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New lower bounds on the cutwidth of graphs∗

Jean-Claude Bermond and Michel Cosnard and David Coudert and Frédéric Havet

Université Côte d’Azur, Inria, CNRS, I3S, France

November 8, 2024

Abstract

Cutwidth is a parameter used in many layout problems. Determining the cutwidth
of a graph is an NP-complete problem, but it is possible to design efficient branch-and-
bound algorithms if good lower bounds are available for cutting branches during exploration.
Knowing how to quickly evaluate good bounds in each node of the search tree is therefore
crucial.

In this article, we give new lower bounds based on different graph density parameters.
In particular, we give bounds using the notion of traffic grooming on a path network, which
appear to be in many cases better than bounds in the literature. Furthermore, the bounds
based on grooming can be computed quickly and so are of interest to design faster branch-
and-bound algorithms.
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1 Introduction

Graph layout problems are a particular class of combinatorial optimization problems whose goal
is to find a layout of an input graph in such a way that a certain objective cost is optimized. A
layout of a graph G = (V,E) is a linear ordering σ = (v1, . . . , vn) of the vertices of G. A large
amount of relevant problems in different areas can be formulated as graph layout problems (see5

the survey [19] and references therein).
The edge-cut of a set X ⊆ V is the set of edges with one end-vertex in X and the other in

X = V \ X. Its size is denoted by ec(X,X). Let Xi = {v1, . . . , vi}. The width w(G, σ) of a
graph G with respect to the layout σ is the maximum of ec(Xi, Xi) over all i ∈ {1, . . . , n− 1}.
The cutwidth of a graph G, denoted by cw(G), is the minimum width of a layout, that is10

cw(G) = min{w(G, σ) | σ layout of G}.
The cutwidth was first used as a theoretical model for the number of channels in an optimal

layout of a circuit in the seventies [3, 21]. In general, the cutwidth of a graph times the order
of the graph gives a measure of the area needed to represent the graph in a VLSI layout when
vertices are laid out in a row [20]. More recent applications of this problem include network15

reliability [18], automatic graph drawing [22], information retrieval [5] and as a subroutine for
the cutting plane algorithm to solve the traveling salesman problem [17]. Due to its natural
definition, the cutwidth has various applications in computer science: whenever data is expected
to be roughly linearly ordered and dependencies or connections are local, the cutwidth of the

∗This work has been supported by the French government, through the UCAjedi Investments in the Future
project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01. A
preliminary version of this paper appears in [8].
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corresponding graph is expected to be small. However, computing the cutwidth of graphs20

is NP-hard [19] in general. Exact exponential-time algorithms using dynamic programming
have been proposed in [10], one with time and space complexity in O∗(2n), and another with
time complexity in O∗(4n) and polynomial space complexity (the O∗ notation hides factors
that are polynomial in n). Fixed-parameter algorithms have also been designed [26, 41] and a
O(log1+o(1) n) approximation algorithm has been proposed in [4]. Furthermore efficient branch-25

and-bound algorithms have been proposed [35] but they need to have good lower bounds for the
cutwidth, and in particular bounds that can be quickly evaluated at each node of the branch-
and-bound tree. The quality of these bounds have a strong impact on the performances of
the branch-and-bound algorithms. Finally, let us mention the recently proposed methods for
computing lower bounds on the cutwidth of a graph based on semidefinite programming (SDP)30

relaxation [24], which are able to produce good lower bounds but at a high computational cost.
Interestingly, for any graph of order n ≤ 31, an optimal solution for cutwidth can be obtained

within seconds using the implementation available in SageMath [40] of the dynamic program-
ming algorithm proposed in [10] with time and space complexity in O∗(2n). For larger graphs,
one can use for instance integer linear programming formulations [16], the branch-and-bound35

algorithm proposed in [35] or the methods based on semidefinite programming proposed in [24].
However, these methods usually require hours of computations for graphs with 50 vertices.

Our results. In this paper, we first review previous lower bounds on the cutwidth of a
graph (Section 2). Next, we introduce new lower bounds based on the maximum, minimum or
maximum average degree of G (Section 3). Note that all these parameters can be computed in40

polynomial time. Moreover, the bounds are mostly incomparable and hence are complementary.
We then present in Section 4 a new lower bound based on the results obtained for the Maximum
All request Path Grooming problem [9], a problem also known as the Call Control Problem in
Path Networks in [2]. This new bound indicates the minimum cutwidth of any graph with n
vertices and m edges, independently from the structure of the graph, and it can be computed in45

time O(log n). Futhermore, we prove that this new bound is better than bounds based on the
average degree of the graph. Finally, we report in Section 5 experimental comparisons of these
bounds on various graph classes. In particular, we exhibit different behaviors on Erdős-Rényi
random graphs and on random (proper) interval graphs.

Notations. All the graphs considered in this paper are finite, undirected, unweighted and50

simple (without loops nor multiple edges). The graph G = (V,E) has n = |V | vertices and
m = |E| edges. Let N(v) denotes the set of neighbors of v ∈ V , that is N(v) = {u | uv ∈ E}.
Let d(v) = |N(v)| denotes the degree of vertex v ∈ V , and let δ(G) and ∆(G) denote respectively
the minimum and maximum degree of G.

We will use the following property of cutwidth.55

Property 1. For any subgraph H of a graph G, we have cw(G) ≥ cw(H).

2 Previous lower bounds

In this section, we survey the lower bounds on the cutwidth of graphs that have previously been
proposed [19,31,33,35].

Bound based on minimal edge-cuts. From the definition of cutwidth, it is obvious that
the minimum size of an edge-cut between any pair u, v of vertices of the graph, which we denote
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by κ′(u, v), is a lower bound on its cutwidth (see [19] for more details). So, we get:

cw(G) ≥ LBκ′(G) = max{κ′(u, v) | u, v ∈ V, u ̸= v} (1)

This bound can be computed in O(m1+o(1)) time using the ground-breaking algorithm pro-60

posed in [1] for building the Gomory-Hu tree [28] of the graph, which uses the algorithm proposed
in [14] for computing a maximum flow in O(m1+o(1)) time.

Bound based on the algebraic connectivity. Let λ2 denote the second smallest eigenvalue
of the Laplacian matrix associated with the graph. The following lower bound is due to [31]:

cw(G) ≥ LBλ2(G) =
λ2

n

⌊n
2

⌋ ⌈n
2

⌉
(2)

The time complexity of this bound is due to the computation of λ2, which requires O(nω)
time [39], with ω ≤ 2.371552 [43], but fast numerical methods can be used to compute eigen-
values in practice [34].65

Note that λ2 is known as the algebraic connectivity of a graph. It reflects how well the
overall graph is connected (the larger the better). For instance, for the complete graph Kn, we
have λ2(Kn) = n, while for the hypercube Qn of dimension n ≥ 2, we have λ2(Qn) = 2. The
algebraic connectivity of any non-clique graph G is upper bounded by its vertex-connectivity
ν(G) and its edge-connectivity κ(G), i.e., λ2 ≤ ν(G) ≤ κ(G) [23]. Furthermore, it is lower70

bounded by 1
n diam(G) [37], where diam(G) denotes the diameter of the graph. Hence, it is equal

to 0 if the graph is not connected and is larger than 0 otherwise.

Bound based on the maximum degree. Let ∆(G) denote the maximum degree of G,
let vi be a vertex with degree ∆(G) and consider a layout (v1, . . . , vn) of G. One set among
{v1, . . . , vi−1} and {vi+1, . . . , vn} contains at least half of the neighbours of vi. Consequently,

cw(G) ≥ LB∆(G) =

⌈
∆(G)

2

⌉
(3)

Depending on the data structure used for storing the graph, this bound can be computed
for instance in O(n) time when the degree of a vertex can be accessed in constant time, or in
O(n + m) time when it is necessary to scan all the edges to first determine the degrees of the75

vertices.

Bound based on the degeneracy. A graph G is k-degenerate if every subgraph H of G has
minimum degree at most k. Equivalently, G is k-degenerate, if there exists a layout (v1, . . . , vn)
such that for all i ∈ {2, . . . , n} every vertex vi has at most k neighbours in {v1, . . . , vi−1}. The
degeneracy of G, denoted by δ∗(G), is the smallest k such that G is k-degenerate.80

The following lower bound is proved in [33].

cw(G) ≥ LBδ∗(G) =
1

4
δ∗(G)(δ∗(G) + 2) (4)

The degeneracy of a graph can be computed in O(n+m) time [36] and so does this bound.

Other lower bounds can be obtained using linear programming [4] and SDP relaxation [24].
However, they cannot be computed in a reasonable time for graphs with more than 50 vertices.
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3 New lower bound based on degrees85

In this section, we propose new lower bounds on the cutwidth of a graph based on the minimum
and the average degree.

Bound based on the minimum degree. Let δ(G) denote the minimum degree of G. Let
σ = (v1, . . . , vn) be a layout of G. Set k = ⌊δ(G)/2⌋+1 and let Xk = {v1, . . . , vk}. Every vertex
in Xk has at most k − 1 = ⌊δ(G)/2⌋ neighbours in Xk and so at least ⌈δ(G)/2⌉ neighbours in
Xk. Hence ec(Xk, Xk) ≥ k⌈δ(G)/2⌉ = (⌊δ(G)/2⌋ + 1)⌈δ(G)/2⌉. Thus

cw(G) ≥ LBδ(G) = (⌊δ(G)/2⌋ + 1)⌈δ(G)/2⌉ ≥ 1

4
δ(G)(δ(G) + 2) (5)

As δ∗(G) ≥ δ(G), the bound of Ineq. (4) is better than the bound of Ineq. (5). However by
definition of degeneracy, there is a subgraph H of G such that δ(H) = δ∗(G). Since cw(G) ≥
cw(H), Ineq. (5) implies the bound of Ineq. (4) (with a simpler proof than the original one [33]).90

The time complexity for computing the bound based on the minimum degree is the same as
for the bound based on the maximum degree.

Bound based on the average degree. Let σ = (v1, . . . , vn) be a layout of G and let
Xi = {v1, . . . , vi}. For each vertex vi, let d+(vi) be the number of edges vivj ∈ E(G) with j > i
(forward edges from vi).95

Proposition 1. w(G, σ) ≥ 1

2(n− 1)

n−1∑
i=1

d+(vi)(d
+(vi) + 1)

Proof. We use a classical trick in (traffic) grooming. We first compute the total load of G on
Pσ = v1v2 . . . vn, also called sum cut of the layout σ [19], which is L(G, σ) =

∑n−1
i=1 l(vivi+1) =∑n−1

i=1 ec(Xi, Xi), where l(vivi+1) denotes the “load” of the edge vivi+1 of Pσ, that is the number
of edges vjvℓ ∈ E(G) such that j ≤ i < ℓ. To compute L(G, σ), we note that the load of the100

forward edges of G from vi is at least d+(vi) on the edge vivi+1, at least d+(vi)− 1 on the edge
vi+1vi+2 and so on. Therefore the load due to the edges from vi is at least 1

2d
+(vi)(d

+(vi) + 1)

and the total load is at least 1
2

∑n−1
i=1 d+(vi)(d

+(vi) + 1). Then we note that, as the path has

n− 1 edges, there exists an edge with load at least L(G,σ)
n−1 and so w(G, σ) ≥ L(G,σ)

n−1 .

The average degree of a graph G with m edges and n vertices is Ad(G) = 2m/n.105

If a function f(x) is convex and if
∑n−1

i=1 xi = m, then the minimum of
∑n−1

i=1 f(xi) is
attained when all the xi are equal to m/(n−1). Applying this argument to the convex function
x 7→ x(x + 1) with xi = d+(vi) and using the fact that

∑n−1
i=1 d+(vi) = m, we get:

cw(G) ≥ LBAd(G) =
1

2

m

n− 1

(
m

n− 1
+ 1

)
=

1

8

(
1 +

1

n− 1

)2

Ad(G)

(
Ad(G) + 2 − 2

n

)
(6)

Clearly, this bound can be computed in O(1) time.
The bounds given by Ineq. (4) and (6) are incomparable. Indeed, on the one hand, there

exist graphs with bounded average degree and degeneracy as large as we want. For example,
consider the graph H i

k obtained by identifying one vertex of the clique Kk of order k with an
extremity of the path Pi of order i. Then the degeneracy is k − 1 but the average degree tends110

to 2 when i tends to infinity. So for i large, the bound of Ineq. (4) is better. In Table 1, we
have given the value of the lower bounds for k = 50.
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On the other hand, consider the graph G(s, n) with n vertices where vertex vi is joined to
the s vertices vi+h, with 1 ≤ h ≤ s and i+h ≤ n. Then its degeneracy is s (consider the layout
(v1, . . . , vn)), but we have m = sn − s(s + 1)/2 and so for n large the bound of Ineq. (6) is115

better. In Table 2, we have given the value of the lower bounds for n = 2s + 1.

Bound based on the maximum average degree. The maximum average degree of G is
Mad(G) = max{Ad(H) | H subgraph of G}. Observe that this parameter can be computed in
polynomial time [11,12,15,25,27,32]. By definition of Mad, there is at least one subgraph H of
G such that Ad(H) = Mad(G). Since cw(G) ≥ cw(H), Ineq. (6) directly implies

cw(G) ≥ LBMad(G) = max {LBAd(H) | H subgraph of G such that Ad(H) = Mad(G)} (7)

Let nH0 be the number of vertices of the smallest subgraph H0 such that Ad(H0) = Mad(G),
and let mH0 be its number of edges. This subgraph maximizes mH0/(nH0 − 1) among all the
subgraphs of G with average degree Mad(G). Then, from Ineq. (6) and 7, we get

cw(G) ≥ LBMad(G) =
1

2

mH0

nH0 − 1

(
mH0

nH0 − 1
+ 1

)
(8)

The following tight inequalities are well-known (see e.g. Proposition 3.1 of [38]): δ∗(G) ≤
Mad(G) < 2δ∗(G). Thus the bounds given by Ineq. (4) and (8) are incomparable. The lower
bound of Ineq. (8) is better than the bound of Ineq. (4) when Mad(G) >

√
2δ∗(G) and worse

in the other case.120

It has been shown in [25, 27] that Mad can be determined in O(nm log(n2/m)) time using
a maximum-flow computation. Furthermore, efficient approximation algorithms have been pro-
posed, such as a (1 − ϵ)-approximation algorithm with time complexity in Õ(m/ϵ) [11,13] (the
Õ notation hides logarithmic factors in n).

4 A lower bound using the grooming on the path125

In this section, we present a new lower bound on the cutwidth of a graph based on the results
obtained for the Maximum All request Path Grooming problem [9], a problem also known as the
Call Control Problem in Path Networks in [2].

Consider the path Pσ = v1v2 · · · vn associated to the layout σ = (v1, v2, · · · , vn). For each
edge e ∈ E(G), the request associated to e by σ, denoted by Rσ(e), is the subpath of Pσ whose130

end-vertices are those of e. Let Rσ(G) be the set of requests associated by σ to the edges of G.
Observe that the load of the edge vivi+1 in Pσ under Rσ(G) denoted l(vivi+1) is the number of
edges vjvℓ of G with j ≤ i < ℓ, that is ec(Xi, Xi). Hence w(G, σ) is the maximum load of an
edge of Pσ under Rσ(G).

The grooming factor C is the maximum load that is allowed on the edges of P . Given a135

grooming factor C, the maximum number of requests that can be satisfied (or groomed) together
on P such that the load of any edge is at most C is denoted by T (C, n).

We note that the value T (C, n) is nothing else than the maximum number of edges of a
simple graph of order n with cutwidth C and we emphasize this observation as a proposition.

Proposition 2. Let n and C be positive integers. The maximum number m of edges of any140

simple graph G of order n and cutwidth cw(G) ≤ C is m = T (C, n).

It follows that for a given value C, any graph of order n with m = T (C, n) edges has cutwidth
at least C. Let σ be a layout of G such that w(G, σ) = cw(G). As w(G, σ) is the maximum
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load of an edge of Pσ under Rσ(G), we have T (cw(G), n) ≥ m, and so

cw(G) ≥ C∗(m,n) = min {C | m ≤ T (C, n)} (9)

Note that the bound is reached by taking as edges of G the pairs of end-vertices of the
T (C∗(m,n), n) requests that can be groomed on a path of n vertices with grooming factor
C∗(m,n). This set of requests can be found in polynomial time using the greedy algorithm
proposed in [9]. In other words, one can find in polynomial time a graph with n vertices,145

m = T (C∗(m,n), n) edges and cutwidth cw(G) = C∗(m,n).
We will see later (Proposition 4) that we can efficiently compute the value of C∗(m,n)

thanks to the results of [9] where a closed formula for T (C, n) has been given.
First, we note that if C ≥

⌊
n2/4

⌋
, then we can satisfy all requests and so T (C, n) =

n(n − 1)/2. If C = 1, the determination of T (1, n) is easy as an optimal solution consists in150

taking the n− 1 requests of length 1 (that are the requests (i, i + 1) for 1 ≤ i ≤ n− 1) and so
T (1, n) = n − 1. In [7] it is also proven that for C = 2, we have T (2, n) = ⌊(3n− 3)/2⌋. The
optimum can be easily found for C ≤ 6; in particular for C = 3 (respectively, C = 6 and n ≥ 6)
the maximum is obtained by considering all requests of length 1 and 2 (resp. 1, 2 and 3).

Based on these results, it was conjectured the “intuitive fact” that the optimum was obtained155

by taking the greedy solution consisting of all requests of smallest length (this was presented
as a result in [19]). However, this is true only for C ≤ 9 and it appears that the conjecture is
false. In particular, one could have expected that, for C = Cs = s(s+ 1)/2, an optimal solution
would be obtained by taking all requests of length at most s in number sn− Cs (the graph of
requests being the graph G(s, n) used in Section 3 to show that the bound of Ineq. (6) is better160

than that of Ineq. (4). But it is not true for n = 11 and C = 10 (s = 4). The solution with all
requests of length at most 4 has 4 × 11 − 10 = 34 requests. The maximum load is 10, but it is
reached only for the edges of the path v1 · · · v11 of the form vivi+1 with 4 ≤ i ≤ 8. So we can
delete the request of length 4 v4v8 and add the two requests of length 5 v1v6 and v6v11 to get
a solution with 35 requests. We summarize the results of [9] giving the value of T (C, n):165

Theorem 1 ( [9]). Let n and C be fixed positive integers.

• If C ≥
⌊
n2

4

⌋
, then T (C, n) = n(n−1)

2 ;

• If n is even and n(n−2)
8 < C ≤

⌊
n2

4

⌋
, then T (C, n) = n(n−2)

4 + C;

• If n is odd and n2−1
8 < C ≤

⌊
n2

4

⌋
, then T (C, n) = (n−1)2

4 + C.

• Otherwise, let s be an integer such that Cs−1 < C ≤ Cs with Cs = s(s+1)
2 ; d = Cs − C;

n = qs+ r with 0 ≤ r < s; r = aq+α with 0 ≤ α < q; s− r = b(q+ 1) +β with 0 ≤ β ≤ q;

A(C, n) = ar − a(a+1)
2 q and B(C, n) = (b + 1)(s− r) − b(b+1)

2 (q + 1). We have

T (C, n) = sn− Cs − dq + min {A(C, n) + d,B(C, n)}

We will now show (Proposition 3) that the bound of Ineq. (9) is better than that of Ineq. (6).170

For that we use the upper bound on T (C, n) given in [9].

Theorem 2 (Theorem 17 in [9]). Let n and C be fixed positive integers. Let s be an integer

such that Cs−1 < C ≤ Cs with Cs = s(s+1)
2 , let d = Cs − C and let n = qs + r with 0 ≤ r < s.

We have

T (C, n) ≤ sn− Cs − dq + (5 − 2
√

6)C + min{d, s− r}
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Proposition 3. Let n ≥ 2 and m ≥ 0 be positive integers. We have C∗(m,n) ≥ LBAd(m,n).

Proof. If m ≤ n− 1, the proposition is obviously true. In fact, we have LBAd(m,n) ≤ 1 while
C∗(1, n) = C∗(2, n) = . . . = C∗(n−1, n) = 1 and LBAd(0, n) = 0 = C∗(0, n). So in what follows
we suppose m > n− 1175

We first consider the case when m/(n−1) is an integer s ≥ 2. Then, we have LBAd(m,n) =
1
2

m
n−1

(
m

n−1 + 1
)

= s(s+ 1)/2. According to the definition of C∗(m,n), it suffices to prove that,

for Cb = LBAd(m,n) = s(s + 1)/2 = Cs we have T (Cs, n) ≤ m.
By Theorem 2, we get, as d = 0, that T (Cs, n) ≤ sn−Cs +(5−2

√
6)Cs = sn− (2

√
6−4)Cs.

As m = sn − s and (2
√

6 − 4)Cs > s for s ≥ 2, we conclude that T (Cs, n) < m and so180

C∗(m,n) > Cs.
Otherwise, let s = ⌈m/(n−1)⌉, and so m = (s−τ)(n−1) with 0 ≤ τ < 1. Let Cs = s(s+1)/2

and Cb = LBAd(m,n) = 1
2(s − τ)(s + 1 − τ) = Cs − τs − τ/2 + τ2/2. In general Cb is not an

integer. Consider the function f(Cb, n) = sn − Cs − dq + (5 − 2
√

6)Cb + min{d, s − r} where
d = Cs − Cb = τs + τ/2(1 − τ/2). We have T (⌊Cb⌋, n) ≤ f(Cb, n) and so according to the185

definition of C∗(m,n), the proposition is true if T (⌊Cb⌋, n) < m. Therefore, it suffices to prove
that f(Cb, n) < m.

We note that, d ≥ τs as 0 ≤ τ < 1; min{d, s − r} ≤ d and Cb ≤ Cs. Therefore, it suffices
to verify that sn− (2

√
6 − 4)Cs − τs(q − 1) ≤ m. Using m = (s− τ)(n− 1), that corresponds

to verify that (2
√

6 − 4)Cs + τs(q − 1) ≥ s + τ(n − 1), or, as n = qs + r ≤ qs + s − 1, that
(2
√

6 − 4)Cs − τs ≥ s + τ(s− 2), or equivalently that

(
√

6 − 2)(s + 1) ≥ 1 + 2τ − 2τ/s

For s ≥ 6, the inequality is true as 7(
√

6 − 2) ≥ 3 > 1 + 2τ .
For s = 5, it is true as 6(

√
6 − 2) ≥ 13/5 ≥ 1 + 8τ/5.

For s = 4, it is true if 5(
√

6−2) ≥ 1 + 3τ/2, which is the case if τ ≤ (10
√

6−22)/3 (≃ 0.81).190

If s = 4 and τ ≥ (10
√

6 − 22)/3 then 3 < m/(n− 1) ≤ (34 − 10
√

6)/3 and so LBAd(m,n) < 7.
On the other side, for C = 6 we have T (6, n) = 3n − 6 < m and so C∗(m,n) ≥ 7, proving the
proposition.

For s = 3, it is true if 4(
√

6− 2) ≥ 1 + 4τ/3, which is the case if τ ≤ (12
√

6− 27)/4) (≃ 0.6).
If s = 3 and τ ≥ (12

√
6 − 27)/4, then 2 < m/(n− 1) ≤ (39 − 12

√
6)/4 and so LBAd(m,n) < 5.195

On the other side, for C = 4 we have T (4, n) = ⌊(7n− 10)/3⌋. Then, either m > T (4, n) and so
C∗(m,n) ≥ 5 and in this case the proposition is true. Otherwise, m ≤ T (4, n) < 7(n−1)/3 and
so LBAd(m,n) < 70/18 < 4 while T (3, n) = 2n − 3 < m, and so C∗(m,n) ≥ 4, and therefore
the proposition is also true in this case.

For s = 2, it is true if 3(
√

6 − 2) ≥ 1 + τ which is the case if τ ≤ 3
√

6 − 7(≃ 0.35). If s = 2200

then 1 < m/(n − 1) < 2 and so LBAd(m,n) < 3. For C = 2, T (2, n) = ⌊(3n − 3)/2⌋. Then
either m > T (2, n) and so C∗(m,n) ≥ 3 and in this case the proposition is true. Otherwise
m ≤ T (2, n) < 3(n − 1)/2 and so LBAd(m,n) < 15/8 < 2 while T (1, n) = n − 1 < m and so
C∗(m,n) ≥ 2 and therefore the proposition is also true in this case.

The gap between the bounds can be significant. According to Theorem 1, for C = Cs and205

n = 2s + 1, we have T (C, n) = sn− Cs; indeed d = 0 and A(C, n) = 0 as a = 0. For example,
for s = 5 and n = 11, we have T (15, 11) = 40; but Ineq. (6) gives LBAd(40, 11) = 10 < 15.
More generally, for C = Cs and n = 2s + 1 we get T (C, n) = sn − Cs = (3s2 + s)/2 and
LBAd(m,n) = LBAd((3s2 + s)/2, 2s + 1) = (9s2 + 18s + 5)/32, and so the ratio Cs/LBAd(m,n)
tends to 16/9 when s increases. See also the examples reported in Table 2.210

In summary, the bounds given in this section are better than the bounds based on degrees.
Furthermore, since the value of T (C, n) can be computed in time O(1), the bound of Ineq. (9)
can be computed efficiently.
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Proposition 4. Given two integers n and m, the bound C∗(m,n) can be computed in O(log n)
time.215

Proof. Obviously, when n < 2 or m = 0, then the bound is 0, and when 1 ≤ m ≤ n− 1, it is 1.
When m = n(n− 1)/2, then by Theorem 1, C∗(m,n) =

⌊
n2/4

⌋
. It remains to consider the case

in which n− 1 < m < n(n− 1)/2. Since the function C∗ increases with m (i.e., C∗(m+ 1, n) ≥
C∗(m,n)), we can find C∗(m,n) using binary search on the interval

[
C1 = 1, C2 =

⌊
n2/4

⌋]
.

Indeed, we can compute T (Cp, n), with Cp = ⌊(Cl + C2)/2⌋, and compare this value to m to220

decide which subinterval to consider next and so on. The number of iterations of the binary
search is in O(log n) and each computation of T (Cp, n) requires O(1) time. This concludes the
proof.

Note that we can start the search with a shorter interval. Indeed, by Theorem 2 when
C = Cs we have sn − Cs ≤ T (Cs, n) ≤ sn − Cs + (5 − 2

√
6)Cs. So, if we let s1 be the real225

number such that m = s1n − s1(s1 + 1)/2, we have C∗(m,n) ≤ C⌈s1⌉. If s2 is such that

m = s2n− (2
√

6 − 4)s2(s2 + 1)/2), we have C∗(m,n) ≥ C⌊s2⌋. It follows that we can start the
binary search with the interval

[
C⌊s2⌋, C⌈s1⌉

]
.

Lower bounds in branch-and-bound algorithms can be quickly computed by using C∗(m,n)
(or a good approximation) or the bounds of Ineq. (6) or Ineq. (5). We can also use the better
bound of Ineq. (8) but it needs the computation of Mad(G) which is polynomial but long in
practice. We can also use an improvement of Ineq. (9) by noting that cw(G) ≥ cw(H) for any
subgraph H of G. So, if we consider like for Ineq. (8) the subgraph H0 with the minimum
number nH0 of vertices such that Ad(H0) = Mad(G), and let mH0 be its number of edges:

cw(G) ≥ C∗
Mad(G) = C∗(mH0 , nH0) (10)

The design of a fast algorithm for computing the bounds of Ineq. (10) seems, however more
challenging and we let it as an interesting open problem. However, one can use existing exact230

and approximate algorithms for finding dense subgraphs to get a good lower bound (see, e.g.,
[11,12,42]). For instance, we can use the method proposed in [12] for finding an approximation
of the maximum average degree of a graph (see the bounds C∗

g and C∗
g++ defined in Section 5.1).

5 Experimental evaluation

In this section, we compare the different lower bounds presented in this paper on synthetic235

graphs (Section 5.2), Erdős-Rényi random graphs (Section 5.3) and random (proper) interval
graphs (Section 5.4). We also compare these lower bounds with the values obtained in [24] using
SDP relaxation on some random graphs (Section 5.5). We start by presenting our experimental
settings in Section 5.1.

5.1 Experimental settings240

We have implemented all the bounds mentioned in this paper using SageMath [40], Cython [6],
SciPy [44] (for computing the eigenvalue λ2) and Cplex [29] (for solving (integer) linear pro-
grams). All reported computations have been performed on a computer equipped with a
3.70GHz Intel Core i9-10900K processor, 64GB of RAM, and with operating system Fedora
39. Recall that we denote by:245

• LBκ′ the lowed bound based on the minimal edge-cuts (Ineq. (1)),
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• LBλ2 the lower bound based on the second smallest eigenvalue of the Laplacian matrix of
the graph (Ineq. (2)),

• LB∆ the bound based on the maximum degree of the graph (Ineq. (3)),

• LBδ∗ the bound based on the degeneracy of the graph (Ineq. (4)),250

• LBδ the bound based on the minimum degree of the graph (resp. Ineq. (5)),

• LBAd the bound based on the average degree of the graph (Ineq. (6)),

• LBMad the bound based on the maximum average degree (Ineq. (8)),

• C∗(m,n), denoted shortly C∗, the bound based on grooming (Ineq. (9)),

• C∗
Mad the bound C∗ computed on a subgraph of maximum average degree (Ineq. (10)).255

Furthermore, we introduce two lower bounds obtained by using the method proposed in [12]
for finding an approximation of the maximum average degree of a graph. Let σδ∗ = (v1, v2, . . . , vn)
be the elimination ordering of the vertices produced when computing the degeneracy δ∗(G) of
a graph, and let Xi = (vi, vi+1, . . . , vn) for 1 ≤ i ≤ n and G[Xi] be the subgraph of G induced
by Xi. We have:

cw(G) ≥ C∗
g (m,n) = max

{
C∗(|Ei|, |Vi|) | G[Xi] = (Vi, Ei), 1 ≤ i < n

}
(11)

This bound can be computed in O(m + n log n) time as the elimination ordering of the
vertices, and so the degeneracy δ∗ of a graph, can be computed in O(n + m) time and we call
the function C∗ after each elimination of a vertex.

Finally, we denote by C∗
g++ the maximum value obtained when computing C∗ on each

subgraph created during the execution of the greedy++ algorithm proposed in [11] to obtain a260

2-approximation of the maximum average degree. Approximately, this algorithm performs log n
times the procedure for finding the elimination ordering of the degeneracy, but it changes at
each iteration the initial weight of the vertices, and so the priorities in the elimination ordering.
Let f i(v) be the weight of vertex v at the beginning of iteration i (initially, f1(v) = dG(v)). At
the beginning of iteration i, the algorithm makes a copy H of the graph G and feeds a min-heap265

data structure Q with the weights f i of the vertices. Then it iteratively extracts the vertex v
of minimum weight from Q, set f i+1(v) = f i(v) + dH(v), where dH(v) is the degree of vertex v
in the remaining graph H, removes vertex v from H and reduces the weight of its neighbors in
Q. When H is empty, it proceeds with iteration i + 1. This algorithm has time complexity in
O((m+ n log n) log n) when using a min-heap data structure and running log n iterations of its270

main loop, and it performs overall n log n calls to C∗ (one per extraction of a vertex from Q).

5.2 Two families of graphs

Let H i
k denote the graph obtained by identifying one vertex of the clique Kk of order k with an

extremity of the path Pi of order i. Hence, H0
k is the clique Kk, H1

k is a clique plus a pending
edge, H2

k is a clique with a pending path of length 2, and so on. The graph H i
k has k + i275

vertices, k(k − 1)/2 + i edges, diameter i + 1, and cutwidth cw(H i
k) = cw(Kk) =

⌈
k2/4

⌉
. We

have reported in Table 1 the evolution of the lower bounds for H i
50 when i = 0 . . . 6. We note

that cw(H i
50) = 625 for all i.

A first observation is that δ(H i
k) = k for i = 0 and 1 when i ≥ 1. LBλ2 decreases rapidly to

1 when i increases. Indeed, λ2(G) is upper bounded by the vertex- / edge-connectivity of the280

graph, and so by its minimum degree δ(G). Hence, we have λ2(H
i
k) ≤ 1 when i ≥ 1.
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Another observation is that bounds that search for a dense subgraph (LBMad, LBδ∗ , C∗
Mad,

C∗
g , C∗

g++) are independent from i. Indeed, we have for all i ≥ 0 that LBMad(H i
k) = LBMad(Kk) =

LBAd(Kk) = k(k + 2)/8 and C∗
Mad(H i

k) = C∗(k(k − 1)/2, k) = (k2 − ε)/4, where ε = 1 when k
is even and 0 otherwise.285

Graph LBλ2 LBκ′ LB∆ LBδ LBAd LBMad LBδ∗ C∗ C∗
Mad C∗

g C∗
g++

K50 625 49 25 625 325 325 625 625 625 625 625

H1
50 13 49 25 1 313 325 625 601 625 625 625

H2
50 6 49 25 1 302 325 625 577 625 625 625

H3
50 3 49 25 1 291 325 625 552 625 625 625

H4
50 2 49 25 1 281 325 625 527 625 625 625

H5
50 2 49 25 1 271 325 625 501 625 625 625

H6
50 1 49 25 1 262 325 625 475 625 625 625

Table 1: Evolution of the lower bounds for the graphs H i
50 with cw(H i

50) = 625.

Let us now consider the graph G(s, n) with n vertices, defined in Section 3, where vertex vi
is joined to the s vertices vi+h, with 1 ≤ h ≤ s and i+h ≤ n. This graph has m = sn−s(s+1)/2
edges, and by construction, we have that cw(G(s, n)) = s(s + 1)/2 when n ≥ 2s + 1. We have
reported in Table 2 the evolution of the lower bounds for G(s, n) when s = 1, 5, 10, 15, 20 and
n = 2s + 1.290

Recall that we have seen in Section 3 that LBAd (the bound of Ineq.(6)) is better than LBδ∗

(the bound of Ineq. (4)) for G(s, n) when n is large enough. This is confirmed for n = 2s + 1.
Furthermore, we observe in Table 2 that the bounds based on grooming perform much better
than all other bounds on these graphs, and in fact, we have C∗(m,n) = cw(G(s, n)) when
n ≥ 2s + 1.295

G(s, n) LBλ2 LBκ′ LB∆ LBδ LBAd LBMad LBδ∗ C∗ C∗
Mad C∗

g C∗
g++

G(1, 3) 1 1 1 1 1 1 1 1 1 1 1

G(5, 11) 10 9 5 9 10 11 9 15 15 15 15

G(10, 21) 34 19 10 30 34 34 30 55 55 55 55

G(15, 31) 74 29 15 64 72 72 64 120 120 120 120

G(20, 41) 130 39 20 110 124 124 110 210 210 210 210

Table 2: Evolution of the lower bounds for the graphs G(s, n) for s = 1, 5, 10, 15, 20 and n =
2s + 1.

5.3 Erdős-Rényi random graphs

In this section, we compare the different bounds presented in this paper on Erdős-Rényi random
graphs. We start with graphs of order n = 30 for which we can also compute the optimal
cutwidth (cw). We then consider graphs of order n = 50 for which the optimal value is already
unreachable.300

For n = 30, 50 and for each density in p ∈ [0.05, 0.1, . . . , 0.95] (or equivalently for each
probability p ∈ [0.05, 0.1, . . . , 0.95] for the existence of an edge), we have generated 100 Erdős-
Rényi random graphs, ensuring that all graphs have the same number pn(n − 1)/2 of edges.
Observe that the density of a graph G is measured as 2m/n(n − 1), and so is different from
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its average degree Ad(G) = 2m/n. We have then computed all the bounds and reported in305

Figures 1 and 2 the average of the computed bounds and running times.
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Figure 1: Lower bounds and running times (log scale) on Erdős-Rényi graphs (n = 30).

In Figure 1a, we observe that LBλ2 dominates all other lower bounds when p ≤ 0.75. Recall
that the connectivity threshold for Erdős-Rényi random graphs is logn

n . That is, if p = p0
logn
n ,

the graph is asymptotically almost surely connected when p0 > 1, and disconnected when p0 < 1.
Hence, when p0 < 1, we have asymptotically almost surely λ2 = 0, and so LBλ2(G) = 0. Since310

in our experiments, we have n = 30, and so log 30
30 ≃ 0.11, most of the graphs we have tested

are connected and exhibit the good properties of Erdős-Rényi random graphs for connectivity,
small diameter, etc. Furthermore, it has been proved in [30] that when p0 > 1 and for any

ε > 0, we have λ2 = pn + o(n
1
2
+ε) in probability. In other words, the algebraic connectivity

λ2 of Erdős-Rényi random graphs increases with the (average) degree pn. It follows that LBλ2315

increases similarly to pn2/4, and this is roughly what we observe in Figure 1a.
We then observe that all the bounds based on grooming (C∗, C∗

Mad, C∗
g , C∗

g++) dominate
all other bounds when p ≥ 0.8 and finally reach the optimal value of the cutwidth. Moreover,
we observe that methods based on grooming provide the same bounds for these graphs. This is
due to the properties of Erdős-Rényi random graphs which are such that a subgraph exhibit the320

same properties as the graph in terms of density, average degree, etc. We will see in Section 5.5
that the situation is different for other families of graphs.

Non surprisingly, we observe that LBκ′ not only provides very small lower bounds compared
to others, but also requires orders of magnitude more computation time. We also observe that
the bounds LBMad and C∗

Mad, both based on the maximum average degree, do not provide better325

bounds than LBAd and C∗ respectively, while requiring orders of magnitude more computation
time. Hence, bounds relying on the resolution of linear programs seem of little interest for
Erdős-Rényi random graphs.

Observe also that we experimentally confirm Proposition 3, that is that C∗(m,n) ≥ LBAd(m,n).
The running times reported in Figure 1b reflect the time complexity of the methods:330

O(1) for LBAd; O(log n) for C∗; O(n) for LB∆ and LBδ; O(m + n log n) for LBδ∗ and C∗
g ;

O((m + n log n) log n) for C∗
g++; O(nω) for LBλ2 ; and much more for LBMad, C∗

Mad and LBκ′ .
Moreover, we observe that the time needed to compute the cutwidth of the graphs increases
exponentially with the density, and so with the number of edges. This is due to the way
the dynamic programming algorithm is implemented in SageMath, as it first searches for the335

existence of a solution with width w before searching for a solution with width w + 1. Fur-
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thermore, it starts partitioning the graph into connected components as we have cw(G) =
max {cw(G[c]) | c is a connected component of G}. This explains the behavior for low densities
since the graphs are not connected.
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Figure 2: Lower bounds and running times (log scale) on Erdős-Rényi graphs (n = 50).

In Figure 2, we have reported for n = 50 the bounds on running times for the fastest methods340

only. We observe the same behaviors than in Figure 1 for the relative qualities of the bounds,
except that now LBλ2 dominates all other bounds when p ≤ 0.8 instead of 0.75 for n = 30.

5.4 Interval graphs

We now evaluate our bounds on random (proper) interval graphs. Consider a family S =
{Si | i = 1, 2, . . . , n} of intervals on the real line. An interval graph is obtained from S by345

creating a vertex vi for each interval Si and connecting two vertices vi and vj by an edge if
the corresponding intervals intersect. An interval graph is proper if not interval in S contains
another interval. That is, if li and ri are the endpoints of interval Si with li < ri, and similarly
lj < rj are the extremities of Sj , we have either lj < li and rj < ri, or lj > li and rj > ri.

Using the uniform random generators of (proper) interval graphs available in SageMath, we350

generated 1 000 graphs of order n = 100 on which we have computed all the bounds. Then, we
have sorted the graphs by increasing number of edges, group them by groups of 5 consecutive
graphs, computed the average of the bounds for these groups of 5 graphs and reported the
resulting values in Figure 3.

We observe very different results for random (proper) interval graphs than for Erdős-Rényi355

random graphs. In particular, the bound LBλ2 which is very good for for Erdős-Rényi random
graphs provides poor bounds on (proper) interval graphs. Indeed, these graphs contain vertices
with small degree, as highlighted by the very low values of LBδ, and LBλ2 suffers from the
presence of vertices with small degree which have a strong impact on the value of the algebraic
connectivity, as explained in Section 5.2, that is upper bounded by the edge-connectivity and360

so by the minimum degree of the graph.
For proper interval graphs (Figure 3a), the best bounds are obtained using LBMad, LBδ∗ ,

C∗
Mad, C∗

g and C∗
g++, that is using the methods searching for a dense subgraph. The bound

C∗
g++ seems to offer the best trade-off between the quality of the bound and the time complexity

for these graphs.365

For interval graphs (Figure 3b), the best bounds are obtained using C∗
Mad, C∗

g and C∗
g++.

Furthermore, we observe that C∗ behaves very well while needing a low computation time.
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Figure 3: Lower bounds for random (proper) interval graphs with n = 100 nodes.

This can be explained by the fact that random interval graphs are generally very dense. Here,
the bound C∗

g seems to offer the best trade-off between the quality of the bound and the time
complexity for these graphs.370

5.5 Comparisons with the random graphs used in [24]

We now compare the bounds presented in this paper with the lower bounds obtained in [24] using
SDP relaxation. To do so, we have computed our bounds on the graphs used in [24]. These
graphs are Erdős-Rényi random graphs and geometric random graphs (i.e., a set of vertices
randomly placed on a square of side 1, and two vertices are connected by an edge if at euclidean375

distance less than d).
We have reported in Table 3 the best lower and upper bounds obtained in [24] on Erdős-

Rényi random graphs, as well as the corresponding computation time (in seconds). We have
also reported the best lower bound found using the methods presented in this paper with the
list of methods reaching this bound and the required computation time (in milliseconds). The380

first two columns of the table corresponds to the number of nodes and the probability p of the
existence of an edge. Table 4 presents similarly the results for the geometric random graphs.

For the Erdős-Rényi random graphs (Table 3), we first observe that the results for the
bounds of this paper are consistent with the results presented in Section 5.3. More precisely,
LBλ2 gives very good bounds, but when the density of the graphs is very large, bounds based385

on grooming (C∗, C∗
Mad, C∗

g , C∗
g++) are much better. The main observation is that we obtain

excellent lower bounds, and most of the time better bounds than those of [24], while the running
times of the methods presented in this paper are several orders of magnitude smaller than those
of [24].

For the random geometric graphs (Table 4), the methods based on grooming, and in particu-390

lar C∗
g++, give the best lower bounds among all the methods presented in this paper. Moreover,

these bounds are most of the time better than the bounds of [24] and obtained up to 6 orders
of magnitude faster.

Let us mention that an objective of [24] was to propose new methods for getting good lower
bounds on dense graphs, but when p ≥ 0.5, the bounds LBλ2 , C∗, C∗

Mad, C∗
g and C∗

g++ are395

better and can be computed more quickly.
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Results from [24] This paper

n m p UB LB Time (sec) Best LB Algorithms Time (ms)

20 60 0.3 20 14.27 62.62 12 LBλ2 1.3940

20 81 0.4 32 21.54 61.83 17 LBλ2 1.3888

20 85 0.5 31 21.92 63.94 16 LBδ∗ , C∗
Mad, C∗

g , C∗
g++ [0.1760, 3.1173]

20 124 0.6 52 36.40 63.38 39 LBλ2 1.4482

20 130 0.7 56 38.65 63.59 41 C∗
g , C∗

g++ [0.2275, 0.6764]

20 149 0.8 68 46.59 62.43 59 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0172, 5.1172]

20 177 0.9 88 59.47 59.05 87 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0184, 5.3825]

30 131 0.3 44 30.69 365.83 25 LBλ2 1.7538

30 166 0.4 60 41.79 370.88 40 LBλ2 1.4968

30 222 0.5 87 60.55 376.59 69 LBλ2 1.7805

30 253 0.6 101 70.84 400.35 76 LBλ2 1.5504

30 305 0.7 135 91.86 379.24 96 C∗
g , C∗

g++ [0.2944, 1.4577]

30 353 0.8 161 110.58 401.19 143 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0196, 12.4459]

30 376 0.9 176 119.93 392.83 166 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0193, 12.7959]

40 246 0.3 92 60.12 1 505.80 46 LBλ2 2.0754

40 325 0.4 126 85.52 1 597.97 81 LBλ2 1.9107

40 365 0.5 155 99.75 1 495.82 95 LBλ2 2.0809

40 458 0.6 195 130.84 1 593.94 149 LBλ2 2.2204

40 524 0.7 235 115.30 1 691.67 194 LBλ2 2.0056

40 610 0.8 281 187.95 1 723.79 230 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0212, 21.0202]

40 704 0.9 346 227.74 1 703.14 324 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0567, 24.4861]

50 372 0.3 159 91.92 5 310.93 85 LBλ2 95.2239

50 506 0.4 211 133.61 5 404.70 156 LBλ2 2.3170

50 647 0.5 286 182.44 5 313.71 198 LBλ2 2.4786

50 754 0.6 338 221.14 5 511.51 271 LBλ2 2.7552

50 850 0.7 382 253.98 5 552.34 309 LBλ2 2.7530

50 998 0.8 468 312.20 6 303.39 398 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0403, 33.3912]

50 1 092 0.9 525 350.87 6 033.16 492 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0200, 36.4516]

Table 3: Comparison of the lower bounds based on SDP relaxation obtained in [24] with the
bounds obtained using the methods presented in this paper on Erdős-Rényi random graphs. We
report the bounds and the running time (in seconds) from [24]. We report the best lower bound
that can be obtained using the methods presented in this paper, list the algorithms reaching
this bound and report the range of running times of these algorithms (in milliseconds). A single
running time is reported when a single algorithm reaches the bound.
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Results from [24] This paper

n m d UB LB Time (sec) Best LB Algorithms Time (ms)

20 34 0.3 7 5.24 42.55 7 C∗
Mad, C∗

g++ [0.3238, 1.6108]

20 54 0.4 12 8.28 42.69 12 LBδ∗ , C∗
Mad, C∗

g++ [0.1600, 2.1939]

20 80 0.5 22 16.50 61.18 15 C∗
g++ 0.4959

20 84 0.6 21 16.56 57.48 18 C∗
g++ 0.4826

20 137 0.7 55 39.83 58.37 53 C∗
Mad, C∗

g , C∗
g++ [0.2458, 4.7052]

20 173 0.8 83 56.75 62.43 83 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0191, 5.2438]

20 158 0.9 69 48.57 59.91 68 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0172, 5.1551]

30 83 0.3 13 10.46 293.96 13 C∗
g++ 0.6435

30 154 0.4 45 32.72 337.93 30 C∗
g++ 0.9339

30 210 0.5 72 51.65 346.9 67 C∗
Mad, C∗

g++ [1.1430, 7.3059]

30 327 0.6 126 92.20 373.08 123 C∗
g , C∗

g++ [0.3982, 1.5669]

30 304 0.7 119 84.98 395.81 97 C∗
g++ 1.4546

30 408 0.8 200 134.97 391.51 198 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0207, 12.2125]

30 417 0.9 207 139.47 381.37 207 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0200, 12.1496]

40 167 0.3 31 22.48 1 253.51 22 C∗
g++ 1.3340

40 243 0.4 50 39.98 1 389.39 35 C∗
g++ 1.7180

40 340 0.5 92 69.41 1 353.95 58 C∗
g++ 2.1372

40 431 0.6 126 97.37 1 416.42 107 C∗
g++ 2.4588

40 576 0.7 238 165.83 1 650.37 205 C∗
g++ 3.1359

40 654 0.8 294 201.33 1 669.65 274 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0205, 20.6606]

40 742 0.9 366 245.12 1 758.20 362 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0196, 21.9421]

50 314 0.3 63 48.00 3 534.43 57 C∗
g++ 2.2986

50 467 0.4 131 96.25 4 139.52 94 C∗
g++ 3.0117

50 580 0.5 175 127.56 4 433.95 121 C∗
g++ 3.4204

50 749 0.6 266 189.41 4 604.08 182 C∗
g++ 4.2415

50 936 0.7 398 272.53 5 064.41 347 C∗
g , C∗

g++ [0.8366, 5.0154]

50 963 0.8 416 283.43 5 512.39 368 C∗
g , C∗

g++ [0.8130, 5.0299]

50 1 136 0.9 556 368.44 6 983.07 536 C∗, C∗
Mad, C∗

g , C∗
g++ [0.0226, 35.0571]

Table 4: Comparison of the lower bounds based on SDP relaxation obtained in [24] with the
bounds obtained using the methods presented in this paper on random geometric graphs. We
report the bounds and the running time (in seconds) from [24]. We report the best lower bound
that can be obtained using the methods presented in this paper, list the algorithms reaching
this bound and report the range of running times of these algorithms (in milliseconds). A single
running time is reported when a single algorithm reaches the bound.
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6 Conclusion

In this article we have given new lower bounds for the cutwidth of a graph which are of interest
to design faster branch-and-bound algorithms. In particular, we have given bounds using the
grooming on a path which appear to be in many cases than bounds in the literature. Further-400

more, bounds based on grooming can be computed quickly. This raises the question whether
better bounds can be obtained using the methods proposed in [24], using semidefinite program-
ming, if given as input the bounds presented in this paper.
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France, May 2023.

[9] Jean-Claude Bermond, Michel Cosnard, David Coudert, and Stephane Perennes. Maximum
number of requests on a path with a given grooming factor. Technical report, hal-04736088,
October 2024. A preliminary version was presented at the Advanced International Confer-
ence on Telecommunications (AICT), Le Gosier, Guadeloupe, France, 2006, IEEE.430

[10] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dim-
itrios M. Thilikos. A note on exact algorithms for vertex ordering problems on graphs.
Theory of Computing Systems, 50(3):420–432, 2012.

[11] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos E. Tsourakakis,
Di Wang, and Junxing Wang. Flowless: Extracting densest subgraphs without flow com-435

putations. In The Web Conference (WWW), pages 573–583. ACM / IW3C2, 2020.

16



[12] Moses Charikar. Greedy approximation algorithms for finding dense components in a
graph. In 3rd International Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX), volume 1913 of Lecture Notes in Computer Science, pages 84–
95. Springer, 2000.440

[13] Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. Densest subgraph: Supermod-
ularity, iterative peeling, and flow. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1531–1555. SIAM, 2022.

[14] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd445

IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623.
IEEE, 2022.

[15] Nathann Cohen. Three years of graphs and music : some results in graph theory and its
applications. PhD thesis, University of Nice Sophia Antipolis, France, 2011.

[16] David Coudert. A note on Integer Linear Programming formulations for linear ordering450

problems on graphs. Research Report hal-01271838, Inria ; I3S ; Universite Nice Sophia
Antipolis ; CNRS, February 2016.

[17] Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric matri-
ces. In ACM’69: Proceedings of the 1969 24th national conference, pages 157–172, 1969.

[18] Alexander Keewatin Dewdney. The bandwidth of a graph: Some recent results. In Pro-455

ceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory, and
Computing, number 17, pages 273–288, 1976.

[19] Josep Dı́az, Jordi Petit, and Maria Serna. A survey on graph layout problems. ACM
Computing Surveys, 34(3):313–356, 2002.

[20] Josep Dı́az, Maria Serna, Paul Spirakis, and Jacobo Torán. Paradigms for fast parallel460

approximability. Cambridge University Press, 1997.

[21] Krzystof Diks, Hristo N. Djidjev, Ondrej Sykora, and Imrich Vrto. Edge separators for
planar graphs and their applications. Journal of Algorithms, 14:258–279, 1993.

[22] Ulrich Elsner. Graph Partitioning: A Survey. Preprintreihe des Chemnitzer SFB 393/97-
27. Technishe Universität Chemnitz, 1997.465

[23] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(2):298–305, 1973.

[24] Elisabeth Gaar, Diane Puges, and Angelika Wiegele. Strong SDP based bounds on the
cutwidth of a graph. Computers & Operations Research, 161:106449, 2024.

[25] Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tarjan. A fast parametric maximum470

flow algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

[26] Archontia C. Giannopoulou, Micha l Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thi-
likos, and Marcin Wrochna. Cutwidth: Obstructions and algorithmic aspects. Algorithmica,
81:557–588, 2019.

[27] Andrew Vladislav Goldberg. Finding a maximum density subgraph. University of Califor-475

nia Berkeley, 1984.

17



[28] Ralph Edward Gomory and Te Chiang Hu. Multi-terminal network flows. Journal of the
Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[29] IBM ILOG. CPLEX Optimization Studio 22.1.1. https://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/.480

[30] Ferenc Juhász. The asymptotic behaviour of Fiedler’s algebraic connectivity for random
graphs. Discrete Mathematics, 96(1):59–63, 1991.

[31] Martin Juvan and Bojan Mohar. Optimal linear labelings and eigenvalues of graphs. Dis-
crete Applied Mathematics, 36(2):153 – 168, 1992.

[32] Samir Khuller and Barna Saha. On finding dense subgraphs. In 36th International Collo-485

quium on Automata, Languages and Programming (ICALP), volume 5555 of Lecture Notes
in Computer Science, pages 597–608. Springer, 2009.
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