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Abstract 

In this work, model-predictive control (MPC) was combined for the first time with singular 

perturbation theory, and an original plasma kinetic control method based on extremely simple 

data-driven models and a two-time-scale MPC algorithm has been developed. A comprehensive 

review is presented in this paper. Slow and fast semi-empirical models are identified from data, 
by considering the fast kinetic plasma dynamics as a singular perturbation of a quasi-static 

equilibrium, which itself is governed, on the slow time scale, by the flux diffusion equation. 

This control technique takes advantage of the large ratio between the time scales involved in 

magnetic and kinetic plasma transport. It is applied here to the simultaneous control of the 
safety factor profile, q(x), and of several kinetic variables, such as the poloidal beta parameter, 

βp, and the internal inductance parameter, li, on the EAST tokamak. In the experiments, the 

available control actuators were lower hybrid current drive (LHCD) and co-current neutral beam 

injection (NBI) from different sources. Ion cyclotron resonant heating (ICRH) and electron 
cyclotron resonant heating (ECRH) are used as additional actuators in control simulations. In 

the controller design, an observer provides, in real time, an estimate of the system states and of 

the mismatch between measured and predicted outputs, which ensures robustness to model 

errors and offset-free control. Based on the observer information, the controller predicts the 

behavior of the system over a given time horizon and computes the optimal actuation by solving 

a quadratic programming optimization problem that takes the actuator constraints into account. 

A number of control applications are described in the paper, either in nonlinear simulations with 

EAST-like parameters or in real experiments on EAST. The simulations were performed with a 
fast plasma simulator (METIS) using either two control actuators (LHCD and ICRH) in a low 

density scenario, or up to four actuators at higher density: LHCD, ECRH, and two NBI systems 

driven in a on/off pulse-width-modulation (PWM) mode, with different injection angles. The 

control models are identified with the prediction-error method, using datasets obtained from 

open loop simulations in which the actuators are modulated with pseudo-random 
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binary sequences. The simulations with two actuators show that various q(x) profiles and βp 

waveforms can be tracked without offset, within times that are consistent with the resistive and 

thermal diffusion time scales, respectively. In simulations with four actuators, simultaneous 
tracking of time-dependent targets is shown for q(x) at two normalized radii, x = 0 and x = 0.4, 

and for βp. Due to the inherent mismatch between the optimal NBI power request and the 

delivered PWM power, the kinetic controller performs with reduced accuracy compared with 

simulations that do not use the NBI/PWM actuators. The first experimental tests using this new 

control algorithm were performed on EAST when the only available actuator was the LHCD 
system at 4.6 GHz. The algorithm was thus used in its simplest single-input-single-output 

version to track time-dependent targets for the central safety factor, q0, or for βp. In the closed 

loop control experiments, the q0 targets were tracked in about one second, consistently with the 

plasma resistive time constant. Excellent tracking of a piecewise linear βp target waveform was 

also achieved. When the NBI system became controllable in real time by the EAST plasma 
control system, new experiments were dedicated to multiple-input-multiple-output MPC control 

with three actuators: LHCD and two NBI actuators using the PWM algorithm. Given that the 

minimum time allowed between NBI on/off switching was 0.1 s, i.e. larger than the 

characteristic time of the fast plasma dynamics, a reduced version of the MPC controller based 
only on the slow model was used. Various controller configurations were tested during a single 

experimental session, with up to three controlled variables chosen among q0 = q(x = 0), 

q1 = q(x = 0.5), βp and li. The main difficulty encountered during this session was the 
unavailability of the full baseline ICRH and ECRH powers that were used in the reference 

scenario, and from which the plasma model was identified. This often led to the saturation of 
one or several actuators, which prevented some targets selected in advance from being 

accessible. Nevertheless, in cases that were free from actuator saturation, q0 and q1 targets were 

successfully reached, in a time that is consistent with the resistive diffusion time of the model 

and with small oscillations that are characteristic of the PWM operation of the neutral beams. 
During the simultaneous control of q0 and βp, the ICRH power was too low and, in addition, the 

plasma density was much larger than the reference one. The q0 targets were not accessible in 

this high-density/low-power case, but βp control was successful. Finally, the simultaneous 

control of q0 and li was satisfactory and, during the simultaneous control of, q0, βp and li, the 

tracking of βp and li was satisfactory but q0 was too large due to the lack of ICRH power and to 

NBI saturation. In conclusion, the extensive nonlinear simulations described in this paper have 

demonstrated the relevance of combining MPC, data-driven models and singular perturbation 
methods for plasma kinetic control. This technique was also assessed experimentally on EAST, 

although some tests were perturbed by undesired parameter changes with respect to the 

reference scenario. 

Keywords: tokamaks, plasma control, kinetic control, profile control, model-predictive control, 

two-time-scale control, singular perturbation theory 
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1. Introduction 

The development of advanced tokamak operation scenarios 

in which an optimization of some plasma parameter profiles, 

at reduced plasma current, results in a large improvement in 

energy confinement and MHD stability [1–7] provides the 

physics basis for the design of a steady state fusion reactor 

based on the tokamak concept. With the plasma characterist- 
ics foreseen in such operation scenarios, a high-gain fusion 

burn should be achieved at high β (β is the ratio of thermal 

to magnetic pressure) while a major fraction of the toroidal 

current is self-generated by the neoclassical bootstrap effect 

[8]. Thus, the remaining fraction of the plasma current can 

also be driven non-inductively by external sources [9], which 

allows steady state operation or pulse lengths exceeding by far 

the intrinsic limit of conventional inductive tokamak opera- 

tion. In present-day experiments, the high performance (high- 

β) phase is often limited in duration by the undesired evolu- 

tion of some plasma parameter profiles and by MHD activity. 

Advanced control of magnetic and kinetic plasma parameters 
and radial profiles such as the safety factor profile (q-profile), 

the normalized beta parameter, βN, the poloidal beta, βp, and 

the internal inductance parameter, li, generally referred to as 

plasma kinetic control, will therefore be essential for the suc- 

cess of advanced steady state operation in ITER [10, 11] and 

ultimately for the development of nuclear fusion as an attract- 

ive source of energy. 
Ideally, for integrated profile control involving several mag- 

netic and kinetic parameters and profiles, first-principles non- 

linear plasma transport models should be used, as they have, 

in principle, a universal domain of validity. However, despite 

active research in this field, available models of increasing 
complexity still depend on many uncertain or unknown para- 

meters and transport coefficients, and their accuracy cannot 

be widely assessed, especially in the advanced H-mode oper- 

ation scenarios and plasma regimes. Simplified versions of 

such models, together with some ad hoc assumptions or coef- 

ficients, have been used for real-time applications and con- 

troller designs. Early examples were the reconstruction of the 

plasma current density profile when real-time measurements 

 
are not available [12, 13], and actuator trajectory optimiza- 

tion during plasma current ramp-up to optimally reach a given 

point in the tokamak operating space [14]. First-principle- 

driven (FPD) models have also been used for controller syn- 
thesis in many plasma control numerical simulations using 

various integrated transport modeling codes. They were used, 

for instance, in ITER simulations with some assumptions to 

allow for real-time update of the profile response models 

[15]. They were also integrated in a model-based robust feed- 

back control algorithm [16] and in a model-predictive con- 

trol (MPC) algorithm [17], also for ITER simulations. FPD 

models have also been combined with Lyapunov-based dis- 

tributed methods to control the q-profile on TORE SUPRA 
and TCV simulators [18, 19]. Non-linear Lyapunov-based dis- 

tributed approaches addressed bootstrap current optimization 

[20] and electron temperature regulation in H-mode plasmas 

[21] using sum-of-squares polynomials. More recently, robust, 

nonlinear, model-based control of the current profile and of the 

plasma energy content or βN was tested in numerical simula- 

tions for the EAST tokamak [22] and for DIII-D [23], with 
control algorithms based on the first-principles magnetic flux 

diffusion equation combined with ‘uncertain’ models for the 

electron temperature, plasma resistivity and non-inductive cur- 
rent drive. 

Plasma kinetic controllers based on FPD models have also 

been implemented and tested experimentally. For instance, 

a simplified FPD model has been used for the first time for 

model-based profile control experiments in DIII-D L-mode 

(low confinement) discharges [24]. Later, simulations and 

experimental tests of an MPC controller based on a similar 
simplified FPD model embedding some scaling laws and ad- 

hoc transport coefficients have also been performed in L- 

mode plasmas on the TCV tokamak [25]. Experimental res- 

ults on the q-profile and β parameter control on TCV were also 

obtained by designing a Lyapunov-based distributed controller 

using a two-time-scale approach [26]. More recently, experi- 

ments on q-profile and βN control were conducted in H-mode 

plasmas on EAST using feedback control algorithms with 

a proportional-integral-derivative (PID) structure in which 

the various gains were optimized using control-oriented FPD 

models [27]. 
In the present work, an alternative approach to integrated 

profile control has been pursued, which we have referred 

to as the ARTAEMIS5 approach. Model-based controllers 

are designed starting from the same first-principles model 

structure (magnetic flux and kinetic diffusion equations), but 

without specifying complex mathematical expressions for 

every uncertain or unknown space-dependent coefficient in the 

equations, and without introducing approximate scaling laws 
and ad hoc formulas in their various source terms. Instead, 

this approach is based on the experimental identification [28] 

 
5 ARTAEMIS is an acronym for ‘Advanced Real-Time Algorithms based on 

Empirical Modelling of Integrated Scenarios’ that we have used to refer to  

the two-time-scale profile control algorithms and plas ma models orig inally  

described in [30, 31] and based on applying the theory of singularly perturbed 

systems to a set of simplified and linearized plasma transport equations. 
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of a minimal dynamic plasma model, taking into account the 

physical structure and couplings of the flux-averaged trans- 

port equations (this includes, among many other things, the 

effect of thermal diffusion on the poloidal magnetic flux and 
on the bootstrap current), but making no quantitative assump- 

tions on the transport coefficients or on their dependences. 

The system consists of coupled ordinary differential equations 

for slow and fast models that govern its evolution on the 

resistive and the kinetic time scales, respectively. The two- 

time-scale control-oriented model structure stems from a first 

order singular perturbation expansion [29] of the linearized 

plasma transport equations and a projection on appropriate 

radial basis functions [30]. In other words, in these models 
and in the associated control algorithms, the fast compon- 

ent of the kinetic plasma dynamics is considered as a singu- 

lar perturbation of a quasi-static equilibrium, which itself is 

governed, on the resistive time scale, by the flux diffusion 

equation. Using singular perturbation methods takes advant- 

age of the small ratio between the thermal and resistive diffu- 

sion time scales and provides a natural way to cope with the 

high dimensionality of the system. The system identification 
problem is thus made tractable by the partial decoupling of 

the slow and fast dynamics. For profile control purposes, this 

technique yields extremely simple data-driven models (hence 

low control computational cost), at the expense of a restric- 

ted applicability to a given device and actuator set, around a 

given reference plasma equilibrium. Despite this restriction, 

such models can be used with advanced control algorithms in 

a relatively broad plasma parameter space around the refer- 

ence plasma state. The model identification process was ori- 
ginally developed using simulated and experimental data from 

JET [30] and was improved later with experimental data from 

JT-60U and DIII-D [31]. It is based on the output prediction- 

error method (PEM) [28] and specific modulation experiments 

with random excitation of the various actuators were realized 

for that purpose, either in plasma simulations or in real toka- 

mak experiments. Similar estimation and identification meth- 

ods for lumped plasma models of small dimensions were also 
developed using a combination of subspace and output-error 

methods [32]. 

Over the years, the resulting data-driven models were then 

used to synthesize and test different controllers, going from 

the simple PID to the more powerful MPC algorithms. The 

simplest algorithm that combines the two-time-scale linear 

model structure with linear-quadratic optimal control theory 
was the so-called near-optimal control algorithm [30]. It con- 

sists of a slow proportional-integral (PI) feedback with an 

anti-windup loop, augmented by a fast proportional feedback 

that regulates the kinetic variables on the fast time scale. 

The first experimental tests were performed on JET with the 

control of the q-profile, q(x), at several normalized radii, 

x, using three heating and current drive (H&CD) actuators: 

lower hybrid current drive (LHCD), neutral beam injection 

(NBI) and ion cyclotron resonant heating (ICRH). Control 

was done either at constant plasma surface loop voltage, or 

by using the boundary poloidal magnetic flux as a fourth actu- 

ator and including the safety factor near the plasma edge in 

the controlled variables rather than regulating accurately the 

plasma current through the poloidal field coils. Further exper- 
imental tests were performed later on DIII-D high-βN dis- 

charges, showing simultaneous control of the internal pol- 

oidal flux profile, ψ(x), and of βN, as well as effective dis- 

tributed control of the q-profile at normalized radii between 

x = 0 and x = 0.6 [33]. In these experiments, the profile 

control actuators were the surface loop voltage and a subset 
of five other independent H&CD sources: on-axis co-current 

NBI, off-axis co-current NBI, counter-current NBI, balanced 

NBI, and electron cyclotron resonant heating (ECRH) and 

current drive (ECCD). The effectiveness of the ARTAEMIS 
approach for the integrated control of q(x) and βN in steady 

state fully non-inductive discharges was also investigated in 

closed loop nonlinear plasma transport simulations using the 

METIS plasma simulator [34] with DIII-D-like parameters. 
However, in these simulations [35], the desired steady state q- 

profiles were obtained in about ten seconds at high βN, which 

is too slow compared with the real DIII-D pulse length at 

high power. With larger gains, the q(x) targets were reached 

after a large undershoot in the plasma core and a damped 
oscillation. 

Recent work was therefore dedicated to the development of 
more powerful algorithms incorporating the singular perturb- 
ation approach and the ARTAEMIS models. H∞ robust control 

is an option that was investigated in [36, 37] with METIS sim- 

ulations and some preliminary experiments on EAST. In this 

paper, we concentrate on a controller design that combines the 

simplicity of the ARTAEMIS two-time-scale models with the 

efficiency of MPC techniques [38], which have been success- 

fully used in industry for a long time [39]. In MPC theory, the 

actuator constraints can be easily embedded in the quadratic 

programming (QP) optimization process and the model errors 
can be identified and compensated in real time. The new con- 

trollers were designed in view of experimental applications on 

EAST for the control of the q-profile, and of scalar paramet- 

ers such as βp and li in a high-βp fully non-inductive H-mode 

scenario, at constant plasma current. They were first tested on 

nonlinear METIS simulations in the aim of tuning various free 

controller parameters and options. Then, they were implemen- 

ted on the EAST plasma control system (PCS) and experi- 

ments were conducted. The real-time actuators available for 

the experiments were off-axis LHCD at 4.6 GHz and four co- 
current NBI sources. At present, the ECRH and ICRH systems 

can only deliver feedforward power waveforms but they could 

also be used as control actuators in the future, after the devel- 

opment of real-time actuation from the EAST PCS. They will 

be used here as additional actuators to extend the controller 

capabilities in some simulations. The ARTAEMIS system iden- 

tification procedure was applied to experimental data obtained 

with random actuator modulations that are consistent with the 

actuator constraints, or to simulated data obtained from the 
METIS plasma simulator. In both cases, a single model can 

satisfactorily approximate the coupled response of ψ(x), q(x), 

βp and li to relatively large random variations of the available 

H&CD actuators compared to their minimum and maximum 

values, hence with a large diversity of q-profile shapes in the 
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inner plasma. In principle, switching between various models 

identified around different plasma equilibria would be possible 

if the plasma regime changes significantly despite the control- 

ler regulatory action. This was not necessary for the experi- 
ments reported here. 

The paper is organized as follows. In section 2, the choice 

of the relevant state variables and the two-time-scale struc- 

ture of the ARTAEMIS state space models are presented. 

Then, in section 3, such a model is identified using synthetic 

data obtained from METIS nonlinear plasma simulations with 
EAST-like parameters in a typical scenario. In section 4, aug- 

mented models including additional disturbance states are 

introduced, and a state observer is defined for the real-time 
estimate of the model states and disturbances. The details 

of the full two-time-scale MPC control algorithm will also 

be given in this section as well as a reduced version of the 

kinetic controller that is limited to the slow time scale. In 
section 5, closed loop simulations performed by combining 

the METIS plasma simulator with the ARTAEMIS MPC con- 

troller and using LHCD and ICRH actuators will be described. 

Examples including discrete or distributed q(x) control, with 

flat or monotonic q-profile targets, and with different βp tar- 

get waveforms will be discussed. In section 6, the first exper- 

imental tests on EAST, in which LHCD at 4.6 GHz was 

used to track different targets either for the central safety 

factor, q0, or for βp, will be described. Section 7 will present 

the results of closed loop METIS simulations illustrating the 
simultaneous control of q0, q(x = 0.4) and βp with up to 

four actuators. In particular, the actuators include two co- 

current NBI systems with different injection angles and driven 

in an on/off pulse-width-modulation (PWM) mode. Finally, 
multiple-input-multiple output experiments using LHCD and 

two NBI/PWM groups were performed with up to three con- 

trolled variables among q0, q(x = 0.5), βp and li. They will be 

discussed in section 8 and general conclusions will be drawn 
in section 9. 

 

 
2. The ARTAEMIS semi-empirical state space 

models 

In a tokamak, the multiple, radially distributed, magnetic and 

kinetic parameters that define the plasma state are known to 

be strongly and nonlinearly coupled. Because of this linkage, 

the parameters and profiles that define a given target plasma 
state and need to be achieved and regulated in real-time may be 

reduced to a minimal set of essential ones such as, for example, 

the safety factor profile, q(x), and the scalar parameter βN or 

βp. The specification of q(x) can even be restricted to the inner 

half of the plasma if the internal inductance plasma parameter, 
li, is also given and regulated. Plasma rotation or temperature 

profiles may also play a role in the achievement of the desired 

plasma performance and could be included in the kinetic con- 

trolled parameters. 

The general structure of the continuous-time ARTAEMIS 

models is postulated from a set of coupled plasma response 

equations that only depend on a normalized radial coordinate 

x and on time t, and which stem from the linearized flux- 

averaged plasma transport equations [30]: 

∂ψ (x, t) /∂t = Lψ ψ {x} · ψ (x, t) + Lψ κ {x} · κ (x, t) 

+ Lψ P (x) · P (t) + Vext (t) (1) 

ε∂κ (x, t) /∂t = Lκψ {x} · ψ (x, t) + Lκκ {x} · κ (x, t) 

+ LκP (x) · P (t) . (2) 

The system is linearized around a fixed equilibrium state6 
that is called the reference state, and which needs not be known 
explicitly before the system is identified (see appendix A2 in 

[30]). Here, the so-called internal poloidal magnetic flux func- 

tion, ψ(x,t), and a set of kinetic profiles and/or scalar para- 

meters represented by the vector κ(x, t), refer to differences 

with their reference values. They appear as the most natural 
state variables of the system for a state-space model descrip- 

tion. The radial variable, x, is defined as (Φ/Φmax)1/2 where 

Φ(x) is the toroidal magnetic flux through the poloidal cross- 

section of a given flux surface, and Φmax its maximum value 

at the last closed flux surface where x = 1. The internal pol- 

oidal flux is obtained by subtracting the plasma boundary flux, 

Ψ b(t), from the total poloidal flux, so that ψ(1, t) = 0. It has 

been introduced in order to eliminate the continuous flux vari- 
ation that drives the inductive plasma current, and to define 
system states that reach steady equilibrium values even when 

the plasma surface loop voltage, −dΨ b(t)/dt, is not zero. All 

the unknown differential operators Lαβ{x} and row vectors 

Lα,P that characterize the linear response of the system depend 

on x but are independent of time, and the inputs P(t) and Vext(t) 

contain the powers from the various available H&CD systems 
and the plasma surface loop voltage, respectively, reduced by 
their reference values. 

The small constant parameter ε (ε ≪1) represents the typ- 

ical ratio between the kinetic and the resistive diffusion time 
scales. It is introduced here to scale the operators Lψ,ψ{x} and 

Lκ,κ{x} so that their largest negative eigenvalues have sim- 

ilar absolute values. As the order of magnitude of ε is about 

0.05 in present-day tokamaks and 0.001 in ITER, the use of 

singular perturbation methods [29] is quite relevant for model 
identification and control design. This amounts to expanding 

each dependent variable in powers of ε, defining an additional 

independent variable, τ = t/ε, to describe the fast dynamics 

while t describes the slow dynamics, and to splitting variables 
into a sum of a fast and a slow component which depend on 

τ and t, respectively. A well-posed set of ordinary differential 

equations is then obtained by grouping terms of equal order in 

ε and imposing that, in the asymptotic limit where ε tends to 

zero, the initial conditions for the slow dynamics (t = 0) must 

match the quasi-steady-state solution on the fast dynamics 

(τ → ∞). 

 
6 An equilibrium state is defined as a stationary state of the plasma, i.e. a  

state where the thermodynamic variables are in equilibrium with the particle, 

momentum and heat sources and sinks. The local plas ma parameters are then 

constant in time as long as these sources and sinks do not change. The poloidal 

magnetic  flux may  not be constant but it must vary at a  constant rate to induce 

a constant and homogeneous toroidal electric field in the plasma. 
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Restricting the singular perturbation expansion to first order 

in ε, and projecting the partial differential system on a set 

of radial basis functions with a Galerkin scheme, a lumped- 
parameter, linear time-invariant model is obtained, in which all 
distributed variables and unknown operators reduce to finite 

dimension vectors and matrices [30]. In the following, the 

functions ak(x) represent a set of cubic splines7 and the sym- 

bols ψ and κ will be used to denote either the functions ψ(x, 

t) and κ(x, t), respectively, or the vectors ψ(t) and κ(t) whose 

elements, ψk(t) and κk(t), are the coefficients of their respect- 

ive Galerkin expansion: 

N 

is not described by the resistive diffusion operator in (1) and 

should be treated by the controller as an external disturbance), 
ψ(t) has only a slow evolution. Its fast component can be set 

identically to zero in the two-time-scale model. This would 

also be true for any other magnetic variable (current density, 

safety factor profile, etc). Equation (7) is a slow dynamic state 
equation obtained from (1) by replacing the kinetic vector κ(t) 

by the quasi-steady solution of equation (2), at zero order in ε. 

Equation (8) appears as an output equation for the slow model. 

It includes a term representing a direct feed-through from the 

input to the output, but only from the low frequency input com- 

ponent, which therefore does not yield any fast response. The 

ψ (x, t) =  ψ k 
k=1 

N 

(t) ak (x) + R 
 

ψ ,k (x, t) (3) 
fast model, which is obtained from (2) by retaining only the 

first order terms in ε, is limited to a system of ordinary dif- 

ferential equations (9). Any fast component of Vext(t) can be 

neglected in equation (9) as Vext(t) does not enter equation (2). 

κ (x, t) = κk (t) ak (x) + Rκ,k (x, t) . (4) 

k=1 

 

The residuals Rψ ,k(x, t) and Rκ,k(x, t) are defined by: 

1 

More details about the assumptions and approximations lead- 

ing to equations (1)–(9) can be found in [28]. 

Linear system identification algorithms may not be effi- 

cient enough, especially when using noisy data, to seek models 
whose order is as large as the dimensions of the ψ and κ vec- 

ˆ 

ak (x) R 

0 

 1 

 

ψ ,k 

 
(x, t) dx = 0 (5) 

tors. It is therefore convenient to reduce the system order, a 

priori, by retaining a small number of eigenmodes in the mod- 

els. To do so, we define new state vectors, XS(t) and XF(t), that 

represent the projections of the slow and fast model states in 
ˆ 

ak (x) Rκ, 
0 

k (x, t) dx = 0 (6) 
the basis of a reduced set of slow and fast eigenmodes. The 

system then reads 

and will be neglected. Equations (1) and (2) thus reduce to a 

slow dynamic model, 

∂ψ (t) /∂t = AS · ψ(t) + BS · US (t) (7) 

X˙ S (t) = AS · XS (t) + BS · US (t) (10) 

 
ψ (t) = Cψ · XS (t) (11) 

 

κS (t) = CS · ψ(t) + DS · US (t) (8) 

and a fast dynamic model, 

∂κF (t) /∂t = ε−1∂κF (τ ) /∂τ = AF · κF (t) + BF · UF (t) (9) 

where κ(t) = κS(t) + κF(t), and AS and AF are regular matrices 

with negative eigenvalues characteristic of the slow and fast 
dynamics, respectively. The vector U(t) containing the actu- 

 

 
and 

κS (t) = CS · XS (t) + DS · US (t) (12) 

 

 

X  ̇F (t) = AF · XF (t) + BF · UF (t) (13) 

 
κF (t) = CF · XF (t) (14) 

ator inputs, P(t) and Vext(t), is also split into a slow and a fast 

component, U(t) = US(t) + UF(t). The fast inputs will not gen- 

erate a response from the slow system (7) and (8) and vice 
versa because UF(t) does not contain any low frequency com- 

ponent and high frequency components have been removed in 
US(t). It follows that, when a steady state is reached, US(t) 

is constant and UF vanishes, and therefore ψ(t) and κS(t) are 

constant, and κF vanishes. It is clear from the expansion in 

powers of ε of the original system that, apart from anomalous 

flux redistribution caused by some rapid MHD events (which 
 

 
7 The set of radial basis functions could be different for each dynamical vari- 

able and must be chosen judiciously to provide satisfactory fits of the corres- 

ponding parameter profiles. 

so that ψ and κ now become output variables and the order of 
the models to be identified (i.e. the number of columns in the 

Cψ and CF matrices) can be varied until the best fit between the 

original data and the model prediction is obtained. When some 

kinetic responses are too fast and the corresponding eigenval- 
ues of the AF matrix cannot be identified, it was found judi- 

cious to add a direct feed-through term, DF·UF(t), in the right 

hand side of equation (14). This term can approximate the fast- 

est response from UF(t) to κF(t). 

The q-profile is controlled through its inverse, 

¯ι(x, t) = ι(x, t)/(2π ) = 1 / q(x, t) 

= −[∂ψ (x, t)/ ∂x] · [∂Φ(x, t)/ ∂x]−1 

= −[1/(2Φmax)] · [(1/ x) · ∂ψ (x, t)/ ∂x] (15) 



Nucl. Fusion 64 (2024) 126069 D. Moreau et al 

7 

 

 

∑ 

 

where ɩ(x, t) refers to the rotational transform and is defined, 

in toroidal plasmas, as the poloidal angle subtended during a 
single toroidal transit of the field lines on a particular flux sur- 

face, expressed in radians. Φmax is known from the real-time 

magnetic equilibrium reconstruction that provides the current 

profile data. At constant vacuum toroidal field and plasma 
shape, it was checked experimentally that the variations of 

q(x,t) and ¯ι(x, t) are indeed due mostly to the variations of 

ψ(x,t) as Φmax depends weakly on the system inputs in com- 

parison with ψ(x, t). Controlling ¯ι(x, t) rather than q(x,t) is 

a natural choice due to the inverse dependence of the safety 

factor with respect to the poloidal flux and current density, 
and therefore with respect to the H&CD control actuators. The 

postulated structure of equations (1) and (2) was indeed based 

upon linear relationships between beam-driven or wave-driven 

currents and injected powers through current drive efficien- 
cies, and between the ohmic current density and the surface 

loop voltage through Ohm’s law [30]. 

In order to control ¯ι(x, t), an additional output equation 
relating ̄ ι(x, t) to the model states must be used. Neglecting the 

residuals, the approximate finite expansion (3) that led to the 

discrete model equations (7)–(9), readily provides an approx- 

imation for ̄ ι(x, t): 

k=1 

for all the mathematical expressions, scalar products and integ- 

rals involving ¯ι(x, t) in the control algorithm. 

 

 
3. Identification of ARTAEMIS models from 

nonlinear plasma simulations with EAST-like 

parameters 

The design of an advanced profile controller using MPC tech- 

niques required many tests and simulations before implement- 

ing the controller in the EAST PCS and using it for exper- 

imental tests. Various control options and tunable parameters 

were thus optimized from the results of numerical simulations. 

The METIS plasma simulator [34] was an ideal tool for this 
because it can produce, with a reasonable CPU time, extens- 

ive nonlinear closed loop simulations that allow the controller 

performance to be evaluated. METIS includes an MHD equi- 

librium and a current diffusion solver, and combines plasma 

transport nonlinearity with 0D scaling laws and 1.5D ordinary 

differential equations. Despite its rapid convergence, METIS 

integrates basically all the features of real tokamak physics 

in a simplified but comprehensive and flexible way. Tokamak 
complexity is restored through the very large number of pos- 

sible options and sophisticated nonlinear models that the code 

¯ι (x, t) = −[1/ (2Φ 
 
max )] ·  ψ k 

N 

(t) αk (x) (16) 
offers for every elementary physical process. However, the 

way METIS was constructed would make it very difficult to 

extract linear versions of the code around a given equilib- 

in terms of a finite expansion using the same coefficients, 

ψk(t), as the ψ(x,t) expansion, but on a different set of basis 

functions, αk(x). The new basis functions are defined by: 

αk (x) = (1/x) · dak (x) /dx. (17) 

The basis functions, ak(x), used to approximate ψ(x,t) must 

satisfy a regularity condition at x = 0, namely that their first 

derivative vanishes. This ensures that the new basis functions, 
αk(x), are finite at x = 0 so that the approximate ¯ι(x, t) in 

(16) is defined and finite on the magnetic axis, as its phys- 

ical counterpart is. Once a sufficiently accurate model has been 

identified for the dynamics of ψ(x,t) through the ψk elements 

of the ψ-vector and the ak(x) basis functions, the dynamics 

of ¯ι(x, t) can be approximated by equation (16) for control- 

ler synthesis. For instance, control of the ̄ ι(x, t) profile can be 

achieved through the control of the ψ-vector with an appro- 

priate control objective, based on (16) and involving scalar 

products of the αk(x) functions, that forces the ¯ι(x, t) profile 

to reach the closest least square approximation of a given tar- 
get profile, ῑ t a rg e t(x) [33]. Equation (16) is essential because 

q(x,t) and ¯ι(x, t) involve the spatial derivative of the poloidal 

flux, and the experimental q-profile data that is obtained from 
tokamak real-time magnetic equilibrium reconstruction codes 

is therefore extremely noisy. As a result, using directly the 

¯ι(x, t) data for system identification was not found practical, 

yielding unsatisfactory fits between the data and the model 
prediction. It was much easier and judicious to identify the 

model described by equations (10) and (11) for the ψ(t) vector, 

using the internal poloidal flux data, and to use equation (16) 

rium state. Unlike the control-oriented FPD models used in 

RAPTOR [13] and COTSIM [23] whose equations can be lin- 

earized for controller design, METIS is too complex to offer 

this option. Then, for controller synthesis, linear models must 
be obtained from system identification using large synthetic 

data sets obtained from open loop simulations with random 

excitation of the various actuators. Before running simulations 

for a particular device in a given scenario, the various mod- 

els and adjustable parameters in METIS must generally be 

tuned in order to provide a satisfactory agreement with some 

experimental data that is relevant to the problem of interest. 

Such a tuning procedure was previously used for DIII-D and is 

described in details in [35]. Here, similarly, METIS modeling 
options and parameters were tuned to approximate two differ- 

ent steady state H-mode scenarios on EAST until a fair agree- 

ment with experimental data was obtained. The first scen- 

ario is at low plasma density, without NBI, while the second 

scenario includes NBI, at higher density, and will be used in 

section 7. 

The low-density scenario around which a linear ARTAEMIS 
response model was identified was based on shot #62946, 

a steady state, fully non-inductive single-null H-mode dis- 

charge, at a toroidal magnetic field, BT  = 2.5 T, line- 

averaged density, nel ≈ 2.7 × 1019 m−3, and plasma cur- 
rent, Ip = 0.42 MA. The transition to H-mode occurred at 

3.1 s with an H-factor, H98(y,2) ∼ 1.1. The steady state pol- 

oidal β and internal inductance parameters were βp = 1.3 and 

li = 1.2, respectively, and the q-profile was characterized by 

a small negative shear in the plasma core, with a minimum q 

around 1.5 and q0 = q(x = 0) ∼ 2 on axis. The experimental 
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poloidal flux and safety factor profiles were obtained from 

EFIT magnetic equilibrium reconstructions, which were avail- 

able in real-time using magnetic and kinetic measurements, 

including interfero-polarimetry data from the POINT dia- 
gnostic. The reference discharge had been obtained using 

LHCD (0.6 MW at 2.45 GHz and 2 MW at 4.6 GHz), ICRH 

at 33 MHz (0.32 MW) and ECRH at 140 GHz (0.3 MW). 
It must be emphasized that the METIS plasma simulator is 

was processed with the general methodology described in [30] 

so that the system identification routines only handle data- 
sets with nearly zero mean while searching for the best lin- 

ear response model. The ARTAEMIS identification algorithm 

is based on the prediction-error method (PEM) [28]. For each 

output parameter profile in the model, say Y(x, t), it maximizes 

a global fit parameter, which is defined as f = 1–δ, with 

x2 

a fast code and the simplified model for LHCD in METIS 

has been developed considering only one frequency. It cannot 

provide a very accurate simulation of the plasma dynamics in 

real EAST discharges that use two LHCD systems at differ- 

δ = 

ˆ 

(Y (x) − Y 

samples x1
 

x2 

 
sim 

 

(x))2dx 

ent frequencies. But it provides a nonlinear simulation plat- / 
∑  ̂ (

Y (x) − ⟨Y (x)⟩ 
 
samples 

)2

dx (18) 
form that reproduces qualitatively the complex plasma dynam- 
ics prevailing in tokamaks, and on which control algorithms 

and options can be extensively tested and compared. In the 

METIS simulations, the 2.45 GHz LHCD power was added 
to the ECRH power, which then amounts to 0.9 MW in the 

low-density scenario. The ECRH power and current depos- 

ition profiles were modified consistently with the assump- 

tion that two thirds of the ECRH power used in METIS, i.e. 

0.6 MW, is indeed provided by the 2.45 GHz LHCD sys- 

tem. By resorting to these approximations, controller design 

could be optimized without the limitations encountered with 

experimental tests, such as the scarcity and short duration of 

experimental sessions and the intermittent availability of some 

actuators. 

Open loop METIS simulations were run using either steady 

state or randomly modulated actuator waveforms for the 

4.6 GHz LHCD and the ICRH powers, PLH(t) and PIC(t), 

respectively. Like EAST discharges, the simulations were run 

in the current control mode, in which Ip(t) is accurately reg- 

ulated by a specific controller through the ohmic poloidal 

field coil current. Vext(t), which appears as a natural input in 

equation (1) is therefore reserved for the plasma current con- 
troller and it is determined from a strong feedback law that 

regulates the plasma current. Therefore, it cannot be used as 

an independent input for system identification [28] and as a 

profile control actuator, as in [33]. During the plasma current 

flat-top, Ip(t) is strictly constant and the variations of Vext(t) in 

the linearized system (1) and (2) are related to the variations of 

the H&CD actuators, P(t), and of ψ(x, t) and κ(x, t). We have 

therefore empirically sought models in which the surface loop 

voltage has been omitted in the right hand side of equation (1). 

In practice, this assumption did not prevent the system identi- 
fication process to converge satisfactorily to models yielding 

good fits to the data. Model errors, including those that could 

stem from this assumption, will be compensated in real time 

by the MPC controller. 

In the ARTAEMIS data-driven model identified from these 
METIS simulations, the chosen magnetic output variables 

were the ψ(t) vector elements, and the kinetic output vari- 

able was κ(t) = δβp(t), the poloidal beta parameter reduced 

by its reference value. The dimension of the κS(t) and κF(t) 

vectors in equations (12) and (14) is thus here equal to 1 as 

κ is independent of x. The input vector U(t), of dimension 

2, contains the reduced powers, δPLH(t) and δPIC(t). The data 

samples x1
 

 

where Ysim represents the data simulated by the current model 

after reconstruction of the profiles from the basis functions, 
[x1, x2] is the radial window on which the model is to apply 

(here x1 = 0 and x2 = 1) and ⟨Y (x)⟩samples stands for the 

average of the data over the time samples, at a given radius. 
Equation (18) is the first instance where we can use the approx- 

imate mapping (16) between ψ(x) and ¯ι(x). Even though the 

model outputs involve ψ, the fit parameter to be maximized 

can be defined in terms of ̄ ι. In the sum over the samples and 

the integrals corresponding to the magnetic part of the model, 

Y(x) was replaced by ¯ι(x) expressed in terms of ψk and the 

αk(x) basis functions, rather than being replaced by ψ(x) in 

terms of ψk and the ak(x) functions. 

Fourteen simulations were used to identify the slow part of 
the ARTAEMIS data-driven model. The simulations were sim- 

ilar to the reference simulation of shot #62946 up to t = 3.2 s 

and variations of the actuators were imposed for t ⩾ 3.2 s. 

Five of them were steady state simulations with various con- 
stant values of PLH and PIC from t = 3.2 s to t = 10 s. They 

are useful to determine the largest time constant in the model 

output dynamics. In the remaining simulations, the values of 

PLH and PIC were modulated from t = 3.2 s to t = 15 s, follow- 

ing square wave modulations between 1 MW and 2.5 MW for 
PLH and between 0.5 MW and 1.25 MW for PIC. An example 

of such PLH and PIC waveforms is shown on figure 1. For each 

actuator, the time between power steps were chosen at random 

between a minimum of 0.04 s and a maximum of 2 s, with a 
final steady state period of about 5 s. This was consistent with 

an expected resistive diffusion time of the order of one second 

for the chosen reference plasma parameters. The number of 
magnetic outputs in equation (11) was equal to 10, correspond- 

ing to the values of ψ(x, t) at the cubic splines knots xk = 0, 

0.1, … 0.9 (note that ψ(1, t) = 0 by definition). The number 

of significant eigenmodes in the model was increased at each 

iteration of the identification process leading to the optimiza- 

tion of the AS, BS, and Cψ matrices in equations (10) and (11), 

until the best fit with the data was obtained from equation (18). 

Four eigenmodes could thus be found, with eigenvalues equal 

to −1.19 s−1, −4.24 s−1, −11.49 s−1 and −13.62 s−1. The 

corresponding characteristic times are 0.843 s (defined as the 
resistive diffusion time, τ S), 0.236 s, 0.087 s and 0.073 s. A 

comparison between the reduced ψ(x) data at x = 0, 0.1, … 
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Figure 3. Comparison between the reduced δβp data from METIS 
(black) and the ARTAEMIS-simulated data (red dotted) for low 
frequency LHCD and ICRH power modulations. The corresponding 
input data are shown on figure 1 and the fit parameter for δβp in this 

simulation is f = 79%. 

 
 
 

 

 
 

Figure 1. LHCD (top) and ICRH (bottom) power waveforms (MW) 
used in METIS simulations with low frequency modulations (blue) 
and high frequency modulations (red dotted). 

 

Figure 2. Comparison between the reduced ψ(x) data (Wb) at 

x = 0, 0.1, … 0.9 from METIS (black) and the 
ARTAEMIS-simulated data (red dotted) from the two-time-scale 
model for the simulation with low frequency modulations whose 
input data are shown on figure 1. In this simulation, the global fit 

parameter for ψ(x), integrated from x1 = 0 to x2 = 1, is f = 77%. 

 

 

0.9 from METIS and the ARTAEMIS-simulated data from the 
two-time-scale model is shown on figure 2, with a fit parameter 

f = 77%. The fourteen values of the fit parameter obtained for 

the various simulations were found to range between 65% and 

86%. 

 
Figure 4. Comparison between the reduced δβp data from METIS 
(black) and the ARTAEMIS-simulated data (red dotted) for high 
frequency ICRH power modulations. The corresponding input data 
are shown on figure 1 and the fit parameter for δβp in this 

simulation is f = 83%. 
 

 

The slow model CS and DS matrices were identified using 
the nine simulations with modulated actuators among those 

used for the magnetic part of the model. In order to reject 

the fast input components and fast δβp response, and define 

their slow components, US(t) and δβp,S(t), respectively, both 

the input and output data were filtered with a non-causal low- 

pass filter of order 5, and a cutoff frequency, f filt = 3.5 Hz. 

This was found to provide an optimum separation between the 
slow and fast data for the two-time-scale model identification. 

Finally, the fast model (13) and (14) was identified from six 
new simulations that were also similar to the reference simu- 

lation of shot #62946 up to t = 8.4 s, but with high frequency 

square wave modulations of the actuators between t = 8.4 s 

and t = 9.6 s. An example of fast ICRH modulations is shown 

on figure 1. The time between power steps were chosen ran- 
domly between a minimum of 0.004 s and a maximum of 

0.3 s. The fast input and output components were defined as 

UF(t) = U(t)–US(t) and δβp,F = δβp–δβp,S, respectively. A 

model of order 1 was sought and the best fit was obtained 

with an eigenvalue of −24.8 s−1 for AF, corresponding to a 
characteristic thermal diffusion time, τ F = 0.04 s. Note that 

the ordering between τ S and τ F is compatible with the main 

hypothesis justifying the singular perturbation approximation, 

namely that τ F ≪ τ S. The filter defining the slow and fast 

components of U(t) and δβp(t) was adequately chosen since 

the inverse of its cutoff frequency, τ filt = 1/f filt = 0.29 s, 

lies between τ F and τ S. Comparisons between the reduced 

δβp data from METIS and the ARTAEMIS-simulated data are 

shown on figure 3 for a simulation with low frequency modu- 
lations and on figure 4 for a simulation with high frequency 

modulations. The fit parameters obtained for δβp from the 

full two-time-scale model (10)–(14) were found in the range 
between 71% and 91% for the simulations with either slow or 

fast power modulations. 
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4. State observer, model errors and two-time-scale 

MPC controller design 

A simple profile control algorithm that combines the two-time- 

scale linear model structure with linear-quadratic optimal con- 

trol theory was the so-called near-optimal control algorithm 

originally described in [30] and tested on JET [30], DIII-D 

[33] and, later, more thoroughly on METIS simulations [35]. 

Both experiments and simulations have shown simultaneous 
magnetic profile control of ψ(x) or q(x), and kinetic control of 

βN, in steady state, fully non-inductive discharges. However, 

in high-βN long-pulse METIS simulations, the desired steady 

state q-profiles were obtained either much too slowly or after 

a large q(x = 0) undershoot and a damped oscillation. To 

overcome these limitations, a controller that combines the 

simplicity of the ARTAEMIS two-time-scale models with the 
efficiency of model-based predictive control techniques was 

designed for the first time and is described in this section. The 

MPC control algorithm is based on the same semi-empirical 

models, but offers many advantages over the more conven- 
tional near-optimal control algorithm. A major advantage has 

to do with actuator saturation. In the former algorithm, the PI 

feedback on the slow variables must be supplemented by an 
anti-windup loop to prevent state winding-up during actuator 

saturation [30, 35]. This leads to unoptimized control action 

and delays in the controller response. In MPC theory, the 

hard physical actuator constraints that must be met during the 
plasma evolution can be directly embedded in the QP optimiz- 

ation process [38]. Another feature of the new design is related 

to model uncertainties that were not specifically taken into 
account in the near-optimal controller. In the MPC algorithm, 

model errors can be identified through an observer, and com- 

pensated in real time to achieve efficient offset-free tracking 

of assigned control targets [40]. 

Skogestad [41] nicely compares the advantages and disad- 

vantages of MPC compared to more simple techniques and 

shows that it also has some drawbacks. Its main disadvant- 

age lies in the complex QP optimization process that needs 

longer CPU time than PID-like controllers. A second poten- 

tial difficulty is that MPC often requires a large number of 

model coefficients to describe the plant response satisfactor- 

output) at time t, and subsequent values are discarded. At the 

next time step, a new optimization is solved over a shifted pre- 

diction horizon. Thus, with an adequate choice of the tuning 

parameters such as the horizon and cost function, the control- 
ler will achieve its goal if the model steady state gain is exact. 

However, if the steady state gain matrix of the model is not 

exact, the prediction cannot be made from the model only, 

because the system outputs would reach incorrect values. It 

must somehow include assumptions about disturbances acting 

on the system and measurement errors. The prediction strategy 

then becomes another ‘tuning parameter’. 

 
4.1. The augmented two-time-scale model 

In order to adjust the prediction and make the controller robust 

to disturbances and uncertainties, the identified ARTAEMIS 

model is augmented so that it includes a simple model of the 

output disturbances. The output disturbances, which repres- 

ent the mismatch between measured and predicted outputs, 
will be considered as new states of the augmented system [38, 

40]. The estimated disturbances will depend on time and they 

will therefore vary at each time step. However, we shall make 

the simple assumption that they remain unchanged during the 

given time horizon. This assumption will hold only for making 

the prediction of the optimized actuator sequence (between t 

and t + τ H) whose first value provides the control action at 

time t, while subsequent values are discarded. This will be 

referred to as the constant output disturbance model [38]. 

In its continuous time version8, the augmented two-time- 
scale model for the control of the internal magnetic flux profile, 

represented by the ψ(t) vector, and of some kinetic parameters 

or profiles represented by the κ(t) vector will then be defined 

as: 

X  ̇S (t) = AS · XS (t) + BS · U (t) (19) 

 

X˙ F (t) = AF · XF (t) + BF · UF (t) (20) 

 

ḋ ψ  (t) = 0 (21) 

ily, again increasing the required CPU time. The prediction 

horizon must be optimally chosen for good control perform- 

ance, even if the model is accurate. Also, the constant output 

ḋκ (t) = 0 (22) 

disturbance assumption, which assumes that the disturbance 

term is constant in the future (see section 4.1), is often made 

for simplicity. This may not always yield a good controller 

performance if there are large input disturbances. These draw- 

backs did not lead to significant obstacles for the implementa- 
tion of our MPC controllers and for the applications presented 

in this paper. 

The main concept of MPC is to use the model to pre- 

dict the future evolution of the system. At each time step, t, 

a sequence of possible future inputs is computed, subject to 

operating constraints, in order to minimize a given cost func- 

tion that depends on the predicted evolution of the system dur- 
ing a given time horizon, τ H. The first value in the optimized 

actuator sequence is chosen as the control action (controller 

ψ (t) = Cψ · XS (t) + dψ (t) (23) 

 
κ (t) = CS · XS (t) + DS · US (t) + Cκ · XF (t) + dκ (t) (24) 

where the vectors dψ(t) and dκ(t) are the disturbance states 

representing the errors on ψ(t) and κ(t), respectively. US(t) 

is obtained through a simple low-pass filter with the cutoff 

frequency that was used for system identification (section 3), 

 
8 For notation convenience, the systems presented in this paper are 

continuous-time systems. Their conversion to discrete-time systems is 

straightforward and was carried out for the controller implementation on the 

METIS simulator and on the EAST PCS. 
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and UF(t) = U(t)–US(t). As a minor simplification, we have 

used the full inputs, U(t), in equation (19) because UF(t) does 

not generate a significant response on the slow states. Also, 
for simplicity and as suggested in [40], we have deliberately 

chosen the additional states of the augmented model to be 

equal to the model errors. This is the simplest disturbance 

model one could choose and it was indeed found appropriate 

and sufficient to ensure the observability of the augmented sys- 

tem (19)–(24). If necessary, more complex disturbance mod- 

els could be assumed, e.g. by introducing more general linear 

dependences of the output variables on the disturbance states 

on the right hand side of equations (23) and (24), and also more 
elaborate linear dependences of the original model states on 

the disturbance states on the right hand side of equations (19) 

and (20). 

Now, for MPC control of the safety factor profile, which 

will be our main objective here, equations (21) and (23) 

do not provide useful predictive output equations. The near- 

optimal control algorithm described in [30] was basically a 

4.2. The augmented model state observer 

In order to solve the predictive control problem at time t, we 

need to compute the predicted values of the controlled vari- 

ables, ̄ ι and κ, over a future time horizon, from our best estim- 

ates, at time t, of the current states, XS(t) and XF(t), and of the 

disturbances, dɩ(t) and dκ(t). Therefore, at each time step, an 

observer must provide a new estimate of the evolving system 
states and of the model errors, and the controller will use the 

augmented model (26)–(31) to predict the behavior of the sys- 

tem between t and t + τ H and define the appropriate control 

action at time t. The filter states that allow US(t) and UF(t) 
to be computed in the observer at time t are also transmitted 

to the controller with the estimated system states and disturb- 

ances and with the real-time measurements of the controlled 

variables, ῑm( t) and κm(t). 

Following [40], we design the state and disturbance estim- 
ator as a classical Luenberger observer based on the augmen- 

ted system above. It is defined as follows: 

state control algorithm controlling the ψ(t) vector, for which 

a good state space model exists, rather than an output con- 
trol algorithm. For ̄ ι control, the specific relationship between 

ψ(x,t) and ̄ ι(x, t) was only introduced in the definition of the 

quadratic cost function representing the control objective [33, 
35]. On the contrary, the MPC algorithm requires an internal 
model prediction of the ̄ ι evolution during the given time hori- 

zon, and therefore the model must include an output equation 
for ̄ ι with specific disturbances. To control ̄ ι rather than ψ, we 

therefore define a vector, ¯ι(t), whose elements are the values 

of the inverse safety factor, ̄ ι(x, t), at the normalized radii cor- 

responding to the knots of the cubic splines used to define the 
ψ(t) vector in section 3, i.e. at x = 0, 0.1, 0.2, … 0.9. Using 

equations (11) and (16), the vector ̄ ι(t) can be related to the 

ψ(t) vector and to the states XS(t) through a linear output mat- 

rix equation, 

¯ι (t) = Γι · ψ (t) = Cι · XS (t) (25) 

and the augmented model must also include a disturbance 

vector d (t) that represents the mismatch between the pre- 

Ẋ̂
 

 
 
 
 

 

Ẋ̂
 

 
 
 
 

 

ḋ̂
 

S (t) = AS · X̂ S (t) + BS · U (t) 

+ K11 · 
(
−¯ιm (t) + Cι · X̂ S (t) + ̂d ι  (t)

)
 

+ K12 · 
(
−κm (t) + CS · X̂ S  (t) 

+ DS · US (t) + Cκ · X̂ F  (t) + ̂dκ  (t)
) 

(32) 

F (t) = AF · X̂ F  (t) + BF · UF (t) 

+ K21 · 
(
−¯ιm (t) + Cι · X̂ S (t) + ̂d ι  (t)

)
 

+ K22 · 
(
−κm (t) + CS · X̂ S  (t) 

+ DS · US (t) + Cκ · X̂ F  (t) + ̂dκ  (t)
) 

(33) 

ι (t) = K31 · 
(
−¯ιm (t) + Cι · X̂ S (t) + ̂d ι  (t)

)
 

+ K32 · 
(
−κm (t) + CS · X̂ S  (t) 

+ DS · US (t) + Cκ · X̂ F  (t) + ̂dκ  (t)
) 

(34) 

ɩ 

dicted and the actual ̄ ι(t). The relevant augmented model then ḋ̂
 
κ (t) = 

K41 · 
(
−¯ιm (t) + 

Cι · X̂ S (t) + 
d̂ι (t)

)
 

becomes: 

X˙ 
+ K42 · 

(
−κm 

(t) + CS · X̂ S  (t) 

S (t) = AS · XS (t) + BS · U (t) (26) 

+ DS · US (t) + Cκ · X̂ F  (t) + ̂dκ  (t)
) 

(35) 

X˙ F (t) = AF · XF (t) + BF · UF (t) (27) 

 

ḋ ι  (t) = 0 (28) 

 

ḋ κ  (t) = 0 (29) 

 
ῑ (t) = Cι · XS (t) + dι (t) (30) 

 
κ (t) = CS · XS (t) + DS · US (t) + Cκ · XF (t) + dκ (t) .  (31) 

where symbols with a hat represent the observer estimates of 

the system states and disturbances, and the Ki,j matrices are 

chosen so that the state observer is stable and converges rap- 

idly. In particular, the matrix formed by the top row [K31 K32] 
and the bottom row [K41 K42], governing the evolution of the 

estimated disturbance states, must be non-singular. The idea 

of a Luenberger observer is to estimate the contribution of 

non-measurable states in equations (30) and (31) such that the 

residual errors between the measured outputs and the model 

outputs (including the observed disturbances) decay to zero 

steady state values. As seen from equations (34) and (35), the 
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S 

S 

S 

−CS · A−1 · BS + DS 

 

observer then tracks the measurements without steady state 

errors, i.e. 

ῑm,∞ = Cι · X̂S,∞ + d̂ ι,∞ (36) 

and 

where ν(t) is the filter state vector, which is updated at the input 

of the observer at each time step, using the last measured value 
of U(t). The state space observer equations can thus be written 

in terms of new inputs, ν(t), U(t), ῑ m (t )  and κm(t) instead of 

US(t), UF(t), ̄ιm(t) and κm(t): 

 ̂  ̂  ̂ Ẋ̂
 
S (t) = AS · X̂ S (t) + BS · U (t) 

κm,∞ = CS · XS,∞ + DS · US,∞ + Cκ · XF,∞ + dκ,∞ (37) 

where the ∞ symbol indicates steady state values. In addition, 

from the definition of the fast variables and the discussion fol- 

lowing equation (9), UF, XF and κF vanish in steady state, so 

+ K11 · 
(
−¯ιm (t) + Cι · X̂ S (t) + ̂d ι  (t)

)
 

+ K12 · 
(
−κm (t) + CS · X̂ S (t) 

 ̂  ̂
)
 

that equation (37) becomes: 

κm,∞ = CS · X̂ S ,∞  + DS · U∞ + d̂ κ,∞ .  (38) 

The observer also satisfies: 

+ DS · ν (t) + Cκ · XF (t) + dκ (t) 

Ẋ̂
 
F (t) = AF · X̂ F  (t) − BF · ν (t) + BF · U (t) 

+ K21 · 
(
−¯ιm (t) + Cι · X̂ S (t) + ̂d ι  (t)

)
 

(45) 

 
 

 
and 

 

X̂S,∞ 

 
= −A−1 · BS · U∞ 

 
(39) 

+ K22 · 
(
−κm (t) + CS · X̂ S  (t) 

+ DS · ν (t) + Cκ · X̂ F  (t) + ̂dκ  (t)
) 

(46) 

 
KS · U∞ = 

[ 
ῑ  m,∞ — d̂ ι,∞  

]
  (40) ḋ̂ ι  (t) = K31 · 

(
−¯ιm (t) + Cι · X̂ S (t) + ̂d ι  (t)

)
 

κm,∞ − ̂d κ ,∞  + K32 · 
(
−κm (t) + CS · X̂ S  (t) 

with  
[ 

−Cι · A−1 · BS 
]
 

+ DS · ν (t) + Cκ 
( 

    

· X̂ F  (t) + ̂dκ  
 

   

(t)
) 

(47) 

) 

 
If the image space of KS spanned by the actuators has 

a dimension that is equal to, or larger than the number of 

controlled variables, offset-free control can be achieved [40]. 

+ K42 · 
(
−κm (t) + CS · X̂ S  (t) 

+ DS · ν (t) + Cκ · X̂ F  (t) + ̂dκ  

 

(t)
) 

. (48) 

Then, the control objective is to make ῑm and κm equal to 

assigned targets or set points, ¯ιtarget and κtarget, respectively. 

The singular decomposition of KS may indicate that some 

combinations of actuators corresponding to the smallest sin- 
gular values of KS have little or even negligible effect on the 

system dynamics, even at high power. Such combinations of 
actuators may therefore lead to unnecessary actuation cost and 

should be discarded in the computation of the optimal control 
action. In this aim, the allowed actuator space will be limited 

to the first nsvd singular vectors of KS, i.e. U = Tsvd·V and 

U∞ = Tsvd·V∞, where nsvd (the dimension of V) is a free tun- 

ing parameter. 

We can now explicitly introduce the filter equations that 
define the separation of the slow and fast time scales into the 

augmented model and the observer definition. We shall use 

here a simple first order filter represented by a square diag- 
onal matrix, Aν, whose dimension is equal to the number of 

inputs in U(t), and whose diagonal elements are all equal to 

f filt = −1/τ filt. The filter equations then read: 

ν˙ (t) = Aν · [ν (t) − U (t)] (42) 

 
US (t) = ν (t) (43) 

 
UF (t) = −ν (t) + U (t) (44) 

Now, the various observer gain matrices, Ki,j, must be 

chosen judiciously in order for the observer to be stable and 

to converge reasonably fast. In order to come up with a simple 
observer design, we can intuitively associate equations (45) 

and (47) to the observation of dɩ(t) and equations (46) and (48) 

to the observation dκ(t). Thus, we have set the off-diagonal 

elements K1,2, K2,1, K3,2 and K4,1 to zero. Then, to ensure 
fast convergence to steady state, the brackets that multiply 

K3,1 and K4,2 must rapidly vanish and therefore the gains K3,1 

and K4,2 must have a large norm compared to K1,1 and K2,2. 

A simple way of satisfying this requirement is to introduce 
pseudo-inverse matrices of Cɩ and Cκ in K1,1 and K2,2, respect- 

ively, and a large scalar gain, Gobs, in K3,1 and K4,2. Moreover, 

for normalization purposes, the slow time constant, τ S, can be 

associated to the evolution of XS(t) and dɩ(t) and can be used 

to normalize K1,1 and K3,1. Similarly, the fast time constant, 
τ F, can be associated to the evolution of XF(t) and dκ(t) and 

can be used to normalize K2,2 and K4,2. An adequate choice 

for the observer gain matrices can therefore be the following: 

K11 = −inv(Cι) /τS, K12 = 0 (49) 

 
K21 = 0, K22 = −inv(Cκ) /τF (50) 

 
K31 = −Gobs · Idι/τS, K32 = 0 (51) 

κ (t) = K 41 · −̄ ι m ι · X̂ S 
KS = . (41) ḋ̂

 (t) + C (t) + ̂d ι  (t) 
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dt [κ (t ) − κtarget (t )] · λkin · [κ (t ) − κtarget (t )] 

 

K41 = 0, K42 = −Gobs · Idκ/τF (52) 

where the inv function is a pseudo-inverse function since Cɩ 
and Cκ may be rectangular matrices, and Gobs is a large pos- 

with U(t′) = Tsv d·V(t ′), subject to the actuator constraints 

L(t′)·U(t′) ⩽ M(t′), while XS(t′), XF(t′), ¯ι(t ′), κ(t′), dɩ(t′) and 

dκ(t′) evolve according to the augmented system (26)–(31), 

with the initial conditions: 

XS(t ′ = t) = X̂S(t), XF(t ′ = t) = X̂F (t), dι(t ′ = t) = ̂dι (t) 

itive tuneable gain. Idɩ and Idκ are identity matrices whose 

dimensions are equal to the number of controlled magnetic and 

kinetic variables, respectively. The choice of the observer gain 

matrices represented by equations (49)–(52) was indeed found 
to be adequate in all our control simulations and experiments, 

including those that are not reported in this paper. 

When implementing the controller either on a simulation 
platform or a machine PCS, it is advisable to use normal- 

ized input, output and state variables, so that the observer 

and controller tunings are to a great extent independent of 

the plasma parameters and machine performance. The trans- 

formation from the real dimensional variables to normalized 

ones is straightforward and was indeed performed in all the 

implemented controllers used in our simulations and exper- 

iments, but they will not be represented in this paper, for 
the sake of clarity. The choice given in equations (49)–(52) 

assumes that the variables handled by the observer are nor- 

malized. The inclusion of τ S and τ F in the equations is sug- 

gested by comparison with the values of the AS and AF eigen- 

values in the leading terms of equations (45) and (46). In all 

cases, except for initial tuning simulations, the observer gain 

Gobs was chosen equal to 100, which resulted in good observer 

performance. 

 
4.3. The two-time-scale MPC controller design 

Once the observer has estimated the current system states and 
disturbances at time t, the MPC algorithm then solves a QP 

problem using the predicted evolution of the augmented sys- 

tem over the future time horizon, τ H. The choice of τ H is obvi- 

ously important for the controller performance. Intuitively, it 
should be long enough to characterize the evolution of the slow 

model on the resistive time scale. On the other hand, a long 

time horizon would be costly in terms of computation time, 

and it may not be meaningful given that the prediction is made 
with the assumption that the estimated error at time t will be 

constant between t and t + τ H. So, as a compromise, τ H will be 

chosen of the order of the resistive time, τ S, or slightly smal- 

and dκ(t ′ = t) = d̂κ ( t) .  In order to keep the computation 
time small, the elements of V(t′) are constrained to be 
piecewise constant functions of time with only nnodes inde- 

pendent unknowns equi-distributed over the horizon τ H. In 

equation (53), a + superscript indicates matrix transposition. 

The function µ(x) and the real diagonal matrix λkin are weights 

given to the control of the magnetic and kinetic variables, 

respectively. The real diagonal matrix λfast contains additional 

weights limiting the amplitude of the fast model states, which 
was found useful to moderate the kinetic control response. 

Finally, R is a positive semi-definite matrix that can moderate 
the controller actuation effort, if necessary. Note that the need 

for a strict positivity of R is alleviated by the linear constraints 
setting bounds on the actuators, which ensure the positivity of 

the matrix involved in the Cholesky factorization performed by 
the QP algorithm [42] at each time step. The radial integrals 

in the first term of equation (53) can be written as a quadratic 

expression in matrix form by replacing ̄ ι(x, t ′) and ̄ι ta rg e t(x ,  t ′) 
by their expansions in terms of the cubic splines ak(x) defined 

in section 2, using vectors whose elements are the values of 

¯ι(x, t ′) and ̄ιt arget (x , t ′) at the knots, xk = 0, 0.1, 0.2, …, 0.9. 

The weight function, µ(x), can either be a continuous function 

for a distributed control of ̄ ι(x), or a sum of Dirac distribu-  

tion functions involving only a few discrete values of x among 

0, 0.1, … 0.9 where discrete control would be applied. Once 

the QP problem has been solved, the first sample U(t′ = t) 

is used for the actuator commands at time t. The minimized 

cost function penalizes, with appropriate tuneable weights, the 
deviations of the predicted controlled outputs from their tar- 

gets, as well as the actuator powers if R ̸= 0. Another way of 

moderating the actuation effort and avoiding overshoots and 
oscillations of the slow magnetic variables is to reshape the 

ῑtarget (t ′) waveforms in IH(t) so that, for t′ = t, they start from 

the measured values of ̄ ι, i.e. ̄ι m( t) ,  and, when t′ approaches 

t + τ H, they approach exponentially the set-points, ̄ιt a rget( t), 
with a time constant, τ target, of the order of τ S or smaller [38]. 

In equation (53), we thus use: 

ler. From now on, we shall assume that the kinetic controlled 

variables are scalars, independent of x, so that the QP problem 
¯ιtarget (x, t ′) = ῑ target (x, t) − [¯ι target (x, t) − ̄ ιm (x, t)] · e−(t ′−t)/τtarget

 

(54) 
to be solved at time t reads as follows: 

For t ⩽ t′ ⩽ t + τ H, find V(t′) that minimizes 
and 

 
′ 

 
IH (t) = 

t+τH 

 
t 

 

dt′ 

{ˆ 1
 

 
 

dx µ(x)2 [ῑ (x, t ′) − ῑtarget (x, t ′)]
2

}

 

κtarget (t ) = κtarget (t) . (55) 

 
Note that, apart from the reshaping function, no other 

ˆ t+τH  
′ 
{ ′ 

 

′  + 2 ′ ′ }  change in the target values is made in (54) and (55) during 

 
 

t+τH 

+ 
t 

 
dt′ 

{
XF(t ′)

+
 

 
2 
fast · XF (t ′)

}
 

during that period. Just as the disturbance states, the targets at 
time t′ = t will be assumed to hold all over the prediction hori- 
zon. Thus, the computation of the control action a time t will 

t+τH 

+ 
t 

dt′ 
{
 [U (t ′) − U∞]

+
 · R · [U (t ′) − U∞]

}
 (53) 

not anticipate any possible change of the set-points at a future 

time. 

0 

the prediction horizon, even if the assigned set-points change 

 ̂

 ̂

· λ 

 ̂

+ 
t 
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MPC is implemented in the form of a standard quadratic 

program with linear constraints so that it becomes a convex 

optimization problem, which is efficiently solvable (e.g. [43]). 

The QP software that was used in this work [42] always con- 
verged after only a few iterations. No other particular measure 

was taken to guarantee that the iterative procedure converges 

under all circumstances, but the issue never appeared in simu- 

lations or experiments. 

 
4.4. The reduced MPC kinetic controller design on the slow 

time scale 

The two-time-scale ARTAEMIS models describe the fast kin- 

etic dynamics of the plasma as a singular perturbation of a 

quasi-static equilibrium, which is slowly evolving due to the 

coupling between the kinetic and the magnetic plasma para- 

meters. Local dependences of the plasma transport coeffi- 
cients on the safety factor profile or on the magnetic shear are 

well-known examples of the various causes that lead to such 

coupled dynamics. When attempting to control simultaneously 

the safety factor profile and some other kinetic plasma para- 

meters (e.g. βp or βN), it may be unnecessary or even some- 

times undesirable to request changes of such parameters on a 

time scale that is too short compared to the resistive evolution 

of the plasma equilibrium. Instead, it may be of interest to pre- 

serve a quasi-static equilibrium relationship between magnetic 

the observed states, XS(t ′ = t) = X̂ S ( t)  and dι(t ′ = t) = d̂ι(t). 

Substituting US(t′) by its expression from equation (43), the 
predicted kinetic variables evolve according to 

κ (t ′) = CS · XS (t ′) + DS · ν (t ′) + dκ (t ′) (59) 

with constant dκ(t′) = dκ(t) between t′ = t and t′ = t + 
τ H, consistently with the constant output disturbance model 

(see section 4.1), and where dκ(t) is given by equation (56). 

The filter states, ν(t′), are governed by equation (42) 

with U(t′) = Tsvd·V(t′) and with the initial condition 

ν(t′ = t) = ν(t). Now, when solving the QP problem which 

leads to the optimization of V(t′) over the time horizon, τ H, 

the kinetic prediction (59), in which we have neglected the 

fast eigenmodes, is not representative of the actual system 
kinetic response. Simulations have shown that a more relev- 

ant response can be restored by adding a direct feed-through 

component, DF·UF(t’), from the fast inputs to the κ(t′) out- 

puts in the right hand side of equation (59). This additional 
vector replaces the effect of the fast eigenmodes, i.e. of XF 

in equation (31), without the need of solving a set of dif- 
ferential equations to compute their evolution. It was found 

appropriate to choose DF proportional to the steady state 

gain of the fast model9 (defined as KF = −AF
−1·BF) so 

that, in the reduced MPC controller synthesis, and after using 

equation (44), equation (59) becomes: 

and kinetic plasma parameters during the transient evolution 
from an initial plasma state to the desired high performance 

κ (t ′) = CS · XS (t ′) + DS · ν (t ′) + DF · UF (t ′) + dκ (t ′) 

steady state. Restricting the ARTAEMIS model to the zero- 

order equations in the singular perturbation analysis, i.e. to the 

slow model, will result in a slower kinetic control. For slow 

kinetic control, the model is thus reduced to equations (26)– 

(31). However, in equation (31), since the kinetic states, XF(t), 

are neglected, the kinetic disturbance, dκ(t), can be directly 

 

 
with 

= CS · XS (t ′) + (DS − DF) · ν (t ′) + DF · U (t ′) + dκ (t ′) 
(60) 

 

 
DF = −λF · A−1 · BF (61) 

computed from the measured value of the controlled kinetic 
variable, κm(t): 

where λF is a tuneable positive parameter smaller than 1. 

An advantage of using this reduced MPC kinetic controller 

dκ (t) = κm (t) − [CS · XS (t) + DS · ν (t)] . (56) 
design, and therefore of neglecting the fast model dynamics 

altogether, is that it reduces the dimension of the QP prob- 

Therefore, the only states that need to be evaluated are those 

linked to the magnetic variables, i.e. XS(t) and dɩ(t), and the 

observer thus reduces to equations (45) and (47) in which the 
last term involving kinetic variables is omitted: 

Ẋ̂
 
S (t) = AS · X̂ S  (t) + BS · U (t) 

+ K11 · 
(
−¯ιm (t) + Cι · X̂ S (t) + ̂d ι  (t)

) 
(57) 

lem to be solved at each time step, and therefore it alleviates 

the real-time computation effort. This could be necessary for 

more demanding applications such as the simultaneous dis- 

tributed control of the q-profile and of kinetic profiles (e.g. 

temperature, rotation). This reduced MPC controller is also 

more appropriate than the full two-time-scale MPC controller 

in situations where some actuators cannot respond sufficiently 

fast to high frequency changes of the controller commands. 

Examples using NBI pulse width modulation will be discussed 

ḋ̂ ι
 (t) = K31 · 

(
−¯ιm (t) + Cι · X̂S (t) + ̂d ι  (t)

) 
. (58) 

in sections 7 and 8. 

 

The kinetic states, XF(t), are also neglected in the QP 

problem associated with equation (53), in which λfast = 0. 

Then, during the prediction horizon, XS(t ′), ¯ι(t ′) and dɩ(t′) 

evolve according to the augmented system (26), (28), (30), 

 

 

 
9 We can speak of a steady state gain for the fast model although XF always 

with U(t′) = T svd ·V(t′), subject to the actuator constraints 
vanishes in steady state. This occurs because, by definition, UF contains only 
high frequency components and therefore it vanishes in steady state. Hence 

L(t′)·U(t′) ⩽ M(t′), and with the initial conditions given by XF also vanishes. 
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5. Simulations of q(x) and βp control on EAST 

using LHCD and ICRH 
 

To illustrate and validate the ARTAEMIS MPC control 

algorithm presented above, we shall now discuss the results of 

nonlinear closed loop simulations in a high-βp non-inductive 

scenario on EAST. For this particular application, the kinetic 
variable, κ(x, t), defined in section 2 reduces to a single scalar 

parameter, βp(t), independent of x, and therefore the kinetic 

vector has only one element. The simulations were performed 

by inserting the METIS plasma simulator at the output of the 

MPC controller in a MATLAB®/Simulink model, and feed- 
ing the appropriate METIS input powers and controlled output 

variables back into the observer/controller Simulink blocks. 

Many plasma parameters or profiles such as the plasma shape, 

the toroidal field, BT , the line-averaged plasma density, nel, 
etc, will be assumed independent of the control actuators and 

were fixed external inputs to the METIS code, together with 

all the chosen METIS options for modeling the various phys- 
ical phenomena. The time evolution of these parameters and 

profiles was based on actual experimental data from the ref- 

erence EAST shot #62946, until t = 3.2 s when control was 

switched-on. They were held constant afterwards, during the 

control phase. Constant LHCD power at 2.45 GHz (0.6 MW) 
and ECRH power (0.3 MW) were used in the steady state refer- 

ence shot. So, as in section 3, the 2.45 GHz LHCD power was 

included in the ECRH power for the METIS simulations. A 
constant feedforward ECRH power of 0.9 MW was thus used 

in all the control simulations, with the appropriate power and 

current deposition profiles to simulate the combined effect of 

the two systems. For t ⩾ 3.2 s, at each time step and with a 

cycle time of 0.02 s, the 4.6 GHz LHCD and 33 MHz ICRH 
actuator powers were prescribed by the MPC controller com- 

mands and the evolution of all the plasma parameters and pro- 

files that depend on the injected power, e.g. Vext(t), li(t), βp(t), 

ψ(x, t), q(x, t), temperature and pressure profiles, etc., were 

computed by the METIS simulator. 

The controller filter cutoff frequency separating the slow 
and the fast inputs, US(t) and UF(t), respectively, was chosen 

as f filt = 5 Hz. It is slightly different from the cutoff used 

for the identification process in section 3 (3.5 Hz), because 

it was adjusted, a posteriori, with the eigenvalues and char- 

acteristic times of the identified model, and with the required 
ordering: τ F = 0.04 s < τ filt = 0.2 s < τ S = 0.84 s. The num- 

ber of nodes during the horizon was chosen as the minimum 

that can be used, i.e. nnodes = 2. These controller parameters 

were unchanged for all the simulations presented in section 5. 

The constraint matrices L(t) and M(t) used at each time step 
when solving the QP problem (53) were constant during all 

the control phases, and defined as to limit the 4.6 GHz LHCD 

power to the interval 0 ⩽ PLH ⩽ 3 MW and the ICRH power 

to 0 ⩽ PIC ⩽ 1.5 MW. 

Typical examples from three sets of METIS simulations 

will be reported in this section. They were all performed with 

the two-time-scale MPC controller designed in section 4 and 

based on the ARTAEMIS model identified in section 3. The first 
set of tests of the MPC algorithm was dedicated to the control 

of the q-profile using the 4.6 GHz LHCD actuator. It involves 

 

  
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 
Figure 5. Control of q0 with LHCD. Top: q0(t) (solid black), 
q0,target(t) (dashed) and qmin(t) (dotted blue) vs time. Middle: βp vs 
time (not controlled). Bottom: 4.6 GHz LHCD actuator power (red) 
and feedforward powers: ICRH (black) and combined ECRH plus 

2.45 GHz LHCD (blue). Control starts at t = 3.2 s. 
 

 

only the slow part of the model and of the controller since the 

safety factor evolves on the slow resistive diffusion time scale. 
The second set of tests addressed the simultaneous control of 

q(x) and βp with LHCD and ICRH, using only the reduced 

kinetic MPC controller (section 4.4). Control of βp was thus 

achieved on the same time scale as the control of q0, i.e. on 

the resistive time scale. In the third set, the full two-time-scale 
MPC controller was tested, using the LHCD and ICRH actu- 

ators to control q(x) on the resistive time scale and βp on the 

kinetic time scale, simultaneously. 

 
5.1. Control of the safety factor with LHCD 

5.1.1. Discrete q0 control. The simplest test of the controller 

consists in tracking a given target value of the safety factor at 

a given normalized radius, using the 4.6 GHz LHCD actuator 

only. In this case, offset-free MPC control is possible with the 

observer and controller synthesis described in section 4. This 

was proved in [32] when the number of controlled variables 

is equal to the number of actuators or smaller. Here, there is 
no need for the kinetic equations (27)–(31) in the augmented 

model, and the observer reduces to equations (57) and (58). In 

the QP problem (53), we set λkin = λfast = 0 since there is no 

kinetic control. 

At constant plasma current, the area where q-profile reg- 

ulation is most sensitive is the plasma core, and in particu- 

lar the magnetic axis, because q(x) is almost clamped near 

the plasma boundary and its shape does not vary much in the 
outer half of the plasma. An example of such control, start- 

ing at t = 3.2 s, is displayed on figure 5. In this example, the 

ICRH power was fixed at 0.32 MW as in the EAST reference 
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discharge #62946, and the controller was requested to track 

successively three different target values of q0 = q(x = 0), 

with a prediction horizon chosen as τ H = τ S = 0.84 s, equal 

to the resistive diffusion time. The q0 target waveform is rep- 

resented by the dashed line on the top frame of figure 5, 
namely q0,target = 1.1 in the time interval 3.2 s ⩽ t ⩽ 7.1 s, 

q0,target = 3.5 in the time interval 7.2 s ⩽ t ⩽ 13.1 s and 

q0,target = 1.7 in the time interval 13.2 s ⩽ t ⩽ 18 s. These 

q0 values were within the range obtained during the modula- 

tion experiments mentioned in section 3 and they were there- 
fore accessible with the available LHCD power. During the 
prediction horizon, the target reshaping function was com- 

puted from equation (54) with τ target = τ H = τ S = 0.84 s. 

To control only the discrete parameter q0, the weight func- 

tion on ̄ ι(x, t ′) − ῑtarget (x , t ′) in equation (53) was replaced by 

the Dirac distribution, µ(x) = δ(x). Now, since we use only 

one actuator, the input vector, U(t), is one-dimensional and, 

in equation (41), KS is a 1 × 1 matrix for which we can only 
retain one SVD component: nsvd = 1, Tsvd = 1 and V(t) = U(t). 

Finally, the results displayed on figure 5 were obtained with 

R = 0 since there was no need for a specific moderation of 

the LHCD actuator in solving the QP problem. Figure 5 also 

shows the time evolution of qmin (the minimum value of q(x) 

across the plasma cross-section), and of the poloidal beta para- 

meter, βp, which is not controlled in this particular example. 

The tracking of the different q0 targets in the time intervals 

3.2 s ⩽ t ⩽ 7.1 s, 7.2 s ⩽ t ⩽ 13.1 s and 13.2 s ⩽ t ⩽ 18 s, 

respectively, is performed in about 2–3 s, i.e. in a few resist- 

ive times, and without steady state offset. The time evolution 
of the minimum q-value shown on the top frame of figure 5 

(dotted blue trace) indicates that the second q0 target corres- 

ponds to a q-profile with a strong negative shear in the plasma 
core (qmin = 1.7). The bottom frame of figure 5 shows the 

evolution of the 4.6 GHz LHCD power command delivered 

by the controller. The three successive targets are reached 

with PLH = 1.11 MW, 2.34 MW and 1.72 MW, respect- 

ively. The constant feedforward powers from ICRH and from 

the combined ECRH and 2.45 GHz LHCD systems are also 
shown. 

 

 

5.1.2. Distributed q(x) control. Distributed control of the q- 

profile can also be performed using continuous weight func- 

tions, µ(x), in the cost function IH(t) of equation (53). In this 

case, genuine offset-free control cannot be expected over the 

entire region where µ(x) is positive. Instead, the controller 

achieves a least-square minimization of the radially integrated 

error signals, as can be seen in the definition of IH(t). When Ip 

is regulated, there is no need for an additional control of the 

safety factor in the outer region of the plasma. However, in the 

plasma interior where the q-profile is sensitive to the H&CD 

actuators it is important to select target profile shapes that are 
accessible (or nearly accessible) with the available actuators so 

that the least-square approach is meaningful. In practice such 

profiles can be obtained offline from open loop simulations 

using a plasma simulator such as METIS, or more sophistic- 

ated models. 

 

 
 

 
Figure 6. Distributed q(x) control with µ(x) = 1 for 0 ⩽ x ⩽ 0.5 

and with LHCD only. Achieved q(x) at t = 3.2 s (black), 7.1 s 
(magenta), 13.1 s (red solid), and 18 s (blue solid). Target q-profiles 
are constant during these intervals (diamond symbols). Dashed lines 
are profiles achieved with q0 control only (see figure 1). 

 

 

For comparison with the previous case, a distributed con- 

trol example is shown on figure 6 with three different q(x) 

profile targets having the same q0 values as in the previous 

example shown on figure 5. The other controller paramet- 
ers, constraints and feedforward powers were also the same 

except for µ(x) where we have used piecewise linear func- 

tions defined at the radial knots of the basis functions, xk = 0, 

0.1, 0.2, …, 0.9, and equal to 1 for k = 1–6 (i.e. for 0 ⩽ xk ⩽ 
0.5) and to 0.01 elsewhere. The target profiles are represented 

by diamond symbols on figure 6. They were chosen from pro- 
files obtained at three different times in an open loop METIS 

simulation with modulated LHCD power (see section 3), with 

the same settings and the same constant ECRH (9 MW) and 

ICRH (0.32 MW) powers. Note that the target q-profiles selec- 
ted from METIS simulations do not correspond to exact steady 

state plasma equilibria. They are not either steady state solu- 

tions of the identified ARTAEMIS model. Now, with only one 

varying parameter, PLH, a steady state value of q0, correspond- 
ing to a given LHCD power in the METIS simulations, prede- 

termines the rest of the steady state q(x) profile. Therefore, if 

the target q-profiles were true steady state solutions in METIS, 

the controller would drive PLH to the same values for the dis- 
tributed q(x) control and the discrete q0 control since the q0 

targets are the same in both cases. The achieved q0 values 

would also be the same in the two cases. 

On figure 6, the black curve represents the q-profile at 

the start of the distributed q(x) control, i.e. at t = 3.2 s. 

Then, the first target profile was a monotonic q-profile with 

q0 = qmin = 1.1 represented by magenta diamonds, and it 

was tracked for 3.2 s ⩽ t ⩽ 7.1 s. The profile represented 

by the magenta trace is the achieved q-profile at t = 7.1 s, 

when the plasma has practically reached a steady state. Note 
that this first target profile is indeed achieved with no appar- 

ent offset. However, PLH = 1.13 MW at t = 7.1 s versus 
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1.11 MW in the discrete control case, and a detailed ana- 
lysis shows that, in both cases, the achieved q-profiles are not 

quite in a true steady state at t = 7.1 s. Between t = 7.1 s 

and t = 7.2 s the target profile changes to a negative shear 

safety factor profile with q0 = 3.5 > qmin = 1.7 (red dia- 

monds on figure 6), until t = 13.1 s when it changes again 

to a weak shear q-profile with q0 = 1.7 and qmin = 1.6 (blue 

diamonds on figure 6). The solid red and blue traces show the 

q-profiles achieved at t = 13.1 s and t = 18 s, respectively. 

The controller behaves very similarly as in figure 5, but with 
small steady state offsets on axis and a better tracking of the 

target profile in the region of minimum q, between x = 0.3 

and x = 0.5, where q(x) is less sensitive to small power vari- 

ations. Here, PLH = 2.38 MW at t = 13.1 s and 1.79 MW at 

t = 18 s versus 2.34 MW and 1.72 MW in the discrete control 

case. For comparison, the dashed lines on figure 6 represent 
the q-profiles achieved at the same times in the previous case, 
i.e. with q0 control only. The reasons why the two sets of pro- 

files are not strictly identical are that neither the targets nor 

the achieved profiles are true steady states, and that METIS is 

highly nonlinear so that, with the same steady state power but 

different power history, its results may not always be strictly 

identical. 

 

 

5.2. Control of q(x) and βp with LHCD, ICRH and the 

reduced MPC controller 

An example of the simultaneous control of q(x) and βp on the 

slow (resistive) time scale, using LHCD and ICRH actuators, 
is displayed on figures 7 and 8. In this example, four differ- 

ent βp targets were tracked: βp,target = 1.2 from t = 4.2 s to 

t = 5.1 s, and βp,target = 2, 1.5 and 2.5 for 5.2 s ⩽ t ⩽ 7.1 s, 

7.2 s ⩽ t ⩽ 9.1 s and t ⩾ 9.2 s, respectively. The q-profile is 

controlled from t = 3.2 s and between x = 0 and x = 0.5 with 

the same piecewise linear weight function as in the previous 
example: µ(xk) = 1 for 0 ⩽ xk ⩽ 0.5 and 0.01 for xk ⩾ 0.6. 

In order to assess the robustness of the q-profile control at dif- 

ferent plasma pressures (see figure 8), the target q(x) is kept 

constant while the βp target changes. The R matrix was set 

to zero and λkin was set equal to 1 because normalized input, 

output and state variables are used in the controller implement- 

ation. As before, we set λfast = 0 because the fast model and its 

kinetic states are not used here, but we set λF = 0.3 in the sub- 

stituted direct feed-through term of the model kinetic output 
equations (60) and (61). 

Now, the second magnetic eigenmode has a character- 

istic time of 0.24 s and the βp response in the truncated 

equation (31) may be somewhat faster than τ S. Thus, we have 

reduced the prediction horizon and the target reshaping time to 
half the resistive diffusion time, τ target = τ H = τ S/2 = 0.42 s, 

to see the effect of a faster control on q(x). Finally, in our 

METIS implementation of the internal controller model, the 
LHCD and ICRH input powers were normalized to 3 MW and 

1.5 MW, respectively. For t ⩾ 4.2 s when both q(x) and βp 
are controlled simultaneously, with distributed q(x) control, 

the KS matrix in equation (41) is a 11 × 2 matrix that depends 

 

  
 
 
 
 
 

 
 

 

 

 
Figure 7. Simultaneous distributed q(x) control and βp control with 

LHCD and ICRH. Control of q(x) starts at 3.2 s while βp control 
starts at 4.2 s. Top: q0(t) with slow (solid black) and fast (dash-dot 
red) βp control, q0,target(t) (dashed black) and qmin(t) (dotted blue). 
For comparison the dotted red trace is from discrete q0 and slow βp 
control. Middle: βp(t) with slow (solid black) and fast (dash-dot red) 

control, and βp,target(t) (dashed black). A zoom between t = 9.1 s 
and t = 9.7 s is displayed in a small insert. Bottom: LHCD (red) and 
ICRH (black) actuator powers. In all frames, the solid traces are for 
slow βp control and the dash-dot traces are obtained with the full 
two-time-scale MPC controller, which yields faster βp control (see 
insert). 

 
 

 

 

 
Figure 8. Combined distributed q(x) control and slow βp control 

with LHCD and ICRH. Achieved q(x) at t = 3.2 s (solid black), 
5.1 s (dotted), 7.1 s (red), 9.1 s (blue), 10 s (dashed black) and 12.5 s 
(green). These times are depicted on figure 3 by vertical lines. The 

target q-profile is constant (diamond symbols) and µ(x) = 1 for 
0 ⩽ x ⩽ 0.5. q(x) control starts at 3.2 s while βp control starts at 
4.2 s. 
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on the power normalizations, and whose positive singular val- 

ues are equal, here, to 0.57 and 0.41. Therefore, its first two 

SVD components are significant and can be retained. We have 

therefore chosen nsvd = 2 and V(t) = U(t). 

Figure 7 shows the time evolution of q0, qmin, βp,target, and 

of the achieved βp and actuator powers. Figure 8 shows the 

target q-profile and the achieved q-profiles at the start of the 
control phase and at the end of each constant βp,target phase. An 

additional profile is shown at t = 10 s, which corresponds to the 

largest transient q0 offset during the transition to the βp = 2.5 

plasma equilibrium (see figure 7 and the dashed black line in 

figure 8). 
As mentioned before, small steady state offsets cannot be 

avoided with only two actuators for distributed q(x) control 

and simultaneous control of βp. The q-profile offset is mostly 

apparent near the magnetic axis where the safety factor is 

highly sensitive to any perturbation. The steady state q0 off- 

set disappears when only q0 and βp are controlled, as shown 

by the dotted red trace on figure 7 (top frame) at t = 7.1 s, 9.1 s 

and 12.5 s. 

 
5.3. Faster control of βp using the two-time-scale ARTAEMIS 

model and MPC controller 

To illustrate the implementation of MPC theory in controllers 
using singularly perturbed dynamic models, we shall describe 

now the simultaneous control of q(x) and βp including in the 

MPC algorithm the first-order perturbation of the identified 

model, i.e. the fast model and the kinetic states. The effect can 
already be seen on figure 7 where we have added, for compar- 

ison, the result of the fast βp control using the full two-time- 

scale MPC controller with λfast = 1.5 (red dash-dot traces) 

to the slow control results obtained with the same common 

controller parameters, and with λF = 0.3 in equations (60) 

and (61). 

Another example is shown on figures 9 and 10, where 
we have combined a βp ramp request, from βp = 1.5 up to 

βp = 2.5 for 3.2 s ⩽ t ⩽ 5 s, to the subsequent tracking of three 

different q(x) profiles at constant βp, either with discrete q0 

control (solid lines in figure 10) or with distributed q(x) control 

(dotted lines in figure 10). Both q(x) and βp controls start at 

t = 3.2 s. The first q-profile target has q0 = 2.1 and qmin = 1.6, 

the second one has q0 = qmin = 1.4, and the last one has 

q0 = 3.5 and qmin = 1.7 with a large negative magnetic shear 

over a broad region of the plasma (x ⩽ 0.32). It can be noted 

from figure 9 that the regulation of βp is not perturbed by the 

changing q(x) targets. Here, we chose the same time horizon as 

in section 5.1, τ H = τ S = 0.84 s, but we have increased the tar- 

get reshaping time to τ target = 2τ S = 1.68 s in order to exhibit 

the difference in the approach of q0 to its targets. As expected 
and confirmed by comparing the top frames in figures 7 and 9, 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

 

 

Figure 9. Combined q(x) and βp control from t = 3.2 s using 
LHCD and ICRH. Top: q0(t) for discrete q0 and fast βp control 
(dotted red), q0(t) for distributed q(x) and fast βp control (dash-dot 
red), q0,target(t) (dashed black), and qmin(t) (dotted blue). Middle: 
βp(t) for discrete q0 and fast βp control (dash-dot), βp(t) for discrete 
q0 and slow βp control (solid black), and βp,target(t) (dashed black). 
Bottom: LHCD (red) and ICRH (black) powers. In all frames, the 
solid traces are for slow βp control and the dash-dot traces are 
obtained with the full two-time-scale MPC controller. 

 

 

 
Figure 10. Simultaneous q0 and fast βp control with LHCD and 

ICRH. Achieved profiles at t = 3.2 s (black), 5 s (magenta), 9 s 
(red), 13 s (blue), and 18 s (green). The q(x) targets (diamond 
symbols) are held constant between these times, which are depicted 
by vertical lines on figure 9. Both q(x) and βp control start at 3.2 s. 

increasing τ 
 
target results in a smoother approach to the vari- 

The dotted lines are from distributed q(x) control and fast βp 
control, for comparison. 

ous q0 targets. The KS matrix is a 2 × 2 matrix in the discrete 
q0 and βp control case, with singular values equal to 1.19 and 

0.49, and a 11 × 2 matrix in the distributed q(x) and βp control 

case, with µ(xk) = 1 for 0 ⩽ xk ⩽ 0.5 and 0.01 for xk ⩾ 0.6, 

with singular values equal to 0.57 and 0.41. Again, two SVD 

 

 

components can then be retained in both cases so we chose 

nsvd = 2 and V(t) = U(t). Also in both cases, the R matrix was 

set to zero, and λkin was set equal to 1. 
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Figure 9 (top frame) and 10 show the results obtained 
with the full two-time-scale MPC controller, for both discrete 

q0 and βp control and distributed q(x) and βp control, with 

λfast = 3. As in figure 7, the q-profile offset is mostly apparent 

for t > 15 s near the magnetic axis and it disappears when only 

q0 and βp are controlled (dotted red trace on the top frame of 

figure 9). The middle frame in figure 9 shows the difference 
between the evolution of βp during the slow (λF = 0.3) and 

fast βp control, with simultaneous distributed q(x) control in 

both cases. The gain in using the full two-time-scale MPC con- 
troller can be assessed by looking at the small insert where the 

βp traces are magnified. 

Finally, on figures 11 and 12, combinations of four differ- 
ent values of βp,target = 1.5, 2, 2.5 and 3, and three different 

q-profiles are tracked successively using the same distributed 
q(x) control parameters as before, with τ H = τ S = 0.84 s, 

τ target = 2τ S = 1.68 s, nsvd = 2 (the singular values of the  

11 × 2 KS matrix are 0.57 and 0.41) and λkin = 1. One can 

compare the results obtained with fast βp  control (λfast = 3, 

dash-dot lines) and with slow control only (λF = 0.3, solid 

lines). Again, the benefit of using the full two-time-scale MPC 
controller can be assessed from the small insert where the βp 

traces are magnified. The q-profile targets are all reached in 

about 2.5 s (∼3 resistive times) and the actuators adjust to 
reach the various βp targets within about 0.2 s (∼5τ F) with 

fast control and 0.4–0.5 s (⩾ 10τ F or 0.5τ S) with slow control, 

while restoring the desired q-profile shape after each large βp 

perturbation. 

A last remark can be made concerning the relative effects of 

the actuators on the evolution of q(x) and βp. From the bottom 

frames of figures 9 and 11, the q-profile is clearly more sens- 

itive to PLH while βp is more sensitive to PIC. This is, how- 

ever, peculiar to the chosen LHCD and ICRH systems, and 

in the configuration in which they were used in the high-βp 

experiments on EAST. It does not represent the general kin- 

etic control case with a larger number of actuators, for which 
the present controller has been designed. Even in the simula- 

tions described above, PLH and PIC cannot be fully mapped to 

the individual controlled variables, q(x) and βp, so the coupled 

magnetic and kinetic controller synthesis is relevant. 
 

 

6. Initial SISO control experiments on EAST using 
the ARTAEMIS MPC controller 

 
The reduced ARTAEMIS MPC controller defined in section 4.4 

was used for the first time on the EAST tokamak at a time 

when only one actuator (LHCD at 4.6 GHz hereafter referred 

to as LH2) was available, with enough dynamics and reli- 

ability when the PCS commands were bound to the range 
1 MW to 2.5 MW. ECRH feedforward power was also avail- 

able from two gyrotrons delivering 0.9 MW at 140 GHz, 

and the 2.45 GHz LHCD system (LH1) could also be used 

for short 0.5 MW pulses. In this configuration, single-input- 

single-output (SISO) control was tested, either for the central 

safety factor, q0, or for the poloidal beta parameter, βp. In both 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

 

 

Figure 11. Simultaneous control of q(x) and βp with LHCD and 
ICRH. Control of q(x) starts at 3.2 s while βp control starts at 4.2 s. 
Top: q0(t) for distributed q(x) control and slow βp control (solid 
black), q0(t) for distributed q(x) control and fast βp control 

(dash-dot red), q0,target(t) (dashed black) and qmin(t) (dotted blue). 
Middle: βp(t) for distributed q(x) control and slow βp control (solid 
black), βp(t) for distributed q(x) control and fast βp control 
(dash-dot red) and βp,target(t) (dashed black). Bottom: LHCD (red) 
and ICRH (black) actuator powers. In all frames, the solid traces are 
for slow βp control and the dash-dot traces are obtained with the full 
two-time-scale MPC controller. 

 
 

 

 

 
Figure 12. Simultaneous distributed q(x) and fast βp control with 

LHCD and ICRH, and with µ(x) = 1 for 0 ⩽ x ⩽ 0.5. Control of 
q(x) starts at 3.2 s while βp control starts at 4.2 s. Achieved q(x) at 

t = 3.2 s (dashed black), 9 s (magenta), 13 s (red), 17 s (blue), 21 s 
(green), and 25 s (solid black). The q(x) targets (diamond symbols) 
are held constant between these times, which are depicted by 
vertical lines on figure 11. 
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cases, offset-free MPC is possible with the controller synthesis 

described in section 4. 

 

 
6.1. ARTAEMIS model for SISO control experiments 

The ARTAEMIS system identification procedure described in 

section 3 was applied here to real experimental data in a typ- 

ical high-density single-null H-mode scenario. In this scen- 
ario, the toroidal field was BT  = 2.5 T, the plasma current 

was Ip = 350 kA and the line-averaged electron density was 

nel ∼ 4.2 × 1019 m−3. In all shots, a small additional 0.5 MW 

LH1 pulse was injected from 0.95 s to 2.25 s in order to 

reduce the poloidal flux consumption during the plasma cur- 

rent ramp-up, and a constant 0.9 MW ECRH power was injec- 
ted from the two gyrotrons during the current flattop. The sys- 

tem identification data was obtained from a steady state ref- 

erence discharge with a constant LH2 power at 1 MW (shot 

#93295) and from three other discharges, with chirping fre- 
quency (shots #93296 and #93297) and pseudo-random bin- 

ary sequence (PRBS) modulations of the LH2 actuator (shot 

#93298), with powers between 1 and 2.5 MW. 

To cope with the nonlinear response of the LH2 system to 

the PCS command, a simple additional PI feedback controller 

was used to track the desired power modulations. The PI gains 

were chosen following the so-called SIMC tuning rule [44] and 
the actuator controller was also used in cascade with the MPC 

controller module to track the MPC power command in the 

closed loop experiments. The magnetic and kinetic parameters 

of interest were estimated by the real-time EFIT reconstruction 

code. 

A linear two-time-scale state space model having the 

ARTAEMIS structure defined in sections 2 and 3, with five 

significant eigenmodes in the slow model and only one eigen- 

mode in the fast model, was identified from the modulation 
data. Both the input and output data were filtered with a 

non-causal low-pass filter of order 5, and a cutoff frequency, 

f filt = 3.3 Hz for the separation between the slow and fast data. 

The fit parameters, f, obtained from equation (18) in the four 
discharges were found as 84%, 51%, 63%, and 67% for ̄ ι(x) 

and as 57%, 49%, 75% and 73% for δβp. They are somewhat 

smaller and more broadly distributed than the values repor- 

ted in section 3, obtained with simulation data. This is due 
to the noise and uncertainties inherent to the experimental 

data, and also to undesired variation of some plasma para- 
meters in the experiments. Nevertheless, as in figures 2 and 3, 
the identified model was found to reproduce satisfactorily the 

coupled evolution of the internal poloidal flux profile, ψ(x, t), 

of the inverse of the safety factor profile, ¯ι(x, t) = 1/q(x, t) 

and of the poloidal beta parameter, βp(t). Another example 

of the ARTAEMIS system identification using experimental 

data will be given in section 8. Two important parameters 
characterizing the identified models are the largest (negative) 

eigenvalues of AS and AF, obtained here as −0.95 s−1 and 

−60.6 s−1, which correspond to time constants τ S = 1.05 s and 

τ F = 0.017 s for the resistive diffusion and thermal transport, 

respectively. 

6.2. Experimental SISO control of q0 with LHCD 

The first MPC control experiment aimed at tracking piecewise- 

constant waveforms for the safety factor on axis, q0. The con- 

trol cycle time was set to 0.02 s so that, at each time step, 

we had enough CPU time to reconstruct the plasma magnetic 
equilibrium from the real-time measurements and solve the QP 

problem in the MPC algorithm. In the discharge #94832, the 

target q0 was set at 2.4 from t = 2.7 s to t = 4.5 s and was 

raised to q0,target = 2.8 at t = 4.52 s. 

The controller parameters were chosen as nsvd = 1 (since 

there is only one actuator), R = 0, τ H = 0.52 s ∼ τ S/2 for 

the horizon, and τ target = 0.26 s ∼ τ S/4. The target reshap- 

ing time is smaller than the value chosen for the simulations 
in section 5 in the aim of approaching the targets faster. The 

q-profile weight function, µ(x), was replaced by the Dirac dis- 

tribution, δ(x), and the kinetic weights λkin and λfast were set 

to 0 since there is no kinetic control in this experiment. The 

time evolutions of q0 (solid black trace) and of the piece-wise 
constant q0 target (dashed red trace) are shown on figure 13(a). 

The LH2 power commands obtained from the controller (dot- 
ted magenta trace) and at the output of the PI actuator control 

module (dashed red trace) are shown on figure 13(b). 
The LH2 power effectively coupled to the plasma is also 

shown on figure 13(b) (solid black trace). The coupled power 

closely matches the original controller command (and there- 

fore the MPC algorithm request), showing the effectiveness 

and appropriate tuning of the actuator control module. The 

tracking of the q0 targets is successfully performed without 
steady state offset, in about one second, which is of the order 

of the resistive diffusion time. This is relatively shorter than in 

the simulations of section 5 thanks to the smaller target reshap- 

ing time. In these experiments, the inputs to the observer, U(t), 

ῑ m (t ) and κm(t) in equations (45)–(48), were taken from noisy 

raw measurements and both the power command (figure 13(a)) 

and the controlled safety factor (figure 13(b)) were affected by 
high-frequency noise. 

 
 

6.3. Experimental SISO control of βp with LHCD 

In other discharges, βp SISO control was tested. An import- 

ant feature of plasma transport physics, on which the pos- 
tulated two-time-scale ARTAEMIS model structure is based 

(section 2), is that the slow evolution of the kinetic vari- 
ables, κ(t), is not only driven by low frequency compon- 

ents of the heating powers, but it is also partly driven by the 

evolving magnetic equilibrium, i.e. by the poloidal flux profile, 

ψ(x,t). This is why the dynamic model couples both ψ(x,t) 

and βp(t) to the slow states of the system through the Cψ and 

CS matrices in equations (11) and (12), in which the kinetic 

vector, κ, now stands for βp. The slow states of the system, 

XS(t), are defined as the eigenmodes of the resistive diffusion 

equation. They govern the dynamics of ψ(x,t) and ¯ι(x, t)but 

also the slow dynamics of βp(t), and therefore they must be 

kept in the controller internal model even when q(x) is not 

controlled. Now, the MPC controller described in section 4 

was designed for the control of the safety factor profile, q(x), 
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Figure 13. (a) Safety factor on the magnetic axis, q0(t), from 
real-time EFIT magnetic equilibrium reconstruction (solid) and 
q0,target(t) (dashed red) in EAST discharge #94832. Control starts at 

t = 2.7 s. (b) Coupled LH2 power (solid black) and MPC command 
before (dotted magenta) and after (dashed red) the PI actuator 
control in EAST discharge #94832. The coupled power (solid) 
closely matches the original controller command (dotted magenta). 

Control starts at t = 2.7 s. 

 

or for the simultaneous control of q(x) and of a kinetic vec- 

tor, κ, which is here equal to βp. It can also be used for the 

control of ψ(x) and βp (similarly to what was done in [33] for 

the control of ψ(x) and βN) by keeping the vector ψ(t) in the 

model equations (21) and (23) and in the following control- 
ler/observer equations, instead of using the vector ̄ ι(t) and the 

model equations (28) and (30). The simplest way to achieve 
βp SISO control with the multi-variable controller described 

in section 4, is indeed to select ψ(x) and βp as controlled vari- 

ables and to increase the weight λkin (and optionally λfast) in 

the QP cost function to values much larger than the norm of 
µ(x). 

In the discharge #94829, a piecewise-linear βp target wave- 

form with 1.6 < βp,target < 1.9 was tracked. The control- 

ler parameters were chosen as nsvd = 1 (there is only one 

Figure 14. (a) Poloidal beta parameter, βp(t), from real-time EFIT 
magnetic equilibrium reconstruction (solid) and βp,target(t) (dashed 

red) in EAST discharge #94829. Control starts at t = 2.7 s. (b) 
Coupled LH2 power (solid black) and MPC command before 
(dotted magenta) and after (dashed red) the PI actuator control in 
EAST discharge #94829. The coupled power (solid) closely 
matches the original controller command (dotted magenta). Control 

starts at t = 2.7 s. 
 

 

actuator), R = 0, τ H = 0.52 s ∼ τ S/2, τ target = 0.26 s ∼ τ S/4. 

The weight function on the ψ(x) control was the Dirac dis- 

tribution, µ(x) = δ(x), and the kinetic weight, λkin, was set 

to 1000 in order to make the contribution of ψ(x) in the con- 

troller QP cost function negligible, given that normalized vari- 
ables are used. The effect of the fast system state on the con- 

troller commands was also negligible with λfast = 1.5 ≪ λkin. 

The controller filter that separates the slow and fast variables 

was chosen with τ filt = 0.1 s (ffilt = 10 Hz) and the number 

of nodes during the horizon was nnodes = 2. The time evolu- 

tion of βp (solid black trace) and its target waveform (dashed 

red trace) are shown on figure 14(a). The LH2 power com- 
mands obtained from the controller (dotted magenta trace) and 
at the output of the PI actuator control module (dashed red 
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trace) are shown on figure 14(b), together with the LH2 power 

effectively coupled to the plasma (solid black trace). As in the 
previous case (section 6.2), the coupled power closely matches 

the MPC algorithm request. The βp waveform tracking was 

excellent despite significant noise in the measured observer/- 

controller inputs. 
 

 
7. Simulations of two-time-scale MPC control using 

LHCD, ECRH and NBI pulse width modulation 

The initial experiments described in section 6 were limited 

to SISO control. When the real-time command of the neut- 

ral beam injectors became available on EAST, the ARTAEMIS 

MPC control algorithm could be tested in the more sophistic- 

ated multiple-input-multiple-output (MIMO) control config- 
uration. In the perspective of such experiments, METIS simu- 

lations were performed using several actuators including NBI 

to simultaneously control the q-profile at different radii and 

the poloidal beta parameter, βp. For these simulations, up to 

four actuators were used: LHCD at 4.6 GHz (LH2), two sets 

of co-current NBI injectors at different angles (NB1 and NB2) 

and ECRH at 140 GHz. The actuators have been tuned in 

METIS so that they have nearly the same characteristics and 

the same effect on the plasma as the H&CD systems used on 

EAST. At present, real-time ECRH actuation is not yet avail- 

able from the EAST PCS but, anticipating on future develop- 
ments, ECRH was used as an actuator in METIS simulations 

in order to extend the controller capabilities. Also, unlike the 

LHCD klystrons, which can deliver a continuous power wave- 

form within given lower and upper bounds, NBI injectors can 

either be running at full power or switched off, and switching 

from one state to the other can only be done after a minimum 

time. The MPC algorithm must therefore be complemented 

with a PWM algorithm that delivers NBI pulses in such a way 

that, when averaged over a given period of time, the injected 
power reproduces at best the power that is requested by the 

controller at the beginning of each averaging period. The NBI 

power request can therefore be updated only after a number of 

time samples while the LH2 power request is updated at each 

time step. The minimum pulse width that can be handled by 

the EAST NBI system is 0.1 s, which is larger than the char- 

acteristic thermal diffusion time and is not best suited for the 

control of kinetic parameters. So, in order to reduce the time 
delay in the NBI action, we have assumed that the minimum 

switching time can be reduced to 0.04 s in the simulation tests 

presented here. The power averaging time was chosen as 0.4 s 

so that the NBI power request from the MPC controller is dis- 

tributed over a maximum pattern of ten on/off periods. Thus 

the averaged power delivered by each beam during the aver- 

aging period can only vary by steps of 10% of the available 

beam power. With a controller cycle time of 0.02 s, and an 

averaging period of 0.4 s, the NBI MPC command is updated 
every twenty cycles. For the other actuators, the commands are 

updated at each time step, and they are optimally computed by 

solving the QP problem with the partial knowledge of the NBI 

power pattern during the time horizon of the model prediction. 

We shall now describe the results of closed loop q(x) and 

βp control simulations in a high-βp non-inductive scenario 

on EAST with the NBI actuators used in the PWM mode. 

As in section 5, the simulations were performed by insert- 

ing the METIS plasma simulator at the output of the MPC 

controller in a MATLAB®/Simulink model, and feeding the 
appropriate METIS outputs back into the controller. Many 

plasma parameters or profiles are assumed independent of the 

actuators and are fixed external inputs to the code, together 

with all the chosen METIS options for modeling the vari- 
ous physical phenomena. The reference scenario around which 

the linear response model was identified was based on a real 

high-density discharge (#94429), a steady state single-null H- 
mode discharge, at a toroidal magnetic field, BT = 2.5 T, line- 

averaged electron density, nel = 4.4 × 1019 m−3, and plasma 

current, Ip = 0.4 MA. This reference discharge uses NBI and 

has a higher plasma density than that used in sections 3 and 5. 

It was obtained using a 0.5 MW LH1 prelude from 0.95 s to 

2.25 s during the plasma current ramp-up. Then, during the 
current flattop, 0.9 MW from ECRH, 1.6 MW from LH2 and 
2 × 1.3 MW from the two sets of co-current injectors at a beam 

voltage of 65 kV were injected in steady state. The steady 

state poloidal beta and internal inductance parameters were 

βp = 2.3 and li = 0.75, respectively, and the q-profile exhibited 

a negative shear in the plasma core, with a minimum q around 

3.1 at x ∼ 0.4 and q0 ∼ 4 on axis. In order to identify the vari- 

ous matrices in the ARTAEMIS model corresponding to the 

selected operation scenario, nonlinear open loop simulations 

with various PRBS power modulation waveforms were per- 

formed. Three slow eigenmodes and one fast eigenmode could 
be identified from the data. The largest (negative) eigenvalues 

of AS and AF were −1.6 s−1 and −24.7 s−1, which correspond 

to time constants τ S = 0.6 s and τ F = 0.040 s for the resistive 

and thermal diffusion characteristic times, respectively. 

In all the closed loop control simulations, the time evolu- 
tion of plasma parameters and profiles was based on the actual 

experimental data from shot #94429 until t = 3.2 s when 

control was switched-on. For t ⩾ 3.2 s, with a cycle time of 
0.02 s, the LH2, the ECRH and the two co-current NBI actu- 

ator powers were prescribed by the MPC controller commands 
(using PWM with an amplitude of 1.3 MW for NB1 and NB2), 

and the evolutions of the plasma parameters and profiles (e.g. 

ψ(x, t), q(x, t), βp, li, etc) were simulated. The controller filter 

for the separation of the slow and fast control was chosen with 

τ filt = 1/f filt = 0.22 s and the number of nodes during the hori- 

zon was nnodes = 2. These parameters have been unchanged in 

all the simulations. 

 
7.1. Control of the safety factor profile 

With three independent actuators (LH2, NB1 and NB2), one 

could expect to control the safety factor profile at three dif- 
ferent radii. However, with the three actuator powers normal- 

ized to 1.3 MW, the singular value decomposition of the model 

steady state response, i.e. of the KS matrix, limited to three 
q-profile outputs at x = 0, 0.3 and 0.6, yields singular val- 

ues of 0.494, 0.016 and 0.005. For only two outputs at x = 0 
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Figure 15. Simultaneous control of q0 and q1 = q(x = 0.4) with 
LHCD, ECRH and NBI. Top frame: q0 (solid black trace), q0,target 
(black dashed), q1 (solid red trace) and q1,target (red dashed) vs time. 

Middle frame: NB1 (bottom, black) and NB2 (top, red) PWM 

(0 = off, 1 = on). Bottom frame: LH2 (red) and ECRH (black) 
actuator powers. 

 

 

and x = 0.4 the singular values are 0.472 and 0.014. A strong 

drop between the first and second singular values of KS means 

 

Figure 16. Simultaneous control of q0, q1 = q(x =0.4) and βp with 
LHCD, ECRH and NBI. Top frame: q0 (solid black trace), q0,target 
(black dashed), q1 (solid red trace) and q1,target (red dashed) vs time. 

Second frame: βp (solid black trace), βp,target (black dashed). Third 

frame: NB1 (bottom, black) and NB2 (top, red) PWM (0 = off, 
1 = on). Bottom frame: LH2 (red) and ECRH (black) actuator 
powers. 

 

 
is consistent with the resistive time and there is no steady state 

that there is significant redundancy in the plasma responses 
to the different actuators. Adding that the PWM NBI actu- offset, as could be expected with n 

 
svd = 2 for two controlled 

ation cannot be accurate and tends to produce oscillations at 

the period of the beam averaging time, it is difficult to control 

the q-profile at more than one radius without an extra degree of 

freedom from another actuator. We shall here anticipate that, 
in the future, ECRH can ultimately be controlled by the EAST 

PCS in a relatively high frequency PWM mode (≫ 50 Hz). 

So, we shall assume in METIS that an additional ECRH actu- 
ator can deliver a continuous power. Then, with this additional 

actuator also normalized to 1.3 MW, the KS singular values are 

0.578 and 0.109 for q(x) control at x = 0 and x = 0.4, so we 

can use nsvd = 2 in the controller. 

A closed loop simulation result is displayed on figure 15 
where the controller is tracking four different target pairs for 

q0 and q1 = q(x = 0.4). The targets are [q0,target, q1,target] = 
[1.9, 2.6], [2.9, 3.1], [2.2, 2.8] and [4.1, 3.1] during the time 

periods t = 3.2–7 s, 7–11 s, 11–15 s and 15–21 s, respectively. 

These targets correspond to monotonic, weak shear and neg- 
ative shear profiles. The controller parameters were chosen as 

nsvd = 2, R = 0, τ H = 0.8 s and τ target = 0.4 s. The weight 

function, µ(x), was replaced by the sum of Dirac distribu- 

tions, δ(x)+δ(x-0.4), and λkin = λfast = 0 since there is no 

controlled kinetic variable. The constraint matrices L and M 
in the minimization of the cost function (53) were defined as 

to limit the LH2 power to PLH2 ⩽ 2.5 MW, the ECRH power 

to PEC ⩽ 2 MW and the beam power to PNB1  ⩽ 1.3 MW and 

PNB2  ⩽ 1.3 MW. The control of q0 and q1 is excellent (see 
figure 15). The time required for tracking the different targets 

variables. The middle frame shows the evolution of the two 

NBI PWM waveforms (0 = power off, 1 = power on), and the 

bottom frame shows the LH2 and the ECRH powers requested 

by the controller. 

 

7.2. Simultaneous control of q(x) and βp 

For the simultaneous control of q(x) and βp with LHCD, 

ECRH and the two sets of co-current NBI injectors, the singu- 

lar value decomposition of the KS matrix, limited to three out- 

puts, q0, q1 = q(x = 0.4) and βp, with equal normalizations of 

the four actuators, yields singular values that are equal to 1.13, 
0.229 and 0.096. With nsvd = 3, simultaneous control of three 

parameters such as q0, q1 and βp should therefore be possible 

without offsets. In the example shown on figure 16, four differ- 
ent sets of q0, q1 and βp targets were tracked, namely [q0,target, 

q1,target, βp,target] = [1.9, 2.6, 1.81], [2.9, 3.1, 1.92], [2.2, 2.8, 

1.93] and [4.1, 3.1 2.35] during the time intervals t = 3.2– 
7 s, 7–11 s, 11–15 s and 15–21 s, respectively. As before, 
the controller parameters were chosen as R = 0, τ H = 0.8 s, 

τ target = 0.4 s and the weight function, µ(x), was replaced by 

the sum of Dirac distributions, δ(x)+δ(x-0.4). But here, for the 

additional control of βp, we chose λkin = 1 and λfast = 1.5. The 

PWM algorithm introduces a 0.4 s delay and generates low 
frequency on/off power jumps in the NBI controller actuation. 

The resulting oscillations of the controlled variables around 
their targets, at a frequency of 2.5 Hz, are small and acceptable 
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for the control of q(x), but their amplitude is large for βp, 

showing limited kinetic control accuracy. Increasing the max- 
imum frequency at which NBI can be switched on and off and 

decreasing the power averaging time would be necessary for 

better kinetic control. 

 

8. MPC kinetic control experiments on EAST using 
LHCD and NBI pulse width modulation 

 

Experimental tests of the ARTAEMIS/MPC kinetic control 

algorithm were done in the MIMO configuration during a 

recent experimental campaign on EAST. The neutral beam 

injectors and the LHCD klystrons could be controlled in real 
time by PCS commands so that a maximum of three inde- 

pendent actuators could be used for plasma control. The first 

actuator was the LHCD system at 4.6 GHz (LH2), as in the 

initial SISO experiments reported in section 6, and two addi- 

tional actuators were obtained by grouping beams that have 

the same injection angle with respect to the plasma. A total of 

four deuterium beams can be injected through ports A and F 

of the EAST tokamak with two beams in each port, the right 
beam and the left beam. The geometry of the beams is the 

same in both ports, but the right beams (R-beams) and the left 

beams (L-beams) are tilted in the co-current direction at dif- 

ferent angles with respect to perpendicular injection. As a res- 

ult, the injection from the L-beams is more tangential than the 

injection from the R-beams and we can consider the L-beams 

and the R-beams as two different actuators named NB-L and 

NB-R, respectively. Each actuator consists of two equivalent 

injectors driven at the same beam voltage, one through the A- 
port and the other one through the F-port. The power delivered 

by the NB-L actuator is the sum of the powers injected by the 

two L-beams from ports A (NB1-L) and F (NB2-L), irrespect- 

ively of the contribution from each beam. The same applies for 

the NB-R actuator and the two R-beams (NB1-R and NB2-R). 

An important difference between these experimental tests 

and the simulations discussed in section 7 is that the min- 

imum allowed pulse width from the EAST NBI system is 0.1 s 

instead of 0.04 s as assumed above for the simulations. The 
power averaging time was not increased above 0.4 s in order 

to keep the same delay in the NB-L and NB-R action as in the 

simulations. However, this choice was made at the expense of 

a less accurate tracking since the NBI power request from the 

MPC controller was now distributed over a maximum PWM 

pattern of only four on/off periods of 0.1 s and, therefore, the 

averaged power delivered by each beam during the averaging 

period can only vary by steps of 25% of the available beam 
power. Given that there are two beams in each NBI actuator, 

the averaged actuator power in a 0.4 s period can vary by min- 

imum steps of 12.5% of the total actuator power. 

 
8.1. Identification of ARTAEMIS models from experimental 

EAST data 

New experiments were dedicated to the identification of 

ARTAEMIS models with the LH2, NB-L and NB-R inputs. 

The reference operation scenario around which the models 

 
 

 

 

 

Figure 17. Slow LH2, NB1-R and NB2-R power modulations 
injected from PRBS commands on discharge #126960. The NB-L 
actuator is off. 

 

 

were obtained was based on a negative toroidal field discharge 
(#122565) with BT  = −2.5 T, Ip = 0.4 MA and a line-averaged 

plasma density, nel = 4.5 × 1019 m−3. In order to reduce the 

poloidal flux consumption during the plasma current ramp- 
up and extend the current flat-top duration from t = 2.2 s 

until t = 13.5 s, a short 0.5 MW pulse was injected from the 

2.45 GHz LHCD system (LH1) between t = 1 s and t = 2.5 s. 

Then, the following powers were injected during the current 
flat-top: ECRH (1.8 MW from three gyrotrons at 140 GHz) 

for t ⩾ 5.1 s, ICRH (1.5 MW from two antennas) for t ⩾ 5.4 s, 

and LHCD at 4.6 GHz (LH2) with a constant 1.2 MW power 

flat-top between t = 2.6 s and t = 5 s, a power ramp from 

1.2 MW to 2 MW between t = 5 s and t = 6 s and a constant 

power of 2 MW for t ⩾ 6 s. Stable and reproducible station- 

ary H-mode plasmas could be obtained between t = 6 s and 

t = 13.5 s using this operation scenario. 
Many successful discharges were then run with the same 

parameters and the same feedforward power sequence from 

LH1, ECRH and ICRH, but with power modulations from 

the control actuators. The LH2 power was modulated between 

1 MW and 2 MW, and the power delivered by the four beams 

was modulated between 0 MW and full power, i.e. ∼ 0.6 MW, 

with beam voltages ∼ 47.5 kV and with minimum pulse 

widths of 0.1 s. The power modulations were obtained from an 

algorithm that can generate many different PRBS waveforms 

such as those shown on figures 17 and 18. Figure 17 shows 

an example of low frequency PRBS modulations for the LH2 

and NB-R actuators applied on discharge #126960, in which 

the NB-L actuator was off. Figure 18 shows an example of 
high frequency PRBS modulations applied to the LH2 actu- 

ator on discharge #126963. They were used for the identifica- 

tion of the fast response model. Because of the minimum pulse 

width of 0.1 s, the NBI powers cannot be modulated at high 

frequency. In this discharge, the NB-L power was constant 

(PNB-L = 1.1 MW) and the NB-R actuator was off. 

A two-time-scale ARTAEMIS model was then identified 

from the experimental plasma response to the modulated 
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model, a comparison between the reduced ψ(x) experimental 

data at x = 0, 0.1, … 0.9 and the simulated data obtained 

from the model is shown on figure 19(a) for the discharge 
#126960. The corresponding integrated fit parameter obtained 

from equation (18) for ψ(x) is f = 60%. Comparisons between 

the reduced δβp and δli experimental data and the simulated 

data obtained from the ARTAEMIS model are also shown for 

the same discharge on figures 19(b) and (c), respectively. The 
fit parameters obtained here for δβp and δli from the full two- 

time-scale model are 60% and 59%, respectively. 

 

 
     

 

 

Figure 18. Fast LH2 power modulations (blue trace) injected from 
PRBS commands on discharge #126963. NB1-L (solid black trace) 
and NB2-L (dotted red trace) powers are also shown. The NB-R 

actuator is off. 
 

 

inputs. Both the input and output data were filtered with a 
non-causal low-pass filter of order 5, and a cutoff frequency, 

f filt = 4 Hz, for the separation between the slow and fast data. 

For the experimental control of q(x), βp and li using the LH2, 

NB-L and NB-R actuators, a good model could be identi- 
fied from three steady state shots with different combinations 

of actuator powers and seven shots in which PRBS modula- 

tions were applied either individually to the three actuators or 

to different combinations of them. However, no attempt was 

made to minimize the number of discharges that were used 

to identify the models, either from simulated METIS data or 

from EAST data because the focus in these experiments was 

on testing and validating the MPC controller with the best pos- 
sible data-driven models. With the future development of more 

accurate nonlinear simulation codes, large datasets obtained 

from simulations can be used for system identification if the 

cost of running dedicated experimental discharges is unaccept- 

able. Another significant improvement of the method in this 

respect could come from the development of real-time adapt- 

ive identification of the ARTAEMIS models. 

Four significant eigenmodes were found for the slow model 
and two eigenmodes were found for the model governing the 

fast dynamics of βp and li. The largest (negative) eigenvalue 

of AS corresponds to a resistive time constant τ S = 1.49 s. 

Note that this time constant is significantly larger than in the 

model used for the SISO control experiments of section 6 

(τ S = 1.05 s) because the reference scenario for the SISO 

experiments had a much lower plasma temperature. The total 

reference power (ECRH +LH2) was 1.9 MW while here the 

total power (ECRH +ICRH +LH2) in the reference discharge 

amounts to 5.3 MW for about the same plasma density. The AF 
matrix was found triangular. Its first eigenvalue corresponds to 

a time constant of 0.126 s and is mostly related to the dynamics 
of the internal inductance parameter. The second eigenvalue 

corresponds to a smaller time constant of 0.030 s, representat- 
ive of the poloidal beta parameter dynamics. As an example of 

the fits obtained from the identified two-time-scale ARTAEMIS 

8.2. Closed loop MIMO control experiments on EAST 

The ARTAEMIS model found above from the experimental 

plasma response to PRBS input data was then used to per- 

form the first ARTAEMIS/MPC closed loop experiments com- 

bining the control of the q-profile and kinetic parameters on 

EAST. The objective was to test the controller ability to sim- 

ultaneously track several different targets for the safety factor 
on the magnetic axis, q0, and at half radius, q1 = q(x = 0.5), 

as well as the poloidal beta and internal inductance paramet- 
ers, βp and li. In closed loop, the power commands sent to the 

LH2 actuator and to the four beams, NB1-L, NB1-R, NB2-L 
and NB2-R, are computed in real time by the ARTAEMIS/MPC 

algorithm combined with the PWM algorithm for the beams. 

These commands were computed with a controller cycle time 

of 0.02 s (or 0.025 s in the last example), which was larger than 

the maximum time for executing the combined MPC/PWM 

algorithm in the EAST PCS. This maximum occurs at the 

first time step in each 0.4 s beam averaging period, when the 

optimal LH2, NB-L and NB-R commands are computed from 
the MPC algorithm and cost function in equation (53), with a 

one-second time horizon (τ H = 1 s). The resulting NBI actu- 

ator commands (NB-L and NB-R) are then distributed on the 

four beams by the PWM algorithm, during the twenty time 

steps of the averaging period. This is done in such a way that 

the 0.1 s minimum pulse width constraint is met, and that the 

average NB-L and NB-R powers during the twenty steps are 

as close as possible to the original NB-L and NB-R power 

requests found by solving the QP problem at the first step 

of the period. During the nineteen following steps, the four 

beam powers are thus known and the QP solver in the MPC 
algorithm only has to find the optimal LH2 input sequence 

during the time horizon, given that the NB-L and NB-R power 

sequences are known10. The constraint matrices L(t) and M(t) 

used at each time step were constant during all the control 

phases, and defined as to limit the LH2 command to the inter- 

val 1.0 MW ⩽ PLH2 ⩽ 2.2 MW and the two NBI actuators 

to 0 ⩽ PNB-L ⩽ 1.1 MW and 0 ⩽ PNB-R ⩽ 1.1 MW. The 

four beam voltages were ∼ 47.5 kV, as in the identification 

experiments. 
Now, since the 0.4 s NBI power averaging period is longer 

than the characteristic times of the fast model (0.126 s and 

 
10 When the prediction horizon for the computation of the LH2 request 

exceeds the twentieth time step of the beam-averaging period, the NB-L and 

NB-R patterns are still assumed to be known  and to  simply repeat themselves 

beyond the twentieth time step with the same average power. 
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Figure 19. (a) Reduced poloidal flux response (Wb) at x = 0, 0.1, … 0.9 to the PRBS commands in discharge #126960 (see figure 17). 
Comparison between the experimental data (dashed black traces) and the ARTAEMIS-simulated data (solid red traces). (b) Reduced poloidal 
beta response to the PRBS commands in discharge #126960 (see figure 17). Comparison between the experimental data (dashed black trace) 
and the ARTAEMIS-simulated data (solid red trace). (c) Reduced internal inductance parameter response to the PRBS commands in 
discharge #126960 (see figure 17). Comparison between the experimental data (dashed black trace) and the ARTAEMIS-simulated data 
(solid red trace). 

 

0.030 s), efficient control of the kinetic variables on the fast 
time scale was not expected. Therefore, the MIMO control 

experiments were all performed with the reduced MPC kinetic 
controller defined in section 4.4, using the slow model only, 

with τ filt = 0.25 s in the Aν matrix of equation (42). Thus, we 

set λfast = 0 because the kinetic states are not used, and we 

set λF = 0.3 in the substituted direct feed-through term of the 

model kinetic output equations (60) and (61), as in section 5.2. 
The weight matrix on the actuators in the cost function was set 

to R = 0, the target reshaping time during the horizon was set 

to τ target = 0.25 s = τ H/4, and the number of input nodes for the 

model prediction during the horizon was nnodes = 2. In the aim 

of reducing the noise in the inputs to the observer, an additional 

low-pass pre-filter with a characteristic time τ prefilt = 0.4 s was 

applied to the measured U(t), ῑ m (t )  and κm(t) data entering 

equations (45)–(48). The controller parameters defined above 

have been unchanged for all the experiments described in this 
section. 

Ideally, during closed loop experiments, the main plasma 

parameters and the operation scenario should be consistent 

with the controller internal model. In particular, the toroidal 

field, plasma current and density, and the requested feedfor- 

ward powers, as well as their time sequence, should be the 

same as those used in the system identification experiments. 

As a matter of fact, the selection of accessible and consist- 

ent targets was made in advance using data from these open 

loop experiments, in order to save time during the closed loop 

session and test many different controller configurations in 

a limited time. However, the LH1 system at 2.45 GHz was 
not available during the closed loop session. Also, despite 

many attempts to improve ICRH power coupling, the max- 

imum power injected from the two antennas did not exceed 

0.9 MW, or 1.1 MW in some discharges, instead of 1.5 MW 

requested. Finally, the ECRH power was sometimes reduced 

to 0.5 MW delivered by only one gyrotron instead of 1.8 MW 

requested from three gyrotrons. This lack of power in most dis- 

charges had important consequences on the results because the 

controller internal model and the control targets to be tracked 

were all obtained with the LH1 prelude during current ramp- 

up and with the maximum available ICRH and ECRH powers. 

The limitation of the injected powers in the feedforward mode 

with respect to the powers foreseen for the selection of the con- 
trol targets, often led to the saturation of one or more actuators, 

which, in many cases, prevented the targets from being hit. In 

this respect, the power limits of the LH2 actuator were another 

source of control inaccuracy. Although, the LH2 power com- 

mand at the output of the controller was ranging from 1 MW 

to 2.2 MW, the output power from the klystrons was restricted 
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Figure 20. (a) Control of the safety factor on the magnetic axis with LH2, NB-L and NB-R: q0(t) from real-time EFIT magnetic 

equilibrium reconstruction (solid black) and q0,target(t) (dashed red) in EAST discharge #128569. Control starts at t = 5.5 s. The ECRH and 
ICRH feedforward powers are limited to 0.5 and 0.9 MW, respectively, instead of 1.8 and 1.5 MW requested. (b) Coupled LH2 power 

(solid) and PCS command (red dashed) in EAST discharge #128569. Control starts at t = 5.5 s. Actuator saturation at 1.1 MW between 
5.6 s and 8.5 s. (c) Injected NB-L power (solid) and PCS command (red dashed) in EAST discharge #128569. Control starts at t = 5.5 s. (d) 
Injected NB-R power (solid) and PCS command (red dashed) in EAST discharge #128569. Control starts at t = 5.5 s. Actuator saturation at 
0 MW between 6 s and 8.7 s. 

 

to the interval 1.1 MW to 2 MW in order to ensure optimum 

real-time operation. 

Five controller configurations have been tested dur- 

ing the time allowed for the experimental session, 

all using the three actuators, NB-L, NB-R and LH2, 

and typical results are described below for each 
configuration. 

 

 
8.2.1. Discrete q0 control.  The first configuration aimed 

at the control of the safety factor on the magnetic axis. 

Figure 20(a) shows the evolution of q0 in the discharge 
#128569 where three successive targets were tracked: 

q0,target = 2.26 for 5.5 s ⩽ t ⩽ 8.48 s, q0,target = 2.61 for 

8.5 s ⩽ t ⩽ 11.48 s and q0,target = 2.39 for 11.5 s ⩽ t ⩽ 13.5 s. 

Figures 20(b)–(d) show the powers requested by the control- 

ler and the powers really injected. In this configuration, the 

q-profile weight function, µ(x), was replaced in the cost func- 

tion (53) by the Dirac distribution, δ(x), and we set λkin = 0 

since there is no kinetic control. With three actuators and only 

one controlled variable, the 1 × 3 KS matrix has only one SVD 
component, so nsvd = 1. In the example shown, the ICRH and 

ECRH feedforward powers were only 0.9 MW (instead of 

1.5 MW) and 0.5 MW (instead of 1.8 MW), respectively. As a 

result, the lowest target, q0,target = 2.26, could not be reached 

and the LH2 actuator was saturated at its minimum value 

of 1.1 MW (while the controller assumed that a minimum 
of 1 MW was available and the PCS command did request 

1 MW). The NB-R actuator was also saturated at its minimum 
(power off). 
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Despite the minimum pulse width constraint in the on/off 

operation of the NBI actuators, the next two targets were suc- 

cessfully reached in a time that is of the order of the charac- 

teristic resistive time of the model, identified as τ S = 1.49 s 

for this range of plasma parameters and this operation scen- 

ario. A similar result was obtained for the SISO control of 
q0 with LH2, in section 6.2 and figures 13(a) and 20(a) are 

indeed quite comparable, with about the same experimental 

noise level. Interestingly, a clear signature of the MPC/PWM 

algorithm can be seen on figure 20(b), which exhibits a 0.4 s 

periodic pattern on the LH2 power. The amplitude of these 

power oscillations could in principle be reduced, and their fre- 

quency increased, by reducing the minimum pulse width of the 

beams and the beam averaging time. On the technical side, it 

must be noted from figures 20(c) and (d) that the power modu- 
lation PCS commands generated by the combined MPC/PWM 

algorithms were perfectly executed by the NBI system. 

 

 

8.2.2. Discrete control of q0 and q(x = 0.5). The second 

configuration that was tested corresponds to the simultan- 

eous control of the safety factor at two different normalized 

radii, x = 0 and x = 0.5. In this configuration, the q-profile 

weight function, µ(x), was replaced in the cost function of 

equation (53) by the sum of Dirac distributions, δ(x)+δ(x-0.5) 

and λkin = 0 since there is no kinetic control. In equation (41), 

the model steady state response, i.e. the KS matrix, was lim- 

ited to two q-profile outputs at x = 0 and x = 0.5 and was 

therefore a 2 × 3 matrix. The NB-L, NB-R and LH2 actuators 

were normalized to 1.12 MW, 1.12 MW and 1.2 MW, respect- 

ively, and with these normalizations, the singular values of the 

KS matrix were equal to 0.0927 and 0.0037. The strong drop 

between the first and second singular values indicates that the 

combination of actuators corresponding to the second singular 

vector of KS has little effect on the system dynamics. It also 

means that an offset-free control objective would have resul- 

ted in large amplitudes of the actuator requests. In other words, 

the values of the safety factor at x = 0 and x = 0.5 are closely 

related and it is difficult to decouple them. To reduce the occur- 

rence of actuator saturation, KS was therefore truncated to the 

first element of its singular value expansion for the computa- 

tion of the optimal control action (nsvd = 1). The controller 

then only achieved a least-square minimization of the offsets 

between the targets and the measured values of q0 and q1 = 
q(x = 0.5). The evolution of q0 and q1 is shown in figure 21(a) 

for the discharge #128550 in which two successive sets of tar- 

gets were tracked. The targets were [q0,target q1,target] = [2.39 

2.86] for 5.5 s ⩽ t ⩽ 8.48 s, and [q0,target q1,target] = [2.58 3.0] 

for 8.5 s ⩽ t ⩽ 11.5 s. 
Figures 21(b)–(d) show the powers requested by the con- 

troller and the powers really injected. It is important to note 

that, in this discharge, the line-averaged plasma density was 

limited to nel = 4 × 1019 m−3 instead of the reference 

4.5 × 1019 m−3, and the feedforward ICRH power was lim- 
ited to 0.7 MW instead of the requested 1.5 MW that was used 

in the shots from which the different q(x) targets were chosen. 

This is why the first set of targets could not be reached between 

t = 5.5 s and t = 8.5 s. In this time interval, both the NB-R and 

LH2 actuators were saturated at their lowest possible values, 
0 MW and 1.1 MW, respectively, so that q0 and q1 could not 

decrease further without the full 1.5 MW ICRH power and 

the requested 4.5 × 1019 m−3 plasma density. Here also, the 

LH2 power was technically bounded above 1.1 MW instead of 

1 MW as specified in the controller (see figure 21(b)). 
The second set of targets was successfully reached, con- 

sistently with the resistive diffusion time of the model 
(τ S = 1.49 s) and with the characteristic oscillations that are 

due to the on/off operation of the neutral beams and to the 

MPC/PWM algorithm. 

 
8.2.3. Simultaneous control of q0 and βp. In the discharge 
#128557, the simultaneous control of the central safety factor 

and of the poloidal β parameter was tested. As in section 8.2.1, 

the q-profile weight function, µ(x), was replaced in the con- 

troller cost function (53) by the Dirac distribution, δ(x), and 

the weight of βp control, λkin, was set to 0.3. The actuator 

normalizations were the same as in sections 8.2.1 and 8.2.2 

and the singular values of the 2 × 3 KS matrix were equal 
to 0.2898 and 0.0215. Here, the ratio between the two singu- 
lar values was more favorable than in the previous configur- 

ation so the full KS matrix was retained (nsvd = 2) to pos- 

sibly realize offset-free control of q0 and βp. Two successive 

sets of targets were tracked: [q0,target βp,target] = [2.26 1.71] 

for 5.5 s ⩽ t ⩽ 9.48 s, and [q0,target βp,target] = [2.61 2.01] for 

9.5 s ⩽ t ⩽ 13.5 s. Unfortunately, in this discharge, plasma 

density control was poor and the line-averaged density reached 

4.8 × 1019 m−3 between t = 6 s and t = 9.5 s and even 

5 × 1019 m−3 for t > 9.7 s. In addition, the feedforward ICRH 

power was limited to 0.9 MW instead of the requested 1.5 MW 

that was used in the shots from which the different q0 and 

βp targets were chosen. The evolution of q0 and βp  is shown 

on figure 22(a). The powers requested by the controller and 

the powers really injected are shown in figures 22(b) and (c). 
The q0 targets could not be reached in these high-density/low- 

power conditions. Nevertheless, βp control was excellent dur- 

ing the first phase with βp,target = 1.71. The βp = 2.01 target 

was also nearly hit despite the saturation at 1.1 MW of the 

NB-R actuator and also, for t > 12.5 s, of NB-L. 

 
8.2.4. Simultaneous control of q0 and li. The fourth config- 
uration tested in this experimental session addressed the sim- 

ultaneous control of the central safety factor and the internal 
inductance parameter, li. The weights in the controller cost 

function were the Dirac distribution, δ(x), for the q-profile, 

and λkin = 0.3 for li. Here, the NB-L, NB-R and LH2 actuators 

were normalized to 0.5 MW, 0.5 MW and 2.2 MW, respect- 

ively, and the singular values of the 2 × 3 KS matrix were 
equal to 0.1302 and 0.0053. The full KS matrix was retained 

(nsvd = 2) to possibly realize offset-free control of q0 and li. In 

the discharge #128560, the tracked targets were q0,target = 2.79 

and li,target = 0.85 for 5.5 s ⩽ t ⩽ 9.5 s. The feedforward 

ICRH power was limited to 1.1 MW instead of the requested 

1.5 MW that was used in the shots from which the targets were 
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Figure 21. (a) Simultaneous control of q0 and q1 = q(x = 0.5) with the LH2, NB-L and NB-R actuators: q0 (solid black trace), q0,target 

(dashed black), q1 (solid blue) and q1,target (dashed blue) vs time in EAST discharge #128550. Control starts at t = 5.5 s. The line-averaged 
plasma density is limited to 4 × 1019 m−3 instead of the requested 4.5 × 1019 m−3. The feedforward ICRH power is limited to 0.7 MW 
instead of the requested 1.5 MW. (b) Coupled LH2 power (solid) and PCS command (red dashed) in EAST discharge #128550. Control 

starts at t = 5.5 s. Actuator saturation at 1.1 MW between 5.6 s and 8.5 s. (c) Injected NB-L power (solid) and PCS command (red dashed) 
in EAST discharge #128550. Control starts at t = 5.5 s. (d) Injected NB-R power (solid) and PCS command (red dashed) in EAST 

discharge #128550. Control starts at t = 5.5 s. Actuator saturation at 0 MW between 6 s and 8.7 s. 

 

chosen. Nevertheless, there is no actuator saturation except 

between t = 5.9 s and t = 6.3 s when LH2 is limited at 2 MW 

instead of 2.2 MW requested. The evolution of q0 and li is 
shown on figure 23(a). The powers requested by the controller 

and the powers really injected are shown in figures 23(b) and 

(c). The values of q0 and li are perfectly regulated around the 

targets. 

 

 
8.2.5. Simultaneous control of q0, βp and li. The last con- 
troller configuration was tested in the discharge #128566 with 

the same three actuators and with three simultaneously con- 

trolled variables: the central safety factor, the poloidal β para- 

meter and the internal inductance parameter. As in the pre- 

vious case, the q-profile weight function, µ(x), was replaced 

by the Dirac distribution, δ(x). Here, the kinetic vector κ(t) 

contains two elements, δβp(t) and δli(t), and the diagonal ele- 

ments of the 2 × 2 kinetic weight matrix, λkin, were both set to 

0.2, thus giving equal weights on the control of βp and li. Using 

the same actuator normalizations as in the previous case, the 

singular values of the 3 × 3 KS matrix were 0.1088, 0.0226 

and 0.0034. Again, the full KS matrix was retained (nsvd = 3) 

to possibly realize simultaneous offset-free control of three 

plasma parameters, q0, βp and li. The tracking of two sets of 

targets is illustrated on figure 24. These targets are [q0,target 
βp,target li,target] = [2.47 1.85 0.92] for 5.5 s ⩽ t ⩽ 8.48 s and 

[q0,target βp,target li,target] = [2.31 1.75 0.96] for 8.5 s ⩽ t ⩽ 11.5 s. 
In this controller configuration, it was found that the CPU 

time required for reconstructing the plasma magnetic equilib- 
rium and solving the QP problem could periodically exceed 

0.02 s, every 0.4 s, i.e. at times when the three actuators are 

unknown. The controller cycle time was therefore raised to 
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Figure 22. (a) Simultaneous control of q0 and βp with LH2, NB-L and NB-R: q0 (solid black trace), q0,target (dashed black), βp (solid blue) 

and βp,target (dashed blue) vs time in EAST discharge #128557. Control starts at t = 5.5 s. The line-averaged plasma density is equal to 

4.8 × 1019 m−3 between t = 6 s and t = 9.5 s, and up to 5 × 1019 m−3 for t > 9.7 s, instead of the requested 4.5 × 1019 m−3. The 
feedforward ICRH power is limited to 0.7 MW instead of the requested 1.5 MW. (b) Coupled LH2 power (solid blue), LH2 PCS command 
(dashed blue), injected NB-L power (solid black) and NB-L PCS command (dashed black) in EAST discharge #128557. Control starts at 

t = 5.5 s. NB-L actuator saturation between 6 s and 10.3 s, and for t > 12.5 s. (c) Injected NB-R power (solid black) and NB-R PCS 

command (dashed red) in EAST discharge #128557. Control starts at t = 5.5 s. Actuator saturation at 1.1 MW for t > 10.1 s. 

 

0.025 s for these experiments. The evolution of q0, βp and li in 

the discharge #128566 is shown in figure 24(a) and the powers 

requested by the controller and really injected are shown in 

figures 24(b) and (c). Here again, the feedforward ICRH power 

was limited to 1.1 MW instead of the requested 1.5 MW that 

was used in the shots from which the targets were chosen. For 

these targets, the NB-R actuator was saturated (power off). The 

tracking of βp and li was relatively successful despite the oscil- 

lations generated by the MPC/PWM commands, but the cent- 

ral safety factor was always larger than its target value. This 

is partly due to the lack of ICRH power, and possibly to the 
unoptimized relative weights of the various controlled vari- 

ables in the controller cost function. Figure 24(a) suggests that 

an extension of the control phases to durations larger than three 

seconds could have allowed the three targets to be reached, 

but there was not enough time in this experimental session to 

repeat the tests and optimize the controller parameters in each 

control configuration. 

9. Summary and conclusion 

 
A real-time control method that combines the efficiency of 

MPC with the use of singular perturbation theory has been 

developed for the first time. This original method is particu- 

larly suitable for the control of complex systems with multiple 

time scales, such as tokamak plasmas. It allows plasma kin- 

etic controllers based on extremely simple data-driven models 

to be synthesized. The so-called two-time-scale models gov- 

ern the evolution of the system on the resistive and kinetic time 
scales, and they can be identified using the classical prediction- 

error method. They are then augmented to include new dis- 

turbance states and outputs so that a real-time estimation of 

the mismatch between measured and predicted outputs can be 

made through a state observer. Offset-free control can thus be 

obtained when the number of actuators is equal to the number 

of controlled variables or larger, despite disturbances acting 

on the system and on the measurements. 
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Figure 23. (a) Simultaneous control of q0 and li with LH2, NB-L and NB-R: q0 (solid black trace), q0,target (dashed black), li (solid blue) 

and li,target (dashed blue) vs time in EAST discharge #128560. Control starts at t = 5.5 s. The feedforward ICRH power is limited to 1.1 MW 
instead of the requested 1.5 MW. (b) Coupled LH2 power (solid blue), LH2 PCS command (dashed blue), injected NB-L power (solid black) 

and NB-L PCS command (dashed black) in EAST discharge #128560. Control starts at t = 5.5 s. LH2 actuator saturation between 5.9 s and 

6.3 s. (c) Injected NB-R power (solid black) and NB-R PCS command (dashed red) in EAST discharge #128560. Control starts at t = 5.5 s. 

 

The efficiency of the method has been demonstrated 
through extensive nonlinear closed loop METIS simulations 

applied to high-βp operation scenarios in the EAST tokamak, 

with different controlled variables and different sets of actu- 

ators. In the first set of simulations, control of the plasma 

safety factor profile, q(x), and of the poloidal β parameter was 

tested using LHCD and ICRH in a scenario with BT  = 2.5 T, 

Ip = 0.42 MA and nel ≈ 2.7 × 1019 m−3. In a second set of 

METIS simulations, simultaneous control of q(x) at two radii 

and of βp was also tested in a scenario with a higher plasma 

density, nel = 4.4 × 1019 m−3, and using up to four actuators: 

LHCD, ECRH, and also two sets of co-current NBI injectors at 

different angles driven in a PWM mode. Adequate two-time- 
scale models were identified in both scenarios from simulation 

data obtained with randomly modulated actuator waveforms 
and pseudo-random binary sequences. 

In the low-density scenario, three typical control examples 
were reported. The first tests were dedicated to the control 

of the q-profile using only the 4.6 GHz LHCD actuator. 
Offset-free tracking of various q0 targets was achieved in a 

few resistive times in the case of a discrete control of q0. 

Distributed q(x) control for 0 ⩽ x ⩽ 0.5 was also shown with 

targets including monotonic, weak shear and negative shear 
profiles. The controller behaved very similarly as in the dis- 

crete q0 control case, but with small steady state offsets on axis 
compensated by a better tracking of the target profile between 

x = 0.3 and x = 0.5. The second tests addressed the simul- 

taneous control of q(x) and βp  with LHCD and ICRH, using 

the MPC controller reduced to the resistive time scale to track 

different combinations of q(x) and βp targets. Steady state off- 

sets cannot be avoided with only two actuators for distributed 

q(x) control and simultaneous control of βp. The q-profile off- 

sets are mostly apparent near the magnetic axis and they dis- 

appear when only q0 and βp are controlled. In the third tests, 

the full two-time-scale MPC controller was used with the same 

actuators to simultaneously control q(x) and βp. The benefit of 
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Figure 24. (a) Simultaneous control of q0, βp and li with LH2, NB-L and NB-R in EAST discharge #128566: q0 (solid black trace), q0,target 

(dashed black), βp (solid red) and βp,target (dashed red), li (solid blue) and li,target (dashed blue) vs time. Control starts at t = 5.5 s. The 
feedforward ICRH power is limited to 1.1 MW instead of the requested 1.5 MW. (b) Coupled LH2 power (solid blue), LH2 PCS command 
(dashed blue), injected NB-R power (solid black) and NB-R PCS command (dashed black) in EAST discharge #128566. Control starts at 

t = 5.5 s. LH2 actuator saturation between 8.6 s and 9.3 s and NB-R saturation between 6.1 s and 11.5 s. (c) Injected NB-L power (solid 

black) and NB-L PCS command (dashed red) in EAST discharge #128566. Control starts at t = 5.5 s. 

 

using the full controller was demonstrated. The q-profile tar- 

gets were all tracked in about 2.5 s and the various βp targets 

were reached within about 0.2 s with the full controller and 
0.4–0.5 s with the reduced controller. 

In the high-density scenario, simultaneous control of q(x) 

at two radii and of βp was tested in METIS simulations using 

LHCD, ECRH and NBI actuators. Technically, NBI injectors 

can either be ‘on’ or ‘off’ so they cannot deliver a continuously 
varying power. They must therefore be operated in a PWM 

mode so that the controller power commands computed at a 

given time are applied in an average sense during a number 

of future time steps corresponding to a fixed power-averaging 
period. Such a PWM algorithm was therefore included in the 

MPC controller and validated in the closed loop METIS simu- 

lations. In the first simulation tests, the MPC/PWM control- 

ler was used to track four discrete target pairs for q0 and 
q1 = q(x = 0.4), corresponding to monotonic, weak shear 

and negative shear q-profiles. The tracking of both q0 and q1 
was excellent, in a time that is consistent with the resistive 

time, and with no steady state offset. In the second simulation 

tests, four different sets of q0, q1 and βp targets were tracked. 

The PWM algorithm introduces a 0.4 s delay corresponding to 

the NBI power-averaging period, and generates low frequency 
oscillations of the controlled variables around their targets. 

The oscillations are small and acceptable for the control of 

q(x), but their amplitude is large for βp, showing reduced kin- 

etic control accuracy. Increasing the maximum frequency at 
which NBI can be switched on and off would be necessary for 

better kinetic control. 

The MPC control technique described in the present paper 
was also tested experimentally on EAST. Two control con- 

figurations were considered. In the first scenario, LHCD at 

4.6 GHz was the only available actuator and the SISO ver- 

sion of the MPC controller was validated. The toroidal field 
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was BT  = 2.5 T, the plasma current was Ip = 350 kA and the 

plasma density was nel ∼ 4.2 × 1019 m−3. An experimental 
ARTAEMIS model was identified using data from real dis- 

charges with chirping frequency and PRBS modulations of the 
LHCD actuator. The first control experiments aimed at track- 

ing piecewise-constant waveforms for q0. Tracking of the q0 
targets was successfully performed without steady state off- 

set, and in about one second, i.e. one resistive diffusion time. 

In other discharges, βp control was tested showing excellent 

tracking of a piecewise-linear βp waveform despite significant 

noise in the measurements. 

More recent experiments were dedicated to MIMO control. 

The operation scenario was based on a negative toroidal field, 

BT  = −2.5 T, Ip = 0.4 MA and a relatively high plasma dens- 

ity, nel = 4.5 × 1019 m−3, with constant ECRH and ICRH 

powers of 1.8 MW and 1.5 MW, respectively, to sustain a 

good H-mode discharge. A maximum of three independent 

actuators could be operated from real-time PCS commands 

and were used for plasma kinetic control: LHCD at 4.6 GHz 

(LH2) with a minimum power of 1 MW, and two NBI actu- 

ators, NB-L and NB-R, with different injection angles. Open 

loop power modulation experiments with LH2, NB-L and NB- 
R PRBS inputs were dedicated to the identification of an 

experimental ARTAEMIS model for this scenario, including 

the constant ECRH and ICRH powers. The minimum allowed 

pulse width from the EAST NBI system was 0.1 s, instead 

of 0.04 s assumed for the simulations, but the NBI power- 

averaging time was 0.4 s, as in the simulations. The object- 

ive of the experiments was to simultaneously track different 

targets for the safety factor on the magnetic axis, q0, and at 
half radius, q1 = q(x = 0.5), and for βp and li. Since the neut- 

ral beam power-averaging period was longer than the charac- 
teristic times of the fast model, the control experiments were 

performed with the reduced kinetic controller, i.e. using the 

slow model only, and with a cycle time of 0.02 s or at most 
0.025 s in one case. Five controller configurations have been 
tested during the time allowed for the experimental session, 

all with the three actuators, NB-L, NB-R and LH2, with up 

to three controlled variables chosen among q0, q1, βp and li. 

In all the tests, the power modulation commands generated by 

the combined MPC/PWM algorithm were perfectly executed 

by the NBI systems. The chosen cycle time was large enough 

to reconstruct the plasma magnetic equilibrium from the real- 
time measurements and solve the QP optimization problem at 

each time step. It was adequate for tracking different steady 

state targets in a time that is consistent with the plasma res- 

istive time scale and with the required averaging period of 

0.4 s for the NBI/PWM actuators. This was the goal of the 

experiments. It would not be adequate if the discharges had 

shown rapid transition phases, which are not considered in this 

paper, and which would require a specific control strategy and 
hierarchy, with much faster actuation. An example of a faster 

control using the full two-time-scale model and fast actuators 

only, but the same 0.02 s cycle time necessary for magnetic 

reconstruction and QP optimization on EAST, was shown in 

section 5.3. 

The main difficulty encountered during the experiments 

was the inaccessibility (without hitting actuator saturation lim- 

its) of control targets that were selected in advance, in situ- 

ations where the baseline feedforward powers and, sometimes, 
the plasma density were far from their desired reference val- 

ues. Thus, the lack of ECRH and/or ICRH power in most dis- 

charges had important consequences on the results because the 

controller internal model as well as all the chosen control tar- 

gets had been obtained with reference powers that were avail- 

able in a previous experimental session. This led to the satur- 

ation of one or several actuators, which prevented some selec- 

ted targets to be reached. Nevertheless, in cases that were free 

from actuator saturation, q0 and q1 targets were successfully 
reached, in a time that is consistent with the resistive diffusion 

time and with the characteristic oscillations that are due to the 

PWM operation of the neutral beams. During the simultaneous 

control of q0 and βp, the plasma density was too high and the 

feedforward ICRH power was limited to 0.9 MW instead of 

the requested 1.5 MW. In these high-density/low-power con- 

ditions, the q0 targets were not accessible but βp control was 

successful. There was almost no actuator saturation during the 

simultaneous control of q0 and li, so their values were also suc- 

cessfully regulated. In the last example with three controlled 

variables, q0, βp and li, the tracking of βp and li was satisfact- 

ory but q0 was always too large due to the lack of ICRH power 

and to NB-R saturation. 
As a general conclusion, both nonlinear simulations and 

real tokamak experiments have demonstrated the relevance of 

combining MPC, data-driven models and singular perturba- 
tion methods for plasma kinetic control. The performance of 

the controllers is validated a posteriori, based on the success- 

ful tracking of the controlled parameters towards their targets, 

in a time that is consistent with the plasma resistive time scale. 

In previous designs based on near-optimal control and the use 

of two-time-scale models, the convergence to the targets was 

much too slow and often characterized by large oscillations 

[35]. In both approaches, there were no particular quantitat- 
ive requirements that the controllers would have to satisfy for 

validation. Some experimental tests presented in this paper 

were not fully conclusive because the required baseline power 

from H&CD systems was not available and the actuators could 

not compensate for the lack of power from other systems. 

It would have been interesting to select control targets that 

were consistent with the available baseline power, on the 

day of the experiment, or to repeat some tests with different 

controller parameters, but this was not possible in the alloc- 
ated time. It would require longer and several experimental 

sessions. 

Finally, as a perspective, this control method could be 

improved by implementing a real-time adaptive identifica- 

tion of the two-time-scale models. With adequate actuators, 

it could also be easily extended to the simultaneous control 

of the q-profile and other kinetic parameters or profiles such 
as βN, the plasma rotation, the ion or electron temperature, 

and/or the fusion reaction rate in burning plasmas. For such 

further developments, the advantage of using empirical models 
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obtained by applying singular perturbation methods to system 

identification is that the resulting two-time-scale state space 

models are extremely simple and this reduces the computa- 

tional burden in the control algorithm. From the origin, with 
near-optimal control, the ARTAEMIS framework was based on 

the separation of the resistive and kinetic time scales [30]. This 

is indeed a very relevant approximation, particularly for large 

tokamak devices and fusion grade plasmas. Although this 

approximation was not generally needed for profile control 

investigations on several middle-size tokamaks, it provides 

interesting simplifications for the development of MIMO con- 

trollers for large fusion plasmas, and it may be of interest for 

future research on this subject. Extrapolation of MPC kin- 
etic profile control to burning plasmas may require approx- 

imations of this kind. Among other possible developments, 

the recently proposed hybrid MPC scheme [45], which com- 

bines constraints that apply to continuous actuators with the 

discrete Boolean nature of NBI constraints is an interesting 

extension of conventional MPC. It is more demanding in terms 

of computational time but it could be worth trying with the 

ARTAEMIS models and framework. 
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