
HAL Id: hal-04774748
https://hal.science/hal-04774748v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-the-fly spectral unmixing based on Kalman filtering
Hugues Kouakou, José Henrique de M Goulart, Raffaele Vitale, Thomas

Oberlin, David Rousseau, Cyril Ruckebusch, Nicolas Dobigeon

To cite this version:
Hugues Kouakou, José Henrique de M Goulart, Raffaele Vitale, Thomas Oberlin, David Rousseau, et
al.. On-the-fly spectral unmixing based on Kalman filtering. Chemometrics and Intelligent Laboratory
Systems, 2024, 255, pp.105252. �10.1016/j.chemolab.2024.105252�. �hal-04774748�

https://hal.science/hal-04774748v1
https://hal.archives-ouvertes.fr


On-the-fly spectral unmixing based on Kalman filtering

Hugues Kouakoua, José Henrique de Morais Goularta, Raffaele Vitaleb, Thomas Oberlinc, David Rousseaud, Cyril Ruckebuschb,
Nicolas Dobigeona

aUniversité de Toulouse, IRIT/INP-ENSEEIHT, 31071 Toulouse, France
bUniversité de Lille, CNRS, LASIRE, 59000 Lille, France

cUniversité de Toulouse, ISAE-SUPAERO, 31400 Toulouse, France
dUniversité dAngers, LARIS, UMR IRHS INRAe, 49000 Angers, France

Abstract

This work introduces an on-the-fly (i.e., online) linear spectral unmixing method which is able to sequentially analyze spectral
data acquired on a spectrum-by-spectrum basis. After deriving a sequential counterpart of the conventional linear mixing model,
the proposed approach recasts the linear unmixing problem into a linear state-space estimation framework. Under Gaussian noise
and state models, the estimation of the pure spectra can be efficiently conducted by resorting to Kalman filtering. Interestingly,
it is shown that this Kalman filter can operate in a lower-dimensional subspace to lighten the computational burden of the overall
unmixing procedure. Experimental results obtained on synthetic and real Raman data sets show that this Kalman filter-based
method offers a convenient trade-off between unmixing accuracy and computational efficiency, which is crucial for operating in
an on-the-fly setting. The proposed method constitutes a valuable building block for benefiting from acquisition and processing
frameworks recently proposed in the microscopy literature, which are motivated by practical issues such as reducing acquisition
time and avoiding potential damages being inflicted to photosensitive samples. The code associated with the numerical illustrations
reported in this paper is freely available online at https://github.com/HKouakou/KF-OSU.
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1. Introduction

Spectral (or hyperspectral) imaging is a widely used mea-
surement technique thanks to its ability to provide rich informa-
tion about sample optical properties at different wavelengths.
Applications arise in many domains ranging from pharmaceu-
tics [1, 2] where it can be used for checking the authenticity of
drugs [3] to medicine [4–7], e.g., in order to detect diseases [7].
However, a common issue inherent to hyperspectral imaging is
data analysis as mixed spectral pixels most often contain the
contributions of several primary components constituting the
sample under study, referred to as endmembers or pure spec-
tra (PS) in the literature. Hence, one ubiquitous task associ-
ated to hyperspectral data consists in extracting these PS with
their respective concentrations for each acquired spectral pixel.
This process is called spectral unmixing (SU) [8] or multivari-
ate curve resolution in the field of chemometrics [9].

Since the introduction of spectral mixture analysis in the
1970s, many SU algorithms have emerged. Under a linear mix-
ing model (LMM), estimating the PS and their respective con-
centrations in each measured spectral pixel amounts to solv-
ing a nonnegative matrix factorization (NMF) problem [10].
NMF involves decomposing a matrix into a product of two non-
negative matrices. For spectral data, these two matrices contain
the PS profiles and their respective concentrations.

⋆This work has been supported by the ANR IMAGIN Research Project un-
der grant agreement ANR-21-CE29-0007.

A well-known method for solving the SU problem is mul-
tivariate curve resolution-alternating least squares (MCR-ALS)
[9, 11], which formulates SU as a bilinear least-squares prob-
lem. This algorithm is based on the simple observation that,
even though SU is a (jointly) nonconvex problem, it becomes
(separately) convex when either the PS or the concentrations are
kept fixed. MCR-ALS thus proceeds iteratively, by fixing one
of those unknown matrices and solving the (easier) subproblem
of minimizing the least-squares criterion only with respect to
the other one, until some stopping criterion is met. Each sub-
problem is solved taking into account specific physically-driven
constraints on the PS (e.g., nonnegativity, unimodality) and/or
on the concentrations (e.g., positivity, sum-to-one).

Other works have proposed to formulate SU within a
Bayesian framework. Such Bayesian methods rely upon pos-
tulating some prior distributions for the PS and for the concen-
trations, which are carefully chosen to incorporate the problem
constraints. Then, given the measured observations, the pos-
terior distributions of the unknown quantities (PS and concen-
trations) are determined. In practice, no closed-form expres-
sion of the Bayesian estimators can be derived and computa-
tional methods must be implemented. For instance, Markov
chain Monte Carlo methods are used to approximate these esti-
mates by empirically averaging samples drawn from the result-
ing posterior distribution of interest [12–14]. Another family
of methods resorts to variational Bayesian inference to approx-
imate this posterior by a simpler, instrumental distribution from
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which closed-form expressions of the Bayesian estimates can
be derived [15, 16].

Another class of methods, mainly motivated by geometric
considerations, has also been developed. These methods can be
divided into two groups, according to whether they rely or not
on the assumption that at least some of the measurements are
not mixed, but rather contain the sought PS. Under the LMM
and a sum-to-one constraint on the concentrations, the observed
spectra are convex combinations of pure spectra. From a geo-
metric point of view, this means that those spectra lie within a
simplex whose vertices are the PS, which are sometimes avail-
able among the collected data. A well-known algorithm which
makes this assumption is vertex component analysis [17]. This
latter algorithm iteratively finds PS by projections onto ran-
dom axes orthogonal to the subspace spanned by the already
extracted PS, so that the next PS is set as the observation with
the maximal projection coefficient in absolute value. Other al-
gorithms that rely on the observation of PS are the successive
projection algorithm [18], pixel purity index [19] and N-finder
[20]. However, this rather strong assumption is not fulfilled
in many real-world scenarios. Therefore, other methods seek
instead the simplex with the minimum volume enclosing the
observations, without assuming the presence of observed PS.
Among them, one can cite minimum volume enclosing simplex
[21], minimum volume simplex analysis [22], simplex identifi-
cation via split augmented Lagrangian [23] and minimum vol-
ume constrained nonnegative matrix factorization [24].

Regardless of the used algorithm, SU performance obvi-
ously depends on the quality of the data acquisition procedure.
Acquiring high-quality data comes with its own challenges: of-
ten it is quite (or even prohibitively) time-consuming, and in-
volves long exposure to high-power excitation signals, thus po-
tentially inflicting damages on biological samples. To address
these challenges, innovative acquisition protocols have been re-
cently developed [25, 26] to target only essential spectral pixels,
which are loosely defined as the most dissimilar spectral pixels
of an image [27, 28]. In [29], those essential spectral pixels
are found by identifying the convex hull of the collected data
cloud in a subspace of reduced dimensionality which is deter-
mined via principal component analysis (PCA). Yet, PCA re-
quires first acquiring a sufficiently large batch of pixels, which
may be somehow limiting. Instead, Coic et al. have proposed to
extract the essential spectra in the Fourier domain [25], by com-
puting the convex hull within phasor plots [30, 31]. This strat-
egy has shown to be well suited to a spectrum-by-spectrum ac-
quisition approach based on the relevance of the collected sig-
nal profiles (i.e. whether they are essential spectra or not). This
highlights the increasing need to be able to carry out on-the-fly
(i.e., online) unmixing to update PS estimates after each new
measurement. However, to the best of the authors’ knowledge,
none of the above spectral unmixing methods allows process-
ing spectral pixels in an on-the-fly fashion with a reasonable
computational cost compatible with operational requirements.

To satisfy this very current need, this work presents an
on-the-fly unmixing method based on the Kalman filter (KF)
[32]. The estimated PS are updated through the KF each time
a new measured observation is available. Aiming to reduce the

computational cost of the estimation algorithm, this KF-based
method is implemented in a lower-dimensional subspace. Still,
we show how nonnegativity of the estimated PS in the original
data space along the algorithm iterations can be ensured by a
dedicated strategy, which draws inspiration from the archety-
pal analysis [33] to formulate this task as a constrained regres-
sion problem. Interestingly, the proposed procedure can also
be granted with an optional subspace tracking step. This step
dynamically accounts for substantial variations of the data sub-
space occurring, e.g., when a newly acquired measurement is
likely composed of an additional PS. Numerical experiments
conducted on synthetic and hyperspectral real Raman data sets
demonstrate the ability of the proposed method to estimate PS
on-the-fly while showing comparable results with state-of-the-
art offline unmixing algorithms.

The remainder of the paper is organized as follows. Section
2 presents some related works to the general problem of source
separation when the measurements may be delivered or pro-
cessed sequentially. Section 3 recasts the conventional LMM
in an on-the-fly setting, yielding the so-called on-the-fly LMM.
The proposed algorithm to estimate the parameter of this on-
the-fly LMM is described in Section 4. Experimental protocols
relying on synthetic and real data sets are presented in Section
5. Results and discussions are reported in Section 6, while Sec-
tion 7 concludes the paper.

2. On-the-fly spectral unmixing: related work

The problem of on-the-fly SU tackled in this paper can be
framed as a source separation task that should be performed
along the acquisition process, i.e., for processing a data stream
comprising spectral data that are provided sequentially on a
spectrum-by-spectrum basis. Online1 source separation has in
particular been applied with the objective of signal denoising,
that is, for removing noise from the signals of interest mea-
sured in real-time, e.g., to suppress artefacts originating from
eye movements when measuring electroencephalogram signals
[34]. Several online algorithms based on independent compo-
nent analysis have been proposed to solve this problem, see
[35, 36]. Independent component analysis relies on the assump-
tion that the measurements are linear combinations of statisti-
cally independent sources. Although the linearity hypothesis is
relevant in the context of this work, the assumption of statistical
independence between the sources (here, the concentrations) is
generally not fulfilled.

Source separation has also found applications in Gamma-
ray spectroscopy for radionuclide detection [37–39]. The au-
thors in [39] recently proposed a method for performing this
task in real time using a series of short-term measurements on
the aerosol sample being analyzed. Although their approach is
built upon the LMM, it includes a prior imposing that the con-
centrations of two consecutively processed observations must

1The term “on-the-fly” used in this paper refers to the ability of updating the
PS estimate once a new measurement or a batch of measurements is available.
This is rather referred to as “online” in the signal processing literature. Both
terms are used indistinctly from now on.
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be close, which is not justifiable within our setting. Indeed, in
our context the spectral pixels acquired between two succes-
sive measurements can be highly dissimilar, resulting in highly
variable concentrations.

Online NMF and online dictionary learning (DL) define an-
other class of methods for online source separation, where the
basis vectors (that would stand for the PS in the context of SU)
are updated after each new observation is recorded. Several on-
line NMF and DL algorithms exist in the literature, including
the ones described in [40–43]. These algorithms update the ba-
sis vectors from matrices containing information on previously
estimated mixing coefficients (i.e., concentrations) and past ob-
servations, which are thus sequentially updated and stored. The
algorithm proposed in [40] can be interpreted as an online coun-
terpart of the one previously introduced in [44] as it comple-
ments the conventional NMF objective function with an addi-
tional sparsity-inducing regularization accounting for any devi-
ations (i.e., outlier) from the conventional bilinear model gener-
ally adopted to describe spectral mixtures. In [41], the authors
depart from the minimization of a standard quadratic cost to
derive online instances of Itakura-Saito NMF [45] well suited
to analyze audio signals. The seminal work of Mairal et al.
[42] aims at adaptively learning a basis set from a data stream
to perform sparse coding. Their optimization procedure is fur-
ther improved in [40] to reach a better algorithmic convergence
rate based on a robust stochastic approximation of the objective
function, at the price of generating random samples over the
probabilistic subspace spanned by the observations. Unfortu-
nately, in their canonical implementations, all these methods do
not perform any dimensionality reduction of the measurements
before processing, which poses a complexity issue when deal-
ing with high-dimensional hyperspectral data. Moreover, the
robust and non-quadratic cost functions considered in [41] and
[45] significantly deviate from the conventional bilinear model.
More interestingly, the computationally lightest instance of on-
line DL introduced in [42] shares some strong similarities with
the approach described in the sequel of this paper. We will re-
turn to this point later in Section 4.6. However, it turns out that
the online DL scheme of [42] performs poorly in the particular
context of on-the-fly SU targeted in this work due to an inap-
propriate update rule, as we will discuss ahead.

Finally, it is worth mentioning that online unmixing has also
received attention in recent years to process multi-temporal hy-
perspectral images acquired over the same scene at different
time instants. In this context, online SU aims at estimating
the PS as well as the concentrations each time a new image
is acquired in order to identify possible variations in terms of
PS and concentrations over the scene [46–49]. These methods
are clearly not adapted to the context of SU of data delivered
according to a spectrum-by-spectrum acquisition protocol, as
they require acquiring the entire hyperspectral image at each
time step.

3. On-the-fly formulation of LMM

Before delving into the problem statement, the notations for
the key quantities used in the core part of the manuscript are

summarized in Table 1. Moreover, in what follows, 1K ∈ RK×1

denotes a column vector composed of ones, ⊗ stands for the
Kronecker product, |S| = card(S ) is the number of elements in
the finite set S.

Table 1: Summary of the symbols used in this article.

Symbol Description

K ∈ N Number of pure spectra (PS)

L ∈ N Number of spectral channels

L̃ ∈ N Dimension of the lower-dimensional space

N ∈ N Number of measurements

t ∈ N Time/measurement index

P ⊂ {1, . . . ,N} Set of indices of the archetype spectra

Y ∈ RN×L
+ Matrix of the N measured spectra

Y≤t ∈ Rt×L
+ Matrix of the first t measured spectra

yt ∈ RL×1
+ Measured spectrum at time t

ỹt ∈ RL̃×1 Lower-dimensional representation of yt

YP ∈ R|P|×L
+ Matrix of the archetype spectra

ỸP ∈ R|P|×L̃ Matrix of the lower-dimensional representation of YP
C ∈ RN×K

+ Matrix of the N concentration vectors

C≤t ∈ Rt×K
+ Matrix of the first t concentration vectors

ct ∈ RK×1
+ Vector of the concentration associated with ỹt and yt

Ht ∈ RL×LK
+ Matrix representation of the concentration vector ct

H̃t ∈ RL̃×L̃K
+ Matrix representation of the concentration vector ct (lower-dimensional space)

S ∈ RL×K
+ Matrix of the PS

s ∈ RLK×1
+ Vector representation of the PS matrix S

ˆ̃St ∈ RL̃×K PS matrix estimate at time t (unconstrained, lower-dimensional space)
ˆ̃S+t ∈ RL̃×K

+ PS matrix estimate at time t (constrained, lower-dimensional space)

Ŝt ∈ RL×K PS matrix estimate at time t (unconstrained, data space)

Ŝ+t ∈ RL×K
+ PS matrix estimate at time t (constrained, data space)

S[k] ∈ RL×1
+ kth column of S corresponding to the kth PS

σ2
v ∈ R+ Process noise variance

σ2
e ∈ R+ Observation noise variance

3.1. Linear mixing model

This work addresses the problem of on-the-fly SU under the
LMM, which assumes that each measured spectrum, that is to
say each observation, is a linear combination of some unknown
PS. The PS and their concentrations in each measured spectrum
are supposed nonnegative. Moreover, this work considers also a
sum-to-one (closure) constraint imposed on the concentrations.
It is worth noting that this constraint can always be satisfied by
the data after an appropriate normalization [50]. Assuming that
the image to be acquired is composed of N measured spectral
pixels, after a standard unfolding procedure, the LMM writes

Y = CS⊺ + E, (1)

where Y ∈ RN×L
+ contains the full set of N L-dimensional

spectra, C ∈ RN×K
+ is the concentration matrix where the nth

row contains the K concentrations associated to the nth pixel,
S ∈ RL×K

+ contains the K unknown pure spectra and E ∈ RN×L

is an additive white Gaussian noise matrix which models mea-
surement noise and/or mismatches with respect to the LMM.
The number of spectral channels is denoted L, and the number
K of PS is assumed to be known a priori. Moreover, the ma-
trices C and S are nonnegative, i.e., they are composed of non-

3



negative elements, and the sum-to-one constraint is imposed on
the concentrations as C1K = 1N .

3.2. On-the-fly linear mixing model

In an on-the-fly micropscopy setting, the spectral pixels
composing the full scene are acquired sequentially and should
be processed on a spectrum-by-spectrum basis. Without loss
of generality but to ease the presentation, one can assume that
the spectral pixels are arranged in the matrix Y = [y1, . . . , yN]⊺

according to their order of acquisition, i.e., the vector yt ∈ RL
+

defining the tth row of Y corresponds to the tth acquired spec-
trum (t = 1, . . . ,N). Given a current estimate Ŝt−1 of the PS
recovered from the set of (t − 1) acquired spectra Y≤t−1 =

[y1, . . . , yt−1]⊺, one seeks to update it as soon as a new spectral
pixel yt is acquired such that Ŝt tends to the true (but unknown)
PS matrix S. A possible approach would consist in using any
offline SU method each time a new spectral pixel yt is avail-
able. Doing so would give an estimate Ŝt of the PS based on the
whole set of pixels Y≤t acquired so far, such that Y≤t ≈ C≤tŜ

⊺
t

with C≤t = [c1, . . . , ct]⊺ and ct ∈ RK
+ . Yet, this scheme would

exploit all available spectra to recompute an estimate at each
instant t “from scratch,” which is not suitable for an on-the-fly
approach because of the underlying computational burden. This
naive strategy will be considered in Section 5 when comparing
the proposed method to conventional unmixing algorithms. A
question that arises is thus how to efficiently compute the PS
estimate at instant t based on the information already available,
i.e., exploiting the current estimate at instant t − 1. One natural
way of tackling this challenge is to define the PS matrix St asso-
ciated with the set of t measurements Y≤t as a random (matrix-
valued) variable evolving according to St = ft(St−1) + Vt, for
some suitable function ft(·) and an appropriately defined ran-
dom variable Vt. According to this formulation, an estimate of
St−1 can be leveraged as a prior information for estimating St,
together with assumptions on ft(·) and on Vt.

In this paper, we model the evolution of St as a random walk
without drift, i.e., ft(·) is assumed to be the identity function and
Vt is a random matrix with zero-mean entries. This implies that
St is distributed around St−1. More specifically, one adopts the
following on-the-fly formulation of LMM

St = St−1 + Vt, (2)
yt = St ct + et, (3)

where (Vt)i j
i.i.d.∼ N(0, σ2

v), et ∼ N(0, σ2
e IL) and IL is the iden-

tity matrix of size L. The variance σ2
v can be interpreted as the

uncertainty level associated to the PS estimate St with respect
to the previous estimate St−1 as a new spectrum yt arrives. The
on-the-fly LMM defined by Eq. (2)–(3) states that the spectrum
yt depends on the PS matrix St according to the conventional
(static) LMM, and this PS matrix evolves according to a recur-
sion. On-the-fly unmixing can then be formulated as the updat-
ing of a previous PS estimate Ŝt−1 given a new acquired spec-
tral pixel yt. This can be achieved within a Bayesian framework
by deriving the (conditional) probability density function of St

given y1, . . . , yt. This approach is detailed in the next section.

4. The proposed on-the-fly spectral unmixing algorithm

4.1. Sequential estimation of pure spectra
For the sake of simplicity, this subsection assumes that the

concentrations ct ∈ RK
+ are known; their estimation will be

addressed later in Section 4.4. Moreover, the proposed on-
the-fly LMM is vectorized by stacking the columns of St and
Vt after applying the vec(·) operator. By using the identity
vec(St ct) = (c⊺t ⊗ IL) vec(St) = Ht st, the on-the-fly LMM de-
fined as in (2) and (3) becomes

st = st−1 + vt, (4)
yt = Ht st + et, (5)

where st ∈ RLK (resp., vt) is the vectorized counterpart of St

(resp., Vt) and Ht = c⊺t ⊗ IL ∈ RL×LK
+ . The posterior distribu-

tion of the unknown PS st then writes

p(st |Y≤t) ∝ p(yt |st) p(st |Y≤t−1).

Given the Gaussian nature of the noise term vt and the error
term et, this posterior is also a Gaussian distribution N(µt,Σt),
thus fully defined by its mean µt and covariance matrix Σt.
After each new measurement yt is recorded, these parameters
(µt,Σt) can be recursively and explicitly computed from the pre-
vious parameters (µt−1,Σt−1) according to updating rules speci-
fied by the Kalman filter (KF), as detailed in Algo. 1. More pre-
cisely, the KF updates the conditional mean µt and covariance
matrix Σt at each time instant t following two steps, namely
prediction and update. The prediction step calculates the pre-
dicted covariance matrix Σt−1/2 of the distribution p(st |Y≤t−1) =
N(st;µt−1,Σt−1/2). Once a new spectrum yt is available, the
mean and covariance matrix are updated. This KF scheme is
known to be optimal in the mean-square-error sense [32]. Be-
sides, at each time instant t of the KF (i.e., after each new mea-
surement is collected), it allows a Bayesian estimator to be com-
puted. For example, the minimum mean-square-error estimate
boils down to the posterior mean µt.

At this stage of the estimation process, two important short-
comings should be discussed. First, the steps of this algorithm
can be, in practice, quite costly for spectra typically featuring
hundreds or thousands of spectral variables. Thus, it is imper-
ative to perform dimensionality reduction before executing the
KF to make it feasible for on-the-fly SU. Second, in its canon-
ical implementation, this KF-based unmixing procedure does
not ensure the nonnegativity of the PS. The two next sections
show that this estimation procedure can be carefully adapted
to tackle these two challenges, i.e., reducing the computational
cost via a dimensionality reduction and ensuring the nonnega-
tivity constraint inherent to the PS.

4.2. Kalman filtering in a lower-dimensional subspace
As stated in the introduction, several approaches can be

considered in order to perform dimensionality reduction. Cer-
tainly, the most popular approach consists in deploying PCA.

2Note that Zt is guaranteed to be invertible since it is the sum of a positive
semi-definite matrix HtΣt−1/2 H

⊺
t and a positive definite matrix σ2

e IL.
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Algorithm 1: KFUpdate
Input : Newly acquired spectrum yt, posterior mean

µt−1 and covariance matrix Σt−1 at time
instant (t − 1), observation matrix Ht,
uncertainty level σ2

v , model noise variance σ2
e

// Predict the prior covariance matrix
1 Σt−1/2 ← Σt−1 + σ

2
v IKL

// Compute the innovation
2 rt ← yt − Htµt−1
// Compute the innovation covariance

3 Zt ← HtΣt−1/2 H⊺
t + σ

2
e IL

// Compute the optimal gain2

4 Kt ← Σt−1/2 H⊺
t Z−1

t
// Update the posterior mean

5 µt ← µt−1 + Kt rt

// Update the posterior covariance matrix
6 Σt ← (IL − Kt Ht)Σt−1/2

Output: Posterior mean µt and covariance matrix Σt at
time instant t.

One possible alternative capitalizes on the study conducted in
[25], which demonstrated the suitability of the Fourier domain
for identifying the essential spectral pixels. In what follows,
for the sake of generality, this dimensionality reduction will not
be prescribed. Instead, we will refer to a generic linear opera-
tor DR : RL

+ → RL̃ which performs dimensionality reduction
according to

ỹt = DR
(
yt
)
, (6)

where ỹt ∈ RL̃ (with L̃ ≪ L) denotes the lower-dimensional
representation of the pixel spectrum yt ∈ RL

+. It is worth noting
that the use of the tilde character ·̃ refers to the corresponding
quantity expressed in the target lower-dimensional subspace.
Thanks to the linearity of the operator DR(·), the on-the-fly
LMM (4)-(5) can be rewritten in the lower-dimensional sub-
space as

s̃t = s̃t−1 + ṽt, (7)

ỹt = H̃t s̃t + ẽt, (8)

with H̃t = c⊺t ⊗ IL̃. In Algo. 1, which remains unchanged, the
KF can then be directly applied to the lower-dimensional repre-
sentation ỹt instead of yt.

Besides, one valuable feature of KF is its ability of grant-
ing Bayesian point estimation with uncertainty quantification.
Since now the KF operates in the lower-dimensional subspace
induced by the linear operator DR(·), deriving confidence inter-
vals associated with estimation of the lower-dimensional rep-
resentation of the PS (e.g., expressed in terms of standard de-
viations) is straightforward in that subspace, as they come as
a byproduct provided by KF. Concretely, this amounts to ex-
amining the diagonal elements of the error covariance matrix
Σ̃t driving the filtering process. By contrast, translating these
quantities into the original data space requires a careful calcu-
lation. The proposed methodology is detailed in Appendix C
and the resulting confidence measures will be investigated in
the numerical experiments (see Section 6).

4.3. Constrained estimation in a lower-dimensional subspace
Enforcing nonnegativity on the PS estimate Ŝt expressed

in the original data space would be rather straightforward: it
could be achieved by a simple hard-thresholding of the KF out-
put. Unfortunately, performing the sequential estimation in a
lower-dimensional subspace makes this constraint more dif-
ficult to handle. Indeed, the KF provides an estimate ˆ̃St of
the lower-dimensional representation of the PS while the con-
straint should apply to the PS estimate Ŝt defined in the orig-
inal data space. To overcome this issue, the proposed strat-
egy reformulates the constrained estimation problem as a con-
strained regression inspired by archetypal analysis [33]. More
precisely, the nonnegative constrained PS estimate in the data
space, herein denoted Ŝ(+)

t , is assumed to result from linear
combinations of some so-called archetype spectra

{
yt, t ∈ P

}
which span the signal subspace. The set P ⊂ {1, . . . ,N} col-
lects the indices of these archetype spectra which are gathered
in the matrix YP ∈ R|P|×L with |P| = card {P} and K ≤ |P| ≤ N.
Given these archetype spectra, the nonnegative constrained PS
estimate in the data space is assumed to be expressed as

Ŝ(+)
t ≈ Y⊺

P R̂t. (9)

In (9), the regression matrix R̂t depends on the unconstrained
estimate ˆ̃St and is defined as the solution of a constrained re-
gression problem leveraging a geometrical interpretation of the
LMM. The technical derivations required to its computation are
reported in Appendix A.1 and Appendix A.2. The set P gath-
ering the indices of the archetype spectra can be chosen as the
first P ≥ K measurements, i.e, P = {1, . . . , P} and YP = Y≤P.
When the signal subspace is expected to evolve along the acqui-
sition, e.g., when a new component is likely to appear, this set
should be updated dynamically. A simple yet efficient proce-
dure for performing such a subspace tracking task is proposed
in Appendix B.

Throughout Sections 4.1 to 4.3, the concentrations ct (t ≥
1), or equivalently the observation model matrices H̃t, have
been assumed known, which is obviously not the case in prac-
tice. The next subsection discusses their estimation along the
KF iterations (or time instants).

4.4. Estimation of concentrations
Once a spectral pixel yt is observed at a given instant t, the

associated concentration vector ct defining the observation ma-
trix H̃t is required to update the PS estimate. Several strategies
can be envisaged to infer this quantity. Driven by the constraint
of computational efficiency compatible with on-the-fly process-
ing, this work proposes to follow the same strategy advocated
in recent works dedicated to online NMF [40, 43] and online
DL [42]. More precisely, an estimate of ct can be computed
from the current constrained estimate Ŝ(+)

t−1 of the PS defined in
(9) by solving the constrained regression problem

min
c

∥∥∥∥yt − Ŝ(+)
t−1c
∥∥∥∥2

2
s. t. c ≥ 0 and c⊺1K = 1. (10)

Various efficient off-the-shelf algorithms can be considered to
solve this constrained minimization problem, such as the sparse
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unmixing by variable splitting and augmented Lagrangian
(SUnSAL) algorithm [51].

4.5. Overview of the proposed algorithm

Algorithm 2: Proposed KF-OSU algorithm for on-
the-fly spectral unmixing

Input : Number K of PS, first P measured spectra YP,
model noise variance σ2

e , uncertainty level σ2
v

Initialization: Constrained PS estimate S(+)
p

1 t ← P
// Perform dimensionality reduction (see (6))

2 S̃(+)
t ← DR

(
S(+)

t

)
// Initialize the posterior distribution parameters

3 µ̃t ← vec
(
S̃(+)

t

)
4 Σ̃t ← σ2

v IKL̃
// Update the PS estimate after each acquisition

5 repeat
6 t ← t + 1

// Estimate mixing concentrations ct by solving (10)

7 ct ← SUnSAL
(
yt,S

(+)
t−1

)
8 H̃t ← c⊺t ⊗ IL̃

// Perform dimensionality reduction (see (6))
9 ỹt ← DR(yt)

// Update the posterior distribution parameters (Algo. 1)

10
(
µ̃t, Σ̃t

)
← KFUpdate

(
ỹt, µ̃t−1, Σ̃t−1, H̃t, σ

2
v , σ

2
e

)
// Update the unconstrained PS estimate in the subspace

11 S̃t ← unvec(µ̃t)
// Optional: update set of archetype spectra (Appendix B)

12 P ← SubspaceTracking
(
yt, t,YP,P, σ2

e

)
// Compute the regression matrix by solving (A.4)

(Algo. 3)

13 Rt ← Regression
(
YP, ỸP, S̃t

)
// Compute the constrained PS estimate in the full space

14 S(+)
t ← YPRt

// Perform dimensionality reduction (see (6))

15 S̃(+)
t ← DR

(
S(+)

t

)
// Update the posterior mean

16 µ̃t ← vec
(
S̃(+)

t

)
17 until end of acquisition;

Output : The estimated PS matrix S(+)
t .

A step-by-step description of the proposed KF-based on-
the-fly SU algorithm, termed KF-OSU, is sketched in Algo. 2.
To lighten the notations, the symbol ·̂ for denoting estimates
of the various quantities of interest has been omitted, without
any ambiguity. The algorithm takes as inputs the number of
pure spectra K, the first P measured spectra defining the matrix
YP that can be chosen as the archetype spectra, the observation
noise variance σ2

e and the uncertainty level σ2
v . The constrained

PS estimate S(+)
p can be initialized by applying any offline un-

mixing algorithm to YP. The parameters of the posterior distri-

butions are also initialized (lines 3-4): the mean µ̃p is initialized
as the vectorized form of S(+)

p , and the covariance matrix Σ̃p as
σ2

v IKL̃.
Then, the algorithm proceeds iteratively by updating these

parameters every time a new spectrum yt is acquired. The
algorithm estimates the mixing concentrations ct by solving
the optimization problem (10) via SUnSAL (line 7). The ma-
trix representation H̃t of the concentration vector ct is com-
puted (line 8). The new spectrum yt is then projected onto
the lower-dimensional space using the DR(·) operator (line 9).
At the core of the method, KFUpdate updates both the mean
and covariance matrix using the new observation (line 10).
The unconstrained PS estimate S̃t is then computed by un-
vectorizing the updated mean (line 11). As an optional step,
the set of archetype spectra can be updated according to the
SubspaceTracking procedure (line 12). The nonnegative con-
strained PS estimate is defined as the linear combination of the
archetype spectra (line 14) based on the regression matrix esti-
mated using the Regression procedure (line 13). The posterior
mean is finally defined after dimensionality reduction (line 15)
and vectorization (line 16). The process repeats until the end of
acquisition.

The code of the proposed KF-OSU algorithm can be found
online at https://github.com/HKouakou/KF-OSU.

4.6. Connection to related methods
The core step of the proposed KF-OSU algorithm lies in

the update of the PS estimate after each new measurement yt is
acquired. In this work, this update is performed within a fully
Bayesian framework by Kalman filtering (line 10 in Algo. 2).
Conceptually, one may think of other updating strategies. This
paragraph discusses these alternatives and relates them to the
currently implemented KF-based updating rule.

As a preliminary, it should be noticed that the KF-based up-
dating rule fully detailed in Algo. 1 can be compactly rewritten
as

sKF
t = sKF

t−1 + Kt

(
yt − HtsKF

t−1

)
(11)

where Kt is the so-called optimal Kalman gain (see line 4
of Algo. 1) resulting from the assumptions of linear-Gaussian
models for the state (4) and the observation (5). It mainly con-
sists in first computing a residual rKF

t = yt − HtsKF
t−1, also re-

ferred to as innovation within the KF framework. This residual
rKF

t acts as a drift, weighted by the gain matrix Kt, to correct
the previous estimate sKF

t−1.
Then, because of the simple state evolution model (4), it can

be shown that there is a clear connection with the updating rule
that would result from a recursive least square (RLS) filtering
[52]. RLS aims at solving at each time instant t the weighted
least-squares minimization problem

min
s

t∑
i=1

λt−i
∥∥∥yi − His

∥∥∥2
2 , (12)

where λ ∈ (0, 1) is a forgetting factor. This leads to an RLS
update rule of the form

sRLS
t = sRLS

t−1 + Gt(λ)
(
yt − Ht sRLS

t−1

)
, (13)

6
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where Gt(λ) can be interpreted as a RLS gain. Comparing (11)
and (13), it clearly appears that KF and RLS differs by the def-
inition of the gain applied to the correction drift.

Besides, as already discussed in Section 2, on-the-fly SU
can also be cast into online NMF or online DL frameworks.
In particular, the most popular strategy to perform online DL
is certainly the stochastic optimization algorithm introduced by
Mairal et al. in [42]. In its canonical implementation, updating
the dictionary atoms (associated with the PS in the context of
SU) is achieved by solving the optimization problem

min
S

t∑
i=1

∥∥∥yi − Sci

∥∥∥2
2 . (14)

Following the vectorization procedure described in Section 4.1,
it can be shown that the original DL updating rule to solve (14)
and given in [42] can be rewritten as

sDL
t = sDL

t−1 + Dt

(
yt − Ht sDL

t−1

)
(15)

with

Dt =


 t∑

i=1

cic⊺i

−1

ct

⊗ IL. (16)

Again, by interpreting Dt as a gain, the link between this DL
update and the KF update (11) is clear.

Numerical experiments conducted on synthetic data sets
empirically showed that replacing the KF update (line 10 in
Algo. 2) with one of these two alternative updating rules, (13)
or (15), did not improve or even severely degraded the PS esti-
mation. This may be due to an unsuitable definition of the gain
matrices in these alternative methods. As a consequence, they
will not be considered further in the sequel of this paper.

5. Numerical experiments

This section describes the numerical experiments conducted
to assess the performance of the proposed method on synthetic
and real Raman data sets. It describes three synthetic data sets
and a real data set used in the experiments, introduces two sim-
ulation protocols and describes the algorithms against which
KF-OSU is compared. In addition to their ability to properly
recover the sought PS, these methods will be compared with re-
spect to their computational burden (i.e, algorithmic runtimes).

5.1. Description of the data sets

5.1.1. Synthetic data sets
Data sets SD1. Two hundred data sets, each composed of N =
4000 spectra with L = 300, have been independently generated
from a mixture of K = 5 spectra according to the linear mixing
model in (1). The profiles of the pure spectra have been gener-
ated by combining Gaussian templates with different locations,
widths, and amplitudes. Mixture concentrations have been first
randomly drawn from a Dirichlet distribution D(α) guarantee-
ing their nonnegativity and their sum-to-one constraints. For
these data sets, the Dirichlet parameter has been chosen as

α = [α1, . . . , αK] with αk = 1 (for all k), i.e., the mixing co-
efficients are uniformly distributed over the simplex defined by
the constraints. Each generated data set contained pure spec-
tra. Finally, the noise term E was drawn from a white Gaussian
distribution where the noise variance σ2

e has been adjusted to
achieve a signal-to-noise ratio (SNR) of 20dB, as given by

SNRdB = 10log10
∥CS⊺∥2F
σ2

e NL
. (17)

These data sets containing pure spectra could appear too sim-
plistic to relevantly contribute in assessing the performance of
unmixing algorithms. However, such a simple simulation pro-
tocol is useful for benchmarking and has been for instance con-
sidered in [53, 54]. It is also worth recalling that the focus of
this work is online unmixing, in the context of a sequential
acquisition on a spectrum-by-spectrum basis. This particular
context somehow questions the way in which the difficulty of
achieving unmixing is usually discussed. To support this state-
ment, one can refer to the experiments results reported in Sec-
tion 6.1: even when analyzing these simple data sets, significant
differences in unmixing performance will be observed depend-
ing on the order of the spectra defining the sequence of acquisi-
tion. Moreover, this simple data set has also the merit of setting
one of the compared algorithms in a favorable experimental sit-
uation. Indeed, one of the geometrical algorithm considered in
Section 5.5 specifically relies on a pure pixel assumption.

Data sets SD2. The generation procedure for this second set
of data is almost the same as for SD1, with an important dif-
ference: all spectra containing more than 75% of one of the
primary spectra have been discarded, to eliminate almost pure
spectra and to make the unmixing problem more challenging.

Data sets SD3. The data sets SD3 have been generated similarly
to SD2 (N = 4000, K = 5, L = 300, no pure spectra), with
the key difference that 1000 out of the 4000 spectra in each
data set are mixtures of only 4 components. More importantly,
these data sets have been rearranged to mimic an acquisition
scenario where the 5th component only appears later during the
measurement process. Specifically, the mixing concentration
of the 5th component is zero in the first 1000 measured spectra,
meaning this component appears from the 1001st observation
onward. The main rationale behind considering these data sets
is to assess the subspace tracking step optionally embedded into
the proposed KF-OSU algorithm. The experimental results will
show that KF-OSU will be able to provide reliable results once
t ≥ 1001, even when initialized with K = 5 and an initial set of
incomplete archetype spectra.

5.1.2. Real data set RD
A 101 × 101 × 343 Raman image, depicted in Fig. 1 has

been obtained from a mixture of sodium nitrate (NaNO3), cal-
cium carbonate (CaCO3) and sodium sulphate (Na2SO4) pow-
ders. All spectral pixels have been acquired with a LabRAM
HR microspectrometer (Horiba France SAS, Palaiseau, France)
using a 50× Olympus objective (0.75 NA). Data acquisition has
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Figure 1: Data set RD: RGB visualization of the real Raman hyperspectral im-
age used in the experiments. The red (R), green (G) and blue (B) channels
correspond to Raman shifts 711.8, 622.9 and 723.6 cm−1, respectively.

been performed in the spectral range 497.7−901.2 cm−1 with an
accumulation time of 5 s per pixel (see [25] for more details on
the acquisition conditions). This real data set denoted RD is in-
teresting for assessing the performance of the compared meth-
ods as reference spectra, i.e. the spectral signatures of the three
components NaNO3, CaCO3 and Na2SO4, are available. After
unfolding the acquired hyperspectral image, a N × L matrix Y
of spectra is obtained with L = 343 and N = 10201. A batch
of 199 copies of this matrix has been generated by randomly
permuting the rows. The goal is to evaluate the performance of
the proposed KF-OSU method for different initializations and
sequences of observed spectra.

5.2. Acquisition protocols

Two distinct acquisition protocols have been simulated. For
the first protocol denoted P1, the available spectral pixels are all
considered and no preferred measurement sequence has been
implemented. The second protocol, denoted P2, is inspired by
the principle of essential spectral pixel acquisitions [25, 26].
More precisely, the data sets generated under protocol P2 con-
sist of only essential spectral pixels extracted from the data
resulting from protocol P1. These selected pixels are subse-
quently arranged in a specific order to maximize the spectral di-
versity (i.e., dissimilarity) between consecutive observed spec-
tra. This order relies on an iterative peeling procedure of the
data set conducted by identifying successive convex hulls, in a
fashion similar to the strategy advocated in [55]. The procedure
is fully described in Appendix D. The main motivation behind
protocol P2 is to illustrate the impact of the order in which mea-
surements are carried out and then made available for analysis
by the on-the-fly unmixing algorithm. In particular, it will help
to show that the convergence of KF-OSU can be significantly
accelerated by providing the most informative measured spectra
at an early stage of the estimation procedure.

5.3. Performance metrics
Four metrics have been taken into account to evaluate the

performance of the algorithms under study. The first one is the
spectral angle distance (SAD, in degrees), defined by

SADk = arccos

 Ŝ[k]⊺S[k]∥∥∥Ŝ[k]
∥∥∥

2

∥∥∥S[k]
∥∥∥

2

 ,
where S[k] ∈ RL×1 (resp. Ŝ[k] ∈ RL×1) is the kth column of the
matrix S (resp. Ŝ) associated with the kth true (resp. estimated)
PS. A small SAD value indicates a strong similarity between the
profiles of the two spectra. To measure the average similarity
over all the PS, the average SAD (aSAD) is reported

aSAD =
1
K

K∑
k=1

SADk.

Note that this metric is insensitive to multiplicative factors, i.e.
it does not allow to assess whether the estimated PS are scaled
versions of the true ones. To capture this information, the root
mean square error (RMSE) of the concentrations is additionally
calculated as

RMSE =

√
1

KN

∥∥∥C − Ĉ
∥∥∥2

F,

where C (resp. Ĉ) is the true (resp. estimated) concentration
matrix. Finally, to assess the ability of the compared methods
to appropriately model the measurements, the spectral recon-
struction error (RE), defined as

RE =

∥∥∥Y − ĈŜ⊺∥∥∥
F

∥Y∥F
is also computed. The matrix Y contains the observed spectra
and Ŝ is the estimated PS matrix. In particular, RE is used to
compare the performance of the methods when applied to the
real data set RD, as the true PS and mixing concentrations are
unknown.

It is worth noting that these four figures-of-merits will be
computed as functions of the so-called time index of the com-
pared unmixing algorithms. By this, one means that these met-
rics are computed after each new spectral pixel is acquired, in
agreement with the considered operational context character-
ized by a sequential acquisition followed by an on-the-fly pro-
cessing.

5.4. Details on the KF-OSU parameters
Archetype spectra – For each experiment conducted on the
three synthetic data sets SD1–SD3 and the real data set RD, the
first P = 30 spectra of each data set have been assigned to the
matrix YP of the archetype spectra to perform the regression
task, i.e., P = {1, . . . , 30} (see (A.4) and line 13 of Algo. 2).
The PS have been initialized as the outputs of VCA applied to
this set of archetype measurements.

Noise and uncertainty levels – The measurement noise level σ2
e

has been estimated from these P spectra after denoising using a
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Figure 2: Synthetic data set SD1 – Performance of the compared algorithms in terms of aSAD (1st row) and RMSE (2nd row) as functions of the time index. Blue
and orange lines refer to the acquisition protocols P1 and P2, respectively. The results have been averaged over 200 data sets and the shaded areas correspond to
one standard deviation.
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Figure 3: Synthetic data set SD2 – Performance of the compared algorithms in terms of aSAD (1st row) and RMSE (2nd row) as functions of the time index. Blue
and orange lines refer to the acquisition protocols P1 and P2, respectively. The results have been averaged over 200 data sets and the shaded areas correspond to
one standard deviation.

Savitzky-Golay filter of order 3 with a sliding window of size 5
[56]. To avoid excessive under- or over-estimation of this noise
level, the results have been averaged over several portions of
the spectra. Formally, each of these P spectra is split into Q
segments of size T = 10 such that QT ≈ L. The variance σ2

e
of the noise is then set as the mean of the median variance
calculated on each spectrum. Besides, it has been empirically
observed that the uncertainty level σ2

v should be greater than or
equal to 1; it has been set as σ2

v = 1 for all experiments.

Dimensionality reduction – As stated in Section 4.2, several
choices for the operator DR(·) are possible. Two particular in-
stances will be considered during the experiments. The most
conventional solution to perform dimensionality reduction will
consist in applying PCA, i.e.,

ỹt = DR
(
yt
)
= VT yt, (18)

where V ∈ RL×L̃ is an orthogonal projector onto the estimated
principal subspace of dimension L̃. In addition, another choice
adopted in this paper will benefit from the findings reported
in [25], which promotes the use of the Fourier coefficients for

identifying essential spectral pixels. More precisely, unless oth-
erwise stated, the dimensionality reduction operator DR(·) used
during the experiments will concatenate the real and imaginary
parts of the discrete Fourier transform (DFT) of the input vector
for a set of M = L̃

2 frequencies, i.e.,

ỹt = DR
(
yt
)
=

Re(F⊺yt)

Im(F⊺yt)

 , (19)

where F ∈ CL×M is the truncated DFT matrix. The mo-
tivation behind this dimensionality reduction approach, lies
in the fact that the DFT can be directly computed on a
spectrum-by-spectrum basis, without need of estimating the
lower-dimensional subspace from data. Moreover, thanks to
the computational efficiency of the fast Fourier transform algo-
rithm, the use of DFT is compatible with real-time data pro-
cessing required within the context of on-the-fly SU. For these
two particular operators (PCA and DFT), the dimension of the
lower-dimensional subspace will be estimated from the set YP
of archetypal spectra as the minimum number P such that at
least η% energy has been kept, i.e., such that the following cri-
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terion is met

P∑
t=1

∥∥∥DR
(
yt
)∥∥∥2

2 ≥
η

100

P∑
t=1

∥∥∥yt

∥∥∥2
2 .

Table 2 reports the (range of) values chosen for the param-
eters σ2

e , L̃ and η for each data set.

Table 2: Algorithmic parameter values for each data set.

Data set DR(·) L̃ η (%)
σ̂2

e σ2
e

(estimated) (true value)

SD1 DFT 28–32 85–90 8 25

SD2
DFT 28–32 85–90

8 25
PCA 65-90 97-98

SD3 DFT 36-40 75-80 5 20

RD DFT 52–60 85–88 52 -

5.5. Compared methods

The proposed algorithm is compared to three conventional
unmixing methods described below:

• MCR-ALS is a popular unmixing algorithm in the
chemometrics literature, thanks to its ease of implemen-
tation and its ability to produce good estimates of PS [9].
MCR-ALS requires as input the number of PS, the maxi-
mum number of iterations (set to 60 in this paper) and an
initial estimate of PS chosen as the outputs of PCA.

• VCA is a well-known geometric method widely used
by the remote sensing community thanks to its compu-
tational efficiency and its ability to identify PS among
observations when they have been measured [17]. It is
considered in the comparison since it has been used to
initialize KF-OSU.

• SISAL is another well-known algorithm widely used by
the remote sensing community [23]. Contrary to VCA,
it does not assume that PS have been measured. SISAL
shows a competitive (often better) processing time than
its peers and generally produces good PS estimates. Be-
sides the number of PS, it requires as input the maximum
number of constrained quadratic problems to be solved,
set to 80 in the experiments.

These algorithms are designed to process data in an offline con-
text, i.e., to identify PS from a whole given set of measured
spectra. To compare them to KF-OSU, they have been imple-
mented to satisfy the operational requirements imposed by a se-
quential acquisition protocol combined with an on-the-fly spec-
tral processing. More precisely, at each time instant t, these
three algorithms are always run on the entire set of available
acquired spectra Y≤t. In other words, after each new spectrum
yt is acquired, MCR-ALS, VCA and SISAL provide a new PS
estimate which is computed from all previous acquired spectra

Y≤t−1 augmented by this newly acquired spectrum yt. These
three methods are expected to reach good estimation perfor-
mance. However, it will be shown that their respective com-
putational burden makes them inoperative in the targeted prac-
tical setup, imposing an on-the-fly unmixing of data acquired
sequentially according to a spectrum-by-spectrum scheme.

6. Results and discussion

6.1. Performance on synthetic data sets SD1 and SD2

Figure 2 shows the performance of the compared meth-
ods on the data sets SD1. Overall, all algorithms yield good
results, characterized by decreasing aSAD, RMSE and uncer-
tainty (i.e., standard deviation) along the time index. Although
the proposed method performs slightly worse than MCR-ALS
and SISAL, it presents fairly low aSAD and RMSE values from
time index t = 500 for protocol P1 (without the selection of es-
sential spectra) and from time index t = 200 for protocol P2
(with the selection of essential spectra). This performance dis-
crepancy with respect to the compared methods may be partly
explained by the quite low SNR of the investigated data. Since
KF-OSU operates in a purely on-the-fly context, a spectrum-
by-spectrum processing may be less effective to mitigate the
impact of noise. Conversely, the compared methods may bene-
fit from the simultaneous analysis of the whole data sets, since
they can infer the signal subspace at each time instant before
identifying the PS.

Besides, it can be observed in Fig. 2 that the aSAD and
RMSE curves of the four methods reach relatively close final
values for the two acquisition protocols. However, it is im-
portant to highlight that under the second acquisition protocol
P2, the aSAD and RMSE values decrease faster (in comparison
with the experiment conducted under protocol P1) while the un-
mixing improves. This illustrates the benefit of resorting to such
a smart acquisition protocol. In particular, one can notice that
the curves associated to VCA reach a stationary behavior very
late under protocol P1. This results from the fact that pure (or at
least essential) spectra may be observed very late under proto-
col P1, in contrast to P2 which mimics an acquisition sequence
maximizing the spectral diversity. This shows once again the
relevance of a smart acquisition protocol in the context of on-
the-fly unmixing.

All previous findings are corroborated by the outcomes re-
sulting from the analysis of the data sets SD2, as shown in Fig. 3.
The performance of KF-OSU, SISAL and MCR-ALS remains
broadly the same as when the data sets SD1 are concerned. This
demonstrates their ability to provide good PS estimates even in
the absence of pure pixels among the data. As expected, VCA
shows poorer results, since this geometrical method explicitly
assumes that the sought PS belong to the set of measured spec-
tral pixels.

Figures 4 and 5 display the profiles of the pure spectra es-
timated by the compared methods at time instant t = 200, i.e.,
after the 200th acquisition. They show that the estimated PS
signatures are fairly close to the true PS. This demonstrates
the ability of KF-OSU to perform on-the-fly unmixing without
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Figure 4: Synthetic data sets SD1 – Spectral profiles of the PS estimated at time index t = 200 for acquisition protocols P1 (blue) and P2 (orange). The black curves
correspond to the ground-truth spectra. The shaded areas accompanying the results provided by the proposed KF-OSU represent the ±3σ credible regions.

reprocessing all the previously measured spectra at each new
acquisition. It is also worth noting that KF-OSU provides an
estimation of the covariance matrix of the obtained estimates
as a byproduct, following the strategy detailed in Appendix C.
This estimation can be subsequently exploited to grant the esti-
mated spectral with uncertainty quantification in terms of ±3σ
credible regions depicted as shaded areas in Fig. 4 and 5. This
is clearly a valuable asset of the proposed algorithm inherited
from its intrinsic Bayesian nature.

Finally, Figure 6 presents the performance of KF-OSU on
the data sets SD2, when the dimensionality reduction previously
operated by DFT was carried out by PCA. Two cases have been
considered to demonstrate the relevance of the regression-based
procedure to ensure the nonnegativity of the estimated pure
spectra. In the first one, no further modification has been made
to the KF-OSU algorithm (curves in green). In the second case,
benefiting from standard properties of PCA-based dimensional-
ity reduction, the regression-based procedure has been replaced

with a naive back-projection method. In this case, the estimated
pure spectra are first back-projected into the original data space
after each iteration of the Kalman filtering procedure, then they
undergo a crude thresholding to impose nonnegativity (and fi-
nally they are projected again onto the lower-dimensional space
for the next iteration). Specifically, lines 13–15 of Algo. 1 have
been replaced by S̃(+)

t ← VT max
(
VS̃t, 0

)
where max(·, 0) is a

component-wise thresholding operator. As observed, KF-OSU
is less effective in the second case, highlighting the importance
of enforcing nonnegativity through the regression-based proce-
dure. Moreover, this experiment demonstrates that the DR oper-
ator can be easily chosen as PCA, although the latter generally
requires a higher dimension P than DFT to achieve comparable
performance (see Table 2).

6.2. Performance on the synthetic data sets SD3

Figure 7 presents the results of the KF-OSU algorithm ap-
plied to the data sets SD3 which mimic an acquisition scenario
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Figure 5: Synthetic data set SD2 – Spectral profiles of the PS estimated at time index t = 200 for acquisition protocols P1 (blue) and P2 (orange). The black curves
correspond to the ground-truth spectra. The shaded areas accompanying the results provided by the proposed KF-OSU represent the ±3σ credible regions.
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Figure 6: Synthetic data sets SD2 – Performance of KF-OSU with PCA-based
dimensionality reduction in terms of aSAD (left) and RMSE (right). Green and
red lines refer to KF-OSU with and without the regression-based procedure,
respectively. The results have been averaged over 200 data sets and the shaded
areas correspond to one standard deviation.

for which a new component is not present in the first 1000 mea-
surements, but appears from the 1001th acquired spectra on-
ward. The green curves represent the proposed KF-OSU al-
gorithm when it is granted with the optional subspace track-

ing step, while the red curves correspond to its canonical ver-
sion without subspace tracking. As for data sets SD1 and SD2,
both versions of the algorithm have been initialized with the
true number of PS (i.e., K = 5) and a set of archetypal spectra
composed of the first P = 30 measurements. However, because
of the way in which the data sets SD3 have been generated (see
Section 5.1.1), these first P spectra do not contain the 5th PS.
Therefore the matrix YP of archetypal spectra is expected to
be unable to explain the measurements acquired after the time
instant t = 1001. As expected, the two approaches exhibit com-
parable performance over the first 1000 iterations. Interestingly,
when the 5th pure spectrum emerges from the 1001st measure-
ment, only KF-OSU with subspace tracking adapts effectively.
This is evidenced by the continuous decrease in the aSAD and
RMSE curves until convergence is achieved. Notably, this con-
vergence occurs rapidly after the introduction of the new com-
ponent.
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Figure 7: Synthetic data sets SD3 – Performance of KF-OSU in terms of aSAD
(left) and RMSE (right). Green and red lines refer to KF-OSU with and without
subspace tracking, respectively. The results have been averaged over 200 data
sets and the shaded areas correspond to one standard deviation.

6.3. Performance on the real data set RD

Figure 8 depicts the RE as a function of the time index for
each of the compared methods. These curves are complemented
with a horizontal line corresponding to a so-called lower bound
which approximates the lowest RE that can be expected given
the noise level. This lower bound is defined as the RE with
respect to Ȳ resulting from a denoising by PCA, i.e.,

lower bound =

∥∥∥Y − Ȳ
∥∥∥

F

∥Y∥F
(20)

with Ȳ = YVV⊺ where V ∈ RL×K is the matrix composed of
the first K principal component loadings (K = 3). These curves
show that all methods behave similarly for each protocol with
a clear decreasing of the RE along the time index, i.e., when
the number of measured spectra increases. Under protocol P1,
MCR-ALS and SISAL reach significantly lower RE (close to
the lower bound) when all the spectral pixels are considered
to perform unmixing. Under this same protocol, KF-OSU and
VCA provide higher RE, even when all spectral pixels have
been considered. In general, the RE obtained under protocol P2
are slightly smaller and, above all, they clearly decrease faster
along the first 400 observations, with less dispersion around the
mean.

It is worth noting that the slightly better results obtained by
MCR-ALS and SISAL come with a higher computational bur-
den, since all available spectral pixels are considered at each
new measurement. This remains incompatible with the opera-
tional constraints imposed by a sequential acquisition protocol
combined with an on-the-fly data processing, as it will be dis-
cussed in Section 6.4. In particular, they require a larger amount
of spectra and, thus, a longer data collection time which, in the
context of biological imaging, would significantly increase the
risk of damaging the target specimens.

Finally, Fig. 9 shows that the profiles of the PS estimated
by the methods at time index t = 140 can be easily matched to
the reference spectra associated to the main components of the
sample. They are globally in good agreement with these spectra
that can be roughly considered as ground truth. Note that under
the simulated acquisition protocol P1, a higher reconstruction
error between Raman shifts 700 and 750 cm−1 is observed for
the second PS.

Table 3: Average runtimes required by the compared SU algorithms. All the
SU methodologies under study were implemented using MATLAB R2022b and
run on a laptop with an Intel Core i7-8565U CPU running at 1.80GHz equipped
with 8.00GB RAM.

Data set N
KF-OSU MCR-ALS VCA SISAL
(per obs.) (for N obs.) (for N obs.) (for N obs.)

SD1 4000 0.007 1.38 0.04 0.15
SD2 4000 0.007 0.4 0.04 0.12
SD3 4000 0.009 0.4 0.04 0.12
RD 10201 0.005 0.45 0.08 0.25

6.4. Runtime comparison

Table 3 reports the computational times required by the
compared algorithms for the processing of the synthetic data
sets SD1 – SD3 and the real data set RD. It should be emphasized
that KF-OSU updates the PS estimates at each time instant from
a single newly available observation, i.e, the last acquired spec-
trum. Consequently, it has a constant execution time per time
index. On the contrary, the other compared methods estimate
the PS from the whole set of spectra available at each time in-
stant, which results in computational complexities that increase
along the time index. As expected, KF-OSU is shown to be
computationally more suitable for on-the-fly SU.

Furthermore, the processing time required by MCR-ALS
for the N = 4000 spectra of the data sets SD1 is much higher
than the time required to analyze the data sets SD2 and SD3.
This is certainly due to the absence of PS within the observa-
tions, resulting in a slower convergence of the algorithm. A
similar observation can be made for SISAL, while KF-OSU
takes the same execution time on both data sets.

When considering the real data set RD, KF-OSU shows a
lower execution time compared to when it was run on the syn-
thetic data sets SD1–SD3. This can be explained by the number
of pure spectra to be estimated (K = 3), which is smaller than
for the data sets SD1–SD3 (K = 5). This is not the case for
MCR-ALS, VCA and SISAL, whose computational runtimes
required to unmix the real data set RD are higher. In particu-
lar, VCA and SISAL execution times double with respect to the
simulation experiments. This may be explained by the fact that
their computational burden is also highly driven by the difficulty
of the SU task when analyzing real data.

7. Conclusion

This work introduced a novel algorithm able to perform
spectral unmixing in an on-the-fly setup. This method, named
KF-OSU, was specifically designed to be compatible with se-
quential acquisition protocols delivering measurements on a
spectrum-by-spectrum basis. Indeed, KF-OSU was able to up-
date the pure spectra estimates after each individual spectrum
was acquired. The evolution of the estimates as well as the
spectral mixtures were described by linear Gaussian models,
leading to simple and computationally efficient updating rules
thanks to a Kalman filtering scheme. To further reduce the
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Figure 8: Real data set RD – Performance of the compared algorithms in terms of RE as a function of the time index. Blue and orange lines refer to the acquisition
protocols P1 and P2, respectively. The results have been averaged over 200 data sets and the shaded areas correspond to one standard deviation.

computational cost, a dimensionality reduction was performed
beforehand. The nonnegativity of the pure spectra estimate
was ensured by solving a regression problem relating the pure
spectra in the original data space and their representations in a
lower-dimensional subspace.

Experiments conducted on synthetic and real Raman data
sets showed that the estimation performance of KF-OSU was
comparable to those obtained by standard unmixing methods,
which were developed to estimate pure spectra from a whole
set of measurements. Moreover, an experimental analysis of the
runtimes required by the compared methods demonstrated the
computational efficiency of KF-OSU, whose cost was found to
be in agreement with the requirements imposed by a sequential
data acquisition protocol combined with an on-the-fly spectral
processing.

This method provides a support for the development of
guided image acquisition or smart scanning schemes [25, 26].
Future work could explore extensions of the proposed algorithm
to include mechanisms for detecting and correcting potential
deviations from nominal behaviors.

Appendix A. Constrained PS estimation as a regression
problem

This appendix shows that the constrained PS estimation can
be formulated as an easily solvable constrained regression prob-
lem. Appendix A.1 explains how the PS estimation can be
translated into a regression task. Its efficient resolution is de-
tailed in Appendix A.2.

Appendix A.1. Problem formulation

To ease the presentation, we go back to the non-vectorized
notation of the PS estimate at time instant t, i.e., we denote the
lower-dimensional estimate recovered by the KF at time instant
t as ˆ̃St = unvec(ˆ̃st). This current estimate is supposed to be
a rather good approximation of the true PS expressed in the
lower-dimensional subspace, i.e., for j ≤ t it holds

ỹ j ≈ ˆ̃St c j. (A.1)

Reciprocally, akin to an archetypal analysis [33], it is also le-
gitimate to state that the lower-dimensional representations of
the PS can be expressed as linear combinations of some lower-
dimensional representations of the measured spectral pixels,
i.e., there exists a regression matrix Rt ∈ RP×K such that

ˆ̃St ≈ Ỹ⊺
PRt, (A.2)

where the |P| columns of ỸP ∈ R|P|×L̃ contains the lower-
dimensional representations ỹt of some archetypal spectra yt,
t ∈ P (with K ≤ |P| ≤ t). The core idea consists in translating
this regression into the original data space while ensuring the
nonnegativity of the recovered PS. More precisely, the nonneg-
ative constrained PS estimate in the data space denoted Ŝ(+)

t is
assumed to be expressed as

Ŝ(+)
t ≈ Y⊺

PR̂t, (A.3)

where the regression matrix R̂t is defined as the solution of the
constrained regression problem

R̂t = argmin
Rt

∥∥∥∥Ỹ⊺
PRt − ˆ̃St

∥∥∥∥2
F

s. t. Y⊺
PRt ≥ 0. (A.4)

The nonnegativity of the PS estimate defined in (A.3) is directly
ensured by the nonnegativity constraint included in the regres-
sion problem (A.4). Note that incorporating this constraint into
the original measurement space overcomes the non-invertibility
of the dimensionality reduction induced by (6). Indeed, it only
relies on the straightforward one-to-one mapping between the
set of |P| archetypal spectra expressed in the original space and
their representations with respect to the chosen dimensionality
reduction operator, namely, YP and ỸP. We propose to solve
the minimization problem in (A.4) by means of the alternating
direction method of multipliers (ADMM) [57]. The algorith-
mic sketch of the regression procedure is detailed in the next
section.

Appendix A.2. Resolution of the regression problem
The following derivations provide practical details on the

resolution of the regression problem in (A.4). This task is
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Figure 9: Real data set RD – Spectral profiles of the PS estimated at time index t = 140 for acquisition protocols P1 (blue) and P2 (orange). The black curves
correspond to the reference spectra.

formulated as the minimization of a quadratic term subject to
inequality constraints. After introducing a splitting variable
U ∈ RL×K

+ , the problem can be equivalently rewritten as

min
R,U

∥∥∥∥Ỹ⊺
PR − ˆ̃St

∥∥∥∥2
F
+ ιR+ (U) s. t. U − Y⊺

PR = 0, (A.5)

where ιR+ (·) is the indicator function such that ιR+ (U) = 0 if
U ≥ 0 and ιR+ (U) = ∞ otherwise. The augmented Lagrangian
associated to the constrained problem in (A.5) is

L(R,U, λ) =
∥∥∥∥Ỹ⊺
PR − ˆ̃St

∥∥∥∥2
F
+
ρ

2

∥∥∥U − Y⊺
PR
∥∥∥2

F

+ ⟨λ,U − Y⊺
PR⟩ + ι(U)

where ⟨X, Z⟩ = trace (X⊺Z) and λ is the Lagrange multi-
plier. Minimizing (A.5) can thus be efficiently achieved using
ADMM whose scheme is detailed in Algo. 3. Solutions to lines
3 and 4 are given respectively by

R( j+1) =
(
2ỸPỸ⊺

P + ρYPY⊺
P

)−1

×
(
YPλ( j) + ρYPU( j) + 2ỸP ˆ̃St

)
(A.6)

and
U( j+1) = max

(
0,Y⊺

PR( j+1) − 1
ρ
λ( j)
)
. (A.7)

It appears that the number |P| of archetype spectra should be
chosen such that the matrix to be inverted in (A.6) is well-
conditioned, or at least, nonsingular. For the experiments de-
scribed in Section 5, the stopping criterion of Algo. 3 is chosen
as a maximum of 50 iterations with ρ = 1 and U(0) and λ(0)

initialized as null matrices.

Algorithm 3: Regression
Input : The regressors YP in the original data space,

their counterparts ỸP in the
lower-dimensional subspace, the PS estimate
ˆ̃St expressed in the lower-dimensional
subspace, the step-size ρ > 0

Initialization: U(0), λ(0)

1 j← 0
2 repeat

// Update the regression matrix (see (A.6))
3 R( j+1) ∈ argminRL(R,U( j), λ( j))

// Update the splitting variable (see (A.7))
4 U( j+1) ∈ argminU L(R( j+1),U, λ( j))

// Update the Lagrange multiplier
5 λ( j+1) ← λ( j) + ρ(U( j+1) − Y⊺

PR( j+1))
6 j← j + 1
7 until stopping criterion;

Output : The regression matrix R( j).

Appendix B. Subspace tracking: updating the set of
archetype spectra

Let consider a newly acquired measurement yt. Given the
LMM in (3), this spectrum can be decomposed as yt = ȳt +

et, where ȳt is the noise-free spectrum and (et)i
i.i.d.∼ N(0, σ2

e)
denotes the noise. The question to address is the following:
does this new measurement result from the mixture of PS that
can be explained by the regression model (9)? This translates
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into ensuring that the noise-free component ȳt belongs to the
subspace P = span

(
Y⊺
P

)
of dimension rank(Y⊺

P) spanned by
the archetype spectra in YP. Inspired by the approach in [58],
the proposed solution consists in projecting the measurement yt
onto P and evaluating the energy of the residual.

Formally, the orthogonal projector onto P writes P =

Y⊺
P(YPY⊺

P)−1YP. Let zt = yt − Pyt denote the so-called resid-
ual, i.e., the projection of yt onto the orthogonal complement
P⊥ with dimension L − rank(Y⊺

P). If ȳt ∈ P, then Pȳt = ȳt and
zt = et − Pet. In other words, as illustrated in Fig. B.10, the
residual only consists of the measurement noise projected onto
P⊥. Given the Gaussian nature of this noise, it follows that the
normalized energy of this residual can be statistically described
by a χ2 distribution, i.e.,

1
σ2

e
∥zt∥22 ∼ χ2

L−rank(Y⊺
P ). (B.1)

This property leads to a binary hypothesis testing in order to
check whether ȳt lies in P or not. For a given probability of
false alarm pFA, one can decide ȳt ∈ P if 1

σ2
e
∥zt∥22 ≤ F−1 (1 − pFA) ,

ȳt < P otherwise,
(B.2)

where F−1 (·) denotes the inverse cumulative distribution func-
tion of the χ2 distribution with L − rank(Y⊺

P) degrees-of-
freedom. Deciding ȳt < P means that the current set of
archetype spectra is not sufficient to explain the new measure-
ment yt and should be complemented with the new measured
spectra, i.e., P ← P∪ {t} and YP is updated accordingly. In the
numerical experiments reported in Section 6, the probability of
false alarm has been set as pFA = 0.05. The overall procedure
is sketched in Algo. 4.

Algorithm 4: SubspaceTracking
Input : Newly acquired spectrum yt, index t of the

new spectrum, archetype spectra YP, set P of
the indices of archetype spectra, model noise
variance σ2

e
// Project yt onto P⊥

1 zt = yt − Y⊺
P(YPY⊺

P)−1YPyt
// Update the set of indices of archetype spectra

2 if 1
σ2

e
∥zt∥22 ≥ F−1 (1 − pFA) then

3 P ← P ∪ {t}
4 end if

Output: Set P of the indices of archetype spectra.

Appendix C. Estimation of the error covariance matrix in
the original space

This section proposes to estimate the posterior covariance
matrix Σt characterizing the PS St in the original space from its
counterpart Σ̃t characterizing the lower-dimensional represen-
tation S̃t of the PS and directly provided by the KF. Elaborating

0

yt = ȳt + et

Pyt = ȳt

zt

P

P⊥

Figure B.10: Geometric illustration of the decomposition of yt = ȳt + et as the
sum of Pyt and zt when ȳt ∈ P (L = 3, rank(Y⊺

P) = 2).

on the regression model (A.2), the matrix of the PS can be writ-
ten as

St = Y⊺
PRt + Bt. (C.1)

where (Bt)i j
i.i.d.∼ N(0, σ2

e). The zero mean imposed on noises
(Bt)i j ensures consistency with (A.3). The choice of a vari-
ance equal to the observation noise variance, namely σ2

e , can
be motivated as follows: if a pure spectrum is part of the ac-
quired spectra (or considered as an observable spectrum), it is
legitimate to state that it is subject to the measurement noise
whose variance is σ2

e . Let now assume that the matrix Ỹ⊺
P of the

archetype spectra in the lower-dimensional space is full column
rank. Capitalizing on the regression model (A.2), the regression
matrix Rt can be approximated as

Rt ≈ Ỹ⊺+
P S̃t. (C.2)

where Ỹ⊺+
P = (ỸPỸ⊺

P)−1ỸP denotes the (left) pseudo-inverse of
Y⊺
P. Plugging (C.2) into (C.1) leads to

St ≈ Y⊺
PỸ⊺+
P S̃t + Bt. (C.3)

For simplicity, instead of characterizing the full covariance
matrix Σt ∈ RLK×LK which describes the intra- and inter-
dependence of all pure spectra at all spectral bands, one can
restrict the current analysis to characterize the covariance ma-
trices denoted Σt[k] = cov (St[k]) ∈ RL×L associated with each
pure spectrum St[k] ∈ RL×1, where St[k] refers to the kth col-
umn of St (k ∈ {1, . . . ,K}). From column-wise counterparts
of (C.3) with Y⊺

PỸ⊺+
P =

(
Ỹ+PYP

)⊺
, and assuming independence

of the terms in (C.3) for simplicity, these covariance matrices
write

Σt[k] ≈
(
Ỹ+PYP

)⊺
Σ̃t[k]

(
Ỹ+PYP

)
+ σ2

e IL, (C.4)

where Σ̃t[k] = cov
(
S̃t[k]
)

can be easily extracted from the co-
variance matrix Σ̃t provided as an output by the KF. In partic-
ular, the diagonal elements of the matrices Σt[k] quantify the
uncertainties of each estimated pure spectrum along the spec-
tral bands.
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Appendix D. Algorithmic sketch of the acquisition protocol
P2

The algorithmic sketch of the simulated acquisition proto-
col P2 is given in Algo. 5. Candidate spectral pixels are first
identified by successive convex hull calculations and subse-
quently stored in the matrix Z (line 5), following a peeling pro-
cess (line 7) similar to the one adopted in [55]. These pixels
are then partitioned into J classes using K-means and a repre-
sentative (centroid) of each class is then identified, denoted as
mj, j = 1, . . . , J (line 9). Finally, essential spectral pixels are
selected as the measured spectra which are the closest to the
centroids (line 15) and their observation indices are stored in
J (line 16). A permutation σ(·) is finally introduced into J to
produce different order sequences (line 18). This introduces a
randomization step, by permuting the indices of the previously
identified essential spectral pixels. The purpose of this step is to
increase the likelihood of selecting spectral pixels that are not
too similar in successive measurements. While this randomiza-
tion does not guarantee dissimilarity every time, it enhances the
diversity of the selected pixels compared to a fixed, sequential
order. This process contrasts with the acquisition protocol P1,
where there is no specific measurement order, and better mim-
ics the acquisition strategies adopted in [25, 26].

For the experiments detailed in Section 5, Protocol P2

sketched in Algo. 5 has been implemented with Ness = 340
for the data sets SD1 and SD2 and Ness = 400 for the real data
set RD. The number of clusters used in protocol P2 has been set
to J = 50 for all data sets.
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