
HAL Id: hal-04774754
https://hal.science/hal-04774754v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Maximum of Inter-Visit Times to Starving
Random Walks

Léo Régnier, Maxim Dolgushev, Olivier Bénichou

To cite this version:
Léo Régnier, Maxim Dolgushev, Olivier Bénichou. From Maximum of Inter-Visit Times to
Starving Random Walks. Physical Review Letters, 2024, 132 (12), pp.127101. �10.1103/Phys-
RevLett.132.127101�. �hal-04774754�

https://hal.science/hal-04774754v1
https://hal.archives-ouvertes.fr


From Maximum of Inter-visit Times to Starving Random Walks

Léo Régnier,1 Maxim Dolgushev,1 and Olivier Bénichou1

1Laboratoire de Physique Théorique de la Matière Condensée,
CNRS/Sorbonne University, 4 Place Jussieu, 75005 Paris, France

Very recently, a fundamental observable has been introduced and analyzed to quantify the explo-
ration of random walks: the time τk required for a random walk to find a site that it never visited
previously, when the walk has already visited k distinct sites. Here, we tackle the natural issue of the
statistics of Mn, the longest duration out of τ0, . . . , τn−1. This problem belongs to the active field
of extreme value statistics, with the difficulty that the random variables τk are both correlated and
non-identically distributed. Beyond this fundamental aspect, we show that the asymptotic determi-
nation of the statistics of Mn finds explicit applications in foraging theory and allows us to solve the
open d-dimensional starving random walk problem, in which each site of a lattice initially contains
one food unit, consumed upon visit by the random walker, which can travel S steps without food
before starving. Processes of diverse nature, including regular diffusion, anomalous diffusion, and
diffusion in disordered media and fractals, share common properties within the same universality
classes.

The territory covered by random walks (RWs) consti-
tutes a fundamental property with significant implica-
tions in quantifying the efficiency of diverse stochastic
exploration processes, ranging from animal foraging be-
haviors [1] to the trapping of diffusing molecules [2]. Usu-
ally, this explored territory is quantified by the number
N(t) of distinct sites visited at time t [3]. Its average,
variance and, in some cases, full distribution have been
determined analytically [4–7]. However, since N(t) is a
cumulative quantity, it does not describe the detailed dy-
namics of the exploration process. In particular, it does
not differentiate between trajectories in which new sites
are discovered at an almost regular rate, and those in
which they are essentially found towards the end of ex-
ploration, corresponding to long periods of time with no
new sites discovered.

Very recently, as a first step to account for this dis-
parity between random trajectories, another fundamen-
tal quantity was introduced [8, 9]: the time τk required
for the RW to find a site that it never visited previously
when k distinct sites have already been visited, see Fig. 1.
These random variables are indeed very useful because
they encompass the full dynamics of the visitation statis-
tics [8–10]. The knowledge of the statistics of a given τk
variable is however insufficient to characterize the long
periods of time with no new sites discovered, which can
deeply impact the exploration process (see Fig. 1a).

In this Letter, we provide a quantitative character-
ization of these long time periods by determining the
asymptotic statistics of the maximum Mn of the τk,
Mn = max(τ0, . . . , τn−1) [11]. This fundamental ques-
tion belongs to the domain of extreme value statistics
(EVS), which has attracted considerable attention in re-
cent years due to its connection with the statistics of ex-
treme events [12–15]. Applications are found in fields as
diverse as disordered systems [16, 17], random matrices
[18, 19] and search algorithms [20–22]. Here, the tech-
nical difficulty is that the territory visited by the RW is
incessantly updated. As a result, the random variables
τk are both correlated and non-identically distributed.

FIG. 1. Inter-visit Times (a) The inter-visit times {τk}
(horizontal steps), defined as the time intervals between in-
crements of the number N(t) of distinct sites visited, control
the exploration process. After visiting N(t) = 1000 sites the
discovery of the 1001st new site can be either ”short” (green
arrow) or ”long” (red arrow). Here, we determine the statis-
tics of the maximum Mn of {τk}k<n.
The starving RW model. (b) Each site of a lattice ini-
tially contains one food unit, consumed upon visit by the RW,
which can travel S steps without food before starving. Two
sample trajectories (green and red) associated with the evolu-
tion scenarios of N(t) in (a) are displayed. A forager (yellow)
has eaten N(t) = 1000 food units (the domain depleted of
food is black, and S = 50). Following the green trajectory,
it finds rapidly a new food unit (green square). On the red
trajectory, it fails to find food before starving (at red cross).

Importantly, these characteristics are not given a priori
but are generated by the RW itself.

Beyond this theoretical aspect, the determination of
the statistics of Mn finds explicit applications in forag-
ing theory, particularly in the context of the starving RW
model [23–28], which describes depletion-controlled star-
vation of a RW forager. In the original version of this
model [24], the RW survives only if the time elapsed un-
til a new food-containing site is visited is less than an
intrinsic metabolic time S (see Fig. 1b). Such a situa-
tion is commonly encountered at various scales [29], rang-
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ing from microscopic organisms, such as bacteria [30],
to larger creatures like insects, foraging mammals [31]
and robots [32]. So far, the analytical results on starv-
ing RWs have essentially been limited to one dimension
(resp. infinite dimension, corresponding to a mean field
solution), where it was found that: (i) the mean number
⟨NS⟩ of units of food collected at starvation is propor-
tional to S1/2 (resp. exponential in S), (ii) the mean
lifetime ⟨TS⟩ is proportional to S (resp. exponential in
S), and (iii) the distributions of these two observables ad-
mit a single-parameter scaling. Since the original model
[24], several lines of extension have been considered, in-
cluding resource renewal [33], long-range food detection
[34, 35], penalties on long moves [36], switching on several
modes of motion [37]. The only studies in higher dimen-
sions concern the mean-field approach mentioned above
[24, 25], numerical simulations [34, 35] and a scaling re-
sult on the mean lifetime ⟨TS⟩ ∝ S2 in the particular
case of the 2D situation [9].

Here, we provide analytical results for the d-
dimensional starving nearest-neighbor RW model, which
constitutes an open problem. Our starting point is the
observation that the knowledge of the statistics of the
maximum Mn is a key step to describe the dynamics
of a starving RW. Indeed, a starving RW is still alive
after n units of food have been collected if (and only
if) Mn < S. In this Letter, we derive analytically the
long-time asymptotic distribution of, first, Mn and, sec-
ond, key observables pertaining to starving RWs: the
lifetime TS , the number NS of units of food collected

when starvation occurs, and the position R⃗S of the walker
when it starves. A wide range of processes, including d-
dimensional regular diffusion, anomalous diffusion, and
diffusion in disordered media and fractals, fall into the
same universality classes.

Maximum of the inter-visit times.— We consider the
general situation of a discrete-time symmetric Marko-
vian RW on a lattice of fractal dimension df (df being
equal to d in the particular case of a d dimensional Eu-
clidean lattice). The RW dynamics is characterized by
the walk dimension dw given by the typical displacement
r(t) ∝ t1/dw after t steps. Recurrent (shown [4, 38] to be
obtained for µ ≡ df/dw < 1) and marginal (µ = 1) RWs
visit any site with probability one, whereas transient
(µ > 1) RWs have a finite probability not to visit it. We
define by τk the time elapsed between the visits to the kth

and the (k+1)st distinct sites [9, 24] and byMn the maxi-
mum of the inter-visit times τk,Mn = max(τ0, . . . , τn−1).
We report here that the rescaled random variable

xn =

{
Mn/ ⟨Mn⟩ , µ ≤ 1,

(Mn − ⟨Mn⟩)/
√
Var(Mn), µ > 1,

(1)

where the scalings with n of the averages and standard

deviations of Mn are given by

⟨Mn⟩ ∝





n1/µ µ < 1√
n µ = 1

(lnn)1/µ+1 µ > 1

(2)

and

√
Var(Mn) ∝





n1/µ µ < 1√
n µ = 1

(lnn)1/µ µ > 1,

(3)

is asymptotically (n → ∞) distributed according to a
cumulative distribution function (CDF) Ξµ(x). Even if
process-dependent, Ξµ(x) displays the following universal
asymptotic behaviors, depending on the nature of explo-
ration, recurrent, marginal or transient:
For recurrent RWs (µ < 1),

− ln Ξµ(x) ∝
{
x−µ for x≪ 1,

E1(Ax) ∝ e−Ax/x for x≫ 1,
(4)

where E1 is the exponential integral function and A is a
process-dependent constant.
For marginal RWs (µ = 1), the distribution obeys (up

to log corrections)

− ln Ξ1(x) ∝
{
x−2 for x≪ 1

e−Bx1/2

for x≫ 1
(5)

where B is a process-dependent constant.
For transient RWs, Ξµ(x) does not depend on µ and is

given by the celebrated Gumbel distribution [14]

− ln Ξ∞(x) = exp
[
−πx/

√
6− γE

]
(6)

where γE is the Euler constant.
Striking qualitative differences between recurrent and

transient RWs emerge: while for recurrent and marginal
RWs the standard deviation of Mn is always compara-
ble to its mean value, this is not the case of transient
RWs for which the standard deviation of Mn is negligi-
ble in comparison to its mean. As a consequence, Mn

becomes asymptotically deterministic in the latter case.
Besides the average and variance, the asymptotic dis-
tribution of the rescaled maximum in the recurrent and
marginal cases is very different from the usual Gumbel
distribution for random variables with stretched expo-
nential tails distribution, as can be seen by comparing
Eq. (4) and (5) to Eq. (6). As shown below, this is the
signature of strong aging effects for µ ≤ 1.
We now sketch the main steps involved in obtaining

these results (see SM for detailed derivations [39]). We
emphasize that the treatment of the recurrent, marginal
and transient cases have to be differentiated due to the
disparities in the visitation process, as described in [9].
The calculations are based on the hypothesis that the
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events {τk < S} (with k ≤ n − 1) are asymptotically
(n → ∞) effectively independent. This key hypothe-
sis is extensively checked numerically in SM, and self-
consistently analytically checked below. The effective in-
dependence of τk allows to express the CDF of Mn via
the CDF of τk:

P(Mn ≤ T ) ≈
n−1∏

k=0

P(τk ≤ T )

≈ exp

[
−

n−1∑

k=0

∫ ∞

T

Fk(τ)dτ

]
, (7)

where Fk(τ) is the probability distribution function of
τk, whose asymptotics were determined recently in [9]
(see also SM for refined characterization in the marginal
case).

For recurrent walks (µ < 1), the probability distri-
bution function of τk presents a scaling form, Fk(τ) =
k−1−1/µψ(τ/k1/µ), where ψ(u) is algebraic at small u
and exponential at large u [9]. This implies that the
CDF of Mn also has a scaling form, since

− lnP(Mn ≤ T ) ≈
n−1∑

k=0

∫ ∞

T

k−1−1/µψ(τ/k1/µ)dτ

≈
∫ n/Tµ

0

dv

v

∫ ∞

v−1/µ

ψ(u)du = − ln Ξµ(T/n
1/µ). (8)

This leads to the asymptotics of Eq. (4).
For marginal walks (µ = 1), the CDF of Mn is

shown to be dominated by the behaviour of Fk(τ) in

the regime
√
k ∼ τ corresponding to the typical time

needed to exit the largest fully visited spherical do-
main, determined in [9, 40]. Extending this approach
to the determination of the scaling of the exit time of the
next largest fully visited domains, we show in SM that
Fk(τ) = k−3/2ψ(τ/

√
k) with ψ(u) ∝ u−3 at small u and

− lnψ(u) ∝ √
u at large u (up to log corrections). In

turn, this scaling form allows one to adapt the steps of
Eq. (8) to the marginal case. We obtain that the CDF
of Mn/

√
n has asymptotically a single scaling parame-

ter (⟨Mn⟩ ∼
√

Var(Mn) ∼
√
n up to log prefactors) and

converges to the cumulative distribution Ξ1 of Eq. (5).
For transient walks (µ > 1), for times τ ≪ k1+1/µ,

the probability distribution function of τk is independent
of k and stretched exponentially distributed of exponent
µ

1+µ [9]. By showing that the CDF of Mn is controlled

by this early time regime of Fk(τ), we obtain that the
limit distribution (n → ∞) is the Gumbel law displayed
in Eq. (6).

Finally, we provide a self-consistent analytical check
of the effective independence of the {τk} used in Eq. (7).
This constitutes an extension of the argument of Ref. [43],
originally given for Gaussian correlated but identically
distributed random variables.The idea is that one can ne-
glect the effect of the correlations on the statistics of the
maximum if these correlations are typically much smaller

FIG. 2. Maximum of inter-visit times. (a)-(c) Mn CDF
as a function of the rescaled variable xn defined in Eq. (1)
(insets show them at small xn values) and (a′)-(c′) the corre-
sponding averages (blue circles) and standard deviations (or-
ange squares) of Mn. The black dashed lines correspond to
the best fit of Eqs. (2) to (6). Different universality classes are
represented by (a) RWs on a percolation cluster, µ ≈ 0.659
(recurrent), n = 1389, 3727 and 104; (b) nearest neighbour
2D RWs, µ = 1 (marginal), n ≈ 2·107, 108 and 3·108 [41]; (c)
nearest neighbour 3D RWs, µ = 3/2 (transient), n ≈ 4 · 104,
2 · 105 and 106 [42]. Increasing values of n are represented by
blue circles, orange stars, and green squares.

than the maximum’s fluctuations induced by the random
variables without these correlations.
To make this criteria quantitative, we consider the typ-
ical correlation in the n random variables {τk}k<n,√
Cov(τn/4, τ3n/4), and compare them to the maximum’s

standard deviation,
√

Var(Mn), supposing that these
τk are independent, which are given by (3). An up-
per bound of the inter visit times correlation is given
by the Cauchy-Schwarz inequality, Cov(τn/4, τ3n/4) ≤√
Var(τn/4)Var(τ3n/4) ∝ Var(τn), which is known from

[9] for any value of Markovian RW. For recurrent RWs,
this leads to

Cov(τn/4, τ3n/4) ≤ n2/µ−1 ≪ n2/µ ∼ Var(Mn) (9)

and for marginal RWs, to

Cov(τn/4, τ3n/4) ≤
√
n≪ n ∼ Var(Mn). (10)

For transient RWs the variance of the inter visit time is
constant so that

Cov(τn/4, τ3n/4) ≤ cst. ≪ (lnn)
2/µ ∼ Var(Mn). (11)

We conclude that, in all cases, the typical fluctuations
dominate the typical cross-correlations for all RW classes
so that {τk} are effectively independent and hence Eq. (7)
is self-consistently checked. Note that, contrary to the
central limit theorem where long-range correlations can
deeply impact the asymptotic law of the sum of n ran-
dom variables, the maximum is less sensitive to cross-
correlations as its fluctuations are relatively (compared
to the mean) larger. As an example, for n i.i.d. random
variables with finite variance, while the relative fluctua-
tions of the sum decays as 1/

√
n, the relative fluctuations

of the maximum decay logarithmically as 1/ lnn [14].
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FIG. 3. Lifetime of a starving RW. (a)-(c) TS distribu-
tions as a function of the rescaled variable x ≡ TS/⟨TS⟩ (the
insets show the behavior at small x-values) and (a′)-(c′) the
corresponding averages (blue circles) and standard deviations
(orange squares) of TS . The black dashed lines correspond
to the best fit of the theory. Different universality classes are
represented by (a) RWs on a percolation cluster, µ ≈ 0.659
(recurrent), S = 14667, 31622 and 68129; (b) nearest neigh-
bour 2D RWs, µ = 1 (marginal), S = 2335, 4832 and 104; (c)
nearest neighbour 3D RWs, µ = 3/2 (transient), S = 12, 17
and 22. Increasing values of S are represented by blue circles,
orange stars, and green squares.

Further validation of our results is provided in Fig. 2,
in which we numerically test Eqs. (2) to (6) on repre-
sentative recurrent, marginal and transient RW models.
We see a very good agreement between our analytical
predictions and numerical simulations. The diversity of
these examples demonstrates the broad applicability of
our theoretical approach.

Starving Random Walks.— We now show that the
knowledge of the CDF ofMn is an essential tool to quan-
tify the interplay between the amount of the resource con-
sumed and the lifetime of a starving RW, as introduced
above. We first consider the number of sites visited at
starvation NS , which is a key observable to quantify the
exploration efficiency of starving RWs [24]. At starva-
tion, at least n sites have been visited if and only if all
the first n times between two visits are strictly less than
the metabolic time S, τ0 < S, . . . , τn−1 < S. In other
words,

P(NS ≥ n) = P(Mn < S), (12)

so that the distribution of NS is directly deduced from
that of Mn. In particular, we obtain (see SM for deriva-
tion and numerical verification) the scaling with S of the
first two cumulants of NS ,

⟨NS⟩ ,
√
Var(NS) ∝





Sµ µ < 1

S2 µ = 1

exp
[
(S/a)µ/(1+µ)

]
µ > 1

(13)

where a is a positive constant.
Next, the distribution of NS gives access to that of

the lifetime TS . The lifetime TS is given by the sum
of the inter-visit times τ̃k (k < n) corresponding to τk

conditioned on being lesser than the time S to starve.
With this the distribution of TS reads:

P(TS = t)

=

∫ ∞

0

dnP

(
NS−1∑

k=0

τk + S = t|NS = n

)
P(NS = n)

≈
∫ ∞

0

dnδ (n ⟨τ̃∞⟩+ S − t)P(NS = n).

where we have used that, for large k, the distribution
of τ̃k becomes independent of k and the sum follows the

law of large numbers,
n−1∑
k=0

⟨τ̃k⟩ ∼ n lim
k→∞

⟨τ̃k⟩ = n ⟨τ̃∞⟩
(see SM for details and numerical checks). This leads to
the tail distribution:

P(TS ≥ t) ≈ P
(
NS ≥ t− S

⟨τ̃∞⟩

)
. (14)

In particular, the scaling with S of the first two cumu-
lants of the lifetime TS is given by

⟨TS⟩ ,
√

Var(TS) ∝





S µ < 1

S2 µ = 1

exp
[
(S/a)µ/(1+µ)

]
µ > 1

(15)

In Fig. 3 we validate Eqs. (14)-(15) via simulations.
These results have strong consequences in the important
case of a diffusing particle in dimension 1, 2 and 3:
a given metabolic time S leads to radically different
lifetimes depending on the space dimension (see SM
Fig. S7 for comparison of the average lifetimes).

We show in SM that the knowledge of the lifetime dis-
tribution allows one to obtain the distribution of the po-

sition of the forager at starvation, denoted by R⃗S and
defined for the isotropic RWs considered here by its norm
RS . In particular, we find that (up to log corrections in
marginal case)

⟨RS⟩ ,
√

Var(RS) ∝





S1/dw µ < 1

S2/dw µ = 1

exp
[

1
dw

(S
a

) µ
1+µ

]
µ > 1.

(16)

Several comments on Eqs. (13)-(16), echoing the re-
sults of the 1d nearest neighbour starving RW [24, 25]
case recalled in the introduction, are in order. (i) The
fluctuations of NS , TS and RS are relevant for all RWs
classes, as the average and the standard deviation grow
similarly. This highlights the importance of the distri-
bution, Eq. (12) (and Eqs. (1)-(6)). (ii) Averages of
these observables grow algebraically for recurrent (and
marginal) RWs. This generalizes the case of a regular
1d starving RW to the case of general recurrent RWs.
Strikingly, the mean lifetime is linear with the starvation
index S for all recurrent walks (independently of µ). On
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the other hand, the averages of NS , TS and RS become
stretch-exponentially large for transient RWs. Note that
the mean-field exponential behavior is, as it should, re-
covered in the limit df → ∞. (iii) The distributions of all
these observables obey asymptotically a single-parameter
scaling for any value of µ. This extends the result known
for dw = 2 in the 1d case [24, 25] to general Markovian
starving RWs.

We have shown that the maximum of the inter-visit
times of general Markovian RWs assume simple, uni-
versal limit distributions. We have determined the
corresponding rescaled variables and the asymptotic of
the limit distributions. Beyond this fundamental aspect,
we have shown that these results have applications in

foraging theory. They have enabled us to determine
the statistics of a variety of key observables of the d
dimensional starving RW problem, and to reveal their
universal features. While the universality breaks down
when the inter-visit times correlations cannot be ne-
glected, as is the case for smooth processes (such as the
Random Acceleration Process [44], see SM), our results
hold for RWs on graphs with strongly inhomogeneous
degree distributions (see SM for the typical example of
the (u, v) flowers [45, 46]).
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S1. DISTRIBUTION OF THE MAXIMUM INTER VISIT TIME Mn

In this section, we derive the asymptotic distribution of the maximum Mn of the inter-visit times based on the
assumption that correlations between inter-visit times {τk} can be neglected as it is self-consistently checked in the
main text and confirmed numerically in Sec. S2. This assumption allows to factorize the cumulative distribution
function (CDF) of Mn as

P(Mn ≤ T ) = P(max(τ0, . . . , τn−1) ≤ T )

≈
n−1∏

k=0

P(τk ≤ T )

=

n−1∏

k=0

(
1−

∫ ∞

T

Fk(τ)dτ

)
,

(S1)

(S2)

(S3)

where Fk(τ) is the distribution of τk. Based on the ratio between the fractal df and walk dw dimensions, µ ≡ df/dw,
we distinguish between the recurrent (µ < 1), transient (µ > 1), and marginal (µ = 1) RW classes.
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A. Recurrent RWs

In the recurrent case, the inter-visit time distribution takes a scaling form [S1], namely

Fk(τ) =
1

k1+1/µ
ψ(τ/k1/µ) (S4)

with ψ a process dependent scaling function, such that

ψ(x) ∝
{

exp [−Ax] for x≫ 1

1/xµ+1 for x≪ 1,
(S5)

where A is a process dependent constant. For the survival probability Sk(T ) ≡
∫∞
T
Fk(τ)dτ , this leads to:

Sk(T ) =
1

k
Ψ(T/k1/µ) , (S6)

where Ψ is another process dependent scaling function, such that

Ψ(x) ∝
{

exp [−Ax] for x≫ 1

1/xµ for x≪ 1,
(S7)

Consequently, the cumulative distribution ofMn also adopts a scaling form in the large T and n limit as (see Eq. (S3))

P(Mn ≤ T ) =
n−1∏

k=0

(1− Sk(T ))

∼ exp

[
−

n−1∑

k=0

Sk(T )

]

∼ exp

[
−
∫ n

0

dk

k
Ψ(T/k1/µ)

]

= exp

[
−
∫ n/Tµ

0

dx

x
Ψ(x−1/µ)

]
≡ Ξµ(T/n

1/µ).

(S8)

(S9)

(S10)

(S11)

Thus, all the cumulants of Mn scale as n1/µ.
Let us now consider the limit behaviours of Ξµ(x) in the limits x ≡ T/n1/µ ≪ 1 and x≫ 1.

First, in the limit x≫ 1, using Eq. (S7),

− ln Ξµ(x) ∝
∫ 1/xµ

0

dx′

x′
exp

[
−A/x′1/µ

]

∝
∫ x

0

dx′

x′
exp [−Ax′] = E1(Ax) ∝ e−Ax/x

(S12)

(S13)

where E1 is the exponential integral function E1(X) ≡
∫∞
X
due−u/u.

Then, in the limit x≪ 1

− ln Ξµ(x) ∝ const. +

∫ 1/xµ

1

dx′

x′
x′ ∝ x−µ. (S14)

To summarize, we have the two limit behaviours of Ξµ(x),

− ln Ξµ(x) ∝
{
e−Ax/x for x≫ 1

x−µ for x≪ 1
(S15)

This result is consistent with what was found in [S2] for the specific case of a RW with nearest-neighbour jumps on
the 1d line.
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B. Transient RWs

For transient RWs, the distribution Fn(τ) is no longer scale-invariant, and obeys [S1]

− lnFn(τ) ∝
{
τµ/(1+µ) if τ ≪ n1+1/µ

τ/n1/µ if τ ≫ n1+1/µ
(S16)

A key remark is that the exponential regime is observed only for times greater than the crossover time τ ∼ n1+1/µ. We
now use that the maximum of n independent random variables of stretched exponential tails of exponent δ = µ/(1+µ)

has average ⟨Mn⟩ ∝ (lnn)1/δ = (lnn)1/µ+1 and standard deviation
√

Var(Mn) ∝ (lnn)
1/δ−1

= (lnn)
1/µ

[S3]. By
observing that the random variable Mn has a peaked distribution around its mean (because its standard deviation is
small compared to its average), and that it grows much more slowly (logarithmically) than the crossover time n1+1/µ,
we conclude that the exponential tail of the distribution (S16) does not contribute to the distribution of the maximum
Mn. The limit law of Mn (centered on its average and rescaled by its variance) is thus a classical Gumbel distribution
[S4] of zero mean and unit variance, of cumulative that we note Ξ∞ given by

− ln Ξ∞(x) = exp
[
−πx/

√
6− γE

]
(S17)

where x = (Mn − ⟨Mn⟩)/
√
Var(Mn) and γE is the Euler γ-constant.

C. Marginal RWs

For the marginal case, a more detailed characterization of the tail distribution Sn(T ) ≡ P(τn ≥ T ) of the inter-visit
time τn than the one provided in [S1] is needed. In particular, one has to characterize the cross-over regime T ∼ √

n.

1. Summary of the known results in the marginal case

In [S1], it was found that the key observable leading to the different time regimes of the inter-visit time statistics
is the radius of the largest ball fully visited within the visited domain. Its distribution, noted Qn(r), was found to be
given by a Poisson distribution in the volume rdf (which contains now an algebraic prefactor skipped in [S1])

Qn(r) ∝
rdf−1

ρdf
n

exp
[
−a (r/ρn)df

]
(S18)

where the typical correlation length between traps’ location ρn is given by

ρn = n1/2df , (S19)

up to omitted log corrections (see also [S5]).

2. Radius of the kth largest visited ball

To obtain the more detailed statistics of the random variable τn needed here, we search for the scaling with k of

the radius of the kth largest fully visited ball when n sites have been visited, that we note ρ
(k)
n (such that ρ

(1)
n = ρn).

To do so, we will use a similar argument to the one presented in [S1]. We show that (up to log corrections in both k
and n)

ρ(k)n ∝ (n/k)1/2df ∝ ρn/k
1/2df . (S20)

This result is equivalent to the statement that the radius ρ
(k)
r of the kth largest ball entirely covered by a marginal

RW before exiting the ball of radius r behaves typically as
√
r/k1/df , using that r ∼ n1/df . To obtain this result, we

adapt the proof of (S19) given in [S1, S5] to cover the case of the successive largest fully visited balls (see Fig. S1 for
an illustration).



4

Fig. S1. Illustration of the four largest fully visited balls (having radii ρ
(k)
r , numbered consecutively, k = 1, . . . , 4) by the walk

before exiting the domain of radius r.

We start with dividing the ball of radius r into non-overlapping balls, each of radius rγ , where 0 < γ < 1. The
objective is to determine the largest value of γ for which at least one ball of radius rγ/e2 is entirely visited by the
RW before leaving the original ball of radius r. Within this spherical region, there are rdf−γdf disjoint spheres, each
having a radius rγ . Our initial inquiry revolves around determining how many times the RW will penetrate one of
these rγ-radius spheres before departing from the larger sphere of radius r. The splitting probability associated with
a circle of radius a before encountering a circle of radius b, for a RW starting from a distance ρ from the center,
provides the answer to this question. It is given by [S6]:

π(ρ) =
ln(ρ/b)

ln(a/b)
. (S21)

We define a γ-incursion for a walker initiating its trajectory from the surface of a sphere with radius ρ = rγ as
the event where the walker enters a sphere with radius a = rγ/e before reaching a sphere with radius b = r. The
probability associated with this specific type of incursion can be expressed as follows:

ln(rγ/r)

ln(rγ/(e r))
∼ 1− 1

(1− γ) ln r
.

For one sphere of radius rγ , the probability of making x γ-incursions is

P(X = x) =

(
1− 1

(1− γ) ln r

)x

∼ exp

(
− x

(1− γ) ln r

)
(S22)

Thus, the distribution of the number of incursions is exponential.
We proceed by making the assumption that the number of γ-incursions for each of the M = rdf−γdf individual

spheres is a set of independent and identically distributed (i.i.d.) random variables, denoted as Xm for m = 1, . . . ,M .
These random variables are exponentially distributed with an average value of ⟨X⟩ = (1− γ) ln r. Consequently, the

average value of the kth maximum number of γ-incursions, denoted as M(k)
M , is expressed as follows (see [S7]):

〈
M(k)

M

〉
∼ ⟨X⟩ ln (M/k) . (S23)

Using the dependence of M and ⟨X⟩ on r, the kth largest number of γ-incursions inside a ball of radius rγ reads:

(1− γ)2df (ln r)
(
ln
(
r/k1/(1−γ)df

))
(S24)

We shall now investigate the number of incursions required inside a sphere with radius rγ0 to ensure the visitation
of all the sites contained within a sphere of radius rγ0/e

2. We begin by calculating the probability of reaching the
origin during a γ-incursion, taking into account that the incursion terminates upon the random walk intersecting the
sphere with radius rγ0 (where another γ-incursion may potentially commence). Employing Eq. (S21) for the splitting
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probability, with an outer radius b = rγ0 , an inner radius a = 1, and an initial position at a radius ρ = rγ0/e (which
marks the commencement of the γ-incursion), we get the probability of successfully reaching the origin within this
incursion to be 1/(γ ln r0). Consequently, the probability of not reaching the origin during any of the x γ-incursions
is:

(
1− 1

γ ln r0

)x

∼ exp

(
− x

γ ln r0

)
.

As the ball with radius rγ0/e
2 encompasses (rγ0/e

2)df sites, we can estimate the probability of having at least one
unvisited site after performing x incursions as follows:

1− P(all sites are visited in the ball of radius rγ0/e
2)

≈ 1− P(0 is visited)(r
γ
0 /e

2)df

= 1−
(
1− exp

(
− x

γ ln r0

))(rγ0 /e
2)df

≈ (rγ0/e
2)df × exp

(
− x

γ ln r0

)
=

1

e2df
exp

(
γ df ln r0 −

x

γ ln r0

)
. (S25)

Here, we make the assumption that all (rγ0/e
2)df sites within the sphere are equivalent to the origin, and the exploration

of these particular sites is regarded as independent events. The probability of having at least one unvisited site after
x incursions diminishes as x increases, eventually approaching zero for x exceeding a critical value given by:

xc(r) = γ2df(ln r0)
2.

Therefore, it can be inferred that a total of γ2df(ln r0)
2 incursions are requisite to visit all the sites contained within

the sphere of radius rγ0 .

Finally, given that there are (1 − γ)2df (ln r)
(
ln
(
r/k1/(1−γ)df

))
incursions within the kth maximally visited ball

and that γ2 df (ln r0)
2 incursions are required to completely explore the ball with radius rγ0/e

2 nested within this kth

maximally visited ball with radius rγ , it follows that the radius ρ
(k)
r = rγ0 must satisfy the condition:

(1− γ)2df (ln r)
(
ln
(
r/k1/(1−γ)df

))
= γ2 df (ln r0)

2 (S26)

In the limit ln k ≪ ln r (k grows more slowly than any power of the radius), taking r0 = r/ka (with a unknown) this
implies

γ = 1/2, a = 1/df (S27)

and we find the announced Eq. (S20) by taking r = n1/df .

3. Statistics of τn in the marginal case

In this section, we focus on the determination of the survival probability Sn(T ) for T ∼ √
n. Indeed, we expect

the statistics in this time scale to dominate [S1] as the tail distribution of the inter-visit times is algebraic at times
smaller than

√
n (which makes the maximum of the inter-visit times large [S8]) and stretched exponential after (which

imposes a cut-off for the maximum statistics, see also Eqs. (S15) and (S17)).
In order to obtain an accurate estimation of the tail distribution of τn, we start by dividing the visited territory in
subregions (balls) ordered consecutively by their size (k = 1 corresponds to the largest fully visited ball, k = 2 the

next one, etc, see Fig. S1). We define S
(k)
n (T ) as the probability to start in the kth largest fully visited ball and not

to visit any new site up to time T . For T ∼ √
n, we partition the survival event over the kth largest fully visited

subregion it starts from (of note, there are at most n disjoint visited balls):

Sn(T ) =
n∑

k=1

S(k)
n (T ) (S28)
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Fig. S2. Numerical checks of the key hypotheses involved in Eq. (S29):
(a) For a 1d Lévy flight of parameter α = 1, probability to start in the unvisited interval of maximal radius r, Pn(r), times the
number of visited sites n (blue, orange, and green symbols represent n = 400, 600, and 800, respectively, the dashed line being
a linear function of r).
(b) For a 2d nearest neighbour RW, tail probability distribution of having a fully visited domain of kth largest area A,

S
(k)
n (A) =

∫
r2≥A

Q
(k)
n (r)ddfr (k = 1, 2, and 4 in blue stars, orange circles, and green squares, respectively). We use the rescaled

variable
√
kA/(ρ

(1)
n )2, where ρ

(1)
n ≡ ρn is the average length of the largest unvisited interval, and n = 106.

(c) For a 2d nearest neighbour RW, the average area of the kth largest fully visited square as a function of x = k/n (dashed
line corresponds to 1/

√
x), for n = 104, 105, and 106 (blue stars, orange circles, and green squares, respectively).

Then, S
(k)
n (T ) can be partitioned over the radius of the kth maximally visited ball,

S(k)
n (T ) =

∫ n1/df

0

drPn(r)Q
(k)
n (r)Sr(T )

1

T
, (S29)

where

• Pn(r) is the probability to start the visitation process of the nth site from a region of radius r containing visited
sites only. Because the surface of the visited domain is ∝ n and the number of sites within the circle of radius
r is rdf ≪ n (in the marginal case, the volume of the maximal sphere with only visited sites is ∝ √

n), we have

that Pn(r) ∝ rdf
n by assuming the RW starts uniformly inside the visited domain (as assumed in the proof [S5]).

• Q
(k)
n (r) is the probability to have a typical radius r for the kth maximal visited region. It is a scaling function

of x = r/ρ
(k)
n , Q

(k)
n (r) = rdf−1

(ρ
(k)
n )df

f(r/ρ
(k)
n ). In particular, by interpreting ρ

(k)
n as a correlation length between

location of traps, one has, in line with Eq. (S18), that f(x) decays exponentially with xdf (exponential decay in
the rescaled volume).

• Sr(T ) is the probability not to have exited the kth maximal visited region of radius r up to time T , which is
exp

[
−bT/rd

]
(by noting d = dw = df) at large times (b is a model dependent constant).

• 1/T is the probability not to have visited any new site up to time T conditioned on having stayed inside the kth

maximal visited region, in agreement with the result found in [S1] (the visited region is fractal and semi-infinite
due to the conditioning).

In Fig. S2 (a) and (b), we check the functional forms of Pn(r) and Q
(k)
n (r) above, respectively, for the marginal

Lévy flight in 1d (α = 1) as well as in (c) the average area of the kth largest fully visited domains for the 2d nearest-
neighbour RW. Overall, Fig. S2 validates the main ingredients of Eq. (S29), where we made the further assumptions
of independence between the exact position in the ball and time to find a new site inside or outside the ball.

For times T smaller than the typical exit time ρdn =
√
n from the largest region maximally visited, T ≲ √

n, we

have two types of terms in Eq. (S28): Using Eq. (S29), one realizes that either the time
(
ρ
(k)
n

)d
to exit the kth largest

sphere is larger than T (so we are still in the limit of a semi-infinite medium) or it is smaller (the walker almost

surely exits the domains). In the first case, we have S
(k)
n (T ) ≈

∫∞
0
Pn(r)Q

(k)
n dr 1

T ≈ 1√
nkT

, and in the second case, it
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vanishes (due to the exponential cut-off). This implies that

Sn(T ) ∝
∑

(ρ
(k)
n )d=

√
n/k≥T

1√
nkT

∝ 1√
nT

√
n

T 2
=

1

T 2

(S30)

(S31)

For T ≳ √
n (up to log corrections), as we proceed to show, the survival probability of the walks starting in the largest

ball dominates. Considering the first term S
(1)
n (T ), we resort to the Laplace method using that Sr(T ) ∝ exp

[
−bT/rd

]

and Qn(r) ∝ rd−1

ρd
n

exp
[
−ard/ρdn

]
which results in

S(1)
n (T )

∫ n1/d

0

drQn(r)Pn(r)
1

T
Sr(T )

∝
∫ n1/d

0

rd−1dr

ρdn

rd

n

1

T
exp

[
−ard/ρdn − bT/rd

]

=
1

n

∫ n3/4d/T 1/2d

0

ρ2d−1dρ exp

[
−
√
T/ρdn

(
aρd + b/ρd

)]

∝ 1

n
f(T/ρdn) exp

[
−
√
T

ρdn
U(ρ∗)

]
,

(S32)

(S33)

(S34)

(S35)

U(ρ) = aρd + b/ρd, U(ρ∗) stands for its minimum, and f(x) = 1/x1/4. In fact, the other terms in Eq. (S28) can be

neglected. Indeed, for the kth term S
(k)
n (T ) (k > 1), we obtain via the same method that

∫ n1/d

0

drQ(k)
n (r)

1

T
Sr(T )Pn(r) ∼

B

n
f(T/ρdn) exp

[
−
√
T

ρdn
U (k)(ρ∗(k))

]
(S36)

where U (k)(ρ) =
√
kaρd + b/ρd and U (k)(ρ∗(k)) = k1/4U(ρ∗) its minimum. In particular, this implies that

∫ n1/d

0
drQ

(k)
n (r) 1

T Sr(T )Pn(r)
∫ n1/df

0
drQn(r)Pn(r)Sr(T )

∝ exp

[
−(k1/4 − 1)U(ρ∗)

√
T/ρdn

]
≪ 1 (S37)

Thus, for T ≳ √
n, one can neglect the fully visited subregions which do not have the maximal size.

Finally, combining Eqs. (S31) and (S35), we get that for T ∼ √
n,

Sn(T ) =
1

n
Ψ1(T/

√
n). (S38)

This functional form will be used for derivation the distribution of the maximum. It has the following asymptotic
behaviors:

Sn(T ) ∝
1

n
Ψ1(T/

√
n) ∝





1
T 2 if

√
n ≲ T

1
n

(√
n

T

)1/4
exp

[
−const.

√
T/

√
n
]

if
√
n ≳ T

(S39)

4. Distribution of the maximum for the marginal RW

Based on the functional form (S39) for Sn(T ), Mn/
√
n converges to a non-trivial distribution at large n. For x real

and positive,

P(Mn ≤ x
√
n) ≈ exp

[
−
∫ n

0

Sk(x
√
n)dk

]
. (S40)
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Fig. S3. Additional examples of Mn distributions:
(a)-(c) Distributions of the maximum Mn as a function of the rescaled variable x, defined in Eq. (1) of the main text for

1d Lévy flights of parameter (a) α = 1.5 (recurrent) (b) α = 1 (marginal) (c) α = 0.5 (transient, here mn = Mn−⟨Mn⟩√
Var(Mn)

).

Increasing values of n are represented by blue circles, orange stars and green squares: (a) n = 1389, 3727 and 104, (b)
n = 545559, 2335721, 107, (c) n = 48329, 263665, 1438449. In (a) and (b) the insets represent the distributions for small x
values in log-log scales.
(a′)-(c′) Average (blue circles) and standard deviation (orange squares) of Mn for the RWs of panels (a)-(c).
In all plots, the black dashed lines correspond to the best fit of the proportionality prefactors and process-dependent constants
of the asymptotic expression of Eqs. (S15), (S43), (S17) and Eqs. (2) and (3) of the main text.

Then, for x = O(1) (for simplicity, we put all the constant prefactors separating the different regimes of Sn(T ) at 1),

P(Mn ≤ x
√
n) ≈ exp

[
−
∫ x2/3n1/3

0

exp
[
−const. x

√
n/k

]
dk −

∫ n

x2/3n1/3

Ψ1

(√
nx2

k

)
dk

k

]

≈ exp

[
−
∫ 1/x2

0

Ψ1

(
1√
u

)
du

u

]
.

(S41)

(S42)

From this, we deduce that Mn/
√
n has a limit distribution. We note that Mn does not have a scale invariant form as

was the case of recurrent RWs, however, it still has asymptotically a single parameter scaling as the distribution of
Mn/ ⟨Mn⟩ converges to a cumulative distribution we note Ξ1 (⟨Mn⟩ ∼

√
Var(Mn) ∼

√
n up to log prefactors). Based

on Eqs. (S39) and (S42), we obtain (up to log corrections)

− ln Ξ1(x) ∝
{

1/x2 for x≪ 1

e−Bx1/2

for x≫ 1
, (S43)

where B being a process dependent constant.

D. Additional examples

In addition to the numerical checks of Fig. 2 of the main text, we display in Fig. S3 the asymptotic distri-
bution of the maximum for 1d Lévy flights (jump distribution being p(ℓ) ∝ ℓ−1−α) of parameter α = dw = 1.5
(recurrent), 1 (marginal), and 0.5 (transient). It is presented for the rescaled variable Mn/ ⟨Mn⟩ for µ ≤ 1 and

(Mn − ⟨Mn⟩)/
√

Var (Mn) for µ > 1, for different values of n. In addition to the figures presented in the main text,
these additional examples further confirm the validity of our results.
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S2. INDEPENDENCE OF INTER VISIT TIMES τk

In this section, in addition to the argument presented in the main text, we check numerically the effective indepen-
dence of the inter-visit times {τk}. For this, we compare the rescaled distributions of Mn and that of the maximum
M ′

n of random variables distributed as the τk but which are independent, denoted by τ ′k. To sample M ′
n, we use the

following method:

• First, we draw N (here we take N = 100) RW trajectories leading to n visited sites and keep only the inter-visit
times. We thus have N = 100 lists [τ0, . . . , τn−1] drawn independently.

• Then, for each k from 0 to n − 1, we randomly select one of the N lists (uniformly) and take the kth element,
τk. It results in a list [τ ′0, . . . , τ

′
n−1].

• Finally, we have one realization of M ′
n as the maximum of the list [τ ′0, . . . , τ

′
n−1].

Fig. S4. Numerical check of the effective independence of {τk} for their maximum.
Comparison of (a)-(c) the centered and normalized distributions of Mn = max(τ0, . . . , τn−1) and M ′

n = max(τ ′
0, . . . , τ

′
n−1) (the

simulations with independent inter-visit times, of M ′
n, are in blue, the dependent ones, of Mn, in red) as well as (a′)-(c′) their

average (circles) and standard deviation (squares) for a (a) RW on a percolation cluster, µ ≈ 0.659 (recurrent); n = 2275,
3727, and 6105, (b) nearest neighbour RW in 2d, µ = 1 (marginal); n = 88, 6951, and 545559, (c) nearest neighbour RW in 3d,
µ = 3/2 (transient); the distribution is compared to the Gumbel of zero mean and unit variance represented by a black dashed
line, n = 84384 and 193069. For (a)-(c), increasing values of n are represented by circles, stars and squares successively. The
average and standard deviation are compared to their expected scaling with n shown by black dashed lines.

In line with the analytical argument given in the main text, the rescaled distributions of Mn and M ′
n have the same

behavior, as observed in the first line of Fig. S4. Besides, the cumulants shown in the second line of Fig. S4 have the
same scaling with n in both cases, further confirming the relevance of the independence approximation.

We conclude that the numerical tests validate, additionally to the analytical argument of the main text, the
independence approximation made in Eq. (S2).

S3. DISTRIBUTION OF THE NUMBER OF SITES VISITED AT STARVATION NS

A. Analytical derivation

The number NS of sites visited at starvation is larger or equal to n if the n first inter-visit times are all smaller
than S, τ0 < S, . . . , τn−1 < S. Thus, it means that the maximum inter-visit time is smaller than S, and we have the
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following relation between NS and Mn:

P(NS ≥ n) = P(Mn < S). (S44)

It implies that the knowledge of the distribution ofMn (whose asymptotic behavior is given in (S15), (S17) and (S43))
allows one to obtain the distribution of NS . In particular:

• For recurrent RWs: The distribution of NS is scale-invariant (so that NS/Sµ is independent of S) and its
asymptotics is given by:

− lnP(NS/Sµ ≥ x) = − ln Ξµ(x
−1/µ) ∝

{
E1(Ax

−1/µ) ∝ e−A/x1/µ

x1/µ for x≪ 1

x for x≫ 1.
(S45)

• For transient RWs: By noting ⟨Mn⟩ ∼ a(lnn)
1+µ
µ (a is a model dependent constant) and

√
Var(Mn) ∼

b(lnn)
1
µ ≡ a(1+µ)

√
6

πµ (lnn)
1
µ [S3], P

(
Mn−a(lnn)1/µ+1

b(lnn)1/µ
≤ x

)
converges to a Gumbel distribution Ξ∞(x) of zero

mean and unit variance. Then, P(NS=xb(lnn)1/µ+a(lnn)1/µ+1 ≥ n) also converges to Ξ∞(x) at large n. By

inverting S = xb(lnn)1/µ + a(lnn)
1+µ
µ in the limit of large n, we finally get

P(NS/ exp
[
(S/a)µ/(1+µ)

]
≥ x) ∼ Ξ∞

(
−
√
6

π
lnx

)
= exp

[
−xe−γE

]
. (S46)

In particular, we deduce that NS obeys asymptotically a single parameter scaling, and thus its average and
standard deviation scale with S in the same way (i.e., their ratio is finite). Furthermore, the asymptotic
distribution is exponential in the number of sites visited at starvation NS .

• For marginal RWs: As P(NS=
√
nx ≥ n) = P(Mn ≤ √

nx) → Ξ1(x), with Ξ1(x) of Eq. (S38), we get that

P(NS/S2 ≥ x) → Ξ1(1/
√
x). In particular, the distribution has a single-parameter scaling at large starvation

index S and number of visited sites at starvation NS , and its average and standard deviation scale in the same
way with S. Based on Eq. (S43), up to logarithmic corrections,

− lnP(NS/S2 ≥ x) ∝
{
e−A/x1/4

for x≪ 1

x for x≫ 1.
(S47)

Thus, we have obtained the asymptotic distribution of the number of visited sites at starvation NS for all types of
Markovian RWs. This distribution obeys a single parameter scaling in x ≡ NS/ ⟨NS⟩ whatever the value of µ (in
contrast to the maximum Mn), where

⟨NS⟩ ∝





Sµ for µ < 1 ,

S2 for µ = 1 ,

exp
[
(S/a)µ/(1+µ)

]
for µ > 1.

(S48)

Consequently,
√
Var(NS) has the same behavior as ⟨NS⟩.

B. Numerical check

In Fig. S5, we check the expressions (S45), (S46) and (S47) by fitting the proportionality factors and the model
dependent constants to the numerical data. The recurrent RWs were run on critical percolation clusters. Each cluster
was created using a periodic square lattice measuring 1000 by 1000 units. In this process, half of the lattice bonds were
randomly removed, and subsequently, the largest cluster was identified. Simulations were executed on 31 clusters,
selected based on their size which is around the median size among a total ensemble of 1000 clusters.The starting
site for each simulation was chosen randomly. The marginal and transient RWs were performed on square and cubic
lattices, respectively. Fig. S5 validates the expressions for both the averages and the distributions of the number of
visited sites at starvation NS .
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Fig. S5. Distribution of the number of sites visited at starvation NS .
(a)-(c) Distributions of the number of visited sites at starvation NS as a function of the rescaled variable x = NS/ ⟨NS⟩, with
⟨NS⟩ defined in Eq. (S48) for (a) RWs on 2d percolation clusters (µ ≈ 0.659, recurrent), (b) 2d nearest neighbour RWs (µ = 1,
marginal), (c) 3d nearest neighbour RWs (µ = 3/2, transient). Increasing values of S are represented by blue circles, orange
stars, and green squares, respectively: (a) S = 14667, 31622, and 6819, (b) S = 2335, 4832, and 104, (c) S = 12, 17, and 22.
In (a) and (b) the insets represent the distributions for small x values.
(a′)-(c′) Average (blue circles) and standard deviation (orange squares) of NS for the RWs of panels (a)-(c).
In all plots, the black dashed lines correspond to the best fit of the proportionality prefactors and process-dependent constants
of the asymptotic expression of Eqs. (S45), (S46), (S47), and (S48).

S4. DISTRIBUTION OF THE LIFETIME TS

To obtain the distribution of the lifetime TS = τ0+ . . .+ τn−1+S (i.e. the number of steps before the RW starves),
we use the following identity:

P(TS ≥ t) =
∞∑

n=1

P(NS = n)P(τ0 + . . .+ τn−1 + S ≥ t|NS = n) . (S49)

Here, in the sum, the distribution of the lifetime is conditioned on NS = n. This results in effective random variables
{τ̃k} corresponding to the variables {τk} conditioned on being less than the starvation index S. Then, using continuous
notations for convenience, we can rewrite Eq. (S49) as

P(TS ≥ t) =

∫ ∞

1

dnP(NS = n)P(τ̃0 + . . .+ τ̃n−1 + S ≥ t) (S50)

First, we note that the typical value of NS (determined by its average) is large when S ≫ 1 (see Eq. (S48)). The
distribution P(NS = n) is sharp around n = ⟨NS⟩ (see Eqs. (S45), (S47) and (S46)). Thus, small n values barely
contribute to the integral of Eq. (S50) as S tends to infinity.

Second, we use that the distribution Fk(τ) of τk is independent of k for τ < tk (see [S1]), where tk is given by

tk =





k1/µ for µ < 1 ,

k1/2 for µ = 1 ,

k1/µ+1 for µ > 1.

(S51)

Using Eqs. (S48) and (S51), one can check that the typical τ̃k in (S50) have an index k such that tk ≥ S. For these
high k-values, the distribution of τ̃k (the same as that of τk but restricted to values smaller than S) converges to that
of a random variable noted τ̃∞ (independent of k).
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Finally, based on the two previous points (large n contribution and identical distribution for τ̃k) as well as the
effective independence hypothesis of the inter-visit times, we obtain that the sum τ̃0+ . . .+ τ̃n−1 follows asymptotically
a law of large numbers and thus, with H the Heaviside function, Eq. (S50) becomes:

P(TS ≥ t) ≈
∫ ∞

1

dnP(NS = n)H (n ⟨τ̃∞⟩+ S − t)

≈ P
(
NS ≥ t− S

⟨τ̃∞⟩

)
(S52)

(S53)

We check the law of large number in Fig. S6 on the RW models of Sec. S3B by computing the standard deviation
of
∑n

k=1 τ̃k divided by its average and observing the expected decay to zero associated to the law of large number.

Fig. S6. Check of the law of large number.
Standard deviation of

∑n
k=1 τ̃k over its average (τ̃k denotes the inter-visit times conditioned on being lesser than S) for S = 10,

100, and 1000 in blue circles, orange stars, and green squares, respectively. (a) RWs on a percolation cluster (µ ≈ 0.659,
recurrent), (b) 2d nearest neighbour RWs (µ = 1, marginal), (c) 3d nearest neighbour RWs (µ = 3/2, transient).

We are left with the characterisation of τ̃∞ which differs for each type of RWs.

• For recurrent RWs: Using that the distribution Fk(τ) of the inter-visit time τk at early times behaves as
Fk(τ) ∝ τ−1−µ (see Ref. [S1]), we obtain that

⟨τ̃∞⟩ ∝
∑S

τ=1 τ
−µ

∑S
τ=1 τ

−1−µ
∼ bS1−µ (S54)

where b is a model dependent constant. Since 0 < µ < 1, the behavior S1−µ comes from the numerator, whereas
the denominator leads to a constant, the distribution of τk being Fk conditioned by τk ≤ S. Consequently, by
rescaling TS by S and using Eq. (S45), we have that

P(TS/S ≥ t) = P (NS ≥ b(t− 1)Sµ) = Ξµ((b(t− 1))−1/µ) (S55)

where Ξµ is defined in Eq. (S15). We conclude that TS scales with S, whatever the value of the exponent µ < 1.

• For transient RWs: In this case, τk has always finite moments (the inter-visit times’ distribution is stretch-
exponentially decaying) [S1], such that the asymptotic value of the conditional inter-visit time at large S is the
same as the unconditioned one,

⟨τ̃∞⟩ → ⟨τ∞⟩ = b. (S56)

By rescaling TS by exp
[
(S/a)µ/(1+µ)

]
, we get that

P(TS/ exp
[
(S/a)µ/(1+µ)

]
≥ t) = P

(
NS ≥ t exp

[
(S/a)µ/(1+µ)

]
/b
)
= Ξ∞

(
−
√
6

π
ln(t/b)

)
= exp

[
− t
b
e−γE

]

(S57)

where a is defined in Sec. S3A. The lifetime TS is exponentially distributed (as the number NS of sites visited
at starvation).
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Fig. S7. Comparison of the average lifetime for a nearest neighbor RW in different dimensions. Blue circles
stand for the 1d RW, orange squares the 2d RW and green squares the 3d RW.

• For marginal RWs: Similarly to recurrent RWs, we get the average value of τ̃∞ as

⟨τ̃∞⟩ ∝
∑S

τ=1 τ
−1

∑S
τ=1 τ

−2
∼ b lnS (S58)

and thus by rescaling TS by S2 lnS, we get that

P(TS/(S2 lnS) ≥ t) = P
(
NS ≥ tS2/b

)
= Ξ1(

√
b/t) (S59)

which results in a scaling form for the distribution of TS .

To sum up, with Eqs. (S55), (S57) and (S59), we have characterized the asymptotic distributions (which obey a
single-parameter scaling) of the lifetime of starving RWs, from which the first two cumulants (up to log corrections)
are given by

⟨TS⟩ ,
√
Var (TS) ∝





S for µ < 1 ,

S2 for µ = 1 ,

exp
[
(S/a)µ/(1+µ)

]
for µ > 1.

(S60)

These results are particularly striking in the context of the nearest neighbor RW on the hypercubic lattice of
dimensions 1, 2 and 3 (see Fig. Fig. S7): the lifetime grows in radically different manner despite the fact that the
RW moves diffusely.

S5. DISTRIBUTION OF THE POSITION AT STARVATION RS

The distribution of the lifetime TS allows to determine the position of the walker at starvation. Neglecting the
correlation between the position and the lifetime (we test this approximation numerically in Fig. S8), we link the

distribution of the position at starvation R⃗S = r⃗(TS) with that of the lifetime and the propagator pt(r⃗) of the RW:

P(R⃗S = r⃗) ≈
∫ ∞

0

dtpt(r⃗)P(TS = t). (S61)

For scale-invariant RWs the propagator takes the following form [S9]:

pt(r⃗) =
1

tµ
Π

( |r⃗|dw

t

)
. (S62)
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Taking into account the asymptotic scaling form for TS of Sec. S4, we deduce that of RS = |R⃗S | by rescaling it with

⟨TS⟩1/dw :

P(RS/ ⟨TS⟩1/dw = r) =

∫ ∞

0

dtpt(r ⟨TS⟩1/dw)P(TS = t)

=

∫ ∞

0

dt

tµ
Π

(
rdw ⟨TS⟩

t

)
P(TS = t)

=

∫ ∞

0

du

uµ
Π

(
rdw

u

)
1

⟨TS⟩
P(TS/ ⟨TS⟩ = u)

(S63)

(S64)

(S65)

which is independent of S. With this, based on Eq. (S60), we find that (see numerical check in Fig. S9),

⟨RS⟩ ,
√

Var(RS) ∝





S1/dw µ < 1

S2/dw µ = 1

exp
[

1
dw

(S
a

) µ
1+µ

]
µ > 1.

(S66)

Fig. S8. Check of the effective independence between position at starvation and lifetime.
(a) RWs on the Sierpinski lattice (recurrent, µ = ln 3/ ln 5, S = 10, 100 and 1000), (b) 1d Lévy flights of parameter α = 1
(marginal, µ = 1, S = 10, 100 and 1000), (c) nearest neighbour jumps in 3d (transient, µ = 3/2, S = 10, 20 and 40).
Independent simulations are in blue, the dependent ones are in red. Increasing values of S are represented via circles, stars and
squares respectively.

Fig. S9. Moments of the position RS at starvation.
Average (blue circles) and standard deviation (orange squares) of RS for (a) RWs on the percolation cluster (recurrent,
µ ≈ 0.659 and dw ≈ 2.44 [S10]), (b) 2d nearest neighbour RWs (marginal, µ = 1 and dw = 2), (c) 3d nearest neighbour RWs
(transient, µ = 3/2 and dw = 2). The black dashed lines correspond to Eq. (S66).

Of note, due to the convolution in Eq. (S65), the large RS behaviour of the distribution of the distance to the origin
at starvation depends crucially on the form of the propagator’s scaling function Π: it is algebraic for Lévy flights
[S11] and stretched exponential for a large class of random walks on fractals [S12–S14] as can be seen in Fig. S8.
For the simple 2d RW with nearest neighbour jumps, studied in [S15], it is Gaussian, and we have at large r (using
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Fig. S10. Distribution of the maximum and lifetime for a starving RW on a (2, 2) flower. (a)-(b) Distributions of
the maximum inter-visit time Mn as a function of the rescaled variable x = Mn/ ⟨Mn⟩ at respectively small and large x for a RW
on a (2, 2) flower of generation 10 for n = 7196, 37275 and 193069. (c) Average (blue circles) and standard deviation (orange
squares) of Mn. (d)-(e) Distributions of the lifetime TS as a function of the rescaled variable x = TS/ ⟨TS⟩ at respectively small
and large x for S = 183, 379 and 784. (f) Average (blue circles) and standard deviation (orange squares) of TS . Increasing
values of the parameters are in blue circles, orange stars and green squares. In all plots, the black dashed lines correspond to
the best fit of the proportionality prefactors and process-dependent constants of the asymptotic expression of Eqs. (S43) and
Eqs. (2) and (3) of the main text.

Eqs. (S59), (S47) and a saddle-point method):

P(RS/ ⟨TS⟩1/2 = r) =

∫ ∞

0

du

2πu
exp

[
−r2/u

]
P(TS/ ⟨TS⟩ = u)

∝
∫ ∞

0

du

u
exp

[
−r2/u− u

]

∝ exp [−const. r]

(S67)

(S68)

(S69)

where the constant is the minimum of U(v) = 1/v + v on the positive axis. This explains the exponential tail

distribution of the rescaled position observed in [S15]. Also, RS ∝ ⟨TS⟩1/2 ∼ S as was observed numerically in [S15].
We conclude that the knowledge of the lifetime of the starving RW provides the asymptotic distribution of the

position at starvation.

S6. STRONGLY INHOMOGENEOUS GRAPHS

We further illustrate our results by considering graphs with strong inhomogeneity, as is the case for the (u, v) flowers
defined in [S16, S17]. To obtain these graphs, one starts with a graph with one edge, and at each iteration every
edge of the graph is replaced by end-connected two parallel chains of u and v edges (see Fig.2 (b) of [S17]). In the

case where u > 1, it results in a graph of walk dimension dw = log uv
log u and df =

log u+v
lnu such that µ = log u+v

log uv . All our

results on the maximum Mn (S43) or the lifetime TS (S59) still apply in this context, as we show for the RW on the
(2, 2) flower which is a marginal (µ = 1) RW in Fig. S10.

S7. A SMOOTH PROCESS: THE RANDOM ACCELERATION PROCESS

As outlined in [S18], we expect that the correlations between the time to visit new sites will dominate for smooth
processes (continuous processes with dw < 1), such as the Random Acceleration Process (RAP) [S19, S20]. In this
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Fig. S11. Maximum inter-visit time, lifetime and number of sites visited for a starving Random Acceleration
Process. (a) Average (blue circles) and variance (orange squares) of the maximum inter-visit time Mn. The black dashed line

stands for n2/3. (b) Distributions of the lifetime TS as a function of the rescaled variable x = TS/S at respectively small and

large x for S = 60, 80 and 100. The black dashed line is proportional to x−1/2 (c) Distributions of the number of sites visited

at starvation NS as a function of the rescaled variable x = NS/S3/2 at respectively small and large x for S = 60, 80 and 100.

The black dashed line is proportional to x−1/3.

section, we display numerical results on the RAP and show how the results differ from the non-smooth case (in Fig.
S11, we consider that the RW visits all the sites it passes by). It is found that the distribution at large number of
sites visited and long lifetimes are not exponential as was the case when the τk are independent, but algebraic (Fig.
S11 (b) and (c)).

However, interestingly, we observe that the scaling of the maximum inter-visit timesMn, the number of sites visited
at starvation NS and the lifetime TS are the same as the ones described in Eqs. (2), (3), (13) and (15) (see Fig. S11).
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