
HAL Id: hal-04774430
https://hal.science/hal-04774430v1

Preprint submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Positive and monotone fragments of FO and LTL
Denis Kuperberg, Quentin Moreau

To cite this version:
Denis Kuperberg, Quentin Moreau. Positive and monotone fragments of FO and LTL. 2024. �hal-
04774430�

https://hal.science/hal-04774430v1
https://hal.archives-ouvertes.fr

Positive and monotone fragments of FO and LTL
Denis Kuperberg #Ñ

CNRS, LIP, ENS Lyon, France

Quentin Moreau #

ENS Lyon, France

Abstract
We study the positive logic FO+ on finite words, and its fragments, pursuing and refining the work
initiated in [12]. First, we transpose notorious logic equivalences into positive first-order logic: FO+

is equivalent to LTL+, and its two-variable fragment FO2+ with (resp. without) successor available
is equivalent to UTL+ with (resp. without) the “next” operator X available. This shows that despite
previous negative results, the class of FO+-definable languages exhibits some form of robustness.
We then exhibit an example of an FO-definable monotone language on one predicate, that is not
FO+-definable, refining the example from [12] with 3 predicates. Moreover, we show that such a
counter-example cannot be FO2-definable.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Regular languages; Theory of computation → Logic and verification

Keywords and phrases Positive logic, LTL, separation, first-order, monotone

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Funding Denis Kuperberg: ANR ReCiProg

1 Introduction

In various contexts, monotonicity properties play a pivotal role. For instance the field
of monotone complexity investigates negation-free formalisms, and turned out to be an
important tool for complexity in general [7]. From a logical point of view, a sentence is
called monotone (with respect to a predicate P) if increasing the set of values where P is
true in a structure cannot make the evaluation of the formula switch from true to false. This
is crucial e.g. when defining logics with fixed points, where the fixed points binders µX
can only be applied to formulas that are monotone in X. Logics with fixed points are used
in various contexts, e.g. to characterise the class PTime on ordered structures [9, 20], as
extensions of linear logic such as µMALL [2], or in the µ-calculus formalism used in automata
theory and model-checking [3]. Because of the monotonocity constraint, it is necessary to
recognise monotone formulas, and understand whether a syntactic restriction to positive (i.e.
negation-free) formulas is semantically complete. Logics on words have also been generalised
to inherently negation-free frameworks, such as in the framework of cost functions [4].

This motivates the study of whether the semantic monotone constraint can be captured
by a syntactic one, namely the removing of negations, yielding the class of positive formulas.
For instance, the formula ∃x, a(x) states that an element labelled a is present in the structure.
It is both monotone and positive. However, its negation ∀x,¬a(x) is neither positive nor
monotone, since it states the absence of a, and increasing the domain where predicate a is
true in a given structure could make the formula become false.

Lyndon’s preservation theorem [14] states that on arbitrary structures, every monotone
formula of First-Order Logic (FO) is equivalent to a positive one (FO+ syntactic fragment).
The case of finite structures was open for two decades until Ajtai and Gurevich [1] showed
that Lyndon’s theorem does not hold in the finite, later refined by StolBoushkin [18] with
a simpler proof. Recently, this preservation property of FO was more specifically shown

© Denis Kuperberg and Quentin Moreau;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

40
6.

17
69

3v
1

 [
cs

.L
O

]
 2

5
Ju

n
20

24

mailto:denis.kuperberg@ens-lyon.fr
http://perso.ens-lyon.fr/denis.kuperberg
https://orcid.org/0000-0001-5406-717X
mailto:quentin.moreau@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Positive and monotone fragments of FO and LTL

to fail already on finite graphs and on finite words by Kuperberg [12], implying the failure
on finite structure with a more elementary proof than [1, 18]. However, the relationship
between monotone and positive formulas is still far from being understood. On finite words
in particular, the positive fragment FO+ was shown [12] to have undecidable membership
(with input an FO formula, or a regular language), which could be interpreted as a sign that
this class is not well-behaved. This line of research can be placed in the larger framework of
the study of preservation theorems in first-order logic, and their behaviour in the case of
finite models, see [17] for a survey on preservation theorems.

In this work we will concentrate on finite words, and investigate this “semantic versus
syntactic” relationship for fragments of FO and Linear Temporal Logic (LTL). We will in
particular lift the classical equivalence between FO and LTL [10] to their positive fragments,
showing that some of the robustness aspects of FO are preserved in the positive fragment,
despite the negative results from [12]. This equivalence between FO and LTL is particularly
useful when considering implementations and real-world applications, as LTL satisfiability
is PSpace-complete while FO satisfiability is non-elementary. It is natural to consider
contexts where specifications in LTL can talk about e.g. the activation of a sensor, but not
its non-activation, which would correspond to a positive fragment of LTL. We could also
want to syntactically force such an event to be “good” in the sense that if a specification is
satisfied when a signal is off at some time, it should still be satisfied when the signal is on
instead. It is therefore natural to ask whether a syntactic constraint on the positivity of LTL
formulas could capture the semantic monotonicity, in the full setting or in some fragments
corresponding to particular kinds of specifications.

We will also pay a close look at the two-variable fragment FO2 of FO and its LTL
counterpart. It was shown in [12] that there exists a monotone FO-definable language that
is not definable in positive FO. We give stronger variants of this counter-example language,
and show that such a counter-example cannot be defined in FO2[<]. This is obtained via
a stronger result characterizing FO2-monotone in terms of positive fragments of bounded
quantifier alternation. We also give precise complexity results for deciding whether a regular
language is monotone, refining results from [12].

The goal of this work is to understand at what point the phenomenon discovered in [12]
come into play: what are the necessary ingredients for such a counter-example (FO-monotone
but not FO positive) to exist? And on the contrary, which fragments of FO are better
behaved, and can capture the monotonicity property with a semantic constraint, and allow
for a decidable membership problem in the positive fragment.

Outline and Contributions
We begin by introducing two logical formalisms in Section 2: First-Order Logic (2.1) and
Temporal Logic (2.2).

Then, we lift some classical logical equivalences to positive logic in Section 3. First we
show that FO+, FO3+ and LTL+ are equivalent in Theorem 20. We prove that the fragment
FO2+ with (resp. without) successor predicate is equivalent to UTL+ with (resp. without)
X and Y operators available in Theorem 26 (resp. Corollary 28).

In Section 4, we give a characterisation of monotonicity using monoids (Lemma 29) and
we deduce from this an algorithm which decides the monotonicity of a regular language
given by a monoid (Section 4.2), completing the automata-based algorithms given in [12].
This leads us to the Proposition 32 which states that deciding the monotonicity of a regular
language is in LogSpace when the input is a monoid while it is NL-complete when the input
is a DFA. This completes the previous result from [12] showing PSpace-completeness for

D. Kuperberg and Q. Moreau 23:3

NFA input.
Finally, we study the relationship between semantic and syntactic positivity in Section 5.

We give some refinements of the counter-example from [12] (a regular and monotone language
FO-definable but not definable in FO+). Indeed, we show that the counter-example can be
adapted to FO2 with the binary predicate "between" in Proposition 34 and we show that we
need only one predicate to find a counter-example in FO in Proposition 35.

We also consider a characterization of FO2[<] from Thérien and Wilke [19] stating that
FO2[<] is equivalent to Σ2 ∩Π2 where Σ2 and Π2 are fragments of FO with bounded quantifier
alternation. We show that FO2-monotone is characterized by Σ+

2 ∩ Π+
2 .

At last, we show that no counter-example for FO can be found in FO2 (without successor
available) in Corollary 42. We conclude by leaving open the problem of expressive equivalence
between FO2+ and FO2-monotone, as well as decidability of membership in FO2+ for regular
languages (see Conjecture 43).

2 FO and LTL

We work with a set of atomic unary predicates Σ = {a1, a2, ...a|Σ|}, and consider the set of
words on alphabet P(Σ). To describe a language on this alphabet, we use logical formulas.
Here we present the different logics and how they can be used to define languages.

2.1 First-order logics
Let us consider a set of binary predicates, =, ̸=, ≤, <, succ and nsucc, which will be used to
compare positions in words. We define the subsets of predicates B0 := {≤, <, succ,nsucc},
B< := {≤, <} and Bsucc := {=, ̸=, succ,nsucc}, and a generic binary predicate is denoted
b. As we are going to see, equality can be expressed with other binary predicates in B0
and B< when we have at least two variables. This is why we do not need to impose that =
belongs to B0 or B<. The same thing stands for ̸=. Generally, we will always assume that
predicates = and ̸= are expressible.

Let us start by defining first-order logic FO:

▶ Definition 1. Let B be a set of binary predicates. The grammar of FO[B] is as follows:

φ,ψ ::= ⊥ | ⊤ | b(x, y) | a(x) | φ ∧ ψ | φ ∨ ψ | ∃x, φ | ∀x, φ | ¬φ,

where b belongs to B.

Closed FO formulas (those with no free variable) can be used to define languages.
Generally speaking, a pair consisting of a word u and a function ν from the free (non-
quantified) variables of a formula φ to the positions of u satisfies φ if u satisfies the closed
formula obtained from φ by replacing each free variable with its image by ν.

▶ Definition 2. Let φ, a formula with n free variables, x1, ..., xn, and u a word. Let ν be a
function of {x1, ..., xn} in [[0, |u| − 1]]. We say that (u, ν) satisfies φ, and we define u, ν |= φ

by induction on φ as follows:
u, ν |= ⊤ and we never have u, ν |= ⊥,
u, ν |= x < y if ν(x) < ν(y),
u, ν |= x ≤ y if ν(x) ≤ ν(y),
u, ν |= succ(x, y) if ν(y) = ν(x) + 1,
u, ν |= nsucc(x, y) if ν(y) ̸= ν(x) + 1,
u, ν |= a(x) if a ∈ u[ν(x)] (note that we only ask inclusion here),

CVIT 2016

23:4 Positive and monotone fragments of FO and LTL

u, ν |= φ ∧ ψ if u, ν |= φ and u, ν |= ψ,
u, ν |= φ ∨ ψ if u, ν |= φ or u, ν |= ψ,
u, ν |= ∃x, φ(x, x1, ..., xn) if there is i of u such that we have u, ν ∪ [x 7→ i] |= φ,
u, ν |= ∀x, φ(x, x1, ..., xn) if for any index i of u, u, ν ∪ [x 7→ i] |= φ,
u, ν |= ¬φ if we do not have u, ν |= φ.

For a closed formula, we simply note u |= φ.

Here is an example:

▶ Example 3. The formula φ = ∃x, ∀y, (x = y∨ ¬a(y)) describes the set of non-empty words
that admit at most one a. For example, {a}{a, b} does not satisfy φ because two of its letters
contain an a, but {a, b, c}{b}∅ does satisfy φ.

▶ Remark 4. The predicates succ and nsucc can be expressed in FO+[B<] with three variables.
If there are no restriction on variables, in particular if we can use three variables, all binary
predicates in B0 can be expressed from those in B<. Thus, we will consider the whole set
of binary predicates available when the number of variables is not constrained, and we will
note FO for FO[B0] or FO[B<], which are equivalent, and similarly for FO+.

Let us now turn our attention to FO+, the set of first-order formulas without negation.
We recall definitions from [12].

▶ Definition 5. The grammar of FO+ is that of FO without the last constructor, ¬.

Let us also define monotonicity properties, starting with an order on words.

▶ Definition 6. A word u is lesser than a word v if u and v are of the same length, and for
any index i (common to u and v), the i-th letter of u is included in the i-th letter of v. When
a word u is lesser than a word v, we note u ≤P(Σ)∗ v.

▶ Definition 7. Let L be a language. We say that L is monotone when for any word u of L,
any word greater than u belongs to L.

▶ Proposition 8 ([12]). FO+ formulas are monotone in unary predicates, i.e. if a model
(u, ν) satisfies a formula φ of FO+, and u ≤P(Σ)∗ v, then (v, ν) satisfies φ.

We will also be interested in other logical formalisms, obtained either by restricting FO,
or several variants of temporal logics.

First of all, let us review classical results obtained when considering restrictions on
the number of variables. While an FO formula on words is always logically equivalent to
a three-variable formula [10], two-variable formulas describe a class of languages strictly
included in that described by first-order logic. In addition, the logic FO is equivalent to
Linear Temporal Logic (see below).

Please note: these equivalences are only true in the framework on word models. In other
circumstances, for example when formulas describe graphs, there are formulas with more
than three variables that do not admit equivalents with three variables or less.

▶ Definition 9. The set FO3 is the subset of FO formulas using only three different variables,
which can be reused. We also define FO3+ for formulas with three variable and without
negation. Similarly, we define FO2 and FO2+ with two variables.

▶ Example 10. The formula ∃y, succ(x, y) ∧ (∃x, b(x) ∧ (∀z, z ≥ x∨ z < y∨a(z))) (a formula
with one free variable x that indicates that the letter labeled by x will be followed by a
factor of the form aaaaa...aaab) is an FO3 formula, and even an FO3+ formula: there is no
negation, and it uses only three variables, x, y and z, with a reuse of x. On the other hand,
it does not belong to FO2.

D. Kuperberg and Q. Moreau 23:5

2.2 Temporal logics
Some logics involve an implicit temporal dimension, where positions are identified with time
instants. For example, Linear Temporal Logic (LTL) uses operators describing the future,
i.e. the indices after the current position in a word. This type of logic can sometimes be
more intuitive to manipulate, and present better complexity properties, see introduction. As
mentioned above, FO2 is not equivalent to FO. On the other hand, it is equivalent to UTL,
a restriction of LTL to its unary temporal operators.

To begin with, let us introduce LTL, which is equivalent to FO.

▶ Definition 11. The grammar of LTL is as follows:
φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ | Xφ | φUψ | φRψ | ¬φ.

Removing the last constructor gives the grammar of LTL+.

This logic does not use variables. To check that a word satisfies an LTL formula, we
evaluate the formula at the initial instant, that is to say, the word’s first position. The X
constructor then describes constraints about the next instant, i.e. the following position in
the word. So the word a.u, where a is a letter, satisfies Xφ if and only if the suffix u satisfies
φ. The construction φUψ (φ until ψ) indicates that the formula ψ must be verified at a
given point in time and that φ must be verified until then. We define φRψ as being equal to
¬(¬φU¬ψ). Let us define this formally:

▶ Definition 12. Let φ be an LTL formula, and u = u0...um−1 be a word. We say that u
satisfies φ and define u |= φ by induction on φ as follows:

u |= ⊤ and we never have u |= ⊥,
u |= a if a ∈ u[0],
u |= φ ∧ ψ if u |= φ and u |= ψ,
u |= φ ∨ ψ if u |= φ or u |= ψ,
u |= Xφ if u1...um−1 |= φ,
u |= φUψ if there is i ∈ [[0,m − 1]] such that ui...um−1 |= ψ and for all j ∈ [[0, i − 1]],
uj ...um−1 |= φ,
u |= φRψ if u |= (ψU(ψ ∧ φ)) or for all i ∈ [[0,m− 1]] we have ui...um−1 |= ψ,
u |= ¬φ if we do not have u |= φ.

▶ Remark 13. Let us call φXUψ the formula X(φUψ), for any pair (φ,ψ) of LTL formulas.
The advantage of XU is that X and U can be redefined from XU. The notation U for XU is
regularly found in the literature.

LTL is included in Temporal Logic, TL. While the former speaks of the future, i.e. of
the following indices in the word, thanks to X, U and R, the latter also speaks of the past.
Indeed, we introduce Y, S (since) and Q the respective past analogues of X, U and R.

▶ Definition 14. The grammar of TL is as follows:
φ,ψ ::= LTL | Yϕ | ϕSψ | φQψ.

Similarly, the grammar of TL+ is that of LTL+ extended with Y, S and Q.

▶ Remark 15. As for XU, we will write φYSψ for Y(φSψ). We also note Pφ, Fφ, Hφ and
Gφ for ⊤YSφ, ⊤XUφ, φYS⊥ and φXU⊥ respectively. The formulas Fφ and Gφ mean
respectively that the formula φ will be satisfied at least once in the future (F as Future),
and that φ will always be satisfied in the future (G as Global). Similarly, the operators P
(as Past) and H are the respective past analogues of F and G.

CVIT 2016

23:6 Positive and monotone fragments of FO and LTL

When evaluating an LTL or TL formula on a word u = u0 . . . um, we start by default
on the first position u0. However, we need to define more generally the evaluation of a TL
formula on a word from any given position:

▶ Definition 16. Let φ be a TL formula, u = u0...um−1 a word, and i ∈ [[0,m − 1]]. We
define u, i |= φ by induction on φ:

u, i |= ⊤ and we never have u |= ⊥,
u, i |= a if a ∈ ui,
u, i |= φ ∧ ψ if u, i |= φ and u, i |= ψ,
u, i |= φ ∨ ψ if u, i |= φ or u, i |= ψ,
u, i |= Xφ if u, i+ 1 |= φ,
u, i |= φUψ if there is j ∈ [[i,m− 1]] such that u, j |= ψ and for all k ∈ [[i, j− 1]], u, k |= φ,
u, i |= ψRφ if u, i |= ¬(¬ψU¬φ),
u, i |= ¬φ if we do not have u, i |= φ,
u, i |= Yφ if u, i− 1 |= φ,
u, i |= φSψ if there is j ∈ [[0, i]] such that u, j |= ψ and for all k ∈ [[j + 1, i]], u, k |= φ.

Finally, let us introduce UTL and UTL+, the Unary Temporal Logic and its positive
version. The UTL logic does not use the U or R operator, but only X, F and G to talk about
the future. Similarly, we cannot use S or Q to talk about the past.

▶ Definition 17. The grammar of UTL is as follows:

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ | Xφ | Yϕ | Pφ | Fφ | Hφ | Gφ | ¬φ.

We define define UTL[P,F,H,G] from this grammar by deleting the constructors X and
Y.

The grammar of UTL+ is obtained by deleting the last constructor, and similarly, we
define UTL+[P,F,H,G] by deleting the negation in UTL[P,F,H,G].

▶ Remark 18. In the above definition, H and G can be redefined with P and F thanks to
negation, but are necessary in the case of UTL+.

When two formulas φ and ψ are logically equivalent, i.e. admit exactly the same models,
we denote it by φ ≡ ψ. Note that a closed FO formula can be equivalent to an LTL formula,
since their models are simply words. Similarly, we can have φ ≡ ψ when φ is an FO formula
with one free variable (having models of the form (u, i)) and ψ is a LTL or TL formula, this
time not using the default starting position for TL semantics.

3 Logical equivalences

We want to lift to positive fragments some classical theorems of equivalence between logics,
such as these classical results:

▶ Theorem 19 ([10, 5]).
FO and LTL define the same class of languages.
FO2 and UTL define the same class of languages.

D. Kuperberg and Q. Moreau 23:7

3.1 Equivalences to FO+

We aim at proving the following theorem, lifting classical results from FO to FO+:

▶ Theorem 20. The logics FO+, LTL+ and FO3+ describe the same languages.

▶ Lemma 21. The set of languages described by LTL+ is included in the set of languages
recognised by FO3+.

The proof is direct, see Appendix A for details. From LTL+ to FO+, we can interpret in
FO+ all constructors of LTL+.

Let us introduce definitions that will be used in the proof of the next lemma.

▶ Definition 22. Let qr(φ) be the quantification rank of a formula φ of FO+ defined
inductively by:

if φ contains no quantifier then qr(φ) = 0,
if φ is of the form ∃x, ψ or ∀x, ψ then qr(φ) = qr(ψ) + 1,
if φ is of the form ψ ∨ χ or ψ ∧ χ then qr(φ) = max(qr(ψ), qr(χ)).

▶ Definition 23. A separated formula is a positive Boolean combination of purely past
formulas (which do not depend on the present and future), purely present formulas (which do
not depend on the past and future) and purely future formulas (which do not depend on the
past and present).

We will adapt previous work to show the following auxiliary result:

▶ Lemma 24. Let φ be a TL+ formula with possible nesting of past and future operators.
There is a separated formula of TL+ that is equivalent to φ.

Proof (Sketch). Our starting point is the proof given by Kuperberg and Vanden Boom
in [13, lemma 5], which proves the equivalence between generalisations of the logics FO
and LTL, to the so-called cost FO and cost LTL. When specialised to FO and LTL, this
corresponds to the case where negations appear only at the leaves of formulas. This brings
us closer to our goal.

First of all, [13] proves a generalised version of the separation theorem from [8]. In [8],
it is proven that any formula of TL is equivalent to a separated formula, and a particular
attention to positivity is additionally given in [13]. Indeed [13] also shows that such a Boolean
combination can be constructed while preserving the formula’s positivity. One can also check
[15] to verify that positivity of a formula is kept when separating the formula. Thus, a
formula in TL+ can be written as a Boolean combination of purely past, present and future
formulas themselves in TL+. ◀

Now we are ready to show the main result of this section:

▶ Lemma 25. The set of languages described by FO+ is included in the set of languages
recognised by LTL+.

Proof. We follow [13], which shows a translation from FO to TL by induction on the
quantification rank. We have adapted this to suit our needs.

Let φ(x) be an FO+ formula with a single free variable. Let us show by induction on
qr(φ) that φ is equivalent to a formula of TL+.

Initialisation:
If qr(φ) is zero, then φ(x) translates directly into the TL+ formula. Indeed, disjunctions

and conjunctions translate immediately into TL+. Furthermore, unary predicates of the form

CVIT 2016

23:8 Positive and monotone fragments of FO and LTL

a(x) translate into a and binary predicates trivialize into ⊤ and ⊥ (e.g. x < x translates
into ⊥ and x = x into ⊤). For example, (x ≤ x ∧ a(x)) ∨ (b(x) ∧ c(x)) ∨ x < x translates
into (⊤ ∧ a) ∨ (b ∧ c) ∨ ⊥.

Heredity:
Suppose that any FO+ free single-variable formula of quantification rank strictly less

than qr(φ) translates into a TL+ formula, and qr(φ) is strictly positive.
If φ is a disjunction or conjunction, we need to transform its various clauses. So, without

loss of generality, let us assume that φ(x) is of the form ∃y, ψ(x, y) or ∀y, ψ(x, y).
Let us denote a1, ... an where n is a natural number, the letters (which are considered as

unary predicates) in ψ(x, y) applied to x.
For any subset S of [[1, n]], we note ψS(x, y) the formula ψ(x, y) in which each occurrence

of ai(x) is replaced by ⊤ if i belongs to S and by ⊥ otherwise, for any integer i of [[1, n]].
We then have the logical equivalence:

ψ(x, y) ≡
∨

S⊆[[1,n]]

(∧
i∈S

ai(x) ∧
∧
i/∈S

¬ai(x) ∧ ψS(x, y)
)
.

We are going to show that the negations in the above formula are optional. Let us note:

ψ+(x, y) ≡
∨

S⊆[[1,n]]

(∧
i∈S

ai(x) ∧ ψS(x, y)
)
.

Let us then show the equivalence of the formulas ψ(x, y) and ψ+(x, y) using the mono-
tonicity of ψ as an FO+ formula. First of all, it is clear that any model satisfying ψ(x, y)
satisfies ψ+(x, y).

Conversely, suppose ψ+(x, y) is satisfied. We then have a subset S of [[1, n]] such that
(∧i∈Sai(x)) ∧ ψS(x, y) is satisfied. In particular, according to the values taken by the unary
predicates in x, there exists a subset S′ of [[1, n]] containing S such that (∧i∈S′ai(x)) ∧
(∧i/∈S′¬ai(x)) ∧ ψS(x, y) is satisfied. Now, ψ is monotone in the different predicates a1,...,an.
So (∧i∈S′ai(x)) ∧ (∧i/∈S′¬ai(x)) ∧ ψS′(x, y) is also satisfied, and ψ(x, y) is therefore satisfied.

The rest of the proof is similar to the proof from [13]: the quantifiers on y commute with
the disjunction on S and the conjunction on i of the formula ψ+. We can therefore fix a
subset S of [[1, n]] and simply consider ∃y, ψS(x, y) or ∀y, ψS(x, y). We then replace ψS(x, y)
with a formula that depends only on y by replacing each binary predicate of the form b(x, z)
with a unary predicate Pb(z). For example, we can replace x < z, z < x or x = z by a unary
predicate P>(z), P<(z) or P=(z). We then obtain a formula ψ′S(y) on which we can apply
the induction hypothesis (since there is only one free variable). This yields a formula χ from
TL+, equivalent to ψ′S(y) and we have:

∃y, ψS(x, y) ≡ Pχ ∨ χ ∨ Fχ, and ∀y, ψS(x, y) ≡ Hχ ∧ χ ∧ Gχ.

Let χ′ be the formula obtained (Pχ ∨ χ ∨ Fχ or Hχ ∧ χ ∧ Gχ). The resulting formula
χ′ then involves unary predicates of the form Pb. We then use Lemma 24 to transform χ′

into a positive Boolean combination of purely past, present and future positive formulas,
where predicates Pb trivialize into ⊤ or ⊥. For example, P< trivializes into ⊤ in purely past
formulas, into ⊥ in purely present or future formulas.

This completes the induction. From a formula in FO+, we can construct an equivalent
formula in TL+.

Ultimately, we can return to a future formula. Indeed, we want to evaluate in x = 0, so
the purely past formulas, isolated by the separation lemma (Lemma 24), trivialize into ⊥ or
⊤.

D. Kuperberg and Q. Moreau 23:9

Now, to translate a closed formula φ from FO+ to LTL+, we can add a free variable by
setting φ′(x) = φ ∧ (x = 0). Then, by the above, φ′ translates into a formula χ from LTL+,
logically equivalent to φ.

◀

We can now turn to the proof of Theorem 20.

Proof of Theorem 20. By Lemma 21, we have the inclusion of the languages described
by LTL+ in those described by FO3+, which is trivially included in FO+. By Lemma 25,
the converse inclusion of FO+ into LTL+ holds. So we can conclude that the three logical
formalisms are equi-expressive. ◀

3.2 Equivalences in fragments of FO+

▶ Theorem 26. The languages described by FO2+[B0] formulas with one free variable are
exactly those described by UTL+ formulas.

Proof. First, let us show the UTL+ to FO2+ direction. In the proof of Lemma 21, as is
classical, three variables are introduced only when translating U. By the same reasoning
as for X, it is clear that translating Y introduces two variables. It remains to complete the
induction of Lemma 21 with the cases of P, F, H and G, but again we can restrict ourselves
to future operators by symmetry:

[Fφ](x) = ∃y, x < y ∧ [φ](y) ;
[Gφ](x) = ∀y, y ≤ x ∨ [φ](y).

For the converse direction from FO2+ to UTL+, we draw inspiration from [5, Theorem 1].
This proof is similar to that of [13] used previously in the proof of Lemma 25: we perform
a disjunction on the different valuations of unary predicates in one free variable to build
a formula with one free variable. However, the proof of Lemma 25 cannot be adapted as
it is, since it uses the separation theorem which does not preserve the membership of a
formula to UTL, see [6, Lem 9.2.2]. However, the article [5] uses negations and we must
therefore construct our own induction case for the universal quantifier that is treated in [5]
via negations.

The beginning of the proof is identical to that of Lemma 25. Using the same notations,
let us consider a formula ψS(x, y) with no unary predicate applied to x. We cannot directly
replace binary predicates with unary predicates, because this relied on the separation theorem.

Let us consider, as in [5], the position formulas, y < x ∧ nsucc(y, x), succ(y, x), y = x,
succ(x, y) and x < y ∧ nsucc(x, y), whose set is denoted T.

We then have the logical equivalence:

ψS(x, y) ≡
∨

τ∈T
τ(x, y) ∧ ψS

τ (y) ≡
∧

τ∈T
τ(x, y) =⇒ ψS

τ (y),

where ψS
τ (y) is obtained from the formula ψS(x, y) assuming the relative positions of

x and y are described by τ . The above equivalence holds because T forms a partition of
the possibilities for the relative positions of x and y: exactly one of the five formulas τ(x, y)
from T must hold. Since x and y are the only two variables, any binary predicate involving
x is a binary predicate involving x and y (or else it involves only x and is trivial). Binary
predicates are therefore trivialized according to the position described by τ .

CVIT 2016

23:10 Positive and monotone fragments of FO and LTL

▶ Example 27. For ψS(x, y) = nsucc(x, y) ∧ a(y) ∧ (∀x, x ≤ y ∨ b(y)) and for the position
formula τ = y < x ∧ nsucc(y, x), we have ψS

τ (y) = ⊤ ∧ a(y) ∧ (∀x, x ≤ y ∨ b(y)). We do not
replace the bound variable x. We have obtained a formula with one free variable, so we can
indeed use the induction hypothesis.

We use disjunction in the case of an existential quantifier (as in [5]) and conjunction
in the case of a universal quantifier. We then need to translate ∃y, τ(x, y) ∧ ψS

τ (y) and
∀y, τ(x, y) =⇒ ψS

τ (y), which we note respectively [τ]∃ and [τ]∀, in UTL+, for any position
formula τ . For readability we omit ψS

τ in this notation, but [τ]∃ and [τ]∀ will depend on ψS
τ .

In each case, we note χ for the UTL+ formula obtained by induction from ψS
τ (y):

[y < x ∧ nsucc(y, x)]∃ ≡ YPχ,

[y < x ∧ nsucc(y, x)]∀ ≡ YHχ,

[succ(y, x)]∃ ≡ succ(y, x)]∀ ≡ Yχ,

[y = x]∃ ≡ [y = x]∀ ≡ χ,

[succ(x, y)]∃ ≡ succ(x, y)]∀ ≡ Xχ,

[x < y ∧ nsucc(x, y)]∃ ≡ XFχ,

[x < y ∧ nsucc(x, y)]∀ ≡ XGχ.

◀

▶ Corollary 28. The logic FO2+[B<] is equivalent to UTL+[P,F,H,G].

Proof. For the right-to-left direction, it suffices to notice that the predicates used to translate
the constructors of UTL+[P,F,H,G] in the previous proof belong to B<.

For the left-to-right direction, simply replace the set T in Theorem 26 proof by T′ =
{y < x, y = x, x < y}. Once again, we obtain an exhaustive system of mutually exclusive
position formulas that allow us to trivialize binary predicates. The proof of Theorem 26 can
thus be lifted immediately to this case. ◀

We showed that several classical logical equivalence results can be transposed to their
positive variants.

4 Characterisation of monotonicity

So far, we have focused on languages described by positive formulas, from which monotonicity
follows. Here, we focus on the monotonicity property and propose a characterisation. We
then derive a monoid-based algorithm that decides, given a regular language L, whether it is
monotone, refining results from [12] focusing on automata-based algorithms.

4.1 Characterisation by monoids

We assume the reader familiar with monoids (see Appendix B.1 for detailed definitions).
We will note (M, ·) a monoid and ML the syntactic monoid of a regular language L and

≤L the syntactic order.

D. Kuperberg and Q. Moreau 23:11

▶ Lemma 29. Let L ⊆ P(Σ)∗ be a regular language. Then L is monotone if and only if there
is an order ≤ML

on ML compatible with the product · and included in ≤L which verifies:

∀(u, v) ∈ P(Σ)∗ × P(Σ)∗, u ≤P(Σ)∗ v =⇒ h(u) ≤ML
h(v),

where h denotes the canonical projection.

The proof is left in Appendix B.2.

▶ Theorem 30. Let L ⊆ α∗ be a regular language, and ≤L be its syntactic order. The
language L is monotone if and only if we have:

∀(s, s′) ∈ P(Σ)2, s ⊆ s′ =⇒ h(s) ≤L h(s′),

where h : P(Σ)∗ → ML denotes the canonical projection onto the syntactic monoid.

Proof. For the left-to-right direction let L be a monotone language and s ⊂ s′. Let m and
n be two elements of ML such that mh(s)n ∈ h(L). Since h : P(Σ)∗ → ML is surjective,
let u ∈ h−1(m) and v ∈ h−1(n). Then usv ∈ L since h recognises L. So us′v ∈ L by
monotonicity of L. Thus mh(s′)n ∈ h(L). We can conlude that h(s) ≤L h(s′).

For the converse direction, suppose that ≤L verifies the condition of Theorem 30. We can
remark that ≤L is compatible with the product of the monoid. Therefore, the conditions of
Lemma 29 are verified by ≤L.

◀

4.2 An algorithm to decide monotonicity

We immediately deduce from Theorem 30 an algorithm for deciding the monotonicity of
a regular language L from its syntactic monoid. Indeed, it is sufficient to check for any
pair of letters (s, s′) such that s is included in s′ whether m · h(s) · n ∈ h(L) implies
m · h(s′) · n ∈ h(L) for any pair (m,n) of elements of the syntactic monoid, where h denotes
the canonical projection onto the syntactic monoid.

This algorithm works for any monoid that recognises L through a surjective h : P(Σ)∗ →
M , not just its syntactic monoid. Indeed, for any monoid, we start by restricting it to
h(P(Σ)∗) to guarantee that h is surjective. Then, checking the above implication is equivalent
to checking whether s ≤L s′ for all letters s and s′ such that s is included in s′.

This is summarised in the following proposition:

▶ Proposition 31. There is an algorithm which takes as input a monoid (M, ·) recog-
nising a regular language L through a morphism h and decides whether L is monotone in
O(|P(Σ)|2|M|2).

It was shown in [12, Thm 2.5] that deciding monotonicity is PSpace-complete if the
language is given by an NFA, and in P if it is given by a DFA.

We give a more precise result for DFA, and give also the complexity for monoid input:

▶ Proposition 32. Deciding whether a regular language is monotone is in LogSpace when
the input is a monoid while it is NL − complete when it is given by a DFA.

See Appendix B.3 for the proof.

CVIT 2016

23:12 Positive and monotone fragments of FO and LTL

5 Semantic and syntactic monotonicity

The paper [12, Definition 4.2] exhibits a monotone language definable in FO but not in FO+.
The question then arises as to how simple such a counter-example can be. For instance, can
it be taken in specific fragments of FO, such as FO2. This section presents a few lemmas
that might shed some light on the subject, followed by some conjectures.

From now on we will write A the alphabet P(Σ).

5.1 Refinement of the counter-example in the general case
In [12], the counter-example language that is monotone and FO-definable but not FO+-
definable uses three predicates a, b and c and is as follows:

K = ((abc)∗)↑ ∪A∗⊤A∗.

It uses the following words to find a strategy for Duplicator in EF+
k :

u0 = (abc)n and u1 =
((

a

b

)(
b

c

)(
c

a

))n(
a

b

)(
b

c

)
,

where n is greater than 2k, and
(

s
t

)
is just a compact notation for the letter {s, t} for any

predicates s and t.
This in turns allows to show the failure on Lyndon’s preservation theorem on finite

structures [12]. Our goal in this section is to refine this counter-example to more constrained
settings. We hope that by trying to explore the limits of this behaviour, we achieve a better
understanding of the discrepancy between monotone and positive.

In Section 5.1.1, we give a smaller fragment of FO where the counter-example can still
be encoded. In Section 5.1.2, we show that the counter-example can still be expressed with
a single unary predicate. This means that it could occur for instance in LTL+ where the
specification only talks about one sensor being activated or not.

5.1.1 Using the between predicate
First, let us define the “between” binary predicate introduced in [11].

▶ Definition 33. [11] For any unary predicate a (not only predicates from Σ but also Boolean
combination of them), a also designates a binary predicate, called between predicate, such
that for any word u and any valuation ν, (u, ν) |= a(x, y) if and only if there exists an index
i between ν(x) and ν(y) excluded such that (ui, ν) |= a, where ui is the i-th letter of u.

We denote be the set of between predicates and be+ the set of between predicates associated
to the set of positive unary predicates.

Is is shown in [11] that FO2[B0 ∪ be] is strictly less expressive than FO.

▶ Proposition 34. There exists a monotone language definable in FO2[B0 ∪ be] which is not
definable in FO2+[B0 ∪ be+].

Proof. We can use the same words u0 and u1 defined above with the following language:

K ∪A∗

((
a

b

)2
∪
(
b

c

)2
∪
(
c

a

)2
∪
(
a

b

)(
c

a

)
∪
(
b

c

)(
a

b

)
∪
(
c

a

)(
b

c

))
A∗.

D. Kuperberg and Q. Moreau 23:13

Indeed, in [12], it is explained that we need to look for some “anchor position” to know
whether a word belongs to K. Such positions resolve the possible ambiguity introduced by
double letters of the form

(
a
b

)
, that could play two different roles for witnessing membership

in ((abc)∗)↑. Indeed, if
(

a
b

)
appears in a word, we cannot tell whether it stands for an a or a

b. In contrast, anchor letters have only one possible interpretation. They may be singletons
({a}, {b}, {c}) or consecutive double letters such as

(
a
b

)(
c
a

)
which can only be interpreted as

bc. Here, we accept any word containing an anchor of the second kind. This means that in
remaining words we will only be interested in singleton anchors. Thus, we need two variables
only to locate consecutive anchors and between predicates to check if the letters between the
anchors are double letters. See Appendix C for a more detailed description of a formula.

◀

5.1.2 Only one unary predicate
Now, let us show another refinement. We can lift K to a counter-example where the set of
predicates Σ is reduced to a singleton.

▶ Proposition 35. As soon as there is at least one unary predicate, there exists a monotone
language definable in FO but not in FO+.

Proof. Suppose Σ reduced to a singleton. Then, A is reduced to two letters which we note 0
and 1 with 1 greater than 0. We will encode each predicate from {a, b, c} and a new letter #
(the separator) into A∗ as follows:

[a] = 001
[b] = 010
[c] = 100
[#] = 100001

.

Thus, the letter
(

a
b

)
will be encoded by [ab] = 011, etc. We will encode the language K

as follows:
[K] = (([a][#][b][#][c][#])∗)↑ ∪A∗1(A4\04)1A∗ ∪A∗15A∗.

First, we can notice that [K] is monotone.
Let us show how the separator [#] is used. Let w be a word over A∗. If w contains a factor

of the form 1u1 where u is a word of 4 letters containing the letter 1, then w immediately
belongs to [K]. This is easy to check with an FO-formula so we can suppose that w does
not contain such a factor. Similarly, we can suppose that 15 (corresponding to ⊤ in the
original K) is not a factor of w. Then, it is easy to locate a separator since 100001 will
always be a separator factor. Therefore, we can locate factor coding letters in w. Then we
can do the same thing as [12] to find an FO-formula: we have to fix some anchors (factors
coding letters whose roles are not ambiguous as explained in the proof of Proposition 34)
and check whether they are compatible. For example, suppose w contains a factor of the
form [a][#]([ab][#][bc][#][ca][#])n[bc]. Then [a] is an anchor. The last factor [ca][#][bc] is
also an anchor since it can only be interpreted as ([a][#][b])↑. Since there are no anchors in
between [a] and [bc] we just have to verify their compatibility. Here it is the case: in between
the anchors, each [ab] can be interpreted as [b]↑, [bc] as [c]↑ and [ca] as [a]↑. If we were to
replace [a] with [c], [c] would still be an anchor but would not be compatible with [bc]. This
achieves the description of an FO-formula for [K].

Furthermore, it is not FO+-definable. Indeed, let k ∈ N be an arbitrary number of rounds
for an EF+-game. We can choose n > 2k such that Duplicator has a winning strategy for u0

CVIT 2016

23:14 Positive and monotone fragments of FO and LTL

and u1 defined as follows:

[u0] = ([a][#][b][#][c][#])n and [u1] = ([ab][#][bc][#][ca][#])n[ab][#],

where [ab] = 011, [bc] = 110 and [ca] = 101.
We can adapt the strategy for u0 and u1 (from [12, Lemma 4.4]) to [u0] and [u1]. For

example, if Spoiler plays the i-th letter of a factor [bc], then it is similar to playing the letter(
b
c

)
in u1. Thus, if Duplicator answers by playing the j-th b or c in u0, then he should answer

by playing the i-th letter of the j-th [b] or [c] respectively, for any natural integers i and j.
In the same way, if Spoiler plays in a separator character, then Duplicator should answer by
playing the same letter of the corresponding separator character in the other word according
to the strategy.

◀

5.2 Stability through monotone closure
It has been shown by Thérien and Wilke [19] that languages FO2[B<]-definable are exactly
those who are both Σ2-definable and Π2-definable where Σ2 is the set of FO-formulas of
the form ∃x1,, xn∀y1, ..., ymφ(x1, ..., xn, y1, ...ym) where φ does not have any quantifier
and Π2-formulas are negations of Σ2-formulas. Hence, Σ2 ∪ Π2 is the set of FO-formulas in
prenex normal form with at most one quantifier alternation. Moreover, Pin and Weil [16]
showed that Σ2 describes the unions of languages of the form A∗

0.s0.A
∗
1.s1.....st.A

∗
t+1, where

t is a natural integer, si are letters from A and Ai are subalphabets of A.
Even though we do not know yet whether FO2+ captures the set of monotone FO2-

definable languages, we can state the following theorem:

▶ Theorem 36. The set Σ+
2 ∩Π+

2 of languages definable by both positive Σ2-formulas (written
Σ+

2) and positive Π2-formulas (written Π+
2) is equal to the set of monotone FO2-definable

languages.

In order to prove Theorem 36, we shall introduce a useful definition:

▶ Definition 37. For any language L, we write L⋏ = ((Lc)↓)c the dual closure of L, where
Lc stands for the complement of L and L↓ is the downwards monotone closure of L.

▶ Remark 38. It is straightforward to show that L⋏ is the greatest monotone language
included in L for any language L. In particular, a monotone language is both equal to its
monotone closure and its dual monotone closure.

Now, let us show the following lemma:

▶ Lemma 39. The set Σ+
2 captures the set of monotone Σ2-definable languages.

Proof. First, it is clear that Σ+
2 describes monotone Σ2-definable languages.

Next, it is enough to show that the monotone closure of a Σ2-definable language is
Σ+

2 -definable.
So let us consider a Σ2-definable language L. Since a disjunction of Σ+

2 formulas is equival-
ent to a Σ+

2 formula, we can suppose thanks to [16] that L is of the form A∗
0.s0.A

∗
1.s1.....st.A

∗
t+1

as explained above.
Therefore, L↑ is described by the following Σ+

2 -formula:

∃x0, ..., xt,∀y, x0 < ... < xt ∧
t∧

i=0
si(xi) ∧

t+1∧
i=0

(xi−1 < y < xi ⇒ Ai(y)),

D. Kuperberg and Q. Moreau 23:15

where B(x) means
∨

b∈B b(x) for any subalphabet B, x−1 < y < x0 means y < x0 and
xt < y < xt+1 means xt < y.

◀

This immediately gives the following lemma which uses the same sketch proof:

▶ Lemma 40. The set Σ−
2 (Σ2-formulas with negations on all predicates) captures the set of

downwards closed Σ2-definable languages.

We can now deduce the following lemma:

▶ Lemma 41. The set Π+
2 captures the set of monotone Π2-definable languages.

Proof. Then again, we only need to show the difficult direction.
Let L be a Π2-definable language. It is enough to show that L⋏ is Π+

2 -definable according
to Remark 38.

By definition of Π2, the complement Lc of L is Σ2-definable. Hence, (Lc)↓ is definable by
a Σ−

2 -formula φ given by Lemma 40. Therefore, ¬φ is a formula from Π+
2 describing L⋏. ◀

Finally, we can prove Theorem 36:

Proof. Thanks to [19], it is straightforward that any language from Σ+
2 ∩ Π+

2 is monotone
and FO2-definable.

Let L be a monotone FO2-definable language.
In particular, L belongs to Σ2 and is monotone. Thus, by Lemma 39, L belongs to Σ+

2 .
Similarly, L belongs to Π+

2 by Lemma 41. ◀

This last result shows how close to capture monotone FO2-definable languages FO2+

is. However, it does not seem easy to lift the equivalence Σ2 ∩ Π2 = FO2 to their positive
fragments as we did for the other classical equivalences in Section 3. Indeed, the proof from
[19] relies itself on the proof of [16] which is mostly semantic while we are dealing with
syntactic equivalences.

This immediately implies that a counter-example separating FO-monotone from FO+

cannot be in FO2[B<] as stated in the following corollary:

▶ Corollary 42. Any monotone language described by an FO2[B<] formula is also described
by an FO+ formula.

If the monotone closure L↑ of a language L described by a formula of FO2[B<] is in FO+,
nothing says on the other hand that L↑ is described by a formula of FO2[B<], or even of
FO2[B0] as the counterexample L = a∗bc∗de∗ shows. The monotone closure L↑ cannot be
defined by an FO2[B0] formula. This can be checked using for instance Charles Paperman’s
online software: https://paperman.name/semigroup/. Notice that the software uses the
following standard denominations: DA corresponds to FO2[B<], and LDA to FO2[B0].

We give the following conjecture, where FO2 can stand either for FO2[B<] or for FO2[B0]

▶ Conjecture 43.
A monotone language is definable in FO2 if and only if it is definable in FO2+.
It is decidable whether a given regular language is definable in FO2+

Since we can decide whether a language is definable in FO2 and whether it is monotone,
the first item implies the second one.

CVIT 2016

https://paperman.name/semigroup/

23:16 Positive and monotone fragments of FO and LTL

References
1 Miklos Ajtai and Yuri Gurevich. Monotone versus positive. J. ACM, 34(4):1004–1015, October

1987.
2 David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In Nachum

Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, pages 92–106, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

3 Julian Bradfield and Igor Walukiewicz. The mu-calculus and model checking. In Handbook of
Model Checking, pages 871–919. Springer, 2018.

4 Thomas Colcombet. Regular Cost Functions, Part I: Logic and Algebra over Words.
Logical Methods in Computer Science, Volume 9, Issue 3, August 2013. URL: https:
//lmcs.episciences.org/1221, doi:10.2168/LMCS-9(3:3)2013.

5 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. BRICS Report Series, 4(5), Jan. 1997. URL: https://tidsskrift.
dk/brics/article/view/18784, doi:10.7146/brics.v4i5.18784.

6 Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal logic (vol. 1): mathematical
foundations and computational aspects. Oxford University Press, Inc., USA, 1994.

7 Michelangelo Grigni and Michael Sipser. Monotone complexity. In Poceedings of the London
Mathematical Society Symposium on Boolean Function Complexity, page 57–75, USA, 1992.
Cambridge University Press.

8 Ian M. Hodkinson and Mark Reynolds. Separation - past, present, and future. In Sergei N.
Artëmov, Howard Barringer, Artur S. d’Avila Garcez, Luís C. Lamb, and John Woods, editors,
We Will Show Them! Essays in Honour of Dov Gabbay, Volume Two, pages 117–142. College
Publications, 2005.

9 Neil Immerman. Relational queries computable in polynomial time. Information and Control,
68(1):86–104, 1986. doi:https://doi.org/10.1016/S0019-9958(86)80029-8.

10 Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California Los Angeles, 1968. Published as Johan Anthony Willem Kamp. URL: http:
//www.ims.uni-stuttgart.de/archiv/kamp/files/1968.kamp.thesis.pdf.

11 Andreas Krebs, Kamal Lodaya, Paritosh K. Pandya, and Howard Straubing. Two-variable
logics with some betweenness relations: Expressiveness, satisfiability and membership. Log.
Methods Comput. Sci., 16(3), 2020. URL: https://lmcs.episciences.org/6765.

12 Denis Kuperberg. Positive first-order logic on words and graphs. Log. Methods Comput. Sci.,
19(3), 2023. URL: https://doi.org/10.46298/lmcs-19(3:7)2023.

13 Denis Kuperberg and Michael Vanden Boom. On the expressive power of cost logics over
infinite words. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer,
editors, Automata, Languages, and Programming, pages 287–298, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

14 Roger C. Lyndon. Properties preserved under homomorphism. Pacific J. Math., 9(1):143–154,
1959. URL: https://projecteuclid.org:443/euclid.pjm/1103039459.

15 Daniel Oliveira and João Rasga. Revisiting separation: Algorithms and complexity. Log. J.
IGPL, 29(3):251–302, 2021. URL: https://doi.org/10.1093/jigpal/jzz081, doi:10.1093/
JIGPAL/JZZ081.

16 Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory of
Computing Systems, 30:383–422, 1995. URL: https://api.semanticscholar.org/CorpusID:
850708.

17 Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55, 07 2008.
18 Alexei P. Stolboushkin. Finitely monotone properties. In LICS, San Diego, California, USA,

June 26-29, 1995, pages 324–330. IEEE Computer Society, 1995.
19 Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one quantifier

alternation. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
STOC ’98, page 234–240, New York, NY, USA, 1998. Association for Computing Machinery.
doi:10.1145/276698.276749.

https://lmcs.episciences.org/1221
https://lmcs.episciences.org/1221
https://doi.org/10.2168/LMCS-9(3:3)2013
https://tidsskrift.dk/brics/article/view/18784
https://tidsskrift.dk/brics/article/view/18784
https://doi.org/10.7146/brics.v4i5.18784
https://doi.org/https://doi.org/10.1016/S0019-9958(86)80029-8
http://www.ims.uni-stuttgart.de/archiv/kamp/files/1968.kamp.thesis.pdf
http://www.ims.uni-stuttgart.de/archiv/kamp/files/1968.kamp.thesis.pdf
https://lmcs.episciences.org/6765
https://doi.org/10.46298/lmcs-19(3:7)2023
https://projecteuclid.org:443/euclid.pjm/1103039459
https://doi.org/10.1093/jigpal/jzz081
https://doi.org/10.1093/JIGPAL/JZZ081
https://doi.org/10.1093/JIGPAL/JZZ081
https://api.semanticscholar.org/CorpusID:850708
https://api.semanticscholar.org/CorpusID:850708
https://doi.org/10.1145/276698.276749

D. Kuperberg and Q. Moreau 23:17

20 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, page 137–146, New York, NY, USA, 1982. Association for Computing Machinery. doi:
10.1145/800070.802186.

A Proof of Lemma 21

Proof. Let us show the lemma by induction on the LTL+ formula. We inductively construct
for any formula φ of LTL+, a formula φ⋆(x) of FO3+ with one free variable that describes
the same language. This just amounts to remove the negation case in the classical proof, no
additional difficulty here.

⊥⋆ = ⊥,
⊤⋆ = ⊤,
a⋆ = a(x),
(φ ∧ ψ)⋆(x) = φ⋆(x) ∧ ψ⋆(x),
(φ ∨ ψ)⋆(x) = φ⋆(x) ∨ ψ⋆(x),
(Xφ)⋆(x) = ∃y, succ(x, y) ∧ φ⋆(y),
(φUψ)⋆(x) = ∃y, x ≤ y ∧ ψ⋆(y) ∧ ∀z, (z < x ∨ y ≤ z ∨ φ⋆(z)),
(ψRφ)⋆(x) = (φUψ)⋆(x) ∨ (∀y, y < x ∨ φ⋆(y)).

The translation of a formula φ of LTL+ into a closed formula of FO3+ is therefore
∃x, x = 0 ∧ φ⋆(x), where x = 0 is short for ∀y, y ≥ x.

This construction makes it possible to reuse the variables introduced. This is why we can
translate the formulas of LTL+ into FO3+. ◀

B Monoids

B.1 Algebraic definitions
▶ Definition 44. A semigroup is a pair (S, ·) where · is an associative internal composition
law on the non-empty set S.

▶ Remark 45. We allow ourselves the abuse of language which consists in speaking of the
semigroup S instead of the semigroup (S, ·).

▶ Definition 46. A monoid is a pair (M, ·) which is a semigroup, and which has a neutral
element noted 1M (or simply 1 when there is no ambiguity), i.e. which verifies:

∀m ∈ M, 1 ·m = m · 1 = m.

▶ Definition 47. Let (M, ·) and (M′, ◦) be two monoids. An application h defined from M
into M′ is a morphism of monoids if:

∀(m1,m2) ∈ M2, h(m1 ·m2) = h(m1) ◦ h(m2),

and
h(1M) = 1M′ .

Similarly, if M and M′ are just semigroups, h is a morphism if it preserves the semigroup
structure.

CVIT 2016

https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186

23:18 Positive and monotone fragments of FO and LTL

▶ Definition 48. Let (M, ·) be a monoid, and ≤ an order on M. We say that ≤ is compatible
with · if:

∀(m,m′, n, n′) ∈ M4,m ≤ n ∧m′ ≤ n′ =⇒ m ·m′ ≤ n · n′.

▶ Definition 49. Let L be a language and (M, ·) a finite monoid. We say that M recognises
L if there exists a monoid morphism h from (P(Σ)∗, .) into (M, ·) such that L = h−1(h(L)).

▶ Definition 50. Let L be a regular language, and u, v ∈ P(Σ)∗ be any two words. We define
the equivalence relation of indistinguishability denoted ∼L on P(Σ)∗. We write u ∼L v if:

∀(x, y) ∈ P(Σ)∗ × P(Σ)∗, xuy ∈ L ⇐⇒ xvy ∈ L.

Similarly, we write u ≤L v if:

∀(x, y) ∈ P(Σ)∗ × P(Σ)∗, xuy ∈ L =⇒ xvy ∈ L.

The ≤L preorder is called the L syntactic preorder.

▶ Definition 51. Let L be a regular language. We define the syntactic monoid of L as
ML = L/ ∼L.

▶ Remark 52. This is effectively a monoid, since ∼L is compatible with left and right
concatenation. Moreover, the syntactic monoid recognises L through canonical projection.
Moreover, we can see that the order ≤L naturally extends to an order compatible with the
product on the syntactic monoid. We will use the same notation to designate both the
pre-order ≤L and the order induced by ≤L on ML, which we will call syntactic order.

B.2 Proof of Lemma 29
Proof. The right-to-left direction follows from the definition of monotone languages. Indeed,
suppose we have a language L and an order ≤ML

on its syntactic monoid that verifies the
assumptions. Let u be a word in L, and v ≥P(Σ)∗ u. By hypothesis, we have h(v) ≥ML

h(u).
Again by hypothesis, since h(u) ∈ h(L), we also have h(v) ∈ h(L), so v belongs to L. We
can conclude that L is monotone.

Conversely, let us consider a regular language L, and note h its canonical projection onto
its syntactic monoid. Let → be the binary relation induced by ≤P(Σ)∗ on ML, i.e. such
that m → n if there are words u and v such that m = h(u), n = h(v) and u ≤P(Σ)∗ v. The
transitive closure of →, denoted →∗, is then an order relation.

First of all, it is clearly reflexive and transitive.
Then, to show antisymmetry, it is sufficient to show that →∗ is included in ≤L.
Let m and n be two elements of ML such that m →∗ n. By definition, there are m1,

m2, ..., mp p elements of ML such that m → m1 → m2 → ... → mp → n, where p is a
natural number. We then have u0, u1, u′

1, u2, u′
2, ..., up, u′

p, and up+1 such that m = h(u0),
m1 = h(u1) = h(u′

1), m2 = h(u2) = h(u′
2), ..., mp = h(up) = h(u′

p) and n = h(up+1) and
u0 ≤P(Σ)∗ u1, u′

1 ≤P(Σ)∗ u2, u′
2 ≤P(Σ)∗ u3, ..., u′

p ≤P(Σ)∗ up+1.
Now let x and y be two words (they constitute a context). By monotonicity of L, if xu0y

belongs to L, then xu1y belongs to L. Then, since h(u1) = h(u′
1), if xu1y belongs to L, then

so does xu′
1y. We immediately deduce that if xu0y belongs to L, then so does xup+1y. This

proves that →∗ is included in ≤L.
So →∗ is an order, which we note ≤ML

.

D. Kuperberg and Q. Moreau 23:19

Let us check its compatibility with the operation · of the monoid. Let m, m′, n and n′

be elements of ML such that m ≤ML
n and m′ ≤ML

n′.
First, let us assume m → n and m′ → n′. We then have u, u′, v and v′ representing m,

m′, n and n′ respectively, such that u ≤P(Σ)∗ v and u′ ≤P(Σ)∗ v′. So we have uv ≤P(Σ)∗ u′v′

and thus, mn ≤ML
m′n′. Now, if we only have m →∗ n and m′ →∗ n′, then we have finite

sequences (mi)p
i=1 and (m′

i)
p
i=1, which we can assume to be of the same length p by reflexivity

of →, such that m → m1 → ... → mp → n and m′ → m′
1 → ... → m′

p → n′. So we have
m ·m′ ≤ML

m1 ·m′
1, but also m1 ·m′

1 ≤ML
m2 ·m′

2, ..., mp ·m′
p ≤ML

n ·n′. We then obtain
the inequality mn ≤ML

m′n′ by transitivity.
Finally, it is clear that if u ≤P(Σ)∗ v then h(u) ≤ML

h(v).
The relationship ≤ML

therefore satisfies the constraints imposed.
◀

B.3 Proof of Proposition 32
Proof. First, in the algorithm from the Proposition 31, at any given time, we only need
to code two letters from P(Σ) and two elements from the monoid M. So we can code S
and S′ with |Σ| bits and increment them through the loop in order to go through the whole
alphabet. For example, if Σ = {a, b, c} then a is coded by 001, {a, b} by 010 and so on. In
the same way, we only need 2⌈log2(M)⌉ bits to code (m,n). Using lookup tables for applying
the function h, the product ·, and testing membership in F , all operations can be done in
LogSpace. Thus, the algorithm from the Proposition 31 is in LogSpace.

To decide whether a DFA B describes a monotone language, we can compute the NFA B↑

by adding to each transition (q0, a, q1) of B any transition (q0, b, q1) with b greater than a.
Thus, B↑ describes the monotone closure of the language recognised by B. Then, B recognises
a monotone language if and only if there is not path from an initial to a final state in the
product automaton B × B↑, where B is the complement of B, obtained by simply switching
accepting and non-accepting states. As NFA emptiness is in NL, DFA monotonicity is in NL
as well.

Now, let us suppose we have an algorithm which takes a DFA as input and returns
whether it recognises a monotone language. Notice that the DFA emptiness problem is still
NL − complete when restricted to automata not accepting the empty word ε. We will use this
variant to perform a reduction to DFA monotonicity. Suppose we are given a DFA B on an
alphabet A which does not accept ε. We build an automaton B′ on A ∪ {⊤} by adding the
letter ⊤ to A in B, but without any ⊤-labelled transition. Now, let us equip A ∪ {⊤} with
an order ≤ such that a ≤ ⊤ for any letter a of A. Then the new automaton B′ recognises a
monotone language if and only if B recognises the empty language. Indeed, suppose we have
a word u of length n accepted by B. Then, B′ would accept u but not ⊤n which is bigger
than u. Reciprocally, if B recognises the empty language then so does B′ and the empty
language is a monotone language. Thus, the monotonicity problem is NL − complete when
the input is a DFA.

◀

C An FO2[B0 ∪ be]-formula for the counter-example

Let us give a formula for the counter-example from Proposition 34.
Let us notice that the successor predicate is definable in FO2[B< ∪ be], so results from

[11] about the fragment FO2[<, be] apply to FO2[B0 ∪ be] as well.

CVIT 2016

23:20 Positive and monotone fragments of FO and LTL

So it is easy to describe A∗(⊤ ∪
(

a
b

)2 ∪
(

b
c

)2 ∪
(

c
a

)2 ∪
(

a
b

)(
c
a

)
∪
(

b
c

)(
a
b

)
∪
(

c
a

)(
b
c

)
)A∗ and to

state that factors of length 3 are in (abc)↑.
Now, for any atomic predicates s and t (i.e. s, t ∈ {a, b, c}), let us pose:

φs,t = ∀x, ∀y,

(
s(x) ∧ t(y) ∧ x < y ∧

∧
d∈Σ

¬d(x, y)
)

=⇒ ψs,t(x, y),

where ψs,t(x, y) is a formula stating that the two anchors are compatible, i.e. either they
both use the “upper component” of all the double letters between them, or they both use
the “bottom component”. Recall that

∧
d∈Σ ¬d(x, y) means that there is no singleton letter

between x and y.
For example, ψa,b(x, y) is the disjunction of the following formulas:

(
b
c

)
(x+ 1) ∧

(
a
b

)
(y − 1)(

a
b

)
(x+ 1) ∧

(
c
a

)
(y − 1)

x+ 1 = y

Indeed, the first case correspond to using the upper component of
(

b
c

)
and

(
a
b

)
: anchor a

in position x is followed by the upper b in position x+ 1, which should be consistent with
the upper a in position y − 1 followed by anchor b in position y, the factor from x + 1 to
y − 1 being of the form (

(
b
c

)(
c
a

)(
a
b

)
)+. Similarly, the second case corresponds to the bottom

component. The last case corresponds to anchors directly following each other, without an
intermediary factor of double letters. This case appears only for (s, t) ∈ {(a, b), (b, c), (c, a)}

Now using the conjunction of all formulas φs,t where s and t are atomic predicates a, b, c,
we build a formula for the language of Proposition 34.

D Games

Erhenfeucht-Fraïssé games and their variants are traditionally used to prove negative ex-
pressivity results of FO fragments. This is why we were interested in Erhenfeucht-Fraïssé
games matching fragments of FO+. Although we did not manage to use them in the present
work, we include here a variant that could be suited for proving FO2+ inexpressibility results.

▶ Definition 53. We note EFn+
k [B](u0, u1), the Ehrenfeucht-Fraïssé game associated with

FOn+[B] at k turns on the pair of words (u0, u1). When there is no ambiguity, we simply
note EFn+

k (u0, u1). In EFn+
k (u0, u1), two players, Spoiler and Duplicator, play against each

other on the word pair (u0, u1) in a finite number k of rounds. Spoiler and Duplicator will
use tokens numbered 1, 2, ..., n to play on the positions of the words u0 and u1.

On each turn, Spoiler begins. He chooses δ from {0, 1} and i from [[1, n]] and moves (or
places, if it has not already been placed) the i numbered token onto a position of the word
uδ. Duplicator must then do the same on the word u1−δ with the constraint of respecting
binary predicates induced by the placement of the tokens, and only in one direction for unary
predicates. More precisely, if ν0 and ν1 are the valuations that to each token (considered here
as variables) associates the position where it is placed in u0 and u1 respectively, then

for any binary predicate b(x, y), (u0, ν0) |= b(x, y) if and only if (u1, ν1) |= b(x, y),
for any unary predicate a(x) in Σ, if (u0, ν0) |= a(x) then (u1, ν1) |= a(x).

If Duplicator cannot meet the constraint, he loses and Spoiler wins.

D. Kuperberg and Q. Moreau 23:21

In particular, for any i ∈ [[1, n]], if the letter s0 indicated by the token i on the word u0 is
not included in the letter s1 indicated by the token i on the word u1, then Spoiler wins.

If after k rounds, Spoiler has not won, then Duplicator is declared the winner.

▶ Theorem 54. Let L be a language and n a natural number. The language L is definable
by a formula of FOn+[B] if and only if there exists a natural number k such that, for any
pair of words (u0, u1) where u0 belongs to L but u1 does not, Spoiler has a winning strategy
in EFn+

k [B](u0, u1).

Proof. We generalise the proof from [12, Theorem 5.7], which treats the case of FO+, using
a classical construction for FO with a bounded number of variables.

Let n be a natural number. Let us introduce the concept of initial configuration. For
two words u0 and u1 of lengths l0 and l1 respectively, and two functions of 0, 1, 2, ..., or n
variables among x1, ... xn, ν0 and ν1 with values in [[0, l0 − 1]] and [[0, l1 − 1]] respectively,
the game EFn+

k [B](u0, u1) has initial configuration (ν0, ν1) if token i is placed in position
ν0(xi) on word u0, when ν0(xi) is defined, for any integer i from [[1, n]], and similarly with
u1 for the valuation ν1.

We then claim that for any natural number k and any formula φ of FOn+[B] (possibly
with free variables) of quantification rank at most k, and for all models (u0, ν0) and (u1, ν1),
Duplicator wins the game EFn+

k [B](u0, u1) with initial configuration (ν0, ν1), if and only if:

u0, ν0 |= φ =⇒ u1, ν1 |= φ.

Indeed, starting from the induction from the article [12], we have to adapt the base case
to the set of binary predicates B considered. The proof is then similar: each element of B
can impose a constraint in FOn+[B] which is reflected in the constraint on the positions of
the tokens. Then, in the induction, we need to modify the valuation update. Indeed, as the
number of variables (and therefore of tokens) is limited to n, when a variable x already in
use is encountered, we do not need to add a variable to the valuation ν constructed, but
modify the value taken by ν in x, to construct a new valuation ν′.

◀

CVIT 2016

	1 Introduction
	2 FO and LTL
	2.1 First-order logics
	2.2 Temporal logics

	3 Logical equivalences
	3.1 Equivalences to FO+
	3.2 Equivalences in fragments of FO+

	4 Characterisation of monotonicity
	4.1 Characterisation by monoids
	4.2 An algorithm to decide monotonicity

	5 Semantic and syntactic monotonicity
	5.1 Refinement of the counter-example in the general case
	5.1.1 Using the between predicate
	5.1.2 Only one unary predicate

	5.2 Stability through monotone closure

	A Proof of Lemma 21
	B Monoids
	B.1 Algebraic definitions
	B.2 Proof of Lemma 29
	B.3 Proof of Proposition 32

	C An FO2[<,S,,be]-formula for the counter-example
	D Games

