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Vincent Calvez, Céline Grandmont, Eva Locherbach, Clair Poignard, Magali Ribot, Nicolas Vauchelet Editors

INFLUENCE OF THE MODE OF REPRODUCTION ON DISPERSAL

EVOLUTION DURING SPECIES INVASION

Vincent Calvez1, Joachim Crevat2, Léonard Dekens3, Benoit Fabrèges4,
Frédéric Kuczma5, Florian Lavigne6, 7 and Gaël Raoul8

Abstract. We consider a reaction-diffusion-reproduction equation, modeling a population which is
spatially heterogeneous. The dispersion of each individuals is influenced by its phenotype. In the
literature, the asymptotic propagation speed of an asexual population has already been rigorously
determined. In this paper we focus on the difference between the asexual reproduction case, and the
sexual reproduction case, involving a non-local term modeling the reproduction. This comparison leads
to a different invasion speed according to the reproduction.

After a formal analysis of both cases, leading to a heuristic of the asymptotic behaviour of the
invasion fronts, we give some numerical evidence that the acceleration rate of the spatial spreading of
a sexual population is slower than the acceleration rate of an asexual one. The main difficulty to get
sharper results on a transient comes from the non-local sexual reproduction term.

Résumé. Nous nous intéressons à un modèle de réaction-diffusion-reproduction d’une population,
répartie de manière hétérogène. Le phénotype de chaque individu caractérise sa dispersion. Dnas la
littérature, la vitesse asymptotique de propagation d’une population asexuée a déjà été rigoureusement
déterminée. Dans cet article, nous comparerons la dispersion d’une population asexuée, avec celle
d’une population sexuée, ce qui introduit un terme non-local modélisant la reproduction.

Après une étude formelle des deux modes de reproduction, qui nous amènera vers une heuristique du
comportement asymptotique du front d’invasion, nous effectuons des simulations numériques, montrant
que la vitesse d’accélération d’une population sexuée est plus faible que celle d’une population asexuée.
La principale difficulté pour obtenir des résultats, sur le régime transitoire, vient du terme non local
modélisant la reproduction sexuée.
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Introduction

Biological populations are often evolving in a heterogeneous environment, to which individuals can be more or
less fitted, according to their phenotypes. Phenotypic distributions are shaped through processes like survival,
reproduction and migration. Biological invasions are archetypal of a process where spatial heterogeneities are
constitutive. Successful species manage to thrive due to some selective advantage in a new environment, and
to expand in a new area. Different causes can promote the success of an invasion: wind or birds can disperse
seeds (e.g. widespreading of lodgepole pine in western North America [12]) or climate change modifies the local
environment and may influence species range (e.g. invasion of butterfly and bush cricket species in Britain [21]).
Also, many species invasions result from an introduction, either voluntary or involuntary, by human beings (e.g.
invasion of cane toads in Australia [1, 19,20]), etc.

Recently, much attention was paid to evolutionary dynamics at the vanguard of species range expansion,
see for instance [4, 20, 22, 23]. Among other, dispersal evolution, that is the evolution of the dispersal abilities
of individuals, was the subject of biological and mathematical studies in the past decade. In particular, the
phenomenon of spatial sorting, i.e. the assembly of more dispersive individuals ahead of the range expansion
by pure spatial effect (all other phenotypes being identical within the population), was the subject of several
modelling and analytical studies [2, 6, 7, 10, 24]. In particular, it has been established that front acceleration
results from sustained spatial sorting in the case of possibly unbounded dispersal rates (or equivalently in the
transient regime before the physiological limits are reached) [3,5,9]. So far, analytical results were obtained based
on the modeling assumption that reproduction is clonal (as for asexual reproduction) with possible mutations
affecting the dispersal ability of offsprings. In particular, recent techniques borrowed from the approximation
of geometric optics for front propagation were used successfully to compute quantitative features such as the
asymptotic speed of propagation, or the rate of acceleration in the transient regime [9, 24].

Besides, similar techniques were developed recently in a different context: the asymptotic description of
equilibria in quantitative genetics models involving a sexual mode of reproduction in the regime of small variance.
This methodology was recently completed for Fisher’s infinitesimal model [14]. It is a simple model for the
inheritance of quantitative traits in a population with a sexual mode of reproduction. It assigns to an offspring
the average parental phenotypic trait up to a random normal deviation with constant variance [5].

Preliminary heuristics seem to show that this mode of reproduction significantly slows down the wave ex-
pansion as compared to an asexual reproduction. It is expected that, in the transient accelerating regime, the
population spreads as t5/4 under the infinitesimal model of inheritance, whereas it was previously shown that
the spreading occurs at a rate of order t3/2 with the asexual mode of reproduction [3, 8].

In this paper, we present formal calculations in order to compare the rates of expansion for the two modes
of reproduction under study. To validate these heuristics, we present also numerical results, which help us to
catch a transient regime and its main features.

1. Our model

In this paper, we study the time evolution and the spatial and phenotypical propagation of population
encowed with either an asexual or a sexual reproduction mode. More precisely, the population is distributed
according to its location x ∈ R and its phenotypic trait θ ∈ (θmin,+∞), with θmin > 0, and is modeled with the
following reaction-diffusion equation for all t > 0:

∂tf(t, x, θ) = r1f(t, x, θ) [1 −K
−1%(t, x)] + θ∆xf(t, x, θ) +B[f](t, x, θ), (1)

where r1 > 0 and K > 0 are fixed constants, f(t, x, θ) is the density of individuals presenting the trait θ at
location x ∈ R at time t ≥ 0, and ρ(t, x) ∶= ∫

∞

θmin
f(t, x, θ)dθ is the population size at x ∈ R and time t > 0. The

reaction term B[f] will be detailed later. We also assume that initially, the density support is compact. Let us
discuss the modeling interest of each term.
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Firstly, the term r1 f [1 −K−1 %] stands for an adaptation force called selection. At point x ∈ R and at time
t ≥ 0, any individual is in competition with the others for resources: when the density %(t, x) at x is less than a
threshold K, named the carrying capacity, there is enough resources for everyone so the population can grow;
whereas, if %(t, x) > K, then competition is involved, and the population is decreasing. The constants r1 > 0 is
therefore called competition rate.

Then, the term θ∆xf models the migration phenomenon. Individuals are assumed to diffuse through space
at each time t, at a rate given by the phenotypic trait θ. For example, those with long legs or bigger wings
can be faster to go into a new environment, and so help the invasion. In fact, the equation (1) without the
last reaction term B[f] is the generalized non-local Fisher-KPP equation, where the diffusion depends on the
phenotypic traits, which can be seen as a given constant. In the case that % is a convolution term with f , the
previous equation has been studied in some different ways [13,15–17].

Finally, the last reaction term B[f] models the reproduction event. Let us turn to explain this new term.
Asexual case. For asexual populations, reproduction is clonal: the offspring receives at birth the same trait
as its sole parent, but mutations change the value of the trait. Assuming the variance of the mutation effects is
very small, we can model the phenomenon by the following evolutionary equation, as in [2]:

∂tf(t, x, θ) = r1f(t, x, θ) [1 −K
−1%(t, x)] + θ∆xf(t, x, θ) + µ∆θf(t, x, θ), (2)

where µ > 0 is a constant depending on the mutation rate and on the variance of the mutation effects. Replacing

f by θminK
−1 f(θ2

mint/µ,
√
θ3

min/µx, θminθ) yields us to simplify the initial problem and to study:

∂tf(t, x, θ) = rf(t, x, θ) [1 − %(t, x)] + θ∆xf(t, x, θ) + ∆θf(t, x, θ), (3)

with θ ∈ (1,+∞), r > 0 and %(t, x) = ∫
∞

1 f(t, x, θ)dθ. In this case, the reproduction term is just Bf(t, x, θ) =
∆θf(t, x, θ).

Remark. The variation deduced by the mutation event is an approximation of an infinitesimal model [14,18],
taking the limit of the equation when the variance of the mutation effect λ2 > 0 tends to 0. In this infinitesimal
model, this variation follows a centred normally distributed random variable. Without selection and migration,
the mutations [18] can be modeled by the evolutionary equation:

∂tf(t, x, θ) = r2 [J ∗ f(t, x, θ) − f(t, x, θ)],

where r2 > 0 is the mutation rate, J is the gaussian distribution of N(0, λ2) and the “convolution term”
J ∗ f(t, x, θ) = ∫

∞

θmin
J(θ − θ′)f(t, x, θ′)dθ′. Linearising the previous equation, when λ is very small, we retrieve

the same term as in (3), with µ = r2λ.
Boundary condition for the asexual case. By definition of phenotypic trait, no individual can have a phenotype
in (−∞,1) or generate a descendent with such phenotype: there is no phenotypical exchange at θ = 1, which
means that:

∀t ≥ 0, ∀x ∈ R, ∂θf(t, x,1) = 0.

Sexual case. During sexual reproduction, at the opposite of the asexual one, recombinations of the DNA
happen, which changes the mathematical model and so the reproduction term in (2). We assume that individuals
can breed only with those which are at the same location x ∈ R.

Let us turn to the sexual reproduction model, introduced by Bülmer in 1980’s. At time t, an individual of
trait θ1 can find and copulate with a partner of trait θ2 with probability density f(t, x, θ2)/%(t, x). The offspring
has originally the trait (θ1 + θ2)/2, which suffers directly from recombinations of variance λ2 > 0:

∂tf(t, x, θ) = r1f(t, x, θ) [1 −K
−1%(t, x)] + θ∆xf(t, x, θ)

+ r3 [∫

∞

θmin
∫

∞

θmin

Gθ (θ −
θ1 + θ2

2
) f(t, x, θ1)

f(t, x, θ2)

%(t, x)
dθ1 dθ2 − f(t, x, θ)] ,
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with r3 > 0 the rate of reproduction/recombination. The term Gθ (θ −
θ1+θ2

2
), symbolizing the stochasticity of

the recombinations, is a normalized truncated centred gaussian, with variance λ2 > 0, such that θ− θ1+θ2
2

> θmin.

As a prospect, a further article could study the influence of the variance λ2 of the recombination event; for the

sake of simplicity, we take here λ2 = 1/2. Replacing here f by θminK
−1f(t/r3,

√
θmin/r3 x, θminθ), and noting

r ∶= r1K/θmin, we can simplify the previous PDE into:

∂tf(t, x, θ) = rf(t, x, θ) [1−%(t, x)]+θ∆xf(t, x, θ)+∫
∞

1
∫

∞

1
Gθ (θ −

θ1 + θ2

2
) f(t, x, θ1)

f(t, x, θ2)

%(t, x)
dθ1 dθ2−f(t, x, θ),

(4)

with Gθ is a normalized truncated centred gaussian, such that θ − θ1+θ2
2

> 1. By this simplification, the repro-
duction is:

Bf(t, x, θ) = ∫
∞

1
∫

∞

1
Gθ (θ −

θ1 + θ2

2
) f(t, x, θ1)

f(t, x, θ2)

%(t, x)
dθ1 dθ2 − f(t, x, θ).

2. Formal analysis

If we consider the asexual reproduction case without the competition, then the PDE that we obtained becomes
linear and therefore calls for exponential solutions. Aligning thereby with others studies about diffusion of
individuals and speed of the invasion (see for instance [8, 9]), where the common method is to define the
function u such that:

f(t, x, θ) = exp [−t u (s(t), t−αx, t−βθ)] , (5)

where s is a time parametrization, and α and β are introduced to re-scale the spatial and phenotypic variables.
Finding (α,β) crystallizes the main issue tackled by the formal analysis, as it is the crucial key to get

asymptotically a non trivial PDE satisfied by u (that is taking into account all the biological forces, namely
selection, migration and reproduction), as it is shown in figure 1.
Asexual case. Thanks to (3), we can check that:

− u(s(t), y, η) − ts′(t)∂su(s(t), y, η) + αy∂yu(s(t), y, η) + βη∂ηu(s(t), y, η)

= −ηt1−2α+β∆yu(s(t), y, η) + ηt
2−2α+β

[∂yu(s(t), y, η)]
2

− t1−2β∆ηu(s(t), y, η) + t
2−2β

[∂ηu(s(t), y, η)]
2
+ r(1 − %),

with % = tβ ∫
∞

t−β exp(−tu(s(t), y, η))dη. We choose the parametrization s = log(t) so that ts′(t) = 1. In this case,
we obtain an viscous Hamilton-Jacobi EDP :

−u − ∂su + αy∂yu + βη∂ηu = − ηe(1−2α+β)s∆yu + ηe
(2−2α+β)s

(∂yu)
2

− e(1−2β)s∆ηu + e
(2−2β)s

(∂ηu)
2
+ r(1 − %)

= e(2−2α+β)s(η(∂yu)
2
− ηe−s∆yu)

+ e(2−2β)s((∂ηu)
2
− e−s∆ηu) + r(1 − %). (6)

Remark. In large time t, which is equivalent to taking the limit as s tends to +∞, the factor exp(− Cste s)
in front of the laplacians terms will make the second order terms vanish. Nevertheless, the transformation
(5) enables to capture the long time asymptotics. In fact, it transforms the nature of the problem, from a
second order parabolic equation to a nonlinear viscous Hamilton-Jacobi, for which characteristic lines can be
analytically computed. However, reviewing the rigorous derivation of the viscous Hamilton-Jacobi equation relies
on the theory of viscosity solutions, which is beyond our scope, and we refer to [9] for details.

Formally, our purpose is to determine the asymptotic behaviour of (6) in the limit s→ +∞, that is to derive
a PDE in which all biological phenomena intervene, especially:
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◇ the reproduction term: as the factor e(2−2β)s(∂ηu)
2 tends to +∞ or 0 depending on the sign of (2−2β),

the reproduction term will either annihilate the contribution of the others or vanish. Thus the only
relevant choice derives from 2 − 2β = 0.

◇ the diffusion term: the same considerations lead us to 2 − 2α + β = 0.

We thereby get the following system for (α,β):

{
2 − 2β = 0,

2 − 2α + β = 0.

which leads to:

(α,β) = (
3

2
,1).

Sexual case. Although the PDE obtained without taking the competition in account is in this case non linear,
it keeps the same homogeneity as the asexual one, for only the reproduction term differs between the two models.
We thus proceed by analogy with the asexual case by looking for exponential solutions using the transformation
(5). Taking again s(t) = log(t), equation (4) yields:

− u − ∂su + αy∂yu + βη∂ηu = ηe
(2−2α+β)s((∂yu)

2
− e−s∆yu) + (

B[f]

f
− 1) + r(1 − %), (7)

with % = eβs ∫
∞

e−βs exp(−es u(s, y, η))dη and:

B[f]

f
=

1
√

2πe−βs%
∫

∞

e−βs
∫

∞

e−βs
exp [e2βs

( −
(η − η1+η2

2
)

2

2
+ es(1−2β)[u(s, y, η) − u(s, y, η1) − u(s, y, η2)])]dη1 dη2.

(8)
As the sole difference between the asexual and sexual cases is the reproduction term, only the condition on

the reproduction term will differ (and not the condition on the diffusion term that is coupling α and β). Since it

dictated entirely the choice β in the previous case, we have to look precisely at the term B[f]
f

in order to deduce

formally a reasonable β. By the same heuristics as in the previous case, as we want reproduction term neither
to vanish nor to undermine the contributions of the other terms as s goes to +∞, we need all the terms in the
double integral to be treated equally with respect to s, which yields 1 − 2β = 0. Thereby, we get the following
system:

{
1 − 2β = 0,

2 − 2α + β = 0.

which leads to:

(α,β) = (
5

4
,
1

2
).

3. Schemes and numerical results

Here, we present some numerical schemes to approximate the solutions of the equations (3) and (4). During
this CEMRACS project, we have simulated the solutions of the different PDEs with Fortran and Python. We
have used the packages numpy, matplotlib and pythran.

3.1. Asexual case

In this section, we present two different numerical schemes to approximate the diffusion with asexual repro-
duction.
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We consider xmax ≥ 0 and θmax ≥ 1 so that we work with couples (x, θ) in the bounded domain [0, xmax] ×

[1, θmax], discretized with the meshes (xi)1≤i≤Nx and (θj)1≤j≤Nθ , respectively of step ∆x > 0 and ∆θ > 0. As for
the time discretization, let ∆t > 0 be a time step, and let us define for all n ∈ N, tn ∶= n∆t.

In the following, we denote by ADx and ANx the matrix of the discrete Laplace operator in x of size Nx
respectively with Dirichlet and Neumann boundary conditions:

ADx =
1

∆x2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 (0)

1 −2 1
. . .

. . .
. . .

1 −2 1

(0) 1 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and ANx =
1

∆x2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1 (0)

1 −2 1
. . .

. . .
. . .

1 −2 1

(0) 1 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We consider ADθ and ANθ the matrix of the discrete Laplace operator in θ of size Nθ respectively with Dirichlet
and Neumann boundary conditions with similar definitions. In the following, we choose to work with the fixed
parameter r = 1.

3.1.1. Euler explicit scheme

For all n ∈ N, we approximate (f(tn, xi, θj))1≤i≤Nx,1≤j≤Nθ
with a matrix

Fn = (Fnij)1≤i≤Nx,1≤j≤Nθ
.

Then, for all n ∈ N, we approach (%(tn, xi))1≤i≤Nx
by a vector (%̃ni )1≤i≤Nx

computed with an approximation of
the integral in θ using the trapezoidal rule. We have chosen an initial truncated Gaussian distribution:

f(0, x, θ) =
2

√
π

exp [−
x2 + (1 − θ)2

2
] 1θ≥1. (9)

First of all, we approximate the reaction-diffusion equation (3). We start by discretizing the diffusion terms
in x and θ with the matrix of discrete Laplace operator with Dirichlet boundary conditions ADx and ADθ . Then,
we approximate in time using an explicit Euler scheme that is for all n ∈ N, we compute the new value of Fn+1

by:

Fn+1
= Fn +∆t [ADx × Fn ×Dθ + r (F

n
−Dn

% × F
n
) + Fn ×ADθ ] , (10)

where Dn
% ∶= diag ((%̃ni )1≤i≤Nx) , and Dθ ∶= diag ((θj)1≤j≤Nθ) . In the following, the steps ∆t, ∆x and ∆θ have

been chosen to satisfied the stability condition:

2 ∆t [
θmax

∆x 2
+

1

∆θ 2
] ≤ 1.

In Figure 1 (a), we plot the density of population %(t, ⋅) at different fixed times at regular intervals from
the instant t = 10 to t = 150. As expected, the function % seems to quickly converge towards an invasion front
propagating towards right connecting 0 to 1. Moreover, we observe that the front of propagation in space seems
to accelerate. Theoretically, according to [3, 8], we should observe a propagation of the front of order t3/2 in
space and of order t in phenotype.

On Figure 1 (b), we verify the order of the spatial acceleration plotting the same curves with respect to

the auto-similar variable y = xt−3/2. We observe that the spatial densities % converge towards an Heaviside
distribution in y, centered at a constant yc which is approximately 1.25. Theoretically, according to [8], this
constant is approximately yc ≈ 1.315.

Then, we focus on the shape of the transition front. We plot in Figure 1 (c) the spatial distribution % with
respect to a re-centered scale in X1/2(t), where %(t,X1/2(t)) = 1/2 for all t ≥ 0. We can observe that the shape
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of the front flattens as time goes to infinity. In order to study this evolution, we display in Figure 1 (d) the same

curves with respect to the re-scaled variable (x −X1/2(t)) t
−1/2. We can see that all curves are superposed.

Therefore, the shape of the front seems to flatten at order t1/2.
Finally, in order to numerically study the accelerations in phenotype of the solution of the equation (3), we

define for all t ≥ 0 the position of the front at time t with:

X(t) ∶= argmin
x∈[0,xmax]

∣%(t, x) − 0.01∣ , (11)

and the main phenotype at the head of the front θ̄(t) with:

θ̄(t) ∶=
∫R θ f(t,X(t), θ)dθ

%(t,X(t))
. (12)

In Figure 1 (e), we show in log-log scale the evolution of the numerical and formal results of θ̄ with respect to
time, and the identity function t ↦ t, in order to compare their slopes. We can observe that for high times,
these two curves seem to be parallel. Using a linear regression without taking into account the values where t is
too small in order not to consider an eventual transitory state, we find that our numerical approximation of the
main phenotype θ̄(t) is of order t1.01. Therefore, this explicit Euler scheme seems to be efficient to reproduce
the expected acceleration phenomenon in the asexual case.

3.1.2. Auto-similar variables

In this section, we focus on the approximation of the variable u(s, y, η) defined in (5), with reparametrized
time s ∶= log(t), and auto-similar variables y ∶= x t−α and η ∶= θ t−β with α and β > 0. Thus, the equation (6)
satisfied by u can be written as follows:

∂su − η e(1−2α+β)s∆yu − e(1−2α+β)s∆ηu + H1(s, ∂yu) + H2(s, ∂ηu) = −u − r (1 − %), (13)

where for all s > 0, and p ∈ R, the Hamiltonians in y and η are defined with:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

H1(s, p)(y, η) ∶= e(2−2α+β)s η p2 − αy p,

H2(s, p)(y, η) ∶= e(2−2β)s p2 − β η p.

To be consistent with the last paragraph, we also choose a polynomial initial condition:

u(0, y, η) =
y2 + η2

2
.

We consider ymax ≥ 0 and ηmax ≥ 1 so that we work with couples (y, η) in the bounded domain [0, ymax] ×

[1, ηmax], discretized with the meshes (yi)1≤i≤Ny and (ηj)1≤j≤Nη , respectively of step ∆y > 0 and ∆η > 0. In the

following, we define ANy and ANη the matrix of the discrete Laplace operator with Neumann boundary conditions
respectively in y of size Ny and in η of size Nη. We also define a time step ∆s > 0 and for all n ∈ N, sn = n∆s.
We want to approximate for all 1 ≤ i ≤ Ny, 1 ≤ j ≤ Nη, and n ∈ N the function u(sn, yi, ηj) with a matrix

(Unij) ∈ RNy×Nη , defined for all n ∈ N with:

Un+1
∶= (1−∆s)Un−∆sH1(sn, U

n
)−∆sH2(sn, U

n
)+r∆s e(1−2β)sUn×ANη +∆s e(β−2α+1)sANy ×U

n
×Dη−r∆s (1−Mn

% ),

where Dη ∶= diag ((ηj)1≤j≤Nη
), and for all 1 ≤ i ≤ Ny, 1 ≤ j ≤ Nη,

(1 −Mn
% )ij ∶= 1 − %̃ni ,
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where %̃ni is the approximation of % (exp(sn) , yi × s
5/4
n ) computed from Un. Furthermore, the matrix H1(sn, U

n)

and H2(sn, U
n) ∈ RNy×Nη are the respective approximations of the Hamiltonians in y and η. To choose good

approximations H1 and H2, we used the idea of the scheme of [11]. This method consists in rewriting the
Hamiltonian H1(s, ⋅) (resp. H2(s, ⋅)) into the sum of an increasing function H+

1(s, ⋅) and a decreasing function
H−

1(s, ⋅), which gives for all s > 0, y ∈ R, η > 0 and p ∈ R:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H+

1(s, p)(y, η) = [e(β−2α+2)s η p2 − αy p]1p≥c1 −
α

2
y c11p<c1 ,

H−

1(s, p)(y, η) = [e(β−2α+2)s η p2 − αy p]1p≤c1 −
α

2
y c11p>c1 ,

H+

2(s, p)(y, η) = [e(2−2β)sp2 − β η p]1p≥c2 −
β

2
η c2 1p<c2 ,

H−

2(s, p)(y, η) = [e(2−2β)sp2 − β η p]1p≤c2 −
β

2
η c2 1p>c2 ,

and:
⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1 =
α

2
e−(β−2α+2)s y

η
,

c2 =
β

2
e−(2−2β)s η.

Then, we approximate H1(s, ∂yu) (resp. H2) with:

H1(sn, ∂yu) ≈ max[H+

1(s, ∂
−

yu),H
−

1(s, ∂
+

yu)]

(resp. H2(sn, ∂ηu) ≈ max[H+

2(s, ∂
−

ηu),H
−

2(s, ∂
+

ηu)]),

where ∂−yu and ∂+yu (resp. ∂−ηu and ∂+ηu) are the derivatives of u with respect to y (resp. η) respectively on the

left and on the right. Thus, if we define the matrices Dl
y and Dr

y of size Ny ×Ny and Dl
η and Dr

η of size Nη ×Nη
with:

Dl
y =

1

∆y

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 (0)

−1 1 0
. . .

. . .
. . .

−1 1 0

(0) −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Dr
y =

1

∆y

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 (0)

0 1 −1
. . .

. . .
. . .

0 1 −1

(0) 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and:

Dr
η =

1

∆η

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 (0)

−1 1 0
. . .

. . .
. . .

−1 1 0

(0) −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Dl
η =

1

∆η

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 (0)

0 1 −1
. . .

. . .
. . .

0 1 −1

(0) 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

we approximate H1(sn, ∂yu)(yi, ηj) and H2(sn, ∂ηu)(yi, ηj) with:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

H1(sn, U
n)ij ∶= max{H+

1(sn,D
l
y U

n)(yi, ηj) ,H
−

1(sn,D
r
y U

n)(yi, ηj)} ,

H2(sn, U
n)ij ∶= max{H+

2(sn, U
nDl

η)(yi, ηj) ,H
−

2(sn, U
nDr

η)(yi, ηj)} .
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At the end of an iteration, we compute F by the relation:

Fnij = exp (−es+∆sUnij) .

In Figure 2 (a), we display the function −t log(f) at fixed time t = 150 with respect to the re-scaled variable

y = x t−3/2 and η = θ t−1, where f is the solution of the reaction-diffusion (3) in the asexual case. We can
compare this plot with the Figure 2 (b), where we display the function u at fixed re-parametrized time s = 5,
with respect to y and η. First of all, the shape of these two functions seems to be roughly similar. Nevertheless,
since f(t, x, θ) is close to 0 for large enough x and small enough θ, the function −t log(f) drawn in Figure 2
(a) reaches high values for y = 1.6 and η = 0. On the contrary, the function u plotted in Figure 2 (b) does not
explode for large y and small η. Therefore, the numerical scheme with auto-similar variables provides more
information than the explicit Euler scheme explained in Section 3.1.1 on the behaviour of the solution at the
head of the front.

Furthermore, in Figure 2 (c), we show the density population %(s, y) computed from the solution u of the
equation (6), with respect to the re-scaled variable y, at different fixed times from s = 0 to s = 7 at regular
interval. We observe that the function % seems to converge as expected towards an Heaviside function H(yc−y).
This is coherent with the theoretical results explained previously in Section 2. Moreover, the numerical estimate
for yc ≈ 1.32 is close to the theoretical value from [9] (approximately 1.315), and is consistent with theorem

1.2 from [8] which establishes yc ≤ 4/3 and an acceleration of order t3/2. Consequently, this numerical scheme
enables us to approximate more accurately the order of acceleration of the front than the previous one explained
in Section 3.1.1.

Besides, the position of the front yc depends on the value of the birth rate r. For small values of this
parameter, we expect yc to be increasing with respect to r. Indeed, allowing individuals to mutate according to
a stronger rate would lead to a larger range in the dispersal rates and build a faster front wave for the invasion.
This phenomenon can be illustrated through a comparison with [3], in which the authors have analytically
studied the same model with a different set of parameters. Up to a time scale, their model is equivalent to ours
with r = 2 and we see that:

yc(r = 2) =
2

3
2

1
4 2

3
2 =

4

3
2

3
4 ≈ 2.24 >

4

3
.

3.2. Sexual case

The most challenging problem for the simulation of the sexual case is the approximation of the reproduction
term B[f]. In this article, a straightforward approach is sufficient to display what we seek. Thus, for all n ∈ N,
1 ≤ i ≤ Nx and 1 ≤ j ≤ Nθ, we approximate B[f](tn, xi, θj) with:

Snij ∶=
∆θ2

%̃ni

Nθ

∑
k=1

Nθ

∑
l=1

K [θj −
1

2
(θk + θl)] F

n
ik F

n
il ,

with the function K ∶ θ ↦ exp (−θ2) /
√
π.

Similarly as in the asexual case, we discretize the time using an explicit Euler scheme, that is for all n ∈ N,
we compute the matrix Fn+1 using:

Fn+1
∶= Fn +∆t [ANx × Fn ×Dθ + r (F

n
−Dn

% × F
n
) + (Sn − Fn)] , (14)

with Dn
% ∶= diag ((%̃ni )1≤i≤Nx) , and Dθ ∶= diag ((θj)1≤j≤Nθ) .

In Figure 3, we show some simulations of the solution of the equation (4). First of all, in Figure 3 (a) and
(b), we display the contour lines of the function f respectively at fixed time t = 800 and t = 1,600. We can
observe the propagation both in space and phenotype of the function f as time passes. Moreover, the shape
of the function f before the head of the front seems to be invariant with respect to time. Therefore, once the
population is settled at a position x, it does not evolve any more.
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Then, let us more precisely focus on the propagation in space. In Figure 3 (c), we plot the density function
% for different fixed times between t = 40 and t = 1600. As expected, if we do not take into account the values
of x too close to the boundary, % seems to quickly converge towards an invasion front. Moreover, this invasion
front seems to accelerate. One can notice that for small x, the density function %(t, x) seems to remain below
1 for all time. Indeed, unlike in the asexual case, this is possible since in the sexual case (4), the maximum
principle is false.

To validate our formal analysis, we display in Figure 3 (d) the same functions with respect to the auto-similar

variable y = xt−5/4. As expected, as t increases, the function % tends towards a stiff and stationary state. This
shows that the acceleration of the invasion front showed in Figure 3 (c) seems to accelerate at the order yc t

5/4.
Nevertheless, similarly as in the asexual case, the approximation of the constant yc is not sharp.

Finally, as done in Section 3.1.1, let us study the deformation of the invasion front. In Figure 3 (e), we

display the same functions as previously with respect to the re-scale and re-centered variable (x−X1/2(t)) t
−1/4.

Since the graphs in Figure 3 seem to be merged, we can conjecture that the the typical width of the front in
the sexual reproduction case is of order t1/4.

Finally, in order to study more precisely the acceleration of the invasion front in phenotype, we proceed as
previously for the asexual case, computing for all time t ≥ 0 the front position X(t) and the mean phenotype
θ̄(t) at position X(t), respectively defined with (11) and (12). In Figure 3 (f), we display in log-log scale the

numerical approximation of the mean phenotype θ̄ with respect to time, and the function t ↦
√
t, in order to

compare the slope of the two curves for large times. A formal derivation and approximation of the multiplicative
constant in the expression of the mean phenotype will be the objects of an upcoming work. We can observe that
for t large enough, the two graphs seem to remain parallel. Proceeding with a linear regression, we find that θ̄
is approximately of order t0.52. In the same way that the explicit Euler scheme provides a good approximation
of the asexual case (3), here the numerical results seem to fit with our formal analysis in Section 2.

4. Conclusion

Dispersal evolution at the vanguard of species range expansion can bring intricated dynamics such as spatial
sorting [20] and front wave acceleration [3, 8]. As mentioned in the Introduction, some heuristics predict that
the sexual reproduction slows down the wave expansion in comparison to the asexual reproduction. In this
paper, we have developed numerical schemes to bring elements of confirmation to this phenomenon.

As seen in section 4, the numerical simulations supports the formal analysis in confirming the predicted
asymptotic order of the propagation speed in space and in the phenotypic range, for both the asexual and
sexual type of reproduction (respectively (t3/2, t) and (t5/4, t1/2)). Therefore, it does appear that the mode of
reproduction does bear a strong influence on the speed of the invasion, as well as on the genetic mixing: a
species using a sexual reproduction will be slower to expand on both levels than a species using an asexual
reproduction.

However satisfactory bringing a numerical confirmation to this question is, the formal analysis performed
for the sexual case in Section 3 could not be considered as complete, as it does arise some new remarks. The
knowledge of the values of the rescaling constants (α,β) = (5/4,1/2) allows us to take a new look at the equation
involving the re-scaled variables, obtained by the transformation (7):

− u − ∂su +
5

4
y ∂yu +

1

2
η ∂ηu = η [(∂yu)

2
− e−s ∆yu] + (

B[f]

f
− 1) + r(1 − %), (15)

with % = es/2 ∫
∞

e−s/2 exp(−esu(s, y, η))dη and:

B[f]

f
=

es/2
√

2π%
∫

∞

e−s/2
∫

∞

e−s/2
exp [es( −

(η − η1+η2
2

)
2

2
+ [u(s, y, η) − u(s, y, η1) − u(s, y, η2)])]dη1 dη2. (16)
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The presence of factors like es, only in terms where η is variable at a given point of space y, implies that
there is a hierarchy between the different equilibria in the variables η and y on how fast they are reached. More
precisely, it suggests that we can consider that the equilibrium towards the variable η is always reached at each
spatial point y. Moreover, its mathematical description should clearly state its dependence towards the space
variable y, which surely calls for a more thorough analysis.

Numerically, we have observed in the asexual case that a stable code computing u in terms of the re-scaled
variables (s, y, η) was far more efficient to capture the complexity of the asymptotic state. Thus, the isolation
of such subtle phenomena of hierarchy between phenotypic and space equilibria requires a similar code in the
sexual case. Both of these are prospects of an upcoming work.
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(a) (b)

(c) (d)

(e)

Figure 1. Simulations associated to the equation (3) with parameters r = 1, ∆t = 0.02, ∆x = 4, ∆θ = 2/3,
xmax = 3,000 and θmax = 201. Plots of the density of population %(t, ⋅) for successive fixed times at regular

intervals from t = 0 to t = 150, with respect to (a) the position x, (b) to the auto-similar variable xt−3/2, (c)

to the re-centered variable x −X1/2(t), and (d) to the re-scaled variable (x −X1/2(t))t−1/2, where for all t ≥ 0,

%(t,X1/2(t)) = 1/2. (e) Plot of the main phenotype θ(t) (see (12)) at the front position with respect to time

(blue curve) and of the function t→ t (red curve), in log− log scale.
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(a) (b)

(c)

Figure 2. (a) Plot of −t log(f) where f is the approximation (see Section 4.1.1) of the solution
of the equation (3) at time t = 150, with parameters r = 1, ∆t = 0.02, ∆x = 4, ∆θ = 2/3,
xmax = 3,000 and θmax = 201. (b) Plot of the solution u of the viscous Hamilton-Jacobi
equation (6) at time s = 5, approximated with the scheme presented in Section 4.1.2). (c) Plot
of the population density %(s, y), computed with the approximation of the solution u of (6)
(given by the scheme in Section 4.1.2), with respect to the auto-similar y, at different fixed
times at regular intervals from s = 0 to s = 7, with the same parameters. The parameters used
for Figures (b) and (c) are r = 1, ds = 10−5, dy = 10−2, dη = 10−2, ηmax = 3 and ymax = 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Simulations associated to the equation (4) with parameters r = 1, ∆t = 0.05, ∆x = 4, ∆θ = 0.69,
xmax = 2.3 ⋅ 104 and θmax = 70. Plot of the function f(t, ⋅, ⋅) at time (a) t = 800 and (b) t = 1,600. Plots of the
density of population %(t, ⋅) for succesive fixed times at regular intervals from t = 40 to t = 1,600, with respect

to (c) the position x, (d) to the auto-similar variable xt−5/4, and (e) to the re-scaled and re-centered variable

(x−X1/2(t))t−1/4, where for all t ≥ 0, %(t,X1/2(t)) = 1/2. (f) Plot of the main phenotype θ(t) (see (12)) at the

front position with respect to time in log− log scale.
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