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Abstract 
This paper analyses the intrinsic geometric structure of binodal curves of phase separation 
diagrams of ternary mixtures. A new computational method is presented, and the 
efficiency of the proposed approach is tested for the Flory-Huggins model identification 
of water – acetone – hexadecane mixture.   
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1. Introduction 
Controlling the phase separation in industrial processes requires detailed knowledge of 
thermodynamic diagrams of multi-component mixtures (Koningsveld et al., 2001). Many 
computational problems arise in this context: identification of model parameters from the 
experimental data, localization of phase separation envelopes, detection of multi-phase 
regions, etc. Despite the enormous progress in this domain in the past decades, there is 
still a real need for new fast and reliable algorithms, for instance, in industrial applications 
using bio-sourced mixtures or in polymer production.  
 This paper focuses on the analysis of liquid-liquid separation of ternary mixtures 
at constant temperature and pressure. The topological structure of phase separation 
diagrams is then defined by binodal and spinodal curves delimiting stable, metastable and 
unstable domains in the composition space. Knowing these domains is crucial for 
modeling the demixing process in a given mixture. The experimental detection of 
spinodals that delimits the material stability domain is a highly non-trivial task. Instead, 
the various techniques allows measuring the composition of coupled coexisting phases, 
which can be used to establish a reliable model, which can predict the spinodal location 
a-posteori.  
 The standard method of numerical computation of binodal curves uses the 
Newton-Raphson-like iterative algorithm to solve a system of algebraic equations over 
the mesh covering the state space of the diagram, while the classical least square method 
is commonly used for model identification. Often this approach fails to meet at least one 
of the quality criteria characterizing the “good” model: the binodal curve shape and the 
bundle of tie-lines indicating the coupled phases composition. Inspired by the ideas of 
D.J. Korteweg (Levelt Sengers, 2002) applied to the topological analysis of the Gibbs 
free energy surface, in this paper, we propose a new numerical method for computing 
binodal curves by a kind of differential homotopy method. The key idea is to consider 
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binodals as the 2D projections of certain smooth curves in 4D configuration space formed 
by the pairs of points of the phase diagram. This geometrical definition leads to a set of 
ordinary differential equations (ODE) describing the 4D curve as an integral curve of a 
smooth vector filed in 4D space. A conventional ODE solver can numerically compute 
this curve at desired precision.  
 In Section 3 of this paper, the developed approach is applied for the analysis of 
the water-acetone-hexadecane mixture, characterized by two non-miscibility binary gaps 
among its components. The Flory-Huggins model parameters, including the triple 
interaction term, were computed by solving a non-trivial minNLP problem associated 
with a criterion, which accounts for the intrinsic geometry of the binodal curve. The 
computations performed using Mathematica 9 software yield very promising results that 
meet both quality criteria cited above.  

2. Binodal and spinodal curves: thermodynamics vs. geometry 

2.1 Phase coexistence conditions in multi-component mixtures 

The physicochemical properties of an N-component system can be described by the Gibbs 
free energy G(P, T, n), where 𝑛 = (𝑛ଵ, … , 𝑛ே), 𝑛௜ being the number of moles of i-th 
component, P  the pressure and T  the temperature of the system. Being a homogeneous 
function of 1-st order with respect to 𝑛௜, G can be expressed in terms of chemical 

potentials 𝜇௜ =
డீ

డ௡೔
 as 𝐺(𝑃, 𝑇, 𝑛)=∑ 𝑛௜𝜇௜(𝑃, 𝑇, 𝑛) ே

௜ୀଵ . The infinitesimal changes in the 

state of the system obey the fundamental Gibbs equation 

𝑑𝐺 = −𝑆 𝑑𝑇 + 𝑉 𝑑𝑃 + ෍ 𝜇௜𝑑𝑛௜

ே

௜ୀଵ

 (1) 

where S and V are the entropy and the volume of the system.  
All expressions above rest valid for each phase of a closed system maintained at 

thermodynamic equilibrium with two coexisting phases. Numbering the phases by a and 
b, the equilibrium condition reads 𝑑𝐺 = 𝑑𝐺௔ + 𝑑𝐺௕ = 0. Since in a closed system 𝑛௜ =

𝑛௜
௔ + 𝑛௜

௕ and 𝑛௧௢௧ = ∑ 𝑛௜ 
ே
௜ୀଵ are constant, it follows that 𝑑𝑛௜

௔ = −𝑑𝑛௜
௕, and hence Eq. 

(1) implies that  
𝑇௔ = 𝑇௕ ,     𝑃௔ = 𝑃௕ ,   𝜇௜

௔(𝑃௔ , 𝑇௔ , 𝑛௔) = 𝜇௜
௕(𝑃௕ , 𝑇௕ , 𝑛௕), 𝑖 = 1, . . . , 𝑛 (2) 

In principle, two different thermodynamic models can be used in expressions of the 
chemical potentials of phases a and b. In the rest of this paper, it is assumed that both 
phases can be described by the same model. In addition, only the isobaric isothermal 
conditions will be considered, so the first two of Eqs. (2) become trivial.   

The physicochemical properties of real mixtures are usually expressed in terms 
of molar, volume or mass fractions. In particular, the Flory-Huggins model used in 
Section 3 to describe the mixture of a polymer with water and a solvent, employs the 
volume fractions. Assuming the total volume of the mixture to be equal to the sum of 
partial volumes of components, and denoting by 𝑥௜ = 𝑣௜/𝑉 the volume fraction of i–th 
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component and by 𝑔(𝑃, 𝑇, 𝑥) = 𝐺(𝑃, 𝑇, 𝑛(𝑥))/𝑅 𝑉 the free Gibbs energy of mixing per 
unit of volume, Eqs. (2) can be rewritten in the form  

𝜕𝑔௔(𝑥௔)

𝜕 𝑥௜
௔ =

𝜕𝑔௕(𝑥௕)

𝜕 𝑥௜
௕

, 𝑖 = 1, … , 𝑁 − 1,     

𝑔௔(xୟ) − 𝑔௕(xୠ) − ෍
𝜕𝑔௔(xୟ)

𝜕𝑥௜
௔

(𝑥௜
௔ − 𝑥௜

௕)

ேିଵ

௜ୀଵ

= 0             

(3) 

In the binary case (N=2) these conditions mean that the graph of function 𝑔(𝑥) admits a 
bi-tangent line to it, as it is shown in Fig. 1a.  Below the ternary case is analyzed in detail.  

2.2 Ternary case:  binodal curves and bitangent planes of the Gibbs free energy surface 

To simplify notations, from now on  𝑔′௜ stays for 
డ ௚

డ ௫೔
,  the symbols 𝛻௫𝑔  and 𝐷௫

ଶ𝑔 are used 

for the gradient and for the Hessian of function g, and ( | ) for the scalar product in ℝଶ.   
In case of ternary mixtures Eqs.(3) describe the specific properties of the surface, 

referred to as surface W,  defined by equation 𝑧 = 𝑔(𝑥ଵ, 𝑥ଶ) in a 3D Cartesian space with 
coordinates 𝑥ଵ, 𝑥ଶ, 𝑧 , as it shown in Fig. 1b. The material stability condition implies that 
such a surface has a physical meaning only in the sub-domain of the volume fraction 
space where the function 𝑔(𝑥) is convex:  

𝛺 = {𝑥 = (𝑥ଵ, 𝑥ଶ): 𝑥ଵ, 𝑥ଶ ∈ [0,1], 𝑥ଵ + 𝑥ଶ ≤ 1, D௫
ଶ𝑔 is weakly pos. definite }  

The projection on the x-plane of the set of singular points of surface W, i.e. the points 
where 𝐷௫

ଶ𝑔 is singular, defines the spinodal curve of the phase diagram. The first two of 
Eqs.(3) guarantee the existence of a pair of points 𝑃ଵ and 𝑃ଶ on the surface W with 
collinear normals, whereas the latter of Eqs.(3) says that these points belong to the same 
plane tangent to W . The projection of the segment 𝑃ଵ𝑃ଶ on x-plane is called a tie-line. 
The one-parametric family of conodal points 𝑃ଵ, 𝑃ଶ define two directrices of a certain 
ruled surface in 3D space. Their projections on the x-plane correspond to the two branches 
of binodal curve on the phase diagram. These branches can meet each other at the critical 
point of the phase diagram. Since by definition the critical point also belongs to the 
spinodal, these are the only common point between the binodal and the spinodal curves, 
and the whole binodal curve lies on the same side with respect to the spinodal curve. 
Fig.1b. illustrates all these concepts for the mixture having one critical point.  

2.3 Differential equations of binodal and spinodal curves 

As it follows from the above analysis, the binodal curves are formed by the pairs of points. 
So it is natural to describe these curves in the 4D space 𝚺 = 𝛀 × 𝛀  defined as follows:  

𝜮 = {𝒒 = (𝒒𝟏, 𝒒𝟐) ∈ ℝ𝟒 ∶  𝒒𝟏 = 𝒙𝒂 ∈ 𝜴, 𝒒𝟐 = 𝒙𝒃 ∈ 𝜴}.  

Consider now the three co-dimension one smooth sub-manifolds in Σ associated to the 
zero-levels of the functions 

𝐹ଵ(𝑞)=𝑔ଵ
ᇱ (𝑞ଵ) − 𝑔ଵ

ᇱ (𝑞ଶ),         𝐹ଶ(𝑞)=𝑔ଶ
ᇱ (𝑞ଵ) − 𝑔ଶ

ᇱ (𝑞ଶ), 

𝐹ଷ(𝑞) = 𝑔(𝑞ଶ) − 𝑔(𝑞ଵ) + (𝛻௫𝑔(𝑞ଵ)|𝑞ଶ − 𝑞ଵ),     𝑞 ∈ Σ 
(4) 
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(a). (b). 
Fig.1. bi-tangent lines to the free Gibbs energy surface W in binary (a) and ternary (b) 
cases, and their projection on the composition space. 

These sub-manifolds can intersect each other forming a one-dimensional sub-manifold 
𝑩 = {𝒒 ∈ 𝜮 ∶  𝑭𝒊(𝒒) = 𝟎, 𝒊 = 𝟏, 𝟐, 𝟑}, whose orthogonal projections on two exemplars 
of 𝛀 define the two branches of the binodal curve. In what follows B will be referred to 
as the generalized binodal curve. This curve can be seen as the integral curve of the vector 
field 𝒒 → 𝑽(𝒒) ∈ 𝑻𝒒𝑩. By definition,  

𝛻௤𝐹௜(𝑞)𝑉(𝑞) = 0, 𝑖 = 1,2,3 (5) 

Define a pair of functions 𝜱𝒊 and  𝜳𝒊 such that (𝜱𝒊, 𝜳𝒊)
𝑻 = 𝐃𝒙

𝟐𝒈(𝒒𝒊)(𝒒𝟏 − 𝒒𝟐), for 
i=1,2. Then Eqs. (5) are equivalent to the following conditions: 

𝛷ଵ𝑉ଵ + 𝛹ଵ𝑉ଶ = 0     and     D௫
ଶ𝑔(𝑞ଵ)(𝑉ଵ, 𝑉ଶ) = D௫

ଶ𝑔(𝑞ଶ)(𝑉ଷ, 𝑉ସ) (6) 

The straightforward computation shows that 𝑽(𝒒)  can be expressed as  

𝑉ூ = 𝛹ଵ 𝑑𝑒𝑡 D௫
ଶ𝑔(𝑞ଶ),  𝑉ଶ = −𝛷ଵ 𝑑𝑒𝑡 D௫

ଶ𝑔(𝑞ଶ) 

𝑉ଷ = 𝛹ଶ  𝑑𝑒𝑡 D௫
ଶ𝑔(𝑞ଵ),  𝑉ସ = −𝛷ଶ  𝑑𝑒𝑡 D௫

ଶ𝑔(𝑞ଵ). 
(7) 

Clearly, the critical points of surface W correspond to the singular points of 𝑽(𝒒).  

Remark. The same argument can be used to define the spinodal curve as the integral 

curve of the vector field 𝜵𝒙𝑺(𝒙)ୄ, where  𝑺(𝒙) = 𝒅𝒆𝒕 𝐃𝒙
𝟐𝒈(𝒙).   

The described construction is a geometrical interpretation of the differential 
homotopy method (Allgower and Georg, 2003) for computing implicitly defined smooth 
curves. Using Eq. (5) instead of Eqs. (3) it is possible to compute binodal curves by a 
conventional ODE solver without solving the set of algebraic Eqs. (3) or (2) by a Newton-
Raphson type iterative algorithm, as it is usually done. The only iterative step concerns 
the computation of the starting point of the generalized binodal (or spinodal) curve, which 
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can be reduced to a 2D problem. An algorithm based on the same principles was described 
in detail in N. Shcherbakova at al. 2017 and O. Cots et al. 2021. 

3. Case study: Flory-Huggins parameters of water-acetone-hexadecane 

3.1 The Flory-Huggins model with ternary interaction term 

The classical Flory-Huggins model defines the excess free energy of mixing per unit of 
volume according to the expression 

𝑔 = 𝜑ଵ 𝑙𝑛 𝜑ଵ +
ଵ

ேమ
𝜑ଶ 𝑙𝑛 𝜑ଶ+

ଵ

ேయ
𝜑ଷ 𝑙𝑛 𝜑ଷ+∑ 𝜒௜௝𝜑௜𝜑௝

ଷ
௜,௝ୀଵ,௜ழ௃ + 𝛽 𝜑ଵ𝜑ଶ𝜑ଷ (8) 

Here 𝜑௜, i=1,2,3 are the volume fractions of water, the solvent and the polymer 
respectively, 𝑁ଶ and 𝑁ଷ are the number of segments in the molecules of the solvent and 

of the polymer referred to the water segment, 𝜒௜௝  and 𝛽 are the binary and ternary 

interaction coefficients. In this paper 𝑁ଶ, 𝑁ଷ, 𝜒௜௝ and 𝛽 are assumed to be constant. 

Notice that the cross term 𝛽 𝜑ଵ𝜑ଶ𝜑ଷ contains several physical effects. Indeed, it is the 
simplest possible correction of the Flory-Huggins model that accounts for composition-
dependent binary interaction parameters as well as for the failure of the total volume 
conservation hypothesis when mixing the components. Since the goal of present work is 
to propose a robust method for binodal identification, it is not necessary to investigate the 
real physical meaning of the cross term.  

In further computations the volume fractions of acetone and of polymer are 
chosen as the independent variables so that 𝑥ଵ = 𝜑ଶ , 𝑥ଶ = 𝜑ଷ and 𝜑ଵ = 1 − 𝑥ଵ − 𝑥ଶ. 
Inserting Eq.(8) into Eqs. (4) yields three algebraic conditions to be verified along the 
binodal curve. Due to the particular form of Eq. (8), these conditions linearly depend on 
6 scalar parameters 𝜒ଵଶ, 𝜒ଵଷ, 𝜒ଶଷ, 𝛽, 𝑟ଵ = 𝑁ଶ

ିଵ, and 𝑟ଶ = 𝑁ଷ
ିଵ.  

3.2 Case study: water-acetone-hexadecane 

A further analysis is based on the experimental data obtained at 𝑃 = 1 𝑎𝑡𝑚 and T=23 °C 
using Raman spectroscopy to measure each species fraction for a given sample. 14 
measurements of coupled compositions were acquired defining tie-lines 𝑞௞ ∈ Σ (black 
points in Fig. 2) and 17 non-coupled composition measurements  𝑥௠ ∈ Ω (white circles 
in Fig. 2) defining the phase-separation envelope. The latter series contains a pair of 
points defining the miscibility gap 𝑥௔, 𝑥௕ of the binary mixture acetone-hexadecane. 

Using Eqs.(3) for this binary mixture, 𝜒ଶଷ and 𝑁ଶ were computed in terms of 𝑥௔, 𝑥௕. 
Analogously, 𝜒ଵଷ and 𝑁ଷ were found using the miscibility limits of water-hexadecane 
mixture reported in the literature. Due to the significant variation of these data in different 
sources, the term 𝜒ଵଷ in Eq. (8) was replaced by 𝜒ଵଷ + 𝛿 in the next step of the 
computation. In this second step the remaining parameters 𝜒ଵଶ, 𝛽, 𝛿 were found by solving 
the following non-linear optimization problem:  

min
ఞభమ,ఉ,ఋ

෍
𝐹ଵ

ଶ(𝑞௞) + 𝐹ଶ
ଶ(𝑞௞)

ቀ1 − 𝐹ଷ
ଶ(𝑞௞)ቁ

ଶ

ଵସ

௞ୀଵ

 (9) 
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The particular form of criterion Eq.(9) push the minNLP solver toward the solutions 
which guaranties that each point 𝑞௞ corresponds to a pair of points on 𝑊 having collinear 
normal vectors, whereas the denominator term penalize those pairs of points that do not 
belong the same bi-tangent line.   

The described method was implemented using Mathematica 9 package, the 
result is shown Fig. 2. Gray lines correspond to the measured tie-lines, and the dashed 
lines denote the computed tie-lines. The thick black curve corresponds to the computed 
binodal curve, which satisfies both of the quality criteria discussed above. The right part 
of Fig. 2 reproduces the vicinity of the acetone vertex in big resolution, showing an 
excellent coincidence between experimental and model identification results.   

 

Fig.2 

4. Conclusion 

The presented geometric viewpoint on binodal curves provides a deeper insight into their 
internal structure. Moreover, it allows for the reduction of the numerical computation of 
binodal and spinodal curves to a simple integration of ODE systems, gaining in execution 
time and accuracy. The proposed numerical method can be adapted to any thermodynamic 
model. We plan to implement the resulting differential homotopy algorithm in the next 
version of the SMITH code (Cots et al, 2021). 
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