spectral dimension. This may not be computationally suitable
for real-time processing due to the high spectral dimension.
We thus introduce a dimension reduction step, discussed in
the next section.

Algorithm 1: KF
Input : Newly measured spectrum dn, posterior

mean µn−1 and covariance matrix Σn−1 at
time instant (n− 1), observation matrix
Gn, uncertainty level σ2

v , model noise
variance σ2

e

// Predict the prior covariance matrix, compute the error
1 Σn−1/2 ← Σn−1 + σ2

vIKL

2 rn ← dn −Gnµn−1

// Compute the innovation covariance and optimal gain
3 Zn ← GnΣn−1/2G

⊺
n + σ2

eIL

4 Kn ← Σn−1/2G
⊺
nZ

−1
n

// Update the posterior mean and covariance matrix
5 µn ← µn−1 +Knrn
6 Σn ← (IL −KnGn)Σn−1/2

Output: Posterior mean µn and covariance matrix
Σn at time instant n.

2.3. Constrained PS estimation in a low-dimensional sub-
space

To alleviate the computational burden, we perform a dimen-
sionality reduction via the Discrete Fourier Transform (DFT).
The reduced version of each spectrum dn is computed as fol-
lows

d̃n = [Re(F ⊺dn) Im(F ⊺dn)]
⊺, (6)



where F ∈ CL×M (M ≪ L) contains M columns of the DFT

matrix chosen so that E
[∥∥∥d̃n

∥∥∥2
2

]
≥ αE

[
∥dn∥22

]
for some

α ∈ (0, 1]. Thanks to the linearity of the DFT, the models
introduced in (4) and (5) are still valid, and so is the PS update
through Algo. 1. However, as the KF operates in the lower-
dimensional subspace, we need to constrain the PS estimates
ˆ̃Sn such that their representation in the original subspace are
nonnegative. We formulate this task as a regression problem,
whose derivation is explained in what follows.

As observations d̃1, . . . , d̃n are acquired, KF updates
the estimate of the PS. This, produces a sequence of esti-
mates ˆ̃S1, . . . ,

ˆ̃Sn. Referring to the online mixing model,
we have d̃i ≈ ˆ̃Snci for i = 1, . . . , n. Conversely, we can
express ˆ̃Sn as a linear combination of the spectra (d̃i). That
is, we can find a regression matrix Rn ∈ RP×K such that
ˆ̃Sn ≈ D̃1:PRn, where D̃1:P contains some P spectra se-
lected among the spectra (d̃i). Owing to linearity of the
DFT, we can enforce the positivity constraint by solving the
following regression problem

min
Rn

∥∥∥D̃1:PRn − ˆ̃Sn

∥∥∥2
F

s. t. D1:PRn ≥ 0. (7)

In this way, the constrained PS estimates is Ŝ
(+)

n = D1:P R̂n,
where R̂n is the solution to (7).

2.4. Concentration estimation

When a new spectrum dn is acquired, it is necessary to deter-
mine the associated concentration cn to apply the KF. Draw-
ing inspiration from the literature on online dictionary learn-
ing [11, 12, 13], we estimate cn by solving the following
problem

min
c

∥∥∥dn − Ŝ
(+)

n c
∥∥∥2
2

s. t. c ≥ 0, c⊺1 = 1 (8)

In this study, the problem defined by (8) is solved using the
Sparse Unmixing by Variable Splitting and Augmented La-
grangian (SUnSAL) method [16].

2.5. The proposed online SU algorithm

The proposed algorithm is outlined in Algo. 2. For simplicity
of presentation, the symbols for estimates have been omit-
ted. The initial constrained PS estimate S(+)

p can be obtained
using any offline unmixing method applied to the first P ob-
servations.

3. EXPERIMENTS

We evaluate the proposed method on synthetic and real Ra-
man data sets. We compare our method against three baseline

Algorithm 2: KF-OSU
Input : K (PS count), P (regressors count), spectra

D1:P , noise variances σ2
e , σ

2
v ,F , initial PS

estimate S(+)
p

1 n← P
// Perform dimensionality reduction (see (6))

2 S̃
(+)

n ←
[
Im(F ⊺S(+)

n ) Im(F ⊺S(+)
n )

]⊺
3 µ̃n ← vec

(
S̃

(+)

n

)
4 Σn ← σ2

vI2KM

5 repeat
6 n← n+ 1

// Estimate concentration cn and observation matrix
Gn

7 cn ← SUnSAL
(
dn,S

(+)
n−1

)
8 Gn ← c⊺n⊗ I2M

// Perform dimensionality reduction (see (6))

9 d̃n ← [Im(F ⊺dn) Im(F ⊺dn)]
⊺

// Update the posterior distribution

10 (µ̃n,Σn)← KF
(
d̃n, µ̃n−1,Σn−1,Gn, σ

2
v , σ

2
e

)
11 S̃n ← unvec(µ̃n)

// Estimate the regression matrix by solving ((7))

12 Rn ← solve regression
(
D1:P , D̃1:P , S̃n

)
// Compute the constrained PS estimate in the original

space and perform dimensionality reduction

13 S(+)
n ←D1:PRn

14 S̃
(+)

n ←
[
Im(F ⊺S(+)

n ) Im(F ⊺S(+)
n )

]⊺
// Update the posterior mean

15 µ̃n ← vec
(
S̃

(+)

n

)
16 until end of acquisition;

Output: Estimated PS matrix S(+)
n .

algorithms: MCR-ALS, VCA, and SISAL. These methods
are used in an online setting by running them on the entire ac-
quired spectra when a new one is measured. We first discuss
the algorithm ability to estimate PS, then, their running time.

3.1. Data sets overview

Synthetic data sets: 220 data sets (5000 spectra each) were
generated according to the model (1) with 4 spectra. Mix-
ture concentrations were sampled from a Dirichlet distribu-
tion with parameter (1, 1, 1, 1), and spectra with over 70% of
one primary spectrum were discarded. White Gaussian noise
was added to achieve a 30dB signal-to-noise ratio (SNR).
Real data set: A 60×60×253 Raman image of an oil-in-water
emulsion was acquired using a modified Instruments SA Ex-
plorer. Excitation was conducted at 633nm using a 20mW



HeNe laser, delivering around 5mW of power to the sample
(for further details, refer to [17]). After unfolding, a 3600 ×
253 matrix was obtained, along with 219 copies constructed
by permuting the rows (i.e., the order of the acquired spectra).

3.2. Evaluation metrics

The performance of each method is assessed using the
average spectral angle distance (aSAD), the root-mean-
square error (RMSE), and the reconstruction error (RE) de-
fined as aSAD = 1

K

∑K
k=1 arccos

(
ŝ⊺ksk

∥ŝk∥2∥sk∥2

)
, RMSE =√

1
KN

∥∥∥C − Ĉ
∥∥∥2

F
, and RE =

∥Y −ĈŜ
⊺∥F

∥Y ∥F
, respectively. The

matrix Ŝ = [ŝ1, . . . , ŝk] (resp. Ĉ) contains the estimated
PS (resp. concentrations). These metrics assess PS estimate
accuracy and overall unmixing performance.

3.3. Results and discussion

Fig. 1 shows that VCA underperforms due to the absence of
PS in the data, whereas KF-OSU, despite exhibiting slightly
worse performance compared to MCR-ALS and SISAL,
achieves low aSAD and RMSE values. This slightly worse
lower performance can be attributed to the SNR, which af-
fects KF-OSU more significantly than MCR-ALS and SISAL.
Indeed, KF-OSU updates the PS based solely on the most re-
cent observation, whereas MCR-ALS and SISAL leverage all
acquired spectra, which explains their higher accuracy.

In the real data analysis (Fig. 2), all methods show low RE
value, indicating a good spectra reconstruction and robustness
to acquisition order.

We now discuss the runtime comparison. The experi-
ments were conducted on a laptop with an Intel Core i7-
8565U CPU (1.80GHz) and 8GB of RAM. The results
demonstrate that KF-OSU is computationally efficient, re-
quiring an average of 0.006 seconds per update for synthetic
data sets and 0.005 seconds for real data set. In contrast,
MCR-ALS, VCA, and SISAL were all slower. For the syn-
thetic data sets, MCR-ALS took 1.9 seconds, VCA 0.06 sec-
onds, and SISAL 0.17 seconds per update. For the real data
set, MCR-ALS took 0.33 seconds, while VCA and SISAL
required 0.04 and 0.1 seconds, respectively.

4. CONCLUSION

This paper introduces an on-the-fly spectral unmixing method
that leverages Kalman filtering for real-time pure spectra ex-
traction. The method is shown to be computationally effi-
cient while demonstrating good performance in terms of pure
spectra estimation, making it suitable for applications where
real-time processing is required. Future developments could
involve extending the proposed approach to handle nonlinear
mixing models. A direction to tackle it could be to linearize
the model and or to use variants of the Kalman filter, e.g.,

the extended Kalman filter, the unscented Kalman filter, the
ensemble Kalman filter.
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Fig. 1: Synthetic data sets: aSAD (top) and RMSE (bottom) vs. time index. Results averaged over 220 data sets; shaded areas
indicate one standard deviation.
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