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We investigate extreme value statistics (EVS) of general discrete time and continuous space sym-
metric jump processes. We first show that for unbounded jump processes, the semi-infinite prop-
agator G0(x, n), defined as the probability for a particle issued from 0 to be at position x after n
steps whilst staying positive, is the key ingredient needed to derive a variety of joint distributions
of extremes and times at which they are reached. Along with exact expressions, we extract novel
universal asymptotic behaviors of such quantities. For bounded, semi-infinite jump processes killed
upon first crossing of zero, we introduce the strip probability µ0,x(n), defined as the probability that
a particle issued from 0 remains positive and reaches its maximum x on its nth step exactly. We
show that µ0,x(n) is the essential building block to address EVS of semi-infinite jump processes,
and obtain exact expressions and universal asymptotic behaviors of various joint distributions.

In a broad sense, extreme value problems focus on the
extrema of a set of random variables (X1, . . . , Xn). De-
termining the statistics of such extrema is of high prac-
tical interest to understand numerous physical systems
driven by rare but extreme events. As an illustration,
seismic risk evaluation [1], portfolio management [2, 3]
or understanding herd behavior [4] are but a few exam-
ples of phenomena for which quantifying extreme value
statistics (EVS) is key. While EVS of sets of indepen-
dent random variables have been studied early on [5, 6],
leading to the renowned Gumbel-Frechet-Weibull uni-
versality classes for the distribution of the maximum of
n random variables, recent works have also focused on
EVS of correlated random variables generated by single-
particle trajectories, and more specifically, of continu-
ous stochastic processes. Initiated by Paul Levy’s [7, 8]
derivation of the distribution of the running maximum
M(t) of a one dimensional Brownian particle P (M(t) ≤
M) = erf

(
M/

√
2t
)
, and the distribution of the time tm

at which the running maximum is reached (also known
as the arc-sine law)

P (tm = u|t) = 1

π
√
u(t− u)

, (1)

a number of important results related to the EVS of one-
dimensional Brownian dynamics have followed. In par-
ticular, joint distributions of extrema and times at which
they are reached have been extensively studied for un-
bounded Brownian motions and Brownian bridges [9–11]
as well as Brownian motions killed upon first passage to
0 [12, 13].

Jump processes, which are discrete time and contin-
uous space stochastic processes, constitute an alterna-
tive model to the continuous description of single par-
ticle dynamics. At each discrete time-step n, the par-
ticle performs a jump of length ℓ drawn from a distri-
bution p(ℓ), whose Fourier Transform will be denoted
p̃(k) =

∫∞
−∞ eikℓp(ℓ)dℓ. Such processes are involved in

various contexts: they constitute paradigmatic models
of transport in scattering media [14, 15], and of self-
propelled particles, living or artificial [16–20]. Most im-
portantly, jump processes are particularly suited to de-
scribe inherently discrete empirical time series, where
continuous stochastic models fail to capture discretiza-
tion effects. As an illustration, the experimentally mea-
sured transmission probability of photons through 3D
slabs [14, 15] has been shown to be equivalent to the split-
ting probability π0,x(0) that a jump process originated
from 0 crosses x before 0 [21]. Accurately characterizing
the EVS of jump processes is thus essential to quantita-
tively describe associated empirical measurements.
For symmetric jump processes considered hereafter,

general EVS results are scarce, and primarily focused on
two types of observables. First, the distributions of the
time nm at which the maximum is reached [22, 23] and of
successive record-breaking times [24] have been shown to
be independent of p(ℓ), and computed exactly. Second,
the asymptotic distribution of the running maximumMn

has been studied in the scaling limit and can be found
in Darling [25] (see SM for details). Note however that
the specific behavior of Mn stemming from the discrete
nature of jump processes has only been characterized at
the level of the the expected value ofMn, which has been
investigated for processes with

∫
ℓp(ℓ)dℓ < ∞. In par-

ticular, the leading order large n behavior of E(Mn) has
been shown [26–28] to only depend on the tails of p(ℓ),
equivalently described by the small k expansion of p̃(k)

p̃(k) =
k→0

1− (aµ|k|)µ + o(|k|µ). (2)

Here, the Levy index µ ∈]0, 2] describes the large ℓ be-
havior of p(ℓ), and aµ is the characteristic lengthscale of
the jump process. Importantly, when µ < 2, the jump
process is dubbed heavy-tailed, and the jump distribu-
tion decays algebraically: p(ℓ) ∝ ℓ−(1+µ).

General outline. In the following, we develop a general
framework to systematically analyze EVS of symmetric
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jump processes originating from 0. We show that com-
puting joint distributions of EVS observables reduces to
the evaluation of two key quantities: the semi-infinite
propagator G0(x, n), defined as the probability that the
particle remains positive and reaches x on its nth step,
and the strip probability µ0,x(n), defined as the probabil-
ity that the particle remains positive and reaches its max-
imum x on its nth step exactly. The main result of this
letter is the derivation of an exact expression of µ0,x(n),
and the analysis of its large x and n limit for general jump
processes. In turn, we obtain exact expressions for a va-
riety of new joint distributions of EVS observables, from
which we uncover universal asymptotic behaviors. These
joint distributions, summarized in table I, span both un-
bounded jump processes with deterministic number of
steps n (figure 1(a)), and bounded, semi-infinite jump
processes killed upon first crossing of 0 (figure 1(b)), for
which the discrete nature of the dynamics plays a crucial
role. While the main text focuses exclusively on jump
processes with continuous p(ℓ) originating from zero, our
framework is easily extended to non-zero initial condi-
tions, as well as lattice random walks (see SM).

(a) (b)

FIG. 1: (a) Sample trajectory contributing to the joint
distribution ρ1 of the maximum x and time at which it is reached
nm for an unbounded n-step long process. Since the survival
probability q(0, n) can be obtained from G0(x, n), computing ρ1
reduces to evaluating the semi-infinite propagator. (b) Sample
trajectory contributing to the joint distribution ρ3 of the
maximum x and time at which it is reached nm for a semi-infinite
process. The derivation of ρ3 requires the knowledge of the strip
probability µ0,x(n).

EVS of unbounded jump processes. In this section, we
focus on general n-step long unbounded jump processes
issued from 0. By means of introduction, we consider the
distribution µ(x|n) of the running maximum. To high-
light the significant role of the semi-infinite propagator in
EVS computations, we first recall a few important known
results (equations (3) to (5) and (7)). Defining the sur-
vival probability q(x0, n) that a particle issued from x0
remains positive during its first n steps, it is easily seen
that [24]

µ(x|n) = d

dx
q(x, n). (3)

In turn, the survival probability is given by q(x0, n) =∫∞
0
G(x, n|x0)dx, where the semi-infinite propagator

G(x, n|x0), defined as the probability that the n-step long

trajectory issued from x0 stays positive and is at position
x after n steps, is known [24, 29], and reads in Laplace
and generating function space:

∞∑

n=0

ξn
[∫ ∞

0

∫ ∞

0

e−s1x+s2x0G(x, n|x0)dxdx0
]

=
G̃0(s1, ξ)G̃0(s2, ξ)

s1 + s2

(4)

where G̃0(s, ξ) =
∑∞

n=0 ξ
n
[∫∞

0
e−sxG0(x, n)dx

]
is the

Laplace transform of G0(x, n) ≡ G(x, n|0), and is given
in terms of p̃(k) only by the Pollazceck-Spitzer formula
[30, 31]

G̃0(s, ξ) = exp

[
− s

2π

∫ ∞

−∞

ln [1− ξp̃(k)]

s2 + k2
dk

]
. (5)

While equation (3) is exact, it is clear from equation (5)
that explicit expressions for the distribution of the run-
ning maximum can only be obtained for specific jump
distributions. For instance, in the case of the exponential
jump process p(ℓ) = 2−1e−|ℓ|, the semi infinite propaga-
tor can be found in [32], from which we explicitly derive
the generating function of µ(x, n):

∞∑

n=0

ξnµ(x|n) = (1− ξ −√
1− ξ)e−x

√
1−ξ

ξ − 1
. (6)

We emphasize that for jump processes for which the semi-
infinite propagator cannot be obtained explicitly, equa-
tions (3) and (5) still allow for the asymptotic analysis
of µ(x|n), which depends only on the Levy index µ and
lengthscale aµ. Defining nx ≡ (x/aµ)

µ as the typical
number of steps needed to cover a distance x, we first
consider the large n and x scaling limit with τ ≡ n/nx

fixed. In this limit, jump processes are known to con-
verge to Brownian motion [33] with D = a22 when µ = 2,
and symmetric α-stable processes [34] when µ < 2. In
turn, the limit distribution of the running maximum is
given by Darling’s result [25] (see SM for explicit expres-
sions). In the alternative limit regime 1 ≪ n ≪ nx, the
behavior of µ(x|n) for processes with µ = 2 depends on
the details of p(ℓ). However, for heavy-tailed processes
the distribution of Mn becomes universal, and is read-
ily obtained by extracting the leading order behavior of
G0(x, n) from equation (5) (see SM), yielding:

µ(x|n) ∼
1≪n≪nx

µn

π
sin
(πµ

2

)
Γ(µ)

[aµ
x

]µ 1

x
. (7)

Importantly, the linear dependence of µ(x|n) admits a
single big jump physical interpretation [35]: the particle
has exactly n trials to perform a very large jump bringing
it close to x. Of note, the algebraic behavior (7) can
also be recovered by analyzing the asymptotic behavior
of the maximum distribution of α-stable processes [36].
The semi-infinite propagator is thus an essential tool to
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derive exact and asymptotic expressions of µ(x|n). More
generally, we claim that it is the necessary and sufficient
building block to analyze arbitrary joint space and time
EVS distributions, which we illustrate by computing two
important quantities.

We first determine the classical joint distribution
ρ1(x, nm|n) of the maximum x and time nm at which
it is reached, which, so far, has only been derived exactly
for continuous processes. By splitting the Markovian tra-
jectory at nm (see figure 1(a)), and identifying the proba-
bilistic weights of the first and second independent parts,
the joint distribution is given by

ρ1(x, nm|n) = G0(x, nm)q(0, n− nm). (8)

When µ = 2, the asymptotic behavior of ρ1(x, nm|n) is
simply given by the corresponding Brownian result ob-
tained in [37]. When µ < 2, no α-stable limit result
exists; in turn, we analyze the large x, nm and n limit of
equation (8), and uncover emerging universal behavior of
ρ1(x, nm|n) which depends only on aµ and µ:

ρ1(x, nm|n) ∼
nx/n≫1
n/nm≫1

1

π

√
nm

n− nm

2µ

π
sin
(πµ

2

)
Γ(µ)

[aµ
x

]µ 1

x
.

(9)
In fact, our framework permits a more detailed character-
ization of space and time statistics, as we show by provid-
ing the refined multivariate distribution ρ2(x, nm, xf |n)
of the maximum x, time nm at which it is reached, and
last position xf of the particle in terms of G0(x, n) only:

ρ2(x, nm, xf |n) = G0(x, nm)G0(x− xf , n− nm). (10)

The asymptotic behavior of ρ2(x, nm, xf |n) can be read-
ily obtained for any µ from this general expression as is
shown in SM. Finally, we have shown that studying EVS
of unbounded jump processes reduces to the evaluation
of a single essential quantity: the semi-infinite propaga-
tor G0(x, n). In the following, we extend these results to
the case of bounded, semi-infinite jump processes.

EVS of semi-infinite jump processes. We consider
jump processes killed upon crossing 0 for the first time,
and hereafter choose x0 = 0, although all our results are
easily adapted to non-zero initial conditions (see SM).
Note that EVS are properly defined for semi-infinite jump
processes starting from zero, in striking contrast to cor-
responding EVS of continuous processes killed upon first
passage to 0, which, by definition, vanish as x0 → 0. Fol-
lowing the unbounded case, we first compute the distri-
bution µ0(x|0) of the maximumM0 reached before cross-
ing 0. Recalling the definition of the splitting probability
π0,x(0), it is clearly seen that the cumulative distribution
of M0 satisfies

∫ x

0
µ0(u|0)du = 1− π0,x(0), yielding:

µ0(x|0) = − d

dx
π0,x(0), (11)

valid for general jump processes. As was recently shown
in [21], the splitting probability can only be computed
explicitly for a handful of jump distributions; however,
in the large x limit, π0,x(0) takes a universal asymptotic
form which we readily exploit to obtain the large x be-
havior of µ0(x|0):

µ0(x|0) ∼
x→∞

µ2µ−2

√
π

Γ

(
1 + µ

2

)[aµ
x

]µ
2 1

x
. (12)

Of note, the asymptotic decay is much slower than for
fixed-length unbounded jump processes (7). Indeed, the
survival probability q(0, n) is decaying slowly enough to
allow for particles to reach farther maxima before first
crossing of 0.
We now investigate joint space and time distributions.

It is clear that being a solely geometrical quantity, π0,x(0)
is not sufficient to compute such joint distributions. In
fact, in this case of bounded trajectories, G0(x, n) does
not suffice to build EVS distributions. To proceed fur-
ther, we introduce the strip probability µ0,x(n), defined as
the probability that the particle starting from 0 stays pos-
itive and reaches its maximum x on its nth step exactly,
and show that µ0,x(n) allows for the systematic deriva-
tion of joint distributions. Computing the exact expres-
sion of the strip probability requires two auxiliary quanti-
ties: (i) the joint distribution σ(x, nf |0) of the maximum
x and first passage time nf through 0 and (ii) the right-
ward exit time probability (RETP) F0,x(n|x0), defined as
the probability that the particle crosses x before 0 on its
nth step exactly, which has been studied in [38] (see SM
for a summary of results). First, by partitioning trajec-
tories over the time k at which the maximum is reached,
σ is re-expressed in terms of µ0,x(n) and F0,x(n|0) only:

σ(x, n|0) =
n−1∑

k=1

µ0,x(k)F0,x(n− k|0). (13)

Next, we make use of the fact that the cumulative distri-
bution of σ is in fact given by F0,x(n|0) =

∫ x

0
σ(u, n|0)du

where F0,x(n|x0) = F0,x(n|x−x0) by symmetry. Finally,
we derive the exact expression of the generating function
of the strip probability:

∞∑

n=1

ξnµ0,x(n) =
d
dx F̃0,x(ξ|0)
F̃0,x(ξ|0)

. (14)

Computing F̃0,x(ξ|x0) is thus sufficient to obtain explicit
expressions of µ0,x(n). As an illustration, in the specific
case of the exponential jump process we obtain

µ̃0,x(ξ) =
sech

(
γ
√
1− ξx

)
γ(1− ξ)ξ

(2− ξ)
√
1− ξ tanh

(
γ
√
1− ξx

)
+ 2(1− ξ)

.

(15)
For general jump processes for which the RETP cannot
be obtained explicitly, we analyze the large x and n be-
havior of µ0,x(n) and uncover emergent universal behav-
ior.



4

In the µ = 2 case and in the scaling limit τ = n/nx

fixed, no overshoot occurs as the particle crosses x for the
first time. As a result, the events of crossing x and reach-
ing x on the nth step become statistically equivalent, such
that µ0,x(n) ∼ a−1

2 F0,x(n|0), where the proportionality
constant is fixed by using the exact exponential distribu-
tion result (15). In turn, the asymptotic behavior of the
strip probability is given by

µ0,x(n) ∼
τ fixed

2
[a2
x

]2 1

x
π2

∞∑

k=1

k2(−1)k+1e−k2π2τ . (16)

For heavy-tailed jump processes, overshoots occur even in
the limit x→ ∞, such that the identification of the strip
probability and the RETP is no longer valid. Addition-
ally, the exact expression (14) cannot be used to asymp-
totically analyze µ0,x(n); indeed F̃0,x(ξ|0) ∼ 1/

√
1− ξ to

leading x order, so that d
dx F̃0,x(ξ|0) = 0. To circumvent

these difficulties, we introduce the cumulative strip prob-
ability µ0,>x(n) =

∫∞
x
µ0,u(n)du, and partition trajecto-

ries over the step at which x is crossed for the first time,
and the ending position u of the particle after the jump,
whose probability distribution is denoted F̂0,x(u, k|0). In
turn, the cumulative strip probability is written exactly
as

µ0,>x(n) =

n∑

k=1

∫ ∞

x

F̂0,x(u, k|0)
∫ ∞

0

G[0,y+u](y, n−k|0)dydu,

(17)
where G[0,y](x, n|x0) is the bounded propagator of a pro-
cess killed upon first exit of the interval [0, y]. Im-
portantly, in the large x limit, since u > x, we have
G[0,y+u](y, n − k|0) ∼ G0(y, n − k|0), such that the cu-
mulative strip probability is asymptotically given by

µ0,>x(n) ∼
n≪nx

n∑

k=1

F0,x(k|0)q(0, n− k), (18)

where we have used that
∫∞
x
F̂0,x(u, k|0)du = F0,x(k|0).

Finally, we extract from equation (18) the asymptotic
universal behavior of µ0,x(n):

µ0,x(n) ∼
1≪n≪nx

µ

π
Γ(µ) sin

(πµ
2

) [aµ
x

]µ 1

x
. (19)

Remarkably, µ0,x(n) becomes independent of n, in strik-
ing contrast with its unbounded counterpart G0(x, n).
Note also that, surprisingly, µ0,x(n) ∼ p(x). We now
show that distributions of EVS observables for semi-
infinite jump processes can be systematically obtained
from the strip probability, and exploit the asymptotic re-
sults (16) and (19) to derive explicit universal formulas.

As a first illustration, we determine the joint distribu-
tion ρ3(x, nm|0) of the maximum and time at which it
is reached. Paralleling the unbounded result (8), we de-
compose the Markovian trajectory into two independent

parts around nm (see figure 1(b)), and identify their re-
spective probabilistic weights to obtain

ρ3(x, nm|0) = µ0,x(nm)π0,x(0). (20)

Making use of the asymptotic behavior of the strip prob-
ability given above, we derive large x and n expressions
of ρ3. For µ = 2, the joint distribution reads

ρ3(x, nm|0) ∼
τ fixed

2
[a2
x

]3 1

x
π2

∞∑

k=1

k2(−1)k+1e−k2π2τ ,

(21)
while in the heavy-tailed case one has

ρ3(x, n|0) ∼
1≪n≪nx

2µ−1 µ Γ( 1+µ
2 ) Γ(µ) sin(πµ2 )

π
3
2

[aµ
x

] 3µ
2 1

x
.

(22)
Importantly, the n-independence of the strip probabil-
ity has drastic effects on ρ3; indeed, conditioned on the
value x of the maximum, the time at which it is reached
becomes equiprobable for values of n≪ nx.
As a second illustration, we obtain thanks to this for-

malism the joint distribution ρ4(x, nm, nf |0) of the max-
imum x, time of maximum nm and first passage time nf
across 0, which is given by:

ρ4(x, n, nf |0) = µ0,x(n)F0,x(nf − n). (23)

Finally, its asymptotic behavior is readily obtained from
that of the strip probability, and we provide universal
formulas in SM, along with the analysis of the joint dis-
tribution σ(x, nf |0) of the maximum and first passage
time across 0.
Conclusion We have shown that for general symmetric

jump processes, the derivation of joint space and time
distributions of EVS observables reduces to the determi-
nation of a single key quantity, which only depends on
the geometrical constraints imposed on the trajectory.
For unbounded jump processes, we identified the suffi-
cient building block to be the semi-infinite propagator
G0(x, n) and made use of its µ-dependent limit behavior
to draw a comprehensive picture of large space and time
EVS asymptotics. In the case of semi-infinite jump pro-
cesses killed upon first crossing of 0, G0(x, n) is ill-fitted
to investigate EVS observables. As a replacement, we
introduced the strip probability µ0,x(n), provided exact
and asymptotic expressions valid for general symmetric
jump distribution p(ℓ), and systematically derived joint
EVS distributions summarized in table I. In addition to
these asymptotic results, we emphasize that all distribu-
tions can be explicitly computed for any n and x val-
ues, as soon as G0(x, n) and µ0,x(n) are known, as is the

case for the exponential jump process p(ℓ) = γ
2 e

−γ|ℓ|, a
paradigmatic model of single active particle motion.
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Unbounded jump processes Semi-Infinite jump processes

µ(x|n) [24, 36] ✓ µ0(x|x0 = 0) ✓
ρ(nm|n) [24] ✓ ρ3(x, nm|x0 = 0) ✓
ρ1(x, nm|n) ✓ ρ4(x, nm, nf |x0 = 0) ✓

ρ2(x, nm, xf |n) ✓ σ(x, nf |x0 = 0) ✓

TABLE I: EVS observables for general unbounded and
semi-infinite jump processes. The variables x, nm, xf and nf

respectively denote the maximum, the time at which the
maximum is reached, the final position of the process and the first
passage time across 0. Our framework allows for the computation
of novel exact and asymptotic expressions for all distributions
labeled with ✓ - explicit expressions are given in Table I of the
SM. Entries labeled with ✓ are already given in the literature.
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[8] P. Lévy, Compos. Math. 7, 283 (1939).
[9] S. N. Majumdar, J. Randon-Furling, M. J. Kearney, and

M. Yor, Journal of Physics A: Mathematical and Theo-
retical 41, 365005 (2008).

[10] F. Mori, S. N. Majumdar, and G. Schehr, Epl 135, 1
(2021), arXiv:2104.07346.

[11] F. Mori, S. N. Majumdar, and G. Schehr, Physical Re-
view E 101, 52111 (2020), arXiv:2002.12352.

[12] J. Randon-Furling and S. N. Majumdar, Journal of
Statistical Mechanics: Theory and Experiment 2007,
P10008 (2007).

[13] J. Klinger, A. Barbier-Chebbah, R. Voituriez, and
O. Bénichou, Physical Review E 105, 034116 (2022).

[14] Q. Baudouin, R. Pierrat, A. Eloy, E. J. Nunes-Pereira,
P. A. Cuniasse, N. Mercadier, and R. Kaiser, Physical Re-
view E - Statistical, Nonlinear, and Soft Matter Physics
90, 1 (2014).
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This Supplementary Material presents technical details:

• On explicit expressions of EVS distributions

• On the running maximum of stable processes

• On the asymptotic behavior of q(x, n) and G0(x, n)

• On the RETP and LETP

• On non zero initial conditions

• On lattice random walks

I. ON EXPLICIT EXPRESSIONS OF EVS DISTRIBUTIONS

In this section, we provide a table summarizing the exact and asymptotic expression of the various EVS joint distribu-
tions discussed in the main text. Exact expressions mostly stem from Markovian decomposition of trajectories, while
the asymptotics are obtained from the analysis of the two essential building blocks G0(x, n) and the strip probability
µ0,x(n). Note that in the specific case of ρ1 and ρ2, the asymptotic behavior for processes with µ = 2 is simply given
by the limit result for Brownian motion with diffusion coefficient D and duration t, which can be found in [2] for
instance. In practice, this amounts to equating n = t and D = a22.

EVS observable Exact expression µ < 2 - Asymptotic behavior in the regime 1 ≪ n ≪ nx µ = 2 - Asymptotic behavior in the scaling regime n/nx fixed

Unbounded jump processes

µ(x|n) d
dx

q(x, n) nµ
π

sin
(
πµ
2

)
Γ(µ)

[aµ

x

]µ 1
x

o 1
a2

√
πn

e
−
[

x
a2

]2 1
4n o

ρ(nm|n) q(0, nm)q(0, n− nm) 1
π

1√
nm(n−nm)

o

ρ1(x, nm|n) G0(x, nm)q(0, n− nm) 1
π

√
nm

n−nm

2µ
π

sin
(
πµ
2

)
Γ(µ)

[aµ

x

]µ 1
x

x
a2

1

2a2πn
3/2
m

√
n−nm

e
−
[

x
a2

]2 1
4nm

ρ2(x, nm, xf |n) G0(x, nm)G0(x− xf , n− nm)
√

nm(n− nm) 4µ
2

π3 sin2
(
πµ
2

)
Γ2(µ)

[
a2
µ

x(x−xf )

]µ
1

x(x−xf )
x
a2

x−xf

a2

1

4(a2)2π(nm(n−nm))3/2
e
−
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x
a2

]2 1
4nm

−
[
x−xf

a2

]2
1

4(n−nm)

Semi-infinite jump processes

µ0(x|x0 = 0) − d
dx

π0,x(0) µ2µ−2Γ
(
1+µ
2

)
1√
π

[aµ

x

]µ
2 1

x

ρ3(x, nm|x0 = 0) µ0,x(nm)π0,x(0)
2µ−1 µ Γ( 1+µ

2
) Γ(µ) sin(πµ

2
)

π
3
2

[aµ
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2 1
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ρ4(x, nm, nf |x0 = 0) µ0,x(nm)F0,x(nf − nm|0) µ√
π(nf−n)

[
Γ(µ)
π

sin
(

πµ
2

)]2 [aµ
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]2µ 1
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4
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]5 1
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σ(x, nf |x0 = 0) d
dx

F0,x(nf |0) 2µ
√

nf

π
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2

Γ2(µ) sin2

(
πµ
2
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]2µ 1
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x

∑∞
k=1 e
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]

TABLE I. EVS observables for general jump processes. For the asymptotic behavior, nx is defined as nx = (x/aµ)
µ for all µ

values, and x, nm and nf correspond respectively to the maximum, time at which the maximum is reached, and first-passage
time across 0. Entries with a o are already given in the literature.



2

II. ON THE RUNNING MAXIMUM OF STABLE PROCESSES

A. Exact expressions and two explicit cases

In this section, we list useful results from Darling [4] and Bingham [1] on the distribution of the running maximum of
stable processes. Although their results extend to non-symmetric stable processes, we focus here on strictly symmetric
processes X(t), defined by their characteristic function

E[eisX(t)] = exp [−ct|s|µ] , (S1)

where µ is the Levy index of the stable process and c some positive constant. Denoting now the running maximum

M(t), the scaling properties of stable processes imply that M(t)/t
1
µ is distributed as M(1), whose Laplace transform

is denoted

E[e−sM(1)] = ϕ(s). (S2)

Importantly, it was shown by Darling that ϕ(s) takes the following form

∫ ∞

0

ϕ(sx
1
µ )dx = g(s)

g(s) = exp

[
− 1

π

∫ ∞

0

ln (1 + c(sx)µ)

x2 + 1
dx

]
.

(S3)

While it is difficult to obtain explicit expressions for the distribution f(x) of M(1) from equation (S3), there exists
two exact results:

• In the Brownian case µ = 2, one has

fB(x) =
exp

[
−x2/(4c)

]
√
πc

. (S4)

• In the Cauchy case µ = 1

fC(x) =
f∗(xc )

c
; f∗(x) =

1

π
√
x(1 + x2)

3
2

exp

[
− 1

π

∫ x

0

ln(y)

1 + y2
dy

]
(S5)

Finally, In the case where the exact distribution of M(1) cannot be explicitly computed, Bingham asymptotically
studied equation (S3) to obtain the tail behavior of M(1):

P(M(1) > x) ∼
x→∞

cΓ(µ) sin
(
πµ
2

)

πxµ
. (S6)

B. Scaling limit for jump processes with µ < 2

To identify the scaling limit distribution of the running maxima Mn of a heavy-tailed jump process characterized
by µ and aµ, one has to identify the limit α-stable process. In the case of symmetric jump distributions, this is
straightforward (see [3] for a review) and amounts to equating n = t, as well as c = [aµ]

µ
. In turn, by making use

of equation (S6) as well as the scale invariance of M(t), the algebraic decay of the distribution of Mn (equation (7)
from the main text) is recovered.
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III. ON THE ASYMPTOTIC BEHAVIOR OF q(x, n) AND G0(x, n)

In this section, we provide details on the asymptotic analysis of q(x, n) and G0(x, n) in the 1 ≪ n ≪ nx regime. We
focus on heavy-tailed processes with µ < 1 to lighten calculations, but the results are valid for all µ < 2.

A. Semi-infinite propagator

We start from the Laplace transform of G0(x, n):

G̃0(s, ξ) ≡
∞∑

n=1

ξn
[∫ ∞

0

e−sxG0(x, n)dx

]
= exp

[
− s

2π

∫ ∞

−∞

ln [1− ξp̃(k)]

s2 + k2
dk

]
, (S7)

and study the small s limit. Making a change of variables yields

G̃0(s, ξ) = exp

[
− 1

π

∫ ∞

0

ln [1− ξp̃(sk)]

1 + k2
dk

]
. (S8)

In the small s limit, one has p̃(ks) = 1− (aµs|k|)µ + o(|k|µ), and the above expression reads

G̃0(s, ξ) ∼ exp

[
− ln(1− ξ)

1

2

]
exp

[
(aµs)

µ

(1− ξ)π

∫ ∞

0

kµ

1 + k2
dk

]
(S9)

and to first vanishing order in s:

G̃0(s, ξ) ∼
1√
1− ξ

[
1 +

(aµs)
µ

(1− ξ)π

∫ ∞

0

kµ

1 + k2
dk

]
+ o(sµ). (S10)

The leading order is given by

G̃0(s, ξ) =
1√
1− ξ

=

∞∑

n=1

ξnq(0, n), (S11)

and we deduce from the first vanishing order the algebraic decay of G0(x, n) in the 1 ≪ n≪ nx regime:

G0(x, n) ∼
1≪n≪nx

2

√
n

π

µ

π
sin
(πµ

2

)
Γ(µ)

[aµ
x

]µ 1

x
, (S12)

which is used to obtain asymptotic expressions for ρ1 and ρ2 in the main text.

B. Survival probability

We proceed similarly to analyze the large x decay of q(x, n), the survival probability starting from x. We start from
the Laplace transform of the survival probability, obtained from equation (4) of the main text:

∞∑

n=0

ξn
[∫ ∞

0

e−sx0q(x0, n)dx0

]
=

1

s
√
1− ξ

exp

[
− s

2π

∫ ∞

−∞

ln [1− ξp̃(k)]

s2 + k2
dk

]

=
1

s
√
1− ξ

G̃0(s, ξ).

(S13)

By making use of the expansion (S12), we find the leading vanishing order of q(x, n):

1− q(x, n) ∼
1≪n≪nx

n

π
sin
(πµ

2

)
Γ(µ)

[aµ
x

]µ
, (S14)

yielding the asymptotic behavior of distribution µ(x|n) of the running maximum for heavy tailed processes given in
the main text (7).
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IV. ON THE RETP AND LETP

In this section, we briefly review results from [7] on the rightward exit time probability F0,x(n|x0) (RETP), defined
as the probability that a jump process crosses x for the first time on its nth step, without having crossed 0 before,
as well as its leftward counterpart F0,x(n|x0) (LETP). By partitioning over the first step of the walk, the RETP is
shown to satisfy the following integral equation:

F0,x(n|x0) = (1− δn,1)

∫ x

0

p(y − x0)F0,x(n− 1|y)dy + δn,1

[∫ ∞

x

p(y − x0)dy

]
. (S15)

For arbitrary jump kernels p(ℓ), such integral equations are not exactly solvable. However in the specific case of the
exponential jump process p(ℓ) = 1

2e
−|ℓ|, the RETP is explicitly given in the generating function formalism:

∞∑

n=1

F0,x(n|x0)ξn =
ξ
(√

1− ξ cosh(x0
√
1− ξ) + sinh(x0

√
1− ξ)

)

2
√
1− ξ cosh(x

√
1− ξ)− (ξ − 2) sinh(x

√
1− ξ)

, (S16)

from which, using symmetry arguments, we obtain the explicit strip probability for the exponential jump process -
see equation (16) in the main text. For general jump processes, the asymptotic behavior of the RETP can be studied
in the scaling limit τ = n

nx
fixed, with nx = [x/aµ]

µ
, and known results are summarized in the following table

F0,x(n|x0) ∼
n→∞
x→∞
τ fixed

π0,x(x0)hµ(τ)n
−1 F0,x(n|x0) ∼

n→∞
x→∞
τ fixed

F0(n|x0)gµ(τ)

µ = 2 h2(τ) = 2τπ2 ∑∞
k=1 k

2(−1)k+1e−k2π2τ g2(τ) = 4π
5
2 τ

3
2
∑∞

k=1 e
−k2π2τk2

µ < 2
hµ(τ) ∼

τ≪1
Γ(µ/2) sin(πµ/2)π− 3

2
√
τ gµ(τ) ∼

τ≪1
1

hµ(τ) ∼
τ≫1

γµ [λ12
µτ ] e−λ12

µτ gµ(τ) ∼
τ≫1

ωµ [λ12
µτ ]3/2 e−λ12

µτ

TABLE II. Asymptotic behavior of RETP and RETP.

where F0(n|x0) is the distribution of the first crossing time of zero for a semi-infinite jump process, and the constants

γµ ≡ √
µ2

µ
2 − 3

2
Γ
(
µ
2

)

Γ(µ)

[
π

2
− (2− µ)π

8

]µ
2
∫ 2

0

ψ1(u)du

ωµ ≡
√

2π

µ

Γ
(
1 + µ

2

)

Γ
(
µ
2

)
∫ 2

0

ψ1(u)du

(S17)

are given in terms of the first eigenfunction ψ1(u) of the fractional diffusion equation on [0, 2] (see [8] for approximate
expressions).

A. Asymptotic Strip probability for heavy-tailed processes

Importantly, it can be seen from table II that the RETP for heavy-tailed processes in the regime 1 ≪ n≪ nx can be
rewritten in the following form

F0,x(n|0) ∼
x→∞

q(0, n− 1)
Γ(µ)

π
sin
(πµ

2

) [aµ
x

]µ
, (S18)

where the survival probability q(0, n) for semi-infinite processes starting from zero is given in the generating function
formalism by

∞∑

n=0

ξnq(0, n) =
1√
1− ξ

. (S19)
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Equations (S18) and (S19) taken together yield the asymptotic behavior of the strip probability for heavy-tailed
processes, given in equation (20) of the main text.

B. σ(x, nf |0) in the case µ = 2

We show that for processes with µ < 2, the joint distribution σ(x, nf |0) of the maximum x and first crossing time nf
of 0 is obtained from the LETP F0,x(n|0). By partitioning over the maximum value reached by the particle before
crossing 0, it is clear that

F0,x(n|0) =
∫ x

0

σ(u, n|0)du, (S20)

or equivalently

σ(x, n|0) = d

dx
F0,x(n|0). (S21)

In turn, in the scaling limit n≫ 1, x≫ 1 and τ = n(a2/x)
2 fixed, the LETP is given (see table II) by

F0,x(n|0) ∼
τ fixed

1

2
√
πn3

4π
5
2 τ

3
2

∞∑

k=1

e−k2π2τk2 (S22)

such that we obtain

σ(x, n|0) ∼
τ fixed

− 1

2
√
πn3

4π
5
2 τ

1
2

∞∑

k=1

e−k2π2τk2
[
3

2
− k2π2τ

]
× τ

2

x

∼
τ fixed

− 1√
n3

2π2τ
3
2

∞∑

k=1

e−k2π2τk2
[
3− 2k2π2τ

]
× 1

x

∼
τ fixed

2π2
[a2
x

]3 1

x

∞∑

k=1

e−k2π2τk2
[
2k2π2τ − 3

]

(S23)

which is identical to the result in table I.

V. ON THE NON ZERO INITIAL CONDITION

In this section, we discuss the impact of non zero initial conditions on EVS of jump processes.

A. Unbounded jump processes

In the case of unbounded jump processes, non zero initial conditions are straightforwardly dealt with. Indeed, all
distributions µ, ρ, ρ1 and ρ2 are translation invariant, such that for a generic distribution ρ̃(x|n, x0), one has

ρ̃(x|n, x0) = ρ̃(x− x0|n), (S24)

which is valid for all x0 initial conditions.
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B. Semi-infinite jump processes

For semi-infinite jump processes killed upon first crossing of 0, we show that our framework captures the specific small
x0 behavior arising from the discrete nature of jump processes. Consider first the exact expressions given in table
I. By using the Markovian nature of jump process trajectories, is is easily seen that the x0 dependence only enters
through the first part of the trajectory decomposition such that:

µ0(x|x0) = − d

dx
π0,x(x0),

ρ3(x, nm|x0) = µ0,x(nm|x0)π0,x(0),
ρ4(x, nm, nf |x0) = µ0,x(nm|x0)F0,x(nf − nm|0),

σ(x, nf |x0) =
d

dx
F0,x(nf |x0).

(S25)

Note that the strip probability µ0,x(n|x0) is now defined as the probability that the particle originating from x0 > 0
stays positive during its first n steps, and reaches its maximum x on its last step exactly. The x0 dependence of both
π0,x(x0) and the LETP F0,x(nf |x0) have been extensively discussed in [6] and [7]; in particular, it was shown that in
the large x limit, the splitting probability is given by

lim
x→∞

[
π0,x(x0)

Aµ(x)

]
=

1√
π
+ V (x0)

Aµ(x) =

(
aµ
x

)µ/2

2µ−1Γ

(
1 + µ

2

)
.

(S26)

where V (x0) is an explicit process-dependent function, given by its Laplace transform

∫ ∞

0

e−sx0V (x0)dx0 =
1

s
√
π

(
exp

[
− s

π

∫ ∞

0

dk

s2 + k2
ln(1− p̃(k))

]
− 1

)
. (S27)

Consequently, we only need to determine the x0 dependence of the strip probability µ0,x(n|x0) to obtain a comprehen-
sive picture of EVS of semi-infinite jump processes. Our results hold in the general asymptotic framework discussed
in the main text, namely the scaling regime for processes with µ = 2, and the regime 1 ≪ n ≪ nx for heavy-tailed
processes. First, recall that

µ = 2 : µ0,x(n) ∼ a−1
2 F0,x(n),

µ < 2 : µ0,>x(n) ∼
1≪n≪nx

n∑

k=1

F0,x(k|0)q(0, n− k).
(S28)

In turn, we find that the x0 dependence only enters through the RETP. Next, it can be seen from table II that
F0,x(n|x0)/π0,x(x0) is independent of x0, such that the x0 dependence of the two quantities is equal. As a result, we
obtain the following large x and n asymptotic behavior

µ0,x(n|x0) ∼ µ0,x(n)
[
1 +

√
πV (x0)

]
, (S29)

valid for all x0 initial conditions, in particular the regime x0 ≲ aµ, for which discrete effects become crucial. As an
illustration, we display on figure 1 numerical simulations accounting for the x0 dependence of the cumulative strip
probability µ0,>x(n|x0).

VI. ON LATTICE RANDOM WALKS

In this section, we discuss the natural extension to Markovian lattice random walk, such as the one-dimensional Polya
walk. In essence, all decompositions summarized in table I remain exact, although care needs to be taken in the
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0.0 0.2 0.4 0.6 0.8 1.0
x0

1.0

1.1

1.2

1.3

1.4

∫ ∞ x
µ

0,
u
(n
|x

0)
d
u

∫ ∞ x
µ

0,
u
(n
|0)
d
u

p(`) = 1

2π
√
|`|(1+|`|)

, n =40, x = 106

1 +
√
πV (x0)

FIG. 1. x0 dependence of the cumulative strip probability for a F-distributed heavy-tailed jump process with fixed n and and
x. The dashed black line is obtained from the numerical evaluation of V (x0) given in equation (S27).

definition of EVS joint distributions. Indeed, since lattice walks can repeatedly visit sites, it becomes necessary to
distinguish trajectories allowed to come back to their starting point, from those that never visit their starting point
twice. Importantly:

• We distinguish the conditional semi-infinite propagator G†
0(s, n), defined as the probability that the walker

originated from s0 = 0 is at site s on its nth step , and its successive positions (s1, . . . , sn) are strictly positive,
from G0(s, n), where the walker is allowed to revisit 0.

• We distinguish the conditional survival probability q†(0, n), defined as the probability that the walker originating
from 0 has its successive positions (s1, . . . , sn) strictly positive, from q(0, n), where the walker is allowed to revisit
0.

Joint EVS distributions of lattice walks can now be expressed in terms of these new quantities. As an example, in
the case of unbounded lattice walks we obtain:

ρ(nm|n) = q†(0, n)q(0, n− nm)

ρ1(s, nm|n) = G†
0(s, n)q(0, n− nm)

ρ2(s, nm, sf |n) = G†
0(s, n)G0(s− sf , n− nm)

(S30)

where nm is now the first time the maximum s is reached. For semi-infinite lattice walks terminated upon becoming
strictly negative, no such distinction is needed and trajectories contributing to π0,s(0), F0,s(n) and µ0,s(n) are allowed
to return repeatedly to 0. Finally, we point out that in the case of the one dimensional Polya walk, explicit expressions

for G†
0(s, n), G0(s, n), q

†(0, n) and q(0, n) can be found in [5].
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