
HAL Id: hal-04774702
https://hal.science/hal-04774702v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Cosserat Rods for Modeling Tendon-Driven Robotic
Catheter Systems

Pierre-Frédéric Villard, Thomas Waite, Robert Howe

To cite this version:
Pierre-Frédéric Villard, Thomas Waite, Robert Howe. Cosserat Rods for Modeling Tendon-Driven
Robotic Catheter Systems. 2024, �10.48550/arXiv.2407.07618�. �hal-04774702�

https://hal.science/hal-04774702v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 

 

Pierre-Frederic Villard*, Thomas M. Waite and Robert D. Howe 

Cosserat Rods for Modeling Tendon-Driven Robotic Catheter Systems 

 
 
Abstract 
 
Tendon-driven robotic catheters are capable of precise execution of minimally 
invasive cardiac procedures including ablations and imaging. These procedures 
require accurate mathematical models of not only the catheter and tendons but also 
their interactions with surrounding tissue and vasculature in order to control the 
robot path and interaction. This paper presents a mechanical model of a tendon-
driven robotic catheter system based on Cosserat rods and integrated with a stable, 
implicit Euler scheme. We implement the Cosserat rod as a model for a simple 
catheter centerline and validate its physical accuracy against a large deformation 
analytical model and experimental data. The catheter model is then supplemented by 
adding a second Cosserat rod to model a single tendon, using penalty forces to define 
the constraints of the tendon-catheter system. All the model parameters are defined 
by the catheter properties established by the design. The combined model is 
validated against experimental data to confirm its physical accuracy. This model 
represents a new contribution to the field of robotic catheter modeling in which both 
the tendons and catheter are modeled by mechanical Cosserat rods and fully-
validated against experimental data in the case of the single rod system. 
 
 
Keywords: 1D deformable model; catheter simulation; Cosserat rod  

Introduction 

The field of cardiac treatments is rapidly expanding to provide safer and more 
efficient treatments for cardiac conditions as heart disease continues to be the 
leading cause of death in the developed world [1]. One particularly promising field for 
minimally invasive cardiac treatments is the use of catheters. Catheters can provide 
minimally invasive solutions to a variety of cardiac conditions. Not only do they have 
applications in a variety of intervention procedures including ablations [2, 3], but 
they also have many applications in imaging and diagnostics [4]. Maneuvering these 
catheters precisely is essential to effective treatments, yet manually it is a difficult 
task given the limited maneuverability and precision of manual catheters. Robotic 
catheters can provide greater precision and dexterity in performing such precise 
procedures [5], but there is a need for an accurate modeling system to allow for 
increasingly precise catheter-based interventions. 
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Figure 1: Tendon-driven robotic Catheter: (A) catheter segment composed of hollows cylinders (lumens) that constrain 
tendons, (B) shape of the catheter before and after applying an actuation force 𝐹" to one tendon. 
 
Robotic catheters are composed of a set of actuation tendons restrained inside the 
lumens of a catheter body and attached to the catheter tip. When forces 𝐹" are 
applied to these tendons, the distal portion of the catheter bends (Fig. 1). The 
construction of these tendon-catheter system can include many tendons, thereby 
allowing many degrees of freedom in catheter motion. In addition to the mechanics of 
the catheter itself, it is also important that catheter models handle interactions with 
the patient [3,5,6]. Additional imaging techniques have been developed to aid 
surgeons in viewing catheters and tissues during the procedures [7], leading to 
precise data collection methods for robotic catheter systems [8]. These data collection 
systems can then be integrated into the control for the robotic catheter system, 
leading to even more precise guidance [3]. Robotic catheters also include the recent 
field of soft robotics with continuum manipulators made of soft materials that totally 
deform to better comply with the environment. This technology requires a continuum 
approach for the modeling and the simulation that could be done using the Cosserat 
formulation [9, 10]. However, such devices are not easy to manufacture. 
 
1D deformable models have been applied to catheter simulation with various degrees 
of accuracy depending on the context. Most of the existing research deals with 
catheter insertion training simulators. In [11], the catheter is modeled with a mass-
spring system, in which parameters are springs and damping coefficients. Catheters 
have also been modeled using the strict mechanical laws of beam theory [12]. A 
beam element is a straight bar of uniform cross-section with two extremities capable 
of resisting axial forces, shearing forces, and bending moments around the two 
principal axes in the plane of its cross-section as well as twisting moments or 
torques around its centroidal axis. In [13] the catheter and guidewire models consist 
of a series of nonlinear deformable beam elements. It includes collision detection and 
collision response. It is a simulator that only targets realism and therefore its 
accuracy has not been validated. This framework has been extended to include 
interactive fluid dynamics of blood flow [14]. Recent work has focused on 
computation efficiency and improving contact response with the blood vessel surface 
[15, 16]. However, this work does not include robotic assistance. It aims to be use for 
catheter manual insertion simulation. The mechanical properties are tuned to fit 
with a realistic behavior that is not precise enough in our context. In [17], the 
catheter is modeled with multi-section kinematics and is based on Bernoulli-Euler’s 
hypothesis. The model has been validated with the use of real mechanical 
parameters. It does not include torsion. 
 



 

 

Another mechanically-based solution to model 1D deformable rod is the Cosserat 
model. It has been used in animations as a means of modeling rods capable of self 
collisions. The main difference between Cosserat model and models from Euler-
Bernoulli theory beam theory is that the effects of shear deformation could be 
simulated. One application is the animation of curly hair strands [18]. It has also 
been used in the medical context to model the spermatic cord for inguinal hernia 
repair simulation [19] or to model parallel continuum robot [20]. In the case of 
catheter modeling, Cosserat rods have been used extensively to model guide wires for 
vasculature and cardiac insertions [21, 22, 23, 24], for torque estimation in haptic 
devices [25] and for force and stiffness sensors in ablation applications [26]. In both 
of these applications an essential component is modeling collisions with vasculature 
or heart tissue. Cosserat rods are particularly well-suited to these applications as 
they are based on the continuum mechanical approach. That is, modeling collisions 
is simply a matter of calculating the appropriate collision force then applying it to the 
point masses in the Cosserat rod [27]. Cosserat rods have also been used as 
components in complex continuum robot models [28, 29, 30, 31]. In these 
applications, a single Cosserat rod is often used to model the backbone, taking 
advantage of variable material properties along the rod to aid in modeling the 
concentric continuum tubes. They have not been used, however, to model a system 
of control tendons combined with a catheter centerline. Tendon-driven catheter has 
been modeled with Cosserat rod theory in [32] for ablation purpose. The computation 
is not real time and has not been validated to check the whole catheter shape. 
As a new application of Cosserat rods, we present a model which uses a system of 
Cosserat rods to model both the tendons and the catheter body of a robotic catheter 
system. These individual rods are then tied together by a series of constraints to 
resemble the real system. The result is a physically-determined system that can be 
adapted for a variety of catheter and tendon materials and scales. The only inputs to 
the system are the physical properties of the tendons and catheter and any applied 
forces, and the output of the system is the physical conformation of both the tendons 
and the catheter body. More importantly, by maintaining the mechanics of the 
system, the model provides a framework for capturing mechanical interactions in 
future robotic catheter models. For example, this model can be easily adapted to 
account for friction between the tendon and lumen wall, account for extensibility of 
tendons and catheters, or model the collision of tendon-driven catheters with 
vasculature and heart tissue. The aim is not to build a simulator for training but a 
tool that could be used by a clinician with high predictability so he/she can plan a 
treatment. 
 
Cosserat Rod Background 

This section briefly reviews the Cosserat Rod mechanical model. We will first define 
the continuous version, then the discrete version, based on Spillmann et al.’s 
CORDE framework [33]. 
 
Mathematical Representation of the Continuous Cosserat Rod 
 
The Cosserat rod is modeled as the ordered set of center line points 𝑟(𝜎) =
(𝑟)(𝜎), 𝑟+(𝜎), 𝑟,(𝜎))- parameterized by 𝜎 ∈ [0,1]. Each point is assigned a set of right-
handed orthonormal basis vectors 𝑑4(𝜎), 𝑑5(𝜎) and 𝑑6(𝜎) called directors with 𝑑6 
parallel to 𝑟7888⃗ , the spatial derivative of the centerline (Fig. 2), so that 



 

 

9:8888⃗

||9:8888⃗ ||
− 𝑑6 = 08⃗   (1) 

This constraint between the directors and the centerline will be used to couple the 
forces on the material frame (director basis) to the forces that act on the centerline 
segments. 

 
Figure 2: Cosserat centerline defined by 𝑟(𝜎) and director vectors 𝑑4(𝜎), 𝑑5(𝜎) and 𝑑6(𝜎) represented at 𝜎 = 𝜎4 and 𝜎5  
 
 
Rotation Definitions with Quaternions 
 
A quaternion �⃗� = (𝑞4, 𝑞5, 𝑞6, 𝑞>)- represents the rotation of the rod. The directors 𝑑? in 
terms of �⃗� are defined as 
 

𝑑4 = @
𝑞45 − 𝑞55 − 𝑞65 + 𝑞>5
2(𝑞4𝑞5 + 𝑞6𝑞>)
2(𝑞4𝑞6 − 𝑞5𝑞>)

C , 𝑑5 = @
2(𝑞4𝑞5 − 𝑞6𝑞>)

−𝑞45 + 𝑞55 − 𝑞65 + 𝑞>5
2(𝑞5𝑞6 + 𝑞4𝑞>)

C , 𝑑6 = @
2(𝑞4𝑞6 + 𝑞5𝑞>)
2(𝑞5𝑞6 − 𝑞4𝑞>)

−𝑞45 − 𝑞55 + 𝑞65 + 𝑞>5
C (2) 

 
The quaternion has imaginary components 𝑞4, 𝑞5, 𝑞6, real component 𝑞>, and unity 
norm ||�⃗�|| = 1. 
Now that we have defined the quaternions, we can rewrite the strain rates and 
angular velocities in terms of the quaternion. This is convenient for our model later 
since we can we be able to simply use the quaternion to calculate our energies 
directly. 

𝑢? =
5

||E8⃗ ||F
𝐵8⃗ ?�⃗� ⋅ �⃗�′ 𝜔? =

5
||E8⃗ ||F

𝐵8⃗ ?�⃗� ⋅ �̇⃗� 𝜔?M =
5

||E8⃗ ||F
𝐵8⃗ ?M�⃗� ⋅ �̇⃗� (3) 

 
Here we also need to introduce the skew symmetric matrices 𝐵8⃗ ?. Their derivations 
can be found in Spillmann et al [31]. 
 

𝐵8⃗ 4 = N

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

O , 𝐵8⃗ 5 = N

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

O , 𝐵8⃗ 6 = N

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

O  (4) 

 
Similarly, we define the matrices with respect to the reference frame: 
 

𝐵8⃗ 4M = N

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

O , 𝐵8⃗ 5M = N

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

O ,𝐵8⃗ 6M = N

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

O  (5) 



 

 

 
Energy Definitions 
 
Strain rates are given by the spatial derivatives of the directors and angular velocities 
are given by the time derivatives of the vectors. They can be expressed in term of the 
quaternion to write the energies of the rod. With these energies, we will be able to 
calculate forces to evolve the rod system. 
The potential energy of stretch is 
 

𝑉Q =
4
5∫ 𝐾Q

4
M (||𝑟7888⃗ || − 1)5𝑑𝜎  (6) 

 
where 𝐾Q = 𝐸Q𝜋𝑟5 is the stiffness constant and 𝐸Q is the Young’s Modulus of 
stretching. In an ideal material, this is the same as the Young’s modulus of bending 
𝐸V. Spillman et al. keep them distinct to introduce an extra degree of freedom, but 
they both correspond to the Young’s modulus of the material to prevents free 
parameters in the material properties. 
The potential energy of bending is 
 

𝑉V =
4
5 ∫ ∑ 𝐾??6

?X4
4
M ( 5

||E8⃗ ||F
𝐵8⃗ ?�⃗� ⋅ �̇⃗� − 𝑢Y?)5𝑑𝜎  (7) 

with stiffness tensor 
𝐾44 = 𝐾55 = 𝐸 Z9[

>
, 

𝐾66 = 𝐺 Z9[

5
,  and 𝐾^_ = 0 otherwise

  (8) 

 
with G the shear modulus and r the radius of the rod’s cross section.  
The penalty energy is 
 

𝐸` =
4
5 ∫ 𝐾`

4
M ( 9⃗7

||9⃗7||
− 𝑑6) ⋅ (

9:8888⃗

||9:8888⃗ ||
− 𝑑6)𝑑𝜎 (9) 

 
This is a non-physical energy that maintains the constraint in Eq. (1), dictating that 
the quaternions are coupled to the centerline elements. Here, 𝐾` is a non-physical 
“spring constant" that dictates how tightly the quaternions are fixed to the centerline 
elements, which will be characterized below. 
 
Discretization of the Rod 
 
The centerline of 𝑟(𝜎) is discretized as a collection of N nodes. The centerline 
elements are thus defined as displacement vectors between control points, 𝑟 a4 − 𝑟 . 
The orientations of each centerline element are defined by a quaternion attached to 
the midpoint of each of the rod elements (Fig. 3). Quaternions and centerline 
elements are linearly interpolated between adjacent elements. The energies for each 
segment are integrated over the length of each element. The derivative is computed 
with respect to each coordinate to determine the internal and external forces. 



 

 

 
Figure 3: Discretized Cosserat rod: two segments are represented, 𝑟 𝑟 a4 and 𝑟 a4𝑟a5, whose director vectors are 
respectively {𝑑4(𝑞^), 𝑑5(𝑞^), 𝑑6(𝑞^)} and {𝑑4(𝑞^ + 1), 𝑑5(𝑞^ + 1), 𝑑6(𝑞^ + 1)} 
 
Equations of Motion 
 
The equations of motion for the control points are 

�⃗�^ = �̇�^ =
f⃗g
hg

 (10) 

�̇̂� = 𝑣^ (11) 
where �⃗�^ and 𝑣^ are the acceleration and velocity of the control point, �⃗�^ is the sum of 
internal and external forces, and 𝑚^ is the mass of the control point. The force is 
calculated from the corresponding energies (Eq. (7) and (9)) by taking their partial 
derivative with respect to each of the coordinates in 𝑟 . 
The equations of the motion for the quaternions are 

�̇�^ = 𝐼k4(𝜏^ − 𝜔^ × 𝐼𝜔^) (12) 

�̇⃗�^ =
4
5
𝑄8⃗ ^ o

0
𝜔^
p (13) 

where 𝜏_ is the sum of internal and external torques, 𝐼 is the inertia tensor, and 𝑄8⃗  is 
the quaternion matrix of q. 
 
Integrating the Equations of Motion 
  
 
Similarly to other work from the literature [11,13,14,15,19,24,33], we chose to solve 
the equations of motion within the dynamic case because it has better convergence 
properties and our goal is to navigate through a vascular network where a lot of 
contacts will occurs. For this model, an implicit integration scheme was chosen for 
simulation, which entails several advantages. Explicit integrators, while fast and 
easy to simulate, are inherently unstable when used to integrate stiff systems. The 
Cosserat model is particularly stiff both due to the stiff spring-like penalty forces 
used to enforce the parallel constraint from Eq. (1) and the spring-like energies 
dictating stretching and bending. These effects are especially severe when the scale 
of the system is small, as in the case of a catheter. For some applications, like 
animation, when speed is prioritized over physical accuracy and the scale is relative, 
an explicit integrator would be desirable. For present purposes, the stability and 
accuracy of an implicit system are important to model realistic catheters and 
tendons. 
Using a semi-implicit Euler Method, we integrate the equations of motion (10) and 
(11), using time step h and a damping parameter ξ ∈ [0, 1]: 



 

 

𝑎
→
^
r = f

→s

hg
 (14) 

𝑣
→
^
rat = 𝜉𝑣

→
^
r + ℎ𝑎

→
^
r (15) 

𝑟
→
^
rat = 𝑟

→
^
r + ℎ𝑣

→
^
rat (16) 

 
to implement the Semi-implicit Euler integration scheme, we will first define the 
equations of motion for the system under an implicit integration scheme. The only 
difference from the explicit system is that now we use the position at the next 
timestep, 𝑥

→rat, to determine the forces on the system. Thus, we can write the 
following definition of the Semi-implicit Euler equations of motion: 
 

�⃗�r + 𝜉ℎ�̇⃗�r + ℎ5𝑀k4�⃗�yzr(�⃗�rat) = �⃗�rat (17) 
 
where ℎ is the time step, 𝑀 is the mass matrix, and �⃗�yzr is the force matrix. Here �⃗�r is 
the column vector of coordinates at time 𝑡, where each of the 7 elements is the 3D 
coordinates and the quaternion for each point 
 

�⃗�r = [𝑥4r, 𝑦4r, 𝑧4r, 𝑞4r, 𝑞5r, 𝑞6r, 𝑞>r, . . . , 𝑥�r , 𝑦�r , 𝑧�r , . . . ]- (18) 
 
A damping parameter 𝜉 ∈ [0,1] has been added to allow variable damping of the 
system. 
To apply this integration scheme, a solution to the system of equations must be 
computed. The �⃗�yzr(�⃗�rat) term is nonlinear, so this is a root-finding problem, 
specifically the root of the function 𝑓 where 
 

𝑓(�⃗�rat) = �⃗�r + 𝜉ℎ�̇⃗�r + ℎ5𝑀k4�⃗�yzr(�⃗�rat) − �⃗�rat = 0 (19) 
 
To optimize the performance of the solver without fully defining the Jacobian matrix, 
we can simply define the sparsity array of the Jacobian. The chain-like structure of 
the Cosserat Rod means that the function of 𝑓 at any coordinate only depends on 
those directly before and after, which results in the banded structure shown in 
Fig. 4. Mathematically, 

��
→
()
→s��)g

�)
→
�
s�� = 0			∀𝑗.	s.t.		𝑗 ≠ 𝑖, 𝑖 + 1, 		or	 𝑖 − 1  (20) 

 
This is a useful optimization as it results in ≈ 	6 × increase in solution speed for each 
timestep, given that hundreds or thousands of timesteps are often required for 
convergence. 
 

 



 

 

Figure 4: Banded sparsity structure of the single Cosserat model’s jacobian matrix 
 
Single Rod System 

This section will focus on the design and validation of a single Cosserat rod model 
against an analytical model for large deformation of cantilever beams and against 
experimental data from tests on a real catheter. 
 
Analytical Model 
 
Before considering the Cosserat model (CM) for a single rod subject to applied forces, 
we will implement an analytical model (AM) to compare for validation. This will allow 
us to validate the Cosserat Model for a wide variety of material properties, lengths, 
and geometries. The large deformation beam model of [34] describes the deflection of 
a cantilevered beam under an endpoint load 𝐹 
 

∫ ��
�sin(��)ksin(�)

��
M − 2√𝛼 = 0 (21) 

𝑥 = �5��
f
(�sin(𝜑M) − �sin(𝜑)) (22) 

𝑦 = ���
5f ∫

sin(�)��
�sin(��)ksin(�)

�
M  (23) 

 
where 𝑥 and 𝑦 are the 2D coordinates of the the deformed body, 𝐹 is the load applied 
to the end of the rod, 𝐼 is the cross sectional area moment of inertia (𝐼 = Z9[

>
 for a 

cylindrical beam), 𝐸 is the Young’s Modulus, 𝛼 is a dimensionless load parameter 𝛼 =
f�F

5��
, 𝐿 is the length of the rod, 𝜑M is the resulting deflection angle of the end of the rod, 

and 𝜑 is the deflection angle of any point along the rod. While having the advantage 
of expressing analytically the solution based on real parameters, this model has the 
drawback of ignoring shear deformation. The most likely differences are due to the 
other factors mentioned (intrinsic bending and gravity). 
To solve these equations a large array of 𝜑M values was defined and integrations were 
performed for each, solving for the corresponding 𝛼 values. Then, we performed a 
simple lookup in the 𝛼 array for our known 𝛼 to find the 𝜑M which generated it. 

 
 

 
 

 
 

20g mass 50g mass 100g mass 
Figure 5: Experimental setup for cantilevered catheter. The catheter specimen has length 12 cm, radius 6 mm, and Young’s 
Modulus 5.9 MPa. Three hanging masses are tested 
 
Validation of Single Rod System 
 
Experimental data for a catheter under a hanging mass load has been acquired to 
verify that the implementation of both the analytical model and the Cosserat model 
are physically accurate (Fig. 5). One end of the catheter was clamped and a hanging 
mass was affixed to the other end, providing a constant downward force.  



 

 

The rod shape is planar and the idea is to take a picture it in a fronto-parallel plane.  
To make sure that it is in a front-parallel plane, a square was used as a test pattern 
to check that is was not deformed and no homography was needed to correct with 
the 4 corners. A graph paper was used the know size of the square to transcribe the 
pixel into millimeter positions. It was also necessary to ensure that the axes of the 
camera were well following the right vertical and horizontal, this was done by taking 
a plumb line. 
The Cosserat and analytical models were computed in MATLAB (Mathworks, Natick, 
MA, USA). Accuracy was quantified as the difference in displacement of the 
endpoints between the reference analytical model and the Cosserat model normalized 
by the length of the rod, i.e. the percent error in tip displacement with respect to 
catheter length. 
Fig. 6 shows a comparison of the experimental data, the Cosserat Model (CM), and 
the Analytical Model (AM). The data point corresponding to the experimental data are 
not completely smooth. This is due to human error as they were manualy extracted 
from the mm grid paper in the background. Fig. 7A and 7B show the influence of the 
penalty constant 𝐾` and the number of control points (𝑁), respectively, on accuracy 
vs the analytical model. Fig. 8 shows the error against the analytical model over time 
for a number of damping values (𝜉). In all of these situations, simulations of the 
Cosserat rod were run until convergence, that is, until the rod comes to rest after 
starting from rest in an undeformed state and evolving in response to a force which 
simulates a hanging mass on the endpoint. The full set of parameters for the Single 
Cosserat model that generated these results are displayed in Table 1. 
 
Table 1. Single Catheter Experimental Parameters. The Young’s modulus and the density are given by the catheter 
company, the radius and the length are measured, K_P, Δt, ξ and N are tuned. 
 

Property (Symbol) [Units] Catheter  
Young’s Modulus of Bending (𝐸V) [MPa] 5.9  
Young’s Modulus of Stretching (𝐸Q) 
[MPa] 

5.9  
Density (𝜌) [kg/𝑚6] 11040  
Radius (𝑟) [m] .006  
Length (𝐿) [m] .12  
Centerline Penalty Constant (𝐾�) 1e4  
Timestep (𝛥𝑡) [s] .3  
Damping Constant (𝜉) .9  
Number of Control Points 𝑁 40  

 

 



 

 

Figure 6: Comparison of Cosserat, Analytical, and Experimental Data. Control points are displayed at the equilibrium after 
applying the three hanging masses with the three methods 
 

  
Control point density vs accuracy Penalty constant vs accuracy 

Figure 7: Analysis of the model accuracy on a 50N load 
 

 

 
Figure 8: Error vs iteration number for various damping constant values  
 
Discussion of Results 
 
Overall, the Cosserat model fits well with both the experimental data and the 
analytical model (Fig. 6). While the Cosserat model is least accurate for small 
displacements against experimental data, we attribute this to some intrinsic bending 
in the catheter sample (violation of the cantilever boundary condition) as well as the 
influence of gravity. Regardless, the tip inaccuracies are all within 5% of the length of 
the rod, and in the moderate and large deformation case (20g and 50g applied), the 
error drops below 1% of the catheter length. The slight difference between the 
experimental data and the analytical model may come from the assumption of 
ignoring the shear deformability in the analytical model. All of the simulations in this 
section, including those on the experimental scale, run in ≈ 30 seconds on a 
standard desktop computer with 8 Gb of RAM. For simulations of very many control 
points or extremely high stiffnesses and penalty constants, that time would increase 
given the extra computation and the necessarily smaller timestep. However, we were 
able to achieve accurate results on all our physical scenarios without excessive 
computation times. 



 

 

 
Figure 9: Comparison of corrected model and CORDE model against analytical model. Control points are displayed at the 
equilibrium after applying the three hanging masses with the three methods. The results with the original CORDE model 
fail to capture the large deformation. 

Fig. 9 shows the results using both the stiffness tensor formula from [33] and our 
corrected value. From this test, we see that the CORDE version of the model is 
systematically overestimating the stiffness of the rods compared to the analytical 
model, leading to error in tip displacement of up to 90 % of the rod length in the 
largest deformation case. With this correction, the error between the Cosserat model 
and the analytical model dropped to under 3 % of the total length of the rod and 
remained nearly constant across applied forces. 

As expected, the penalty constant which enforces the parallel constraint from Eq. (1) 
better satisfies the constraint with increasing value (Fig. 7A). Selecting a value that 
produces forces three orders of magnitude larger than the largest applied forces in 
the system is sufficient to ensure that the constraint forces are always significantly 
larger than the physical forces. 

The purpose of the damping constant is to critically damp the system, so the model 
will converge as quickly as possible to its equilibrium position without oscillations. 
Several values are plotted with their error against the analytical model as function of 
iteration number (Fig. 8). A damping constant of 𝜉 = 0.90 proved to be most effective 
for fast convergence and minimal oscillations. While this parameter may have 
additional implications for modeling the dynamics of the rod, it is only used here to 
minimize the simulation time. 

Fig. 7B shows several Cosserat model rods with increasing control point counts (𝑁) 
and their associated errors against the analytical model. increasing the number of 
control points effectively makes a better approximation of a real, continuous 
material. The errors are converging to 0, so as with the penalty constant, we simply 
need to pick a value large enough to provide sufficient accuracy. For these 
simulations, when 𝑁 ≈ 40, the error drops below 1% of the length of the rod. In 
conclusion, our implementation of the Cosserat model allows us to have a controlled 
accuracy depending on the control point density, the penalty constant value, the 
iteration number and the damping constant value. We will use this knowledge in the 
next section.  

Tendon-Catheter System 

This section outlines the steps in defining the combined catheter-tendon system and 
design related to the constraint formulations. It also addresses issues and 



 

 

optimizations involved in simulating the expanded system. The results are then 
compared to experimental data. In order to simplify the formulation and testing, the 
tendons were initially located in a plane. The formulae that follow use this 
simplification, but the generalized formulation will be presented at the conclusion of 
this section and is supported by the design. 

Implementation of Tendon-Catheter Constraints 
 
The first step is defining constraints to tie together the tendon and catheter. We 
chose to implement these constraints with penalty forces analogously to how the 
centerline constraint was enforced in the CORDE system [33]. Applying the 
constraints is the same as altering our 𝐹yzr matrix of Eq. (19) on each iteration, 
which preserves much of the same simulation framework for the single rod. 

Three distinct constraints must be formulated: the lumen compliance constraint, the 
endpoint compliance constraint, and the endpoint coupling constraint. Physically, 
the lumen compliance constraint corresponds to the requirement that the tendon 
remain inside the lumen of the catheter. The endpoint coupling constraint 
corresponds to the requirement that the tendon endpoint is a fixed distance from the 
catheter endpoint. And lastly, the endpoint compliance constraint will dictate how 
tightly the tendon endpoint is bound to the end of the lumen, as well as provide an 
extra free parameter to aid in fitting specific tendon-catheter systems. These 
constraints are illustrated in Fig. 10, which shows an example violation of the lumen 
constraint as well as the locations and directions in which endpoint constraints will 
act. The green region represents the lumen channel. Each of the constraints are 
highlighted in red. The larger black segments are the catheter centerline, and the 
smaller black segments represent the tendon centerline. 

 
Figure 10: Tendon Catheter System Constraint Illustration  
 
Lumen Constraint. The overarching goal of this constraint formulation is to define a 
vector of penalty forces that keep the tendon inside the lumen of the catheter. For 
this, we need to first make a representation of the lumen, the channel located a fixed 
distance from the centerline of the catheter body. Once we have a clearly defined 
lumen, we will need to define an appropriate penalty force to keep tendon points on 
the newly defined lumen centerline. In addition, the direction of these penalty forces 
will depend on where the tendon points lie along the length of the lumen. Thus, we 
will also need to register all the tendon points to a parent lumen segment then define 
a force that pushes them onto this parent lumen element. 
To make an explicit definition for the lumen points, we can take advantage of the 
predefined orientation basis for each element of the Cosserat rod. We then follow the 
process outlined in Fig. 11: scaling the 𝑑48888⃗  vectors of each centerline element by the 



 

 

distance to the lumen from the centerline, 𝑟�, then generating the lumen point by 
adding these scaled 𝑑48888⃗  to each of the catheter centerline points. For each point 𝑟  on 
the catheter, then, we then generate each point on the lumen 𝐿8⃗ ^ as 

𝐿8⃗ ^ = 𝑟�𝑑48888⃗ ^ + 𝑟  (24) 

 
Figure 11: Lumen Generation Process 
 
Next we must register each of the tendon points to exactly one parent lumen 
element. By registering to a parent, we will be able to apply the penalty forces on 
these tendon points in the direction of the parent catheter's 𝑑48888⃗  vector that generated 
the parent lumen element. This is illustrated in Fig. 12A, whereby the red and 
orange regions indicate approximately to which parent element each tendon point 
will be registered. In practice, this is implemented by finding the minimum distances 
from each tendon point to nearby lumen points, then recording the single parent 
element to which each tendon point belongs. This process ensures each tendon point 
is registered to exactly one parent element, and it needs to be recomputed on each 
iteration of the simulation because the location of both the tendon points and the 
lumen will change throughout the simulation. Thus tendon points can slide between 
parent elements regularly, especially when the control point density of the tendon is 
much larger than that of the catheter (Fig. 12). 

After the tendon points are registered, the penalty force will be applied in the ±𝑑48888⃗  
vector direction for a general point inside the lumen. The magnitude and precise 
direction of this force, however, will be dictated by a lumen compliance term 𝐶� which 
is a measure of how far the tendon points are outside of the lumen. The general form 
of this force (𝐹�888⃗ )^ will thus be 

(𝐹�888⃗ )^ = [𝐾�(𝐶�)_](𝑑48888⃗ )_ (25) 

where 𝐾� is a penalty constant which will allow us to vary the severity of the 
constraint. 

We next must define an appropriate metric for the compliance term. The important 
conditions for this metric are that it is 0 when the tendon points are satisfying the 
constraint (are on the correct lumen element) and that it is signed indicating the side 
of the lumen it lies on. For this, we will use the dot product as it is proportional to 
the signed scalar projection of the tendon points onto the lumen centerline. 
Specifically, we calculate displacement vectors between each of the tendon points 
and their nearest lumen points, and then calculate the dot product between these 
displacement vectors and the 𝑑48888⃗  vectors of the parent lumen element. Expressing 
this compliance term formally, let 𝑝^ be the position of tendon point 𝑖, and 𝐿8⃗ _ be the 
nearest lumen point. This leaves the compliance term 



 

 

(𝐶�)_ = (𝐿8⃗ _ − 𝑝^) ⋅ (𝑑48888⃗ )_ (26) 

Substituting the compliance term into the force definition, we have: 

(𝐹�888⃗ )^ = [𝐾�(𝐿8⃗ _ − 𝑝^) ⋅ (𝑑48888⃗ )_](𝑑48888⃗ )_ (27) 

The application of this process to many tendon points can be seen in Fig. 12B. 

 

Figure 12: Tendon Point Registration and Penalty Force Application Process  

With the lumen penalty forces determined, we need to incorporate these forces into 
the equations of motion for both the catheter and the tendon according to Newton's 
1st and 3rd laws. One difficulty in applying those forces to the catheter points in 
particular is the different and variable numbers of tendon control points for each 
parent catheter centerline segment. However, because all tendon points are 
registered to a single parent catheter segment on each iteration, we are able to 
simply average the lumen forces on the tendon points over each parent centerline 
element on the catheter and apply the net force to the corresponding parent catheter 
control point. 

While the forces above apply to all of tendon points inside the lumen of the catheter, 
we will define a distinct penalty force on the tendon endpoint. Defining this 
constraint separately is needed for two reasons. First, it introduces a free parameter 
which will allow us more flexibility in fitting individual tendon catheter systems. 
Secondly, without this constraint, we introduce an issue of interfering penalty forces, 
problem we will discuss in depth later. 

Since we are now only dealing with the endpoint, we can simply define penalty force 
which tethers the tendon endpoint to the lumen endpoint. If 𝑁£ is the number of 
control points in the catheter and 𝑁r is the number of points in the tendon, 𝑡�s is the 
endpoint of the tether and 𝐿8⃗ �¤ is the endpoint of the lumen, the endpoint compliance 
penalty force is defined as 

(𝐹�8888⃗ )�s = 𝐾�𝐶�
(�8⃗ ¥¤kr⃗¥s)

||�8⃗ ¥¤kr⃗¥s||

= 𝐾�||𝐿8⃗ �¤ − 𝑡�s||
(�8⃗ ¥¤kr⃗¥s)

||�8⃗ ¥¤kr⃗¥s||

  (28) 

The force vector for this constraint can be seen in Fig. 13 as a part of the larger 
system, where the force vector and compliance factor are illustrated in blue. 

  
Registering tendon points to 
lumen elements on sample 2 
segment catheter 

Application of lumen forces to many 
tendon points 



 

 

 
Figure 13: Diagram of Endpoint Penalty Forces  
 
Endpoint Coupling Constraint. To tie the catheter centerline to the tendon centerline, we 
again implement a penalty force that enforces a displacement. However, instead of 
enforcing 0 displacement as we did with the endpoint on the tendon in the lumen, we 
will now enforce a resting displacement of 𝑟�, the distance from the catheter 
centerline to the lumen. We define a compliance factor 𝐶¦ as the deviation from the 
resting distance, a new penalty constant 𝐾¦, and a direction vector, the normalized 
displacement vector between the tendon and catheter endpoints 

𝐹£888⃗ = 𝐾¦𝐶¦
(r⃗¥sk9⃗¥§)

||r⃗¥sk9⃗¥§||

= 𝐾¦(||𝑡�s − 𝑟�§|| − 𝑟�)
(r⃗¥sk9⃗¥§)

||r⃗¥sk9⃗¥§||

 (29) 

This force is applied to both the tendon and the catheter endpoint in opposite 
directions. The force vectors and the compliance term are illustrated in red in Fig.13. 

Interference between Penalty Forces at Endpoints. Now that we have a fully constrained 
system, attention must be paid to the non-physical nature of the penalty forces we 
implemented. By their nature, some small displacement is required to maintain the 
constraint. In general, by setting the penalty constraints to be very large, we can 
minimize this displacement. However, because the endpoint of the tendon is doubly 
constrained by the endpoint compliance and coupling constraints, any displacement 
from the lumen endpoint will influence the amount of force applied for the coupling 
constraint and vice versa. To ameliorate this, one constraint is treated as fixed, then 
the other is modulated as a free parameter to fit the data. We fix the coupling 
constant and then use the compliance constant to do the fitting; while this could be 
done the other way, it is convenient to vary the compliance constant because it only 
acts on one control point, leading to more stable simulations. If we instead fixed the 
compliance constant and then had to set the coupling constraint to be very hard to 
fit the data, we are more likely to encounter the stiff spring problem outlined in 
section 2.6. We will sweep over values for both of these parameters below, however, 
and demonstrate their similar influence on the overall behavior of the system. 

 

Integrating the Catheter-Tendon System.  



 

 

After presenting the new constraints, the new tendon-catheter simulation framework 
is detailed in this section. It is based on the previous study of the single catheter 
system, simply expanding the system of equations to include both the tendon and 
the catheter centerline. 

Formulation of Two-Body System. The new coordinates can be written as a vector, 
concatenating the coordinate vector from the tendon (𝑥r888⃗ ) to the end of the vector for 
the catheter (𝑥£888⃗ ) 

�⃗� = [𝑥£888⃗
-𝑥r888⃗

-]-  (30) 

Similarly, the force and velocity vectors are concatenated, leading to the same 
formulation of a nonlinear system as in the single catheter case 

𝑓(�⃗�rat) = �⃗�r + ℎ𝜉�̇⃗�r + ℎ5𝑀k4�⃗�yzr(�⃗�rat) − �⃗�rat = 0 (31) 

We note that the number of coordinates and the number of stiff spring-like forces 
increased dramatically from the single body case. There is thus a critical need for 
optimization, which will be addressed in the next section. 

Defining the Jacobian Pattern. With a larger and stiffer system of equations to solve in the 
two-body case, it is vital to optimize the integration step by giving information on the 
Jacobian’s sparsity pattern to the solver. There are new interdependencies between 
the coordinates now as a result of the lumen forces on the tendon depending on the 
poses of the catheter centerline points. Information on which coordinates were being 
used to derive the lumen force was saved, however, in the calculation of the lumen 
force. Therefore, we can readily define the new sparsity structures (Fig. 4A, B). This 
results in the same banded pattern as from the single rod along the main diagonal in 
both sparsity structures. This will remain constant throughout simulation as those 
are the relationships that determine the internal forces between coordinates such as 
stretching, bending, and the centerline penalty. The lower left band is accounting for 
the tendon’s dependence on the coordinates of the catheter in the calculation of the 
lumen constraint forces, and the small square at the center right is accounting for 
the interdependence at the endpoints for the coupling constraint. As the relative 
control point densities or positions between the catheter and the tendon change, so 
too does the sparsity structure as tendon points move to new “parent" elements on 
the catheter. Thus, this sparsity structure needs to be redefined on every iteration, 
but again, the information needed to generate it is readily available from the force 
calculations and is thus an inexpensive computation. 

Results for the Tendon-Catheter System 

This section will first characterize the influence of the new parameters on the tendon 
catheter system. Then, using this information, we will fit and compare the tendon 
catheter model to experimental data collected from a precise robotic catheter visual 
capture system [8]. 

Analysis of Control Point Densities. Similar to the single rod case, as the number of control 
points in catheter centerline increases, the result will become more physically 
accurate as it better approximates the continuous material of the real catheter. 
Given that the interactions between the tendon and the catheter are dictated entirely 
by the endpoints, so long as the tendon points are constrained to the lumen, their 



 

 

relative density should have little impact on the overall behavior of the system. Of 
course, if we wanted to determine precise information about the tendon’s 
deformation in the lumen or the exact extension of the tendon out of the lumen as a 
result of applied force, we would need a similarly high density to the catheter for 
physical accuracy. To test these behaviors, we plot the centerline of the catheter after 
equilibrium for a simulation in which a constant load is applied to the tendon. 
Fig. 14 shows the result of running this simulation with a 1:1 ratio of 
catheter:tendon control points. 

 

Figure 14: Comparison of Control Point Densities in Catheter-Tendon System  

As the number of control points increases, the catheter tendon system rapidly 
converges. The next test varied tendon control points densities with the catheter 
control point density fixed at 𝑁¦ = 30, the value we expect to be sufficient for physical 
accuracy (Fig. 15). As expected, the control point density of the tendon has 
practically no influence on the deformation of the rod. More points on the tendon 
may over-constraint the problem but it is already constrained by the high penalty 
force. For the remainder of the tests, then, we will fix 𝑁- = 10. 

 

Figure 15: Comparison of Tendon Control Point Density for Fixed Catheter Control Point Density  

Analysis of Lumen Penalty Constant. Similarly to the penalty constant in the single rod 
system 𝐾�, we expect the lumen penalty constant to have little influence on the 
overall system above a certain threshold. This is confirmed by simulating a rod with 
𝑁¦ = 30, 𝑁- = 10 and various 𝐾� values in Fig. 16. Above a penalty constant value of 
1000, the lumen constraint is effectively satisfied, and further increase to 1300 does 
little to change the overall deformation for the system, so 𝐾� = 1000 is used for the 
remainder of the tests. As before, picking the smallest penalty constant that 
effectively satisfies the constraint avoids unnecessary stiffness in the system. 



 

 

 

Figure 16: Comparison of Lumen Penalty Constant Values 

Analysis of Endpoint Coupling and Compliance Penalty Constants. Next we will analyze the 
influence of the coupling penalty constant. As stated previously, we will eventually fix 
this parameter and use the endpoint compliance constraint for fitting, but we will 
here analyze both of their individual influences to prove that they have similar effects 
on the overall deformation and thus can be used interchangeably as free parameters. 
In Fig. 17, we sweep across 𝐾£ values to determine the influence of the constant on 
the overall deformation. For this parameter sweep, we take the number of control 
points to be 𝑁¦ = 30 and 𝑁- = 10 and we fix 𝐾� = 1500. The general behavior of this 
penalty constant is to control the amount of effective force applied to the catheter. As 
noted before, there needs to be some displacement for the penalty forces to take 
effect; thus, by increasing the value of the coupling constraint, we are essentially 
applying more force to the catheter endpoint for the same applied force to the 
tendon. 

 

Figure 17: Comparison of Endpoint Coupling Penalty Constant 

A similar sweep across 𝐾� values maintaining the same control point densities and 
holding 𝐾¦ = 100000 are shown in Fig. 18. Similarly, the endpoint compliance term 
influences the amount of force translated to the endpoint of the catheter. The 
relationship is different than that of the coupling constant, however, in that as the 
value of 𝐾� decreases (the lumen becomes more compliant), more force is translated 
through the coupling forces to the catheter because the displacement between the 
endpoint increases. A second difference from the 𝐾¦ case is that the displacements 
that results from changing 𝐾� are almost linear in the value of the constant. In 
contrast, Fig. 17 indicates an more convergent behavior with increasing 𝐾¦ values. 
This is yet another reason that 𝐾� makes a better free parameter; its influence is 
predictable. 



 

 

 

Figure 18: Comparison of Endpoint Compliance Penalty Constant 

Table 2. Experimental Catheter Properties  

Property (Symbol) [Units] Catheter 

Young’s Modulus of Bending (𝐸V) [MPa] 5.9 

Young’s Modulus of Stretching (𝐸Q) [MPa] 5.9 

Density (𝜌) [kg/𝑚6] 11040 

Radius (𝑟) [m] .006 

 

Comparison to Experimental Data. With the control point densities and the new penalty 
constants characterized, we can now compare our model to the result from 
experimental data. The data is from a precise, visually-captured robotic catheter 
setup with a single tendon, as described in detail in [8]. The material properties of 
the catheter and tendon used are summarized in table 2. The only difference in the 
catheter properties between the tendon-catheter experiments and the hanging mass 
experiment is its length. In the hanging mass experiments, it was 12 cm. In the 
tendon experiments it was 16 cm. The experimental setup is shown in Fig. 19. The 
experimental condition of the data we use to compare was a force of 𝐹© = 2𝑁 applied 
to the tendon. 

 

Figure 19: Experimental Setup for Tendon Catheter System of [8]  

The application of the lumen forces to the catheter centerline to a sample simulated 
catheter and tendon is shown in Fig. 20. Without these forces, the comparison to the 
experimental data revealed a systematic error related to predicting the proper 
curvature of the catheter. The application of these forces to a sample simulated 
catheter and tendon is shown in Fig. 20. 



 

 

   

Curvature Error Illustration of Lumen forces on 
Tendon Control Points 

Averaged lumen forces applied to 
catheter centerline 

Figure 20: Application of averaged lumen forces to catheter centerline 

 

Because the endpoint error measure cannot differentiate accuracy based on the 
curvature of the rods, we define a more comprehensive error measure that can 
account for curvature problems, specifically the area between the catheter centerline 
curves normalized by the length of the rod. An example of the calculation of this 
error is show in Fig. 21, implemented by calculating the area of the polygon formed 
by the model and experimental data, then dividing by the length of the rod. One 
should note that even if the methods are in 3D, the area error is only computed in 
2D as a simplification because we are in a fronto-parallel plane. 

 

Figure 21: Improved Error Calculation 

Table 3. Catheter-Tendon Fitting Parameters  

Property (Symbol) [Units] Catheter 1 Catheter 2 Catheter 3 Tendon 

Young’s Modulus of Bending (𝐸V) [MPa] 5.9 5.9 5.9 5.9 

Young’s Modulus of Stretching (𝐸Q) [MPa] 5.9 5.9 5.9 .001 

Density (𝜌) [kg/𝑚6] 11040 11040 11040 10000 

Radius (𝑟) [m] .006 .006 .006 .0001 

Length (𝐿) [m] .16 .16 .16 .16 

Endpoint Compliance Constant (𝐾�) 950 1100 1200 N/A 

Endpoint Coupling Constant (𝐾¦) 2e5 1e5 1e5 N/A 

Lumen Constant (𝐾�) 1000 1000 1000 N/A 

Timestep (𝛥𝑡) [s] .2 .2 .2 .2 

Damping Constant (𝜉) .9 .9 .9 .9 

Number of Control Points 𝑁 30 30 30 10 

 



 

 

We now assess the accuracy of our model against the experimental data under a 
variety of fitting conditions. Fig. 22A shows a plot of the catheter centerlines against 
the experimental data, and Fig. 22B shows the corresponding errors. Under the 
proper fitting conditions, our normalized error measure is on the order of 1 × 10kª. 
The three fitting conditions are summarized in table 3, but these three conditions are 
simply three different values of our free parameter 𝐾� and its complement 𝐾¦. While 
some parameters of the tendon are non-physical, these parameters have no impact 
on the overall deformation. Thus, they are set for stable integration. All of the above 
simulations were run in ≈ 5 minutes on a standard desktop computer with 8Gb of 
RAM. The speed of these simulations can be attributed to the stability of the implicit 
integrator at large timesteps as well as the optimizations addressed throughout the 
process such as defining the jacobian pattern of the implicit system as well as 
choosing appropriate damping constants. 

  

Catheter centerlines of 
experimental data and various 
fitting models 

Error for each model 

Figure 22: Experimental Data with Various Cosserat Models 

 

To generalize the tendon configuration, the construction of the constraint given by 
equation (26) could to be extended as a combination of both vectors 𝑑48888⃗  and 𝑑58888⃗  as 
expressed by Eq. (32). 

𝐿8⃗ ^ = 𝑟�𝑑r888⃗ ^ + 𝑟  (32) 
𝑑r888⃗ = 𝛼𝑑48888⃗ + 𝛽𝑑58888⃗  such as ∥ 𝑑r888⃗ ∥= 1 with coefficients 𝛼 and 𝛽 weighting the influence of 
the basis vectors. It is a combination of both axial axes of the catheter to ensure that 
any point out of the lumen is brought back to the lumen line. However, we are 
indeed making an assumption that the points remain close enough to the plane 
given by 𝑑r888⃗ 𝑑68888⃗ . In the general case, the constraint path is supported by 𝑑r888⃗  instead of 
𝑑4 (See Fig. 23). Then equations (25),(26),(27) become respectively: (33), (34) and (35). 

(𝐹�888⃗ )^ = [𝐾�(𝐶�)_](𝑑r888⃗ )_ (33) 
(𝐶�)_ = (𝐿8⃗ _ − 𝑝^) ⋅ (𝑑r888⃗ )_ (34) 

(𝐹�888⃗ )^ = [𝐾�(𝐿8⃗ _ − 𝑝^) ⋅ (𝑑r888⃗ )_](𝑑r888⃗ )_ (35) 
 



 

 

 
Figure 23: Tendon constraint path in the general case 

 
 
Conclusions 

In this work, we have implemented and validated a robotic catheter modeling 
framework using Cosserat rods as the 1D models for both the actuation tendon and 
the catheter body. We first demonstrated the physical accuracy of a single Cosserat 
rod modeling a single catheter by validating against both an analytical model and 
experimental data. Next we expanded the single catheter system by introducing a 
second Cosserat rod as the tendon and implementing a series of penalty force 
constraints to tie the two rods together. We then validated tendon-catheter system 
against experimental data of a real catheter, demonstrating its physical accuracy. 

Moving forward, this model should be further validated against other experimental 
conditions to demonstrate its generalizability. Once fully validated, we can then take 
advantage of the mechanical nature of the model to explore various simulations that 
would not be possible with a geometrically-based model. Another interesting 
application is simulating catheter tip collision with tissue. Given that we know the 
forces on the control points at all times simply from the catheter position, it should 
be possible to determine the force the catheter is applying on tissue simply from its 
3D position [15, 16]. In a cardiac procedure scenario, we may have access to the 3D 
position of the rod from imaging, but be unsure of the forces on the endpoint. A 
mechanical model such as ours would allow predictions of the endpoint force, 
thereby allowing the controller to prevent tissue injury or maintain sufficient 
pressure during ablations. Lastly, we can further extend the model to include 𝑛 
tendons to explore more degrees of freedom. This will be a simple expansion of our 
current framework, given that all the new constraints would simply be computed as 
penalty forces and applied to our net force vector. All of these extensions are made 
possible by the mechanical nature of our model. The expansion of our framework will 
be done in C++ to reach real-time computation, which is not the case in the current 
prototype implemented in MATLAB. 
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