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Abstract
The long-standing issue of inadequate medicine formulations has been a focus of 
regulatory bodies and pharmaceutical research, particularly in adapting medicines 
for children’s unique requirements. The pediatric population presents diverse 
challenges in pharmacotherapy due to their varying age-related physiological 
differences, and taste and dosage form preferences. Conventional formulations 
often fail to meet these needs, leading to a high prevalence of off-label medication 
use and modifications by caregivers, which can compromise drug efficacy and 
safety. The well-known challenges of managing children’s medication are similar to 
those in geriatrics, both of which require dose adjustments to accommodate the 
patient’s pathophysiological characteristics and prevent deglutination problems. 
This paper explores recent innovations in drug formulations, highlighting the shift 
from traditional liquid formulations to solid dosages through three-dimensional (3D) 
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printing technology. Recent advancements in 3D printing technology offer promising solutions to these challenges. 
Additive manufacturing (AM), or 3D printing, facilitates the creation of complex objects (e.g., drug formulations) 
directly from digital models, allowing for high precision and customization. 3D-printed formulations have displayed 
considerable promise in improving palatability, adherence, and dose accuracy for pediatric use. Innovations like 
chewable tablets and taste-masked formulations make medications more acceptable to children. Moreover, the 
ability of 3D printing to adjust drug release profiles and doses offers a personalized approach to pediatric and geriatric 
pharmacotherapy, which is essential for managing conditions that require precise therapeutic control. The paper 
discusses several case studies using the semi-solid extrusion (SSE) process for producing personalized dosage forms, 
along with various technical and regulatory challenges associated with implementing this process in hospital-based 
drug manufacturing. In conclusion, while 3D printing in pediatric and geriatric pharmacotherapy addresses many 
challenges of traditional drug formulations, ongoing research and adaptation of regulatory frameworks are necessary 
to expand its application, ensuring safer, more effective, and more acceptable medication. 

Keywords: Unlicensed preparation; 3D printing; Pediatrics; Semi-solid extrusion; Hospital preparation;  
Personalized medicines

1. Introduction
The lack of availability of appropriate medicines for children 
has been an extensive and well-known problem for many 
years.1 Children require medicines that are adapted to each 
age group, due to the remarkable heterogeneity of this 
population, which ranges from premature infants to young 
adults. Some medicines are not suitable for young children, 
and even less so for premature infants.2–4 Furthermore, 
differences in the pharmacokinetic and pharmacodynamic 
profiles of children and adults necessitate different dosage 
strengths for children. Moreover, the preferred dosage 
form for children evolves with age and must be adapted to 
account for varying weights, forms, and taste preferences, 
which can differ from country to country.5 Consequently, 
there is a strong demand for medicines that are suitable 
for children, easy to administer, use non-toxic excipients, 
reduced dosage frequency, good palatability, and flexible 
dosing.6,7 When developing a medicine, the choice of 
pediatric forms is most often made in favor of oral liquid 
forms, despite their limitations, including stability issues, 
difficulty in achieving controlled-release formulations, 
the need for multiple-day dosing, exposure to potentially 
harmful excipients, poorer palatability, and higher costs. 
From an industrial perspective, these constraints represent 
a significant challenge.8–11

Numerous incentives from the United States (US) 
Food and Drug Administration (FDA) and the European 
Medicines Agency (EMA), such as Pediatric Investigation 
Plans, are mobilized in order to develop new formulations 
adapted for children with specific indications, allowing 
them to achieve Pediatric-Use Marketing Authorization 
(PUMA) status. In contrast, pediatric formulations of 
drugs already on the market typically receive only hybrid 

generic status and are priced similarly to the original 
drug. Between 2007 and 2016, 267 new medicines and 
43 new dosage forms for children’s use were authorized. 
Unfortunately, despite these incentives, only seven PUMAs 
have been obtained since 2006.12 Pediatric medicines 
remain underdeveloped, particularly in areas such as  
anticancer drugs, cardiology, or diseases affecting only 
children.10,13–19 To achieve better results, Europe is in 
the process of amending its incentive rules (Regulation 
726/2004 and Directive 2001/83/EC) and the legislation 
on medicines for children and rare diseases (Regulation 
1901/2006 and Regulation 141/2000/EC, respectively).

Children are a particularly vulnerable patient group 
with limited pharmaceutical treatment options. Drug 
shortages have been associated with higher relapse rates 
in children with cancer, the use of less effective agents, 
off-label use, and a greater risk of both short- and long-
term toxicity.20 Drug shortages negatively impact patients 
by affecting drug therapy, causing delays in medical 
procedures or therapy, and contributing to medication 
errors.21,22 Therapeutic alternatives, where they exist, are 
often associated with higher cost, lower efficacy, increased 
side effects, off-label use, and medication errors due to 
inexperience and lack of knowledge.23,24

Despite efforts by health authorities to promote the 
development of pediatric medicines, many medicinal 
products are authorized only for adults and are not currently 
available in formulations suitable for administration to the 
pediatric population. As a consequence, off-label or even 
unlicensed practices are frequent and their prevalence has 
been estimated to range from 3.2% to 95% overall, 26–95% 
in neonates,25–27 2.7–51.2% in outpatients, and 9.0–79.0% 
in inpatients.28,29 Caregivers or parents often modify off-
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label medicines before administration, such as crushing 
tablets into powder, opening capsules and diluting 
the powder in a liquid, or drinking injectable drugs. 
However, such modifications can have potentially harmful 
consequences for a pediatric patient.30 These practices may 
affect the efficacy and safety parameters of the medicinal 
product by altering its absorption characteristics, stability, 
and palatability.31–33 Such manipulation presents a risk 
of medication errors in dose calculation or preparation, 
leading to inaccurate dosing and undetermined effects on 
the product’s stability.30,34 Additionally, crushing tablets or 
opening capsules exposes caregivers or family members 
to chemical risks associated with the active substance, 
particularly when it is carcinogenic. 

Due to the lack of appropriate medicines for children, 
compounded medicines (i.e., unlicensed preparation) 
can play an important role in addressing needs unmet 
by commercial medicines or during drug shortage.35,36 
Unlicensed preparations are produced by the community 
and hospital pharmacies, offering capsules or oral liquid 
formulations adapted to patients’ needs. The need for 
adapted treatment through compounding is significant, 
especially in conditions with narrow therapeutic margins, 
long-term treatments, and medications where non-adapted 
dosages or non-compliance can jeopardize patient survival, 
such as cancer, autoimmune diseases, and cardiology.10,34 
For example, a recent study on hospital preparations in 
oncology by the European Society for Paediatric Oncology 
(SIOPE) and the European Society of Oncology Pharmacy 
(ESOP) identified 28 formulations for 13 different active 
pharmaceutical ingredients (APIs) used in chemotherapy 
and 35 formulations for 16 different APIs used in supportive 
therapy, each with a sufficient level of evidence.37 In some 
cases, more sophisticated formulation strategies, such as 
encapsulation of drug particles or 3D medicine printing, 
are highly promising and have demonstrated a significant 
benefit over traditional extemporaneous preparation.37 
Such robust and adaptive techniques could facilitate 
access to personalized therapy for all pediatric patients.38,39 
Scientific publications and recent industry strategies 
indicate a clear shift from liquid dosage forms to novel solid 
dosage forms.40 This new technology improves palatability, 
provides flexibility in the design of child-friendly dosage 
forms, and could enable cost-effective, individualized 
treatment options. However, further research in this field 
is evident.41–43 

The common challenges of managing children’s 
medication are similar to those encountered in geriatrics. 
Similarly, geriatric patients require dose adjustments 
according to their physiological characteristics and galenic 
compounding to compensate for deglutination problems. 
Swallowing difficulties in older adults present challenges 

for medication management, particularly as polypharmacy 
is so common.44 Therefore, geriatric patients require 
personalized treatment using compounded medicines, just 
as pediatric patients do.45

Overall, the use of unlicensed preparations has increased 
over the last 10 years, especially as they are also used to 
compensate for drug shortages, such as anesthetic drugs 
during the COVID-19 crisis or amoxicillin since 2022.46

Furthermore, unlicensed preparations can be tailored to 
individual patients or produced at a larger semi-industrial 
scale. Since compounding carries the risk of contamination 
and supra- and subtherapeutic errors,47 it demands highly 
trained personnel and premises that are no longer available 
in all pharmacies in many countries. To ensure the quality 
of the preparations and their safe use, regulations must be 
adapted to these different production scales. For example, 
the FDA has revised its recommendations to provide more 
flexibility to hospital pharmacies and health systems in the 
distribution of compounded drugs, while emphasizing the 
importance of ensuring their safety and efficacy.48 In France, 
new regulations allow for the production of medium-sized 
batches, with a corresponding increase in quality towards 
Good Manufacturing Practice (GMP) standards.49 In 
this context, 3D printing emerges as a valuable tool for 
creating custom shapes and doses, enhancing the quality 
of pediatric preparations.42

Since the 2010s, there has been increasing enthusiasm 
among academic, hospital, and community pharmacies, as 
well as the industry, for additive manufacturing (AM) of 
drugs.50,51 Better known as 3D printing, AM is a process 
of creating a physical object by joining materials layer by 
layer from a digital 3D model.52 All AM processes can be 
divided into a sequence of operations integrated within 
a digital chain, which comprises four distinct stages.53–55 

The first stage is computer-aided design (CAD), which 
involves creating a 3D digital model and converting its 
surfaces into a network of polygons, typically triangular 
facets. The positions of these facets are then translated 
into instructions for the 3D printer, written in G-code. 
The second stage is the preparation of the digital model 
prior to manufacturing, which involves optimizing and 
repairing the digital model before slicing it into layers. 
The third stage is computer-aided manufacturing (CAM), 
which involves manufacturing the physical object layer 
by layer. The fourth stage is post-processing, which is 
optional depending on the objects manufactured and the 
technology used. This stage consists of a series of steps 
carried out after the completion of a manufacturing cycle 
to ensure the finished product has the desired properties 
(e.g., support removal, drying, coating, polishing, coloring, 
smoothing, etc.).
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Additive manufacturing (AM) processes offer several 
advantages over traditional methods. They enable complex 
objects to be manufactured with high precision and 
enable flexible modifications to the object’s characteristics 
by adjusting the parameters of the digital model. This 
capability allows the creation of various versions of the 
same model. Therefore, AM processes are well-suited for 
the on-demand production of small batches.

This review presents a brief overview of the various 
technological aspects and materials used in the 3D 
printing of drugs, utilizing the Web of Science (WoS) and 
PubMed bibliographic tools. It provides a state-of-the-art 
bibliographic overview (2021–2024) of the latest advances 
in the field, focusing on drug 3D printing using semi-
solid extrusion (SSE) technology, which is one of the most 
promising technologies for 3D-printed medicines. The 
aspects related to the manufacturing processes and post-
treatment of the preparations are addressed. Finally, the 
application of SSE-printed compounds in a hospital setting 
is discussed. 

2. Additive manufacturing processes  
for drugs 
2.1. Processes overview
Additive manufacturing (AM) processes have been 
classified by ISO/ASTM 52900 into seven families 
according to the binding or solidifying agent, the raw 
material (polymer, metallic, ceramic, and composites), and 
the material distribution technique used (Figure 1).56 The 
processes applicable to drug product manufacturing utilize 
polymers or photopolymers (resins). Five families using 
polymers or resins as raw material have been researched 
for drug manufacturing: powder bed fusion, material 
extrusion, material jetting, vat photopolymerization, and 
binder jetting (Figure 1).57–59 The remaining processes, 
directed energy deposition and sheet lamination, are 
not designed for drug manufacturing but are instead 
for metallic parts manufacturing. Each process has its 
respective characteristics, advantages, and drawbacks that 
influence the quality and printability of drugs, as well as 
the organization of the production process.

Figure 1. Diagram of additive manufacturing processes according to the ISO/ASTM 52900 nomenclature. Adapted with permission from ref.52 Copyright 
© 2021 ISO/ASTM.
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The processes can be divided into three major groups, 
depending on the characteristics of the raw material and the 
manufacturing requirements60: (i) powder agglomeration 
processes with powder bed fusion and binder jetting; 
(ii) liquid material solidification processes with material 
jetting and vat photopolymerization; and (iii) extrusion 
processes from solid or semi-solid materials.

To determine which of these processes would be 
most suitable for hospital and community pharmacy 
use in the coming years, the process should meet the 
following criteria:

(i) The process must be perfectly suited for 
manufacturing a wide range of different products, 
with minimal cleaning constraints and a low risk 
of cross-contamination between batches. This is 
crucial for hospital confounding, where equipment 
is used to produce various medications tailored to 
individual patient needs. If this criterion is not met, 
the process is excluded.

(ii) The materials used in the process (i.e., equipment 
and pharmaceutical raw materials) must be well-
established for clinical use. The process should 
utilize a variety of excipients that are biocompatible 
and readily available. The process should be capable 
of handling and processing thermosensitive or 
photosensitive APIs or excipients. 

(iii) The process must enable the manufacture of dosage 
forms suitable for specific populations. Considering 
oral dosage forms particularly suited for children, 
mini-printlets (mini 3D-printed tablets), 
orodispersible, fast disintegrating printlets, and 
chewable printlets have to be printable. These shapes 
must be appropriately sized for children’s mouths 
and esophagus to ensure ease of administration. 
Suppositories are another type of solid dosage form 
suitable for children that are administered rectally. 
In addition, the selected process should ideally 
facilitate the production of drugs with different API 
release kinetics (immediate and controlled release). 
The process is excluded if this criterion is not met.

In the following sections, we will discuss the different 
criteria for each process. Processes that are unsuitable 
for manufacturing printed medicines in hospitals are 
excluded from the evaluation, with justification for their 
exclusion. Finally, we will identify and detail the most 
appropriate process.

2.1.1. Powder agglomeration processes
Powder bed fusion involves using thermal energy (e.g., 
scanning laser) to selectively melt areas of powder 
which is placed in excess within a container.52,55 This 

process does not meet the aforementioned criteria. 
Firstly, it is not suitable for manufacturing multiple 
different products for various patients. The use of a large 
quantity of powder implies significant constraints for 
product changeovers, with extensive cleaning required 
for the powder container. Therefore, the risk of cross-
contamination is high. This process is better suited for 
large-scale industrial production of a single product. In 
addition, hospital premises would need to handle the use 
and storage of large quantities of powder in controlled 
atmosphere zones, requiring extensive personal protective 
equipment, particularly for chemotherapy drugs, which 
present a major risk to operators. The process also does 
not accommodate heat-sensitive materials. Furthermore, 
only a small proportion (10–15%) of the powder is sintered 
during the process.61,62 The rest is recovered, but not all 
of it can be recycled. Each pass through the 3D printer 
deteriorates the quality of the powder, necessitating the 
mixing of recycled powder with approximately 50% or 
more fresh powder,61,62 resulting in significant material 
loss. For all these reasons, this process may not be suitable 
for manufacturing drug products in hospitals. 

Binder jetting involves selectively depositing a liquid 
binding agent on a powder bed to agglomerate the powder 
particles.52,55 This process is used to produce Spritam®, the 
first and only 3D-printed medicine commercially available 
in the United States of America (USA). Spritam® is prepared 
using the patented ZipDose® technology,63 which allows 
the drug formulation to disintegrate extremely rapidly.64 
Binder jetting is similar to the powder bed melting process, 
except that it uses a solvent to bind the powder instead 
of thermal energy. The powder is also placed in excess 
in a container. Unlike the powder bed melting process, 
thermosensitive or photosensitive materials can be used, 
as binder jetting does not require thermal energy or a light 
source for production. However, like powder-bed fusion, 
the substantial use of powder is not suitable for hospital 
compounding, but rather for industrial manufacturing. 
Therefore, this process is excluded.

2.1.2. Liquid photoreactive material 
solidification processes
Vat photopolymerization is an AM process where a liquid 
photopolymer is placed in a vat and selectively exposed to a 
light source to create an object via light-induced curing.52,55 
However, this process has two main issues. First, there 
are limited biocompatible photopolymerizable materials 
available for drug production,65 and there is insufficient 
information on their safety for human consumption. 
There may also be a risk of undesirable chemical reactions 
between the API and photopolymers.65,66 As a result, the 
process may not yet be for drug manufacturing. Second, 
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the need to place the raw material (in liquid form) in 
large quantities in a tank and cure it with ultraviolet (UV) 
light precludes the use of photosensitive materials and 
complicates product changeovers. This results in extensive 
cleaning requirements and an increased risk of cross-
contamination. For these reasons, this process is also not 
suitable for drug manufacturing in hospitals. 

Material jetting is an AM process that involves 
spraying a liquid onto a substrate in droplets, triggered 
by either piezoelectric or thermal stimulation. This 
process includes two main types: (i) continuous inkjet 
printing (where ink flow is continuous) and (ii) drop-on-
demand (where ink is jetted on demand).67 Depending 
on the technology used, the drops could either solidify 
spontaneously or with the aid of heat or UV light.65 
Among the reported dosage forms, oral and buccal 
films have demonstrated significant promise for this 
technology.67,68 In 2024, material jetting meets most of 
our criteria except the second one. Inkjet 3D printers 
currently used in pharmaceutical research are still in 
the early stages of development68 and are essentially 
derived from conventional desktop printers, which are 
not yet suitable for clinical use. Therefore, despite its 
potential, this process is also excluded for hospital and 
pharmacy use.

2.1.3. Extrusion processes
Extrusion is a mechanical manufacturing process where 
the material is forced through a small hole (the die) under 
pressure, transforming it into a homogeneous, plastic, 
semi-solid mass, known as the extrudate (typically a 
filament). In AM based on extrusion processes, the raw 
material is passed through a nozzle orifice and selectively 
deposited layer by layer.52 The raw material may be in 
solid form or semi-solid form. All extrusion-based AM 
processes follow the same successive operations55: material 
loading, liquefaction, pressure application to move the 
material through the nozzle, extrusion, and controlled 
layer-by-layer deposition along a predefined path, followed 
by bonding the successive layers. The specifics of SSE are 
discussed in the next section.

In fused filament fabrication (FFF), also known 
as fused deposition modeling (FDM), the material is 
a solid thermoplastic filament obtained through hot 
melt extrusion (HME). HME uses a heat input to melt 
thermoplastic materials, which may initially be in various 
forms, such as powders, granules, flakes, pastes, etc. The 
extrudate is produced continuously, and the size and 
shape of its cross-section are defined by those of the die.55 
Established in the pharmaceutical industry in the 1980s, 
HME is used to produce a variety of dosage forms (e.g., 
pellets, granules, implants, etc.).60 HME can also be used 

to produce controlled-release forms and increase the 
apparent solubility of APIs by promoting the formation 
of amorphous solid dispersions.60,69 Additionally, HME 
can be used to produce solid thermoplastic filament 
suitable for FFF/FDM. In FFF/FDM, the filament is 
fed through a print head with a heated nozzle that 
melts the material and deposits it layer-by-layer on the 
manufacturing platform.52,53,55 Among the AM processes 
discussed, FFF/FDM is one of the least costly and easiest 
to operate, providing good precision and versatility,60,64,70–78 
and remains the most frequently used AM process in 
the market.55

Fused filament fabrication/fused deposition modeling 
(FFF/FDM) offers several significant advantages. First, it 
uses solid filament that can be easily stored and handled 
during production, making it easy to set up on hospital 
premises. The filament is consumed precisely by the 3D 
printer for parts manufacturing, minimizing waste and 
simplifying cleaning, which involves only the nozzle and 
build platform onto which the material is deposited. This 
helps manage the risk of cross-contamination. Moreover, 
HME has long been used in the pharmaceutical sector, 
providing access to a wide range of biocompatible 
excipients for use in FFF. The process does not require light 
exposure, enabling the use of photosensitive materials and 
eliminating the need for post-printing treatments.

However, this process has significant limitations. Firstly, 
filament manufacturing by HME can be challenging to 
manage within hospitals due to the complexity of achieving 
homogeneous distribution of APIs, making it difficult to 
achieve at the point of care. The API can be incorporated 
either with the excipients in the extruder or post-extrusion, 
which complicates the process.70 Additionally, HME 
equipment is costly and bulky. FFF also has a low printing 
speed, i.e., 2–5 min to manufacture a single tablet, or >1 
h for a single batch of 30 prints.70 It is difficult to improve 
this speed due to the constraints of filament flow, which 
requires a balance between low viscosity for extrusion and 
high viscosity for layer adhesion.60,70,76 Another drawback 
is the need for high temperatures to melt the thermoplastic 
filament, typically ranging from 100 to 250°C,70 which 
makes it difficult to manufacture drugs containing 
heat-sensitive APIs.

In terms of feasible dosage forms suitable for children or 
the elderly, the FFF process is well-suited for manufacturing 
solid dosage forms for swallowing, including chewable 
forms, such as the mini-tablets developed by Parulski et 
al.79 However, formulations produced using this process 
often result in dosage forms with high hardness and 
melting temperatures higher than 100°C, which makes 
them unsuitable for suppositories or orodispersible forms.
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In view of these drawbacks, we consider that the 
FFF process is not currently the most suitable option for 
compounding in pediatric oncology hospitals.

2.2. Semi-solid extrusion

2.2.1. Process overview
The other extrusion-based AM process is SSE. Unlike 
FFF, SSE uses a semi-solid (or semi-molten) raw material, 
usually placed in a syringe or cartridge and extruded at low 
temperatures,80 generally between ambient temperature 
and 80°C (Table 1).81 The material is extruded by applying 
sufficient pressure in two main ways. The first approach 
is pneumatic extrusion, whereby the piston of the 
syringe containing the pharmaceutical ink is pushed by 
compressed air pressure. The pressurized air is connected 
directly to the syringe body, whose nozzle can incorporate 
a valve to control the air channel into the printhead via 
an on-off switch, closing the channel when the valve is 
switched off80 (Figure 2). The advantages of this system 
are high precision in material extrusion, fast response 
time as the syringe body can be instantly pressurized, 
and suitability for viscous materials (as the gas can reach 
high pressures without compromising system integrity). 
However, it is less effective for low-viscosity materials and 
is more complex compared to mechanical systems.80,81 The 
second approach is mechanical extrusion, utilizing either 
a piston or a screw controlled by stepper motors to push 
the material through the nozzle (Figure 3). Mechanical 
extrusion is more affordable and easier to transport 
than the pneumatic system, as it does not require an 
air compressor. Furthermore, syringes can be replaced 
quickly and easily, speeding up the printing process. 
However, it is not suited for high-viscosity materials.80 

The quality of dosage forms manufactured by SSE is 
influenced by three categories of parameters: material 
parameters, operating parameters, and machine 
parameters. These parameters interact with each other 
and influence the quality of the finished products, 
including API content and uniformity, release kinetics, 
mass and mass uniformity of printed products, product 
appearance, and mechanical properties (e.g., surface 
roughness, dimensional accuracy, hardness, etc.). 
Material parameters refer to the formulation, particularly 
the material’s rheological properties and, to a lesser 
extent, its thermal properties. Operating parameters 
are those that can be modified during print production, 
i.e., numerical parameters and physical parameters. 
Numerical parameters enable modulation of the dosage 
and kinetics of print release from the 3D model; 
physical parameters designate the selection of optimal 
temperature, pressure, and print speed as a function of 

material and numerical parameters. Machine parameters 
are the characteristics of the equipment used to print the 
drug, such as the design and number of printheads or the 
diameter of the nozzle. 

2.2.2. Dosage form design by computer-aided design 
Operating parameters affect the quality attributes of the 
finished product. The design of the dosage form mainly 
includes its geometry, dimensions, and infill density. 
Design geometry is an editable parameter, where the 
exchange surface can be adjusted to modify the API release 
kinetics. Different dosage form dimensions can alter the 
quantity of API in the finished product (e.g., larger dosage 
forms contain more API). Additionally, the size of the 
dosage form is strongly correlated with its mass.110 The 
infill density of the dosage form can be varied to obtain 
different properties and release profiles. Generally, porosity 
is retained to facilitate API release; thus, infill density rarely 
reaches 100%. By adjusting these parameters during drug 
production via SSE, it is possible to tailor the dosage form 
to meet the specific needs of the patient, ensuring precise 
control over the drug’s characteristics and performance.

2.2.3. Pharma-ink and dosage forms
The 3D printing material, also called the Pharma-ink (a 
mixture of drugs and excipients), should possess several 
ideal characteristics: it should be easy to prepare without 
using heat, adhere minimally to facilitate packaging in 
the 3D printer while ensuring sufficient adhesion of the 
semi-solid mass to the printing bed, be smooth and free 
of lumps, and be easily incorporated into a syringe. Finally, 
the dynamic viscosity of the ink must be sufficiently high, 
with shear-thinning properties, to be printable without 
collapsing once extruded.110 Table 1 provides a non-
exhaustive literature review of articles published between 
2021 and 2024 on drugs manufactured via SSE. The most 
common dosage forms are solid oral forms, predominantly 
swallowable dosage forms (films or tablets). Other solid 
oral dosage forms produced by SSE include orodispersible 
and chewable forms. One advantage of SSE over FFF is 
its ability to manufacture solid dosage forms with a soft 
texture, allowing for the creation of chewable printlets. For 
example, gummies made by Rouaz-El Hajoui et al. contain 
gastro-resistant pellets with the API,100 enabling the 
modified release of the API while still allowing chewing of 
the dosage form (Figure 4). While most of these solid oral 
dosage forms are designed for systemic pharmacological 
action, there are a few examples intended for local action 
in the stomach, such as gastro-floating devices. Other 
notable forms include mucoadhesive films like vaginal 
ovules made by Teworte et al.,123 rectal forms, such as 
infliximab suppositories made by Awad et al.121 (Figure 5), 
and medical devices impregnated with active substances, 
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like the anti-infective drug-loaded urinary catheter made 
by Archana et al.126 The articles reviewed report different 
drug release kinetics (immediate or controlled release), 
demonstrating the versatility of SSE for producing variants 
of the same drug. Except for orodispersible forms, which 
are primarily advantageous for their rapid release of 
APIs, controlled release kinetics are found among all the 

solid oral dosage forms (Table 1), including chewable 
formulations. For example, Rouaz-El Hajoui et al.100 
developed a gastro-resistant form produced by SSE from 
a hydrogel loaded with pellets containing an API sensitive 
to the stomach’s acidic pH. This example demonstrates 
that the formulation of a chewable form is compatible with 
modified release kinetics.

Figure 2. SSE 3D printing extrusion mechanisms: pneumatic extrusion including (A1) valve-free and (A2) valve-based. Adapted with permission from 
ref.80 Copyright © 2024 Elsevier. 

Figure 3. SSE 3D printing extrusion mechanisms: mechanical extrusion including (B1) piston- or (B2) screw-driven. Adapted with permission from ref.80 

Copyright © 2024 Elsevier.
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Figure 5. Picture of 3D-printed suppositories. Adapted from ref.85

Figure 4. Pictures of 3D-printed gummies. Adapted with permission from ref.100 Copyright © 2023 The Authors. Published by Elsevier B.V.

2.2.4. Rheological properties
The rheological properties of the material are central to the 
successful execution of the SSE process and to obtaining 
finished products of the desired quality.80 A notable 
prerequisite for successful printing is that the raw material 
should ideally be shear-thinning80,110,85,108,118 (i.e., the 
viscosity of the material decreases as shear strain increases) 
and without thixotropy80,85,127,128 (i.e., the viscosity of the 
material should not decrease under constant stress over 
time). The absence of thixotropy is important because the 
viscosity of the material should not be time-dependent, and 
the successive layers should recover their initial structure 

within a few seconds after extrusion.80,85,127,128 A thixotropic 
material is likely to have a viscosity that decreases as printing 
progresses, causing the dosage form to collapse. Shear-
thinning behavior ensures uniform extrusion with smooth 
extrudates,85 preventing nozzle clogging. Conversely, if the 
viscosity is too low, there is a risk of collapse of the dosage 
form.81,118 Therefore, it is necessary to formulate a semi-
solid raw material with appropriate viscosity, neither too 
high to impede extrusion nor too low to prevent collapse. 
The viscosity of the material should allow extrusion only 
when pressure is applied and ensure a consistent extrusion 
rate so that the dosage form obtained meets specified 
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requirements (e.g., API content, release kinetics, etc.).80 
Rheological properties also influence the nozzle and print 
bed temperatures: higher viscosity typically requires higher 
printing temperatures for extrusion. Compared to FFF, 
SSE has two main advantages: the required temperatures 
are lower, generally between ambient temperature and 
80°C81 (Table 1); and the printing rate is generally faster. 
For instance, Hu et al. reported that 50 dosage forms 
can be printed in 13–15  min.113 To facilitate technology 
transfer between teams, it is important to translate these 
rheological properties into force parameters for the 
printer system. This data allows for the calibration of the 
printers to obtain consistent results.129,130 Additionally, it 
is crucial that the pharma-ink remains stable in terms of 
its rheological properties in the cartridge before printing, 
enabling on-demand printing without the need to prepare 
the pharma-ink each time. 

2.2.5. Printheads and nozzle
The nozzle diameter must be sufficiently precise to achieve 
high resolution for the dosage form, ensuring accurate 
dosage and API release kinetics while minimizing the 
risk of obstruction due to the size of the raw material 
components or the rheological properties of the 
material.80,85 Consequently, the mean particle size of the 
API should be smaller than a few hundred micrometers.80

The number of print heads determines the range of 
printed products that can be produced by the machine. 
Each nozzle can only handle one filament. Machines with 
at least two nozzles are particularly advantageous for 
multi-layer printed products (also known as polypills). 
These machines can alternate between layers containing 
two different APIs or between an API and an excipient. 
There are several examples of polypills produced using 
SSE technology.131,132

2.2.6. Extrusion pressure
Pressure is a critical parameter in the SSE process.81 The 
pressure applied to the top of the syringe containing 
the raw material increases progressively until a certain 
threshold is reached, at which point the material begins to 
be extruded. The extrusion rate is directly correlated with 
the pressure applied, making it essential for this pressure 
to remain constant with only slight fluctuations to ensure 
the quality of the finished product.81 Poorly controlled 
pressure would lead to inconsistencies in material flow, 
potentially affecting API content. Therefore, pressure must 
be accurately measured using sensors integrated into the 
3D printer. These sensors can detect process problems, 
e.g., a clogged nozzle would be signaled by an unexpected 
increase in pressure or the presence of air in the syringe that 
would be indicated by an unexpected drop in pressure.81 

In general, pressure measurement can be used to establish 
correlations between pressure and critical quality attributes 
of the finished product (e.g., mass, dimensions, etc.).81

2.3. Post-processing steps
Post-processing is an optional stage in the 3D printing 
process. For SSE, when post-treatment is necessary, it is 
almost always drying (Table 2). Drying involves removing 
water or other volatile liquids from a product, either in a 
free or adsorbed state. This step is often critical depending 
on the quality attributes of the dosage form.80 The need 
for drying depends on material parameters, i.e., the 
quantitative and qualitative composition of the pharma-
ink, as well as the thermal and rheological properties of 
the material. It also depends on the printing temperature.

Drying influences the residual moisture content, 
which affects various parameters of the product. For 
example, the limits of residual moisture content for 
orodispersible films are in the range of 3–6%.133 The 
moisture content within orodispersible films influences 
their chemical and microbiological stability, as well as 
properties like stickiness, tensile strength, flexibility, 
and disintegration time.115 Microbiological stability is a 
particularly important parameter, given the transition 
from a semi-solid gel containing a significant amount of 
water to a solid oral dosage form, where the water activity 
must be reduced to less than 0.6 to minimize the risk of 
biological contamination.111,134

In the reviewed articles, three possibilities regarding 
post-processing are noted: (i) obtaining a finished 
product without post-processing83,84,89,93,95,100,101,103,107,120,121; 
(ii) drying is necessary (Table 2); and (iii) other post-
treatment operations, besides drying, are necessary, such 
as crosslinking the printed parts,104,123 adsorption of the 
active substance119 or coating.126 

The most common drying method is open-air drying at 
room temperature, with drying times generally between 12 
and 48 h. Drying is also carried out in an oven (sometimes 
under vacuum), at low temperatures (20–80°C), for 
periods ranging from a few hours to 24 h. The printing 
bed is sometimes used to dry printed materials, with 
temperatures of 60–70°C for 10 min to 2 h. Desiccators 
or freeze-drying are sometimes used. Some studies 
combined different drying techniques. Falcone et al. used 
a combination of open-air drying, a low-power microwave 
(200–400 W), an oven, and a desiccator.92 Except for freeze-
drying, most drying techniques are simple and do not 
require complex equipment, making them feasible to use 
with SSE in hospitals. However, these methods generally 
require several hours to complete.
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3. Discussion
3.1. Challenges
Based on the literature review on the SSE process for AM 
of drugs, it is evident that the SSE process is currently the 
most suitable and mature technology for manufacturing 
compounded preparations. The SSE process enables the 
manufacturing of many different products, allowing 
for easy product changeovers. Additionally, it offers 
easy-to-use technology with equipment and excipients 
adapted to clinical use. Finally, SSE makes it possible 
to design a wide range of dosage forms tailored to each 
patient’s needs, mainly for oral administration, with 
immediate or modified release kinetics. Therefore, this 
technology could significantly benefit patients whose 
medical needs are unmet by existing industrial therapies 
or conventional compounding methods. Currently, the 
design and production of compounded medicines are 
subject to various constraints, which can be classified into 
three categories: (i) scientific and technical aspects, (ii) 
regulatory aspects, and (iii) personnel-related aspects (i.e., 
involved in design and manufacturing).135

3.1.1. Scientific and technical aspects
According to Pluta,135 the scientific and technical aspects of 
compounded medicines encompass several critical factors: 
(i) formulation quality (i.e., ensuring the dosage form 
meets the patient’s needs and is stable), (ii) formulation 
calculations (e.g., renal clearance, the half-life of the API, 
stability data, etc.), (iii) operating procedures, and (iv) post-
preparation steps (e.g., control preparation, pharmacopeial 
standards, etc.). The SSE process introduces several 
technical challenges to these factors. The first challenge is 
related to the CAD, which is the model on which printed 
medicines are based. In particular, 3D modeling provides 
the flexibility to produce different dosages by modifying 
parameters, such as size or filling density. However, the 
resolution of the infill pattern is less precise compared 
to FFF, and the extruded gel tends to be more cohesive. 
This can make it difficult to obtain a porous dosage form, 
potentially affecting the release kinetics.

As a result, the computational aspects of compounding 
become more complex, with mathematical modeling 
playing a crucial role in the drug development process. 
This complexity highlights the importance of adopting 
a Quality by Design (QbD) approach, which integrates 
comprehensive modeling aspects and the use of 
experimental designs in drug development. In parallel, 
the formulation must not only be compatible with these 
numerical aspects but also satisfy rheological constraints. 
As highlighted in the technical aspects of SSE, formulations 
for drug production can be highly diverse and complex. 
In this context, the development of formulations using Ta
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SSE should be based on mathematical modeling, enabling 
adjustments of numerous variables to achieve desired 
outcomes, such as specific dosages and targeted drug 
release kinetics. Consequently, adopting the QbD approach 
is a key to the success of SSE in drug manufacturing. This 
approach involves developing a control strategy defined 
in ICH Q10 as “a planned set of controls, resulting from 
the understanding of the product and the manufacturing 
process, which ensures the performance of the process and 
the quality of the product.”136 The control strategy should 
ideally favor non-destructive quality controls conducted 
“in line” during the manufacturing process. Such controls 
are technically through the use of process analytical 
technology (PAT). PAT is defined in ICH Q8(R2) as “a 
system of design, analysis, and control of production 
through the in-production measurement of critical quality 
and performance attributes of raw materials and materials 
in use, with the aim of ensuring the quality of the finished 
product.”137 In essence, PAT enables the design, analysis, 
and control of pharmaceutical manufacturing processes by 
measuring process variables, ensuring that they conform to 
the parameters set by mathematical modeling and that the 
quality of the finished product meets the expected standards. 
The key advantage of PAT in the context of SSE is its ability 
to provide non-destructive controls. This is particularly 
valuable as the batches produced for each patient are often 
very small in size and may not be adequate for statistical 
analysis of the batch by representative sampling. For 
instance, in the SSE process, pressure sensors integrated 
into printers can measure extrusion pressure, facilitating 
control of the drug’s quality attributes (e.g., dose, size, 
and weight).81 On-line near-infrared spectroscopy can be 
employed to quantify API content.138 Likewise, integrating 
an in-built balance within 3D printers allows for precise 
control over the mass of medicines manufactured.

3.1.2. Regulatory aspects
From a regulatory standpoint, current regulations in 
both Europe and the USA do not require compliance 
with GMP,135,139 as they are designed to regulate the 
mass manufacturing of standardized products. Hospital 
preparations are typically made in small batches for a 
small number of patients. This approach allows for the 
control of associated risks and ensures the maintenance 
of an appropriate level of quality. However, the FDA and 
the French Medicines Agency have recently revised their 
quality recommendations, raising the required standards 
closer to those of GMP.49 

As a result, batch-release controls for compounding 
are not required. However, the 3D printing of drugs at 
the point of care may necessitate regulatory changes. AM 
enables the production of highly sophisticated dosage 

forms with highly complex release kinetic profiles (e.g., 
different kinetics for different APIs) through a process 
based on digital technology. The benefit for patients lies 
specifically in the precision and flexibility of the products 
manufactured, which can vary significantly from one 
patient to another. Given these factors, it would be 
surprising if release quality controls were not implemented 
for printed drugs, as the risks to patient safety and drug 
efficacy are substantial. Therefore, incorporating PAT into 
3D printers seems essential. 

3.1.3. Personnel
Compounding requires qualified personnel with expertise 
in technical, scientific, and quality aspects. Drug AM via 
SSE will require in-depth training to fully understand and 
master the technology. Specific training on the machinery 
(particularly its use, control, cleaning, and maintenance) 
should be provided to all staff involved in this process. 
In addition, staff should also comprehensive training on 
slicing software that enables treatment customization to 
ensure the quality and safety of the drugs produced.

3.2. Manufacturing scenarios
Currently, “traditional” compounded medicines are 
manufactured at the point of care using pharmacy or 
hospital staff and equipment (and regulated by section 
503A of the Federal Food, Drug, and Cosmetic Act). 
Bearing in mind what has been said above, the crucial 
question is whether hospital premises and the staff who 
work there can manufacture these SSE-printed medicines, 
guaranteeing their safety, efficacy, and quality. We can 
identify the following players involved in the development 
and production of printed dosage forms.

The structure responsible for drug development follows 
a Quality by Design approach, ensuring the development 
of the drug formulation, the design of the 3D digital model 
at the origin of the dosage form, and different calculations 
and mathematical modeling allowing the prediction 
of critical quality attributes of the product from input 
variables. This structure will thus oversee defining and 
validating the production procedure, ensuring the quality 
of the process, its reliability, and its performance. In the 
remainder of this text, this structure will be referred to as 
“structure (a).”

The structure responsible for manufacturing the 
intermediate pharma-ink (the gel or paste placed in a 
cartridge or syringe, mixture of drug and excipients). In 
the remainder of this text, this structure will be referred to 
as “structure (b).”

The structure responsible for 3D printing is the 
pharma-ink, the post-processing, and the batch release. 
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We have seen that generally post-processing consists of 
a simple drying operation in the open air or in an oven. 
Freeze-drying is probably the most sophisticated drying 
process found in the literature for SSE, but it remains little 
used (see Table 1). This is why it is very likely that the 
structure that prints the drugs is the same as that which 
carries out post-processing. In the remainder of this text, 
this structure will be referred to as “structure (c).”

We can identify different scenarios for pharmaceutical 
3D printing at the point of care, which are being considered 
by regulatory agencies such as the FDA140 or in other works 
such as Jørgensen et al.141

Development and production at the point of care: In 
this first scenario, the hospital or pharmacy the hospital 
would bring together the activities of structures (a), (b), 
and (c). Printed medicines would therefore be developed, 
manufactured, and distributed in the same way as other 
compounded medicines made within hospitals. The 
pharma-ink would be prepared at the point of care before 
printing the medicines. This would imply a certain number 
of constraints for hospitals, like maintaining qualified 
personnel for ensuring the development of printed dosage 
forms as well as maintaining the equipment in a state of 
qualification that ensures its operability and performance.

Point of care ensures only manufacturing of the final 
product: the second scenario separates the development 
and production of the pharma-ink from the production of 
the finished product between two different structures. In 
this case, we could imagine that a pharmaceutical company 
would bring together the activities of structures (a) and 
(b), and oversee the research and development (R&D) for 
printed medicines, in collaboration with health authorities, 
3D printer manufacturers, and hospitals. Hospitals would 
only ensure that they manufacture the finished product. A 
case study carried out by Seoane et al. and published in 
2023 studies the feasibility of decentralized production 
of printed medicines in hospitals based on 3D printer 
pharma-ink manufactured by a third party.138 On this 
basis, a pharmaceutical company could take on the task 
of manufacturing the pharmaceutical ink and distributing 
it to hospitals. The commercialization of the pharma-inks 
may require the need for new regulations, as the pharma-
in is not a final medicine nor a raw material.

Outsourced development and manufacturing: An 
alternative business model to the production of medicines 
in a hospital or pharmacy would be one where the hospital 
outsources the development and manufacturing of the 
printed drug to a third party that would be structures (a), 
(b), and (c) all in one. The latter is a traditional industrial 
manufacturer subject to GMP or another hospital that has 
the capacity to develop and manufacture the printed drugs.

These scenarios are likely to coexist, depending on 
the hospitals’ ability to manage the development and 
manufacture of printed drugs. For a hospital, the use of 
a third party for the development and/or manufacture of 
pharmaceutical inks should be based on a risk assessment 
that will determine if the hospital can perform these 
activities while ensuring the quality, safety, and efficacy of 
the printed medicine. 

3.3. Applications of 3D printing technology in the 
compounding unit
Chronic conditions have been estimated to affect 10–30% 
of children, depending on the criteria used.142 Examples 
of chronic diseases include asthma, cystic fibrosis, HIV, 
congenital heart disease, diabetes, attention-deficit/
hyperactivity disorder, depression, and cancer. For these 
patients, as with adults, personalized medication based 
on genetic and physiological parameters is increasingly 
feasible. However, this often requires adjustments to the 
treatment, risking non-adherence or sub/supra therapeutic 
effects. In many cases, it necessitates adapting the form 
and strength of a licensed medicine.143 For example, in a 
phase I–II trial evaluating metronomic chemotherapy 
in patients with a relapsed or refractory Wilms tumor 
(MetroWilms), there was a need to administer adjusted 
doses of cis-retinoic acid or etoposide. The dosage forms 
in the market did not accommodate these adjustments, 
and patients were even required to drink an injectable 
solution of irinotecan due to the lack of an oral form for 
the product.144 Changing the route of administration of a 
medicinal product is not a recommended practice, as it 
may have harmful consequences for pediatric patients.30 
Indeed, these practices may alter the efficacy and safety 
parameters of the medication by modifying its absorption 
characteristics, stability, and palatability.31–33 For instance, 
in the MetroWilms clinical trial, the etoposide injection 
was unsuitable for children because it contained alcohol 
and had an unpleasant taste, which significantly reduced 
patient compliance.

To reduce this practice, hospital pharmacies are 
currently producing various capsules and liquid forms to 
meet patient needs with specific doses.145 As described by 
Curti et al., compounding does not have high dose accuracy, 
which is a problem for drugs with a narrow therapeutic 
index.146 With 3D printing, it is possible to manufacture 
medicines in more accurate doses for patients based on 
their weight, age, and specific needs.147 The accuracy and 
flexibility of 3D printing have been studied for low-dose 
formulations for neonates82 and high-dose medications 
to reduce the number of tablets required.148 For certain 
anticancer drugs or medications used in cardiology with 
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a narrow therapeutic index, 3D printing could provide a 
viable solution. 

3D printing can also improve patient compliance by 
reducing the number of tablets to be taken. For example, 
polypills that combine multiple APIs with different release 
profiles into a single dosage form offer a practical solution. 
An example is a polypill that incorporates nifedipine 
and captopril, both used to treat arterial hypertension in 
patients with type II diabetes, along with glipizide, which is 
used for the treatment of type II diabetes.131 Incorporating 
all three drugs into a single solid dosage form would be 
highly beneficial in treating diabetic patients; however, 
the formulation would require the distinct release profile 
of each drug. Additionally, polypills that combine, for 
example, an antiemetic with an oral anticancer drug or two 
antibiotics in one dose could improve compliance, which 
is a major factor in managing pediatric chronic diseases. 

One of the significant advantages of 3D printing is its 
ability to enhance adherence by developing novel dosage 
forms that are easy to administer and designed with child-
friendly formulations.149 These can include different flavors 
and color profiles,80 addressing one of the major challenges 
in pediatrics, i.e., making medicines acceptable to children 
who are often reluctant to swallow bitter tablets. For 
example, BACTRIM® (40 mg/mL trimethoprim + 8 mg/
mL sulfamethoxazole, oral suspension) and DALACIN® 
(75 mg/5 mL clindamycin granules for suspension) are 
marketed in liquid oral form but are often poorly tolerated 
due to their unpleasant taste and large volumes required 
for administration.150,151 This can lead to non-compliance, 
increasing the risk of opportunistic diseases or the 
development of antibiotic resistance. 

3D printing can make oral dosage forms more 
appealing for children by producing tablets with eye-
catching appearances and favorable palatability. Some 
studies have produced chewable dosage forms, while 
others focused on taste-masking by adjusting excipients 
and incorporating pleasant flavors, which can increase 
adherence to treatment.42 For example, Karavasili et al. 
produced pediatric-friendly chocolate-based dosage forms 
of paracetamol and ibuprofen, suggesting the possibility of  
encapsulating the drug paste within a matrix that masks 
its unpleasant flavor, as in the case of some bitter-tasting 
drugs.80 

Following these strategies to make medicines more 
pleasant for children, 3D-printed gummies were fabricated 
with different shapes (heart, bear, and disc) and colors 
using mixtures of gelatin, carrageenan, xanthan gum, 
and sweeteners. Additionally, gelatin and hydroxypropyl 
methylcellulose (HPMC) hydrogels were used to prepare 
gummies with lamotrigine.39 The viscosity and strength 

of the formulation were easily modified by varying the 
amounts of the two main excipients, HPMC and gelatin. 
Moreover, the production of dispersible film with 
personalized doses, such as hydrocortisone, can enhance 
dose accuracy while improving patient compliance.152 

An important benefit of AM in drug manufacturing 
is the possibility to tailor treatments to individual patient 
requirements and adapt drug release profiles as needed. For 
example, ranitidine hydrochloride was used as a model drug, 
and it was observed that the addition of corn starch among 
the components resulted in a greater extended release of 
the drug. 153 Similarly, a study prepared immediate-release 
levetiracetam tablets to treat epilepsy, where the dose in 
pediatric patients is subsequently increased over time.134 
This flexibility offered by AM enables tablet preparation 
that can be easily modified to follow the required dosage 
regimen.154 In France, for example, the preparation most 
frequently made in hospitals is an immediate-release 
melatonin capsule for various uses, such as alleviating 
stress before imaging exams or aiding sleep during 
hospitalization.155 However, this formulation often requires 
adjustments (i.e., frequently opened) before administration, 
which can compromise the stability of the drug. 

An alternative approach to enhance compliance 
involves preparing solid lipid tablets based on emulsion 
gels.111 Unlike previous approaches where blends of lipid 
excipients are directly printed, these formulations are 
printed using preformed oil-in-water (O/W) emulsions 
loaded with the poorly soluble drug fenofibrate. The 
resulting formulations disintegrated in less than 15 min. 
Besides printing the tablets at room temperature, which 
is particularly useful for thermolabile compounds, these 
formulations are effective for poorly water-soluble drugs, 
as they help improve their oral bioavailability. The low 
temperatures required for material extrusion make 
this technique suitable for printing proteins and other 
thermosensitive drugs.80 

Due to the lack of commercially available tacrolimus 
suppositories, these are commonly compounded 
in hospital pharmacy settings using a molding 
technique, which requires several steps and long 
periods of solidification. Suppositories loaded with the 
immunosuppressant tacrolimus, which are commonly 
used in patients with therapy-resistant inflammatory 
bowel disease (IBD), have already been prepared.156 Using 
SSE and a suitable combination of lipid excipients, self-
supporting suppositories were directly printed without the 
aid of molds. Moreover, the suppositories were fabricated 
in various sizes to accommodate patient comfort and 
dosage requirements. They were prepared using a mixture 
of Gelucire 44/14 or Gelucire 48/16 and coconut oil, the 
latter served as a plasticizer. Both pharma-inks displayed 
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good printability without the need for solid-phase carriers 
or a cooling system on the build plate. These active 
substances, for which pharmacies already produce various 
preparations, are excellent candidates for the approach.

The application of 3D printing in pharmaceutical 
manufacturing minimizes the need for excessive excipients. 
The two major components of a 3D-printed tablet or 
dosage form are the polymer matrix and drug component. 
Hence, the use of 3D-printed dosage forms for disease 
treatment reduces the risk of unwanted side effects and 
enhances therapeutic efficacy.157 Personalized medicine 
demands tailored treatments, which can be provided 
by compounding. Besides an individualized dose, other 
specific patient needs, such as sensory processing disorders, 
food allergies, and dietary needs, can be accommodated by 
compounding.158 

Due to their ease of administration, absence of toxic 
excipients, improved palatability, and flexible dosing, 3D 
printing has demonstrated its significant value across 
various pharmaceutical applications. 3D-printed tablets 
can be produced to avoid swallowing issues (chewable 
tablets), with different release profiles (e.g., immediate or 
controlled release), unique features (e.g., high drug loads), 
and better palatability that can be tailored to individual 
patient needs.80 

Despite the technological challenges, several teams 
have successfully addressed these issues in real-world 
applications, particularly focusing on rare diseases with 
low therapeutic indices. This approach optimizes treatment 
effectiveness while reducing undesirable effects.131,134,159 
Although current technology exhibits limitations with 
regard to its applications, enhancements in printing velocity 
and the concurrent utilization of multiple printheads are 
expected to improve the quantity of material that can 
be produced.

In the forthcoming years, the capacity to optimize these 
parameters will prove pivotal in determining whether the 
focus remains on rare diseases, where the demand is high, 
or shifts to more prevalent diseases with similarly high 
demand. Nevertheless, the ability to meet the demand will 
remain a crucial consideration.

4. Conclusion
This review highlights significant advancements in 
pediatric pharmacotherapy through 3D printing 
technology. Traditional formulations have long struggled 
to meet the specific needs of the populations, leading to 
off-label use and potential safety risks. In contrast, 3D 
printing, particularly SSE technology, offers promising 
solutions by enabling the production of customized 
drug formulations tailored to individual patient needs. 

This technology addresses critical issues for small-scale 
production, such as dose accuracy, palatability, and ease 
of administration, thereby improving adherence and 
therapeutic outcomes.

The ability to produce polypills with varying release 
profiles and chewable, taste-masked formulations 
demonstrates 3D printing’s potential to revolutionize 
medication for conditions requiring precise therapeutic 
control. Moreover, the flexibility and precision of 3D 
printing make it an invaluable tool for creating personalized 
treatments that traditional compounding methods cannot 
achieve with the same efficiency or safety.

Despite these promising developments, the practical 
production of these drugs will depend on the pharmacies’ 
and hospitals’ ability to manage the risks involved in 
production, considering the criticality of the drug and 
the hospital’s resources for development and production. 
Furthermore, the successful integration of 3D printing into 
routine clinical practice requires ongoing research, as well 
as clarification of legislation and harmonization between 
countries. Ensuring the safety, efficacy, and quality of 
3D-printed medications will involve robust quality control 
measures and specialized training for personnel involved 
in the drug manufacturing process.

The challenges associated with this novel production 
method include the need for personalization, ease of 
administration, and long-term patient compliance. It is 
of paramount importance to monitor patient compliance 
with these novel drugs, even if initial studies yield favorable 
feedback indicating that these personalized forms are well 
adhered to by patients.98

In conclusion, 3D printing technology represents 
a transformative approach to personalized medicine, 
addressing long-standing formulation challenges and 
paving the way for safer, more effective, and more 
acceptable medications. Continued innovation and 
regulatory support will be essential to fully realize its 
potential in improving patient care and outcomes.
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