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Abstract

The long-standing issue of inadequate medicine formulations has been a focus of
regulatory bodies and pharmaceutical research, particularly in adapting medicines
for children’s unique requirements. The pediatric population presents diverse
challenges in pharmacotherapy due to their varying age-related physiological
differences, and taste and dosage form preferences. Conventional formulations
often fail to meet these needs, leading to a high prevalence of off-label medication
use and modifications by caregivers, which can compromise drug efficacy and
safety. The well-known challenges of managing children’s medication are similar to
those in geriatrics, both of which require dose adjustments to accommodate the
patient’s pathophysiological characteristics and prevent deglutination problems.
This paper explores recent innovations in drug formulations, highlighting the shift
from traditional liquid formulations to solid dosages through three-dimensional (3D)
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printing technology. Recent advancements in 3D printing technology offer promising solutions to these challenges.
Additive manufacturing (AM), or 3D printing, facilitates the creation of complex objects (e.g., drug formulations)
directly from digital models, allowing for high precision and customization. 3D-printed formulations have displayed
considerable promise in improving palatability, adherence, and dose accuracy for pediatric use. Innovations like
chewable tablets and taste-masked formulations make medications more acceptable to children. Moreover, the
ability of 3D printing to adjust drug release profiles and doses offers a personalized approach to pediatric and geriatric
pharmacotherapy, which is essential for managing conditions that require precise therapeutic control. The paper
discusses several case studies using the semi-solid extrusion (SSE) process for producing personalized dosage forms,
along with various technical and regulatory challenges associated with implementing this process in hospital-based
drug manufacturing. In conclusion, while 3D printing in pediatric and geriatric pharmacotherapy addresses many
challenges of traditional drug formulations, ongoing research and adaptation of regulatory frameworks are necessary

to expand its application, ensuring safer, more effective, and more acceptable medication.

Keywords: Unlicensed preparation; 3D printing; Pediatrics; Semi-solid extrusion; Hospital preparation;

Personalized medicines

1. Introduction

The lack of availability of appropriate medicines for children
has been an extensive and well-known problem for many
years.! Children require medicines that are adapted to each
age group, due to the remarkable heterogeneity of this
population, which ranges from premature infants to young
adults. Some medicines are not suitable for young children,
and even less so for premature infants.”* Furthermore,
differences in the pharmacokinetic and pharmacodynamic
profiles of children and adults necessitate different dosage
strengths for children. Moreover, the preferred dosage
form for children evolves with age and must be adapted to
account for varying weights, forms, and taste preferences,
which can differ from country to country.” Consequently,
there is a strong demand for medicines that are suitable
for children, easy to administer, use non-toxic excipients,
reduced dosage frequency, good palatability, and flexible
dosing.®” When developing a medicine, the choice of
pediatric forms is most often made in favor of oral liquid
forms, despite their limitations, including stability issues,
difficulty in achieving controlled-release formulations,
the need for multiple-day dosing, exposure to potentially
harmful excipients, poorer palatability, and higher costs.
From an industrial perspective, these constraints represent
a significant challenge.*"!

Numerous incentives from the United States (US)
Food and Drug Administration (FDA) and the European
Medicines Agency (EMA), such as Pediatric Investigation
Plans, are mobilized in order to develop new formulations
adapted for children with specific indications, allowing
them to achieve Pediatric-Use Marketing Authorization
(PUMA) status. In contrast, pediatric formulations of
drugs already on the market typically receive only hybrid

generic status and are priced similarly to the original
drug. Between 2007 and 2016, 267 new medicines and
43 new dosage forms for childrens use were authorized.
Unfortunately, despite these incentives, only seven PUMAs
have been obtained since 2006."* Pediatric medicines
remain underdeveloped, particularly in areas such as
anticancer drugs, cardiology, or diseases affecting only
children.'**-" To achieve better results, Europe is in
the process of amending its incentive rules (Regulation
726/2004 and Directive 2001/83/EC) and the legislation
on medicines for children and rare diseases (Regulation
1901/2006 and Regulation 141/2000/EC, respectively).

Children are a particularly vulnerable patient group
with limited pharmaceutical treatment options. Drug
shortages have been associated with higher relapse rates
in children with cancer, the use of less effective agents,
off-label use, and a greater risk of both short- and long-
term toxicity.”® Drug shortages negatively impact patients
by affecting drug therapy, causing delays in medical
procedures or therapy, and contributing to medication
errors.”* Therapeutic alternatives, where they exist, are
often associated with higher cost, lower efficacy, increased
side effects, off-label use, and medication errors due to
inexperience and lack of knowledge.>*

Despite efforts by health authorities to promote the
development of pediatric medicines, many medicinal
productsareauthorized only foradults and are not currently
available in formulations suitable for administration to the
pediatric population. As a consequence, oft-label or even
unlicensed practices are frequent and their prevalence has
been estimated to range from 3.2% to 95% overall, 26-95%
in neonates,”* 2.7-51.2% in outpatients, and 9.0-79.0%
in inpatients.”®* Caregivers or parents often modify oft-
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label medicines before administration, such as crushing
tablets into powder, opening capsules and diluting
the powder in a liquid, or drinking injectable drugs.
However, such modifications can have potentially harmful
consequences for a pediatric patient.*® These practices may
affect the efficacy and safety parameters of the medicinal
product by altering its absorption characteristics, stability,
and palatability.*»** Such manipulation presents a risk
of medication errors in dose calculation or preparation,
leading to inaccurate dosing and undetermined effects on
the product’s stability.**** Additionally, crushing tablets or
opening capsules exposes caregivers or family members
to chemical risks associated with the active substance,
particularly when it is carcinogenic.

Due to the lack of appropriate medicines for children,
compounded medicines (i.e., unlicensed preparation)
can play an important role in addressing needs unmet
by commercial medicines or during drug shortage.””
Unlicensed preparations are produced by the community
and hospital pharmacies, offering capsules or oral liquid
formulations adapted to patients’ needs. The need for
adapted treatment through compounding is significant,
especially in conditions with narrow therapeutic margins,
long-term treatments, and medications where non-adapted
dosages or non-compliance can jeopardize patient survival,
such as cancer, autoimmune diseases, and cardiology.'®**
For example, a recent study on hospital preparations in
oncology by the European Society for Paediatric Oncology
(SIOPE) and the European Society of Oncology Pharmacy
(ESOP) identified 28 formulations for 13 different active
pharmaceutical ingredients (APIs) used in chemotherapy
and 35 formulations for 16 different APIs used in supportive
therapy, each with a sufficient level of evidence.”” In some
cases, more sophisticated formulation strategies, such as
encapsulation of drug particles or 3D medicine printing,
are highly promising and have demonstrated a significant
benefit over traditional extemporaneous preparation.”
Such robust and adaptive techniques could facilitate
access to personalized therapy for all pediatric patients.***
Scientific publications and recent industry strategies
indicate a clear shift from liquid dosage forms to novel solid
dosage forms.* This new technology improves palatability,
provides flexibility in the design of child-friendly dosage
forms, and could enable cost-effective, individualized
treatment options. However, further research in this field
is evident.*"*

The common challenges of managing children’s
medication are similar to those encountered in geriatrics.
Similarly, geriatric patients require dose adjustments
according to their physiological characteristics and galenic
compounding to compensate for deglutination problems.
Swallowing difficulties in older adults present challenges

for medication management, particularly as polypharmacy
is so common."” Therefore, geriatric patients require
personalized treatment using compounded medicines, just
as pediatric patients do.*

Overall, theuse of unlicensed preparations hasincreased
over the last 10 years, especially as they are also used to
compensate for drug shortages, such as anesthetic drugs
during the COVID-19 crisis or amoxicillin since 2022.*

Furthermore, unlicensed preparations can be tailored to
individual patients or produced at a larger semi-industrial
scale. Since compounding carries the risk of contamination
and supra- and subtherapeutic errors,” it demands highly
trained personnel and premises that are no longer available
in all pharmacies in many countries. To ensure the quality
of the preparations and their safe use, regulations must be
adapted to these different production scales. For example,
the FDA has revised its recommendations to provide more
flexibility to hospital pharmacies and health systems in the
distribution of compounded drugs, while emphasizing the
importance of ensuring their safety and efficacy.** In France,
new regulations allow for the production of medium-sized
batches, with a corresponding increase in quality towards
Good Manufacturing Practice (GMP) standards.* In
this context, 3D printing emerges as a valuable tool for
creating custom shapes and doses, enhancing the quality
of pediatric preparations.*

Since the 2010s, there has been increasing enthusiasm
among academic, hospital, and community pharmacies, as
well as the industry, for additive manufacturing (AM) of
drugs.”®' Better known as 3D printing, AM is a process
of creating a physical object by joining materials layer by
layer from a digital 3D model.”* All AM processes can be
divided into a sequence of operations integrated within
a digital chain, which comprises four distinct stages.”*-*
The first stage is computer-aided design (CAD), which
involves creating a 3D digital model and converting its
surfaces into a network of polygons, typically triangular
facets. The positions of these facets are then translated
into instructions for the 3D printer, written in G-code.
The second stage is the preparation of the digital model
prior to manufacturing, which involves optimizing and
repairing the digital model before slicing it into layers.
The third stage is computer-aided manufacturing (CAM),
which involves manufacturing the physical object layer
by layer. The fourth stage is post-processing, which is
optional depending on the objects manufactured and the
technology used. This stage consists of a series of steps
carried out after the completion of a manufacturing cycle
to ensure the finished product has the desired properties
(e.g., support removal, drying, coating, polishing, coloring,
smoothing, etc.).
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Additive manufacturing (AM) processes offer several
advantages over traditional methods. They enable complex
objects to be manufactured with high precision and
enable flexible modifications to the object’s characteristics
by adjusting the parameters of the digital model. This
capability allows the creation of various versions of the
same model. Therefore, AM processes are well-suited for
the on-demand production of small batches.

This review presents a brief overview of the various
technological aspects and materials used in the 3D
printing of drugs, utilizing the Web of Science (WoS) and
PubMed bibliographic tools. It provides a state-of-the-art
bibliographic overview (2021-2024) of the latest advances
in the field, focusing on drug 3D printing using semi-
solid extrusion (SSE) technology, which is one of the most
promising technologies for 3D-printed medicines. The
aspects related to the manufacturing processes and post-
treatment of the preparations are addressed. Finally, the
application of SSE-printed compounds in a hospital setting
is discussed.

2. Additive manufacturing processes
for drugs

2.1. Processes overview

Additive manufacturing (AM) processes have been
classified by ISO/ASTM 52900 into seven families
according to the binding or solidifying agent, the raw
material (polymer, metallic, ceramic, and composites), and
the material distribution technique used (Figure 1).* The
processes applicable to drug product manufacturing utilize
polymers or photopolymers (resins). Five families using
polymers or resins as raw material have been researched
for drug manufacturing: powder bed fusion, material
extrusion, material jetting, vat photopolymerization, and
binder jetting (Figure 1).”~* The remaining processes,
directed energy deposition and sheet lamination, are
not designed for drug manufacturing but are instead
for metallic parts manufacturing. Each process has its
respective characteristics, advantages, and drawbacks that
influence the quality and printability of drugs, as well as
the organization of the production process.

material
: I I I I I | I
Thermal reaction bonding Chemical reaction bonding
s y A A 4
TV Filament |[ Melted Powder Liquid Liquid material Sheet
dsto . material || material material q material
A d A 4 A4 h
=0nga Deposition Print Powder : Print Sheet
distribution ¢ nozzel Head bed Print head Head Vat stack
Selective
- Extrusion || Multi-jet || fusion of . . . Fusion of
of melted || material |[materialin Rgs;:itr:ng h otL(')gr:)tl rﬁfé:: I\C/Srin stacked
princip material printing || a powder g P poly 8[| sheets
bed
Process Material || Material Powder Binder |[Material Pho\t/gt ol Sheet
category Extrusion Jetting ||Bed Fusion|| Jetting Jetting merizaﬁio\rq Lamination

Figure 1. Diagram of additive manufacturing processes according to the ISO/ASTM 52900 nomenclature. Adapted with permission from ref.> Copyright

© 2021 ISO/ASTM.
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The processes can be divided into three major groups,
depending on the characteristics of the raw material and the
manufacturing requirements®: (i) powder agglomeration
processes with powder bed fusion and binder jetting;
(ii) liquid material solidification processes with material
jetting and vat photopolymerization; and (iii) extrusion
processes from solid or semi-solid materials.

To determine which of these processes would be
most suitable for hospital and community pharmacy
use in the coming years, the process should meet the
following criteria:

(i) The process must be perfectly suited for
manufacturing a wide range of different products,
with minimal cleaning constraints and a low risk
of cross-contamination between batches. This is
crucial for hospital confounding, where equipment
is used to produce various medications tailored to
individual patient needs. If this criterion is not met,
the process is excluded.

(ii) The materials used in the process (i.e., equipment
and pharmaceutical raw materials) must be well-
established for clinical use. The process should
utilize a variety of excipients that are biocompatible
and readily available. The process should be capable
of handling and processing thermosensitive or
photosensitive APIs or excipients.

(iii) The process must enable the manufacture of dosage
forms suitable for specific populations. Considering
oral dosage forms particularly suited for children,
mini-printlets ~ (mini ~ 3D-printed  tablets),
orodispersible, fast disintegrating printlets, and
chewable printlets have to be printable. These shapes
must be appropriately sized for children’s mouths
and esophagus to ensure ease of administration.
Suppositories are another type of solid dosage form
suitable for children that are administered rectally.
In addition, the selected process should ideally
facilitate the production of drugs with different API
release kinetics (immediate and controlled release).
The process is excluded if this criterion is not met.

In the following sections, we will discuss the different
criteria for each process. Processes that are unsuitable
for manufacturing printed medicines in hospitals are
excluded from the evaluation, with justification for their
exclusion. Finally, we will identify and detail the most
appropriate process.

2.1.1. Powder agglomeration processes

Powder bed fusion involves using thermal energy (e.g.,
scanning laser) to selectively melt areas of powder
which is placed in excess within a container.”>* This

process does not meet the aforementioned criteria.
Firstly, it is not suitable for manufacturing multiple
different products for various patients. The use of a large
quantity of powder implies significant constraints for
product changeovers, with extensive cleaning required
for the powder container. Therefore, the risk of cross-
contamination is high. This process is better suited for
large-scale industrial production of a single product. In
addition, hospital premises would need to handle the use
and storage of large quantities of powder in controlled
atmosphere zones, requiring extensive personal protective
equipment, particularly for chemotherapy drugs, which
present a major risk to operators. The process also does
not accommodate heat-sensitive materials. Furthermore,
onlyasmall proportion (10-15%) of the powder is sintered
during the process.®"%* The rest is recovered, but not all
of it can be recycled. Each pass through the 3D printer
deteriorates the quality of the powder, necessitating the
mixing of recycled powder with approximately 50% or
more fresh powder,** resulting in significant material
loss. For all these reasons, this process may not be suitable
for manufacturing drug products in hospitals.

Binder jetting involves selectively depositing a liquid
binding agent on a powder bed to agglomerate the powder
particles.”>* This process is used to produce Spritam®, the
first and only 3D-printed medicine commercially available
in the United States of America (USA). Spritam® is prepared
using the patented ZipDose® technology,®® which allows
the drug formulation to disintegrate extremely rapidly.**
Binder jetting is similar to the powder bed melting process,
except that it uses a solvent to bind the powder instead
of thermal energy. The powder is also placed in excess
in a container. Unlike the powder bed melting process,
thermosensitive or photosensitive materials can be used,
as binder jetting does not require thermal energy or a light
source for production. However, like powder-bed fusion,
the substantial use of powder is not suitable for hospital
compounding, but rather for industrial manufacturing.
Therefore, this process is excluded.

2.1.2. Liquid photoreactive material

solidification processes

Vat photopolymerization is an AM process where a liquid
photopolymer is placed in a vat and selectively exposed to a
light source to create an object via light-induced curing.”>**
However, this process has two main issues. First, there
are limited biocompatible photopolymerizable materials
available for drug production,” and there is insufficient
information on their safety for human consumption.
There may also be a risk of undesirable chemical reactions
between the API and photopolymers.®% As a result, the
process may not yet be for drug manufacturing. Second,
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the need to place the raw material (in liquid form) in
large quantities in a tank and cure it with ultraviolet (UV)
light precludes the use of photosensitive materials and
complicates product changeovers. This results in extensive
cleaning requirements and an increased risk of cross-
contamination. For these reasons, this process is also not
suitable for drug manufacturing in hospitals.

Material jetting is an AM process that involves
spraying a liquid onto a substrate in droplets, triggered
by either piezoelectric or thermal stimulation. This
process includes two main types: (i) continuous inkjet
printing (where ink flow is continuous) and (ii) drop-on-
demand (where ink is jetted on demand).”” Depending
on the technology used, the drops could either solidify
spontaneously or with the aid of heat or UV light.®
Among the reported dosage forms, oral and buccal
films have demonstrated significant promise for this
technology.®”*® In 2024, material jetting meets most of
our criteria except the second one. Inkjet 3D printers
currently used in pharmaceutical research are still in
the early stages of development® and are essentially
derived from conventional desktop printers, which are
not yet suitable for clinical use. Therefore, despite its
potential, this process is also excluded for hospital and
pharmacy use.

2.1.3. Extrusion processes

Extrusion is a mechanical manufacturing process where
the material is forced through a small hole (the die) under
pressure, transforming it into a homogeneous, plastic,
semi-solid mass, known as the extrudate (typically a
filament). In AM based on extrusion processes, the raw
material is passed through a nozzle orifice and selectively
deposited layer by layer.”> The raw material may be in
solid form or semi-solid form. All extrusion-based AM
processes follow the same successive operations®: material
loading, liquefaction, pressure application to move the
material through the nozzle, extrusion, and controlled
layer-by-layer deposition along a predefined path, followed
by bonding the successive layers. The specifics of SSE are
discussed in the next section.

In fused filament fabrication (FFF), also known
as fused deposition modeling (FDM), the material is
a solid thermoplastic filament obtained through hot
melt extrusion (HME). HME uses a heat input to melt
thermoplastic materials, which may initially be in various
forms, such as powders, granules, flakes, pastes, etc. The
extrudate is produced continuously, and the size and
shape of its cross-section are defined by those of the die.*”
Established in the pharmaceutical industry in the 1980s,
HME is used to produce a variety of dosage forms (e.g.,
pellets, granules, implants, etc.). HME can also be used

to produce controlled-release forms and increase the
apparent solubility of APIs by promoting the formation
of amorphous solid dispersions.®*® Additionally, HME
can be used to produce solid thermoplastic filament
suitable for FFF/FDM. In FFF/FDM, the filament is
fed through a print head with a heated nozzle that
melts the material and deposits it layer-by-layer on the
manufacturing platform.*>*>*> Among the AM processes
discussed, FFF/FDM is one of the least costly and easiest
to operate, providing good precision and versatility,®¢*7°-"8
and remains the most frequently used AM process in
the market.”

Fused filament fabrication/fused deposition modeling
(FFE/FDM) offers several significant advantages. First, it
uses solid filament that can be easily stored and handled
during production, making it easy to set up on hospital
premises. The filament is consumed precisely by the 3D
printer for parts manufacturing, minimizing waste and
simplifying cleaning, which involves only the nozzle and
build platform onto which the material is deposited. This
helps manage the risk of cross-contamination. Moreover,
HME has long been used in the pharmaceutical sector,
providing access to a wide range of biocompatible
excipients for use in FFE The process does not require light
exposure, enabling the use of photosensitive materials and
eliminating the need for post-printing treatments.

However, this process has significant limitations. Firstly,
filament manufacturing by HME can be challenging to
manage within hospitals due to the complexity of achieving
homogeneous distribution of APIs, making it difficult to
achieve at the point of care. The API can be incorporated
either with the excipients in the extruder or post-extrusion,
which complicates the process.”® Additionally, HME
equipment is costly and bulky. FFF also has a low printing
speed, i.e., 2-5 min to manufacture a single tablet, or >1
h for a single batch of 30 prints.”® It is difficult to improve
this speed due to the constraints of filament flow, which
requires a balance between low viscosity for extrusion and
high viscosity for layer adhesion.®*’*’ Another drawback
is the need for high temperatures to melt the thermoplastic
filament, typically ranging from 100 to 250°C,”° which
makes it difficult to manufacture drugs containing
heat-sensitive APIs.

In terms of feasible dosage forms suitable for children or
the elderly, the FFF process is well-suited for manufacturing
solid dosage forms for swallowing, including chewable
forms, such as the mini-tablets developed by Parulski et
al.”? However, formulations produced using this process
often result in dosage forms with high hardness and
melting temperatures higher than 100°C, which makes
them unsuitable for suppositories or orodispersible forms.
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In view of these drawbacks, we consider that the
FFF process is not currently the most suitable option for
compounding in pediatric oncology hospitals.

2.2. Semi-solid extrusion

2.2.1. Process overview

The other extrusion-based AM process is SSE. Unlike
FFF, SSE uses a semi-solid (or semi-molten) raw material,
usually placed in a syringe or cartridge and extruded atlow
temperatures,® generally between ambient temperature
and 80°C (Table 1).* The material is extruded by applying
sufficient pressure in two main ways. The first approach
is pneumatic extrusion, whereby the piston of the
syringe containing the pharmaceutical ink is pushed by
compressed air pressure. The pressurized air is connected
directly to the syringe body, whose nozzle can incorporate
a valve to control the air channel into the printhead via
an on-oft switch, closing the channel when the valve is
switched oft® (Figure 2). The advantages of this system
are high precision in material extrusion, fast response
time as the syringe body can be instantly pressurized,
and suitability for viscous materials (as the gas can reach
high pressures without compromising system integrity).
However, it is less effective for low-viscosity materials and
is more complex compared to mechanical systems.**®' The
second approach is mechanical extrusion, utilizing either
a piston or a screw controlled by stepper motors to push
the material through the nozzle (Figure 3). Mechanical
extrusion is more affordable and easier to transport
than the pneumatic system, as it does not require an
air compressor. Furthermore, syringes can be replaced
quickly and easily, speeding up the printing process.
However, it is not suited for high-viscosity materials.*

The quality of dosage forms manufactured by SSE is
influenced by three categories of parameters: material
parameters, operating parameters, and machine
parameters. These parameters interact with each other
and influence the quality of the finished products,
including API content and uniformity, release kinetics,
mass and mass uniformity of printed products, product
appearance, and mechanical properties (e.g., surface
roughness, dimensional accuracy, hardness, etc.).
Material parameters refer to the formulation, particularly
the material’s rheological properties and, to a lesser
extent, its thermal properties. Operating parameters
are those that can be modified during print production,
i.e., numerical parameters and physical parameters.
Numerical parameters enable modulation of the dosage
and kinetics of print release from the 3D model;
physical parameters designate the selection of optimal
temperature, pressure, and print speed as a function of

material and numerical parameters. Machine parameters
are the characteristics of the equipment used to print the
drug, such as the design and number of printheads or the
diameter of the nozzle.

2.2.2. Dosage form design by computer-aided design
Operating parameters affect the quality attributes of the
finished product. The design of the dosage form mainly
includes its geometry, dimensions, and infill density.
Design geometry is an editable parameter, where the
exchange surface can be adjusted to modify the API release
kinetics. Different dosage form dimensions can alter the
quantity of API in the finished product (e.g., larger dosage
forms contain more API). Additionally, the size of the
dosage form is strongly correlated with its mass.'® The
infill density of the dosage form can be varied to obtain
different properties and release profiles. Generally, porosity
is retained to facilitate API release; thus, infill density rarely
reaches 100%. By adjusting these parameters during drug
production via SSE, it is possible to tailor the dosage form
to meet the specific needs of the patient, ensuring precise
control over the drug’s characteristics and performance.

2.2.3. Pharma-ink and dosage forms

The 3D printing material, also called the Pharma-ink (a
mixture of drugs and excipients), should possess several
ideal characteristics: it should be easy to prepare without
using heat, adhere minimally to facilitate packaging in
the 3D printer while ensuring sufficient adhesion of the
semi-solid mass to the printing bed, be smooth and free
of lumps, and be easily incorporated into a syringe. Finally,
the dynamic viscosity of the ink must be sufficiently high,
with shear-thinning properties, to be printable without
collapsing once extruded.'® Table 1 provides a non-
exhaustive literature review of articles published between
2021 and 2024 on drugs manufactured via SSE. The most
common dosage forms are solid oral forms, predominantly
swallowable dosage forms (films or tablets). Other solid
oral dosage forms produced by SSE include orodispersible
and chewable forms. One advantage of SSE over FFF is
its ability to manufacture solid dosage forms with a soft
texture, allowing for the creation of chewable printlets. For
example, gummies made by Rouaz-El Hajoui et al. contain
gastro-resistant pellets with the APIL'® enabling the
modified release of the API while still allowing chewing of
the dosage form (Figure 4). While most of these solid oral
dosage forms are designed for systemic pharmacological
action, there are a few examples intended for local action
in the stomach, such as gastro-floating devices. Other
notable forms include mucoadhesive films like vaginal
ovules made by Teworte et al.,'” rectal forms, such as
infliximab suppositories made by Awad et al.'* (Figure 5),
and medical devices impregnated with active substances,
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Figure 2. SSE 3D printing extrusion mechanisms: pneumatic extrusion including (A1) valve-free and (A2) valve-based. Adapted with permission from

ref.** Copyright © 2024 Elsevier.
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like the anti-infective drug-loaded urinary catheter made
by Archana et al.'*® The articles reviewed report different
drug release kinetics (immediate or controlled release),
demonstrating the versatility of SSE for producing variants
of the same drug. Except for orodispersible forms, which
are primarily advantageous for their rapid release of
APIs, controlled release kinetics are found among all the

solid oral dosage forms (Table 1), including chewable
formulations. For example, Rouaz-El Hajoui et al.'®
developed a gastro-resistant form produced by SSE from
a hydrogel loaded with pellets containing an API sensitive
to the stomach’s acidic pH. This example demonstrates
that the formulation of a chewable form is compatible with
modified release kinetics.
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Figure 4. Pictures of 3D-printed gummies. Adapted with permission from ref.'®® Copyright © 2023 The Authors. Published by Elsevier B.V.

Figure 5. Picture of 3D-printed suppositories. Adapted from ref.*>

2.2.4. Rheological properties

The rheological properties of the material are central to the
successful execution of the SSE process and to obtaining
finished products of the desired quality.®® A notable
prerequisite for successful printing is that the raw material
should ideally be shear-thinning®»!!®8108118 (j e the
viscosity of the material decreases as shear strain increases)
and without thixotropy***>'*!*# (j.e., the viscosity of the
material should not decrease under constant stress over
time). The absence of thixotropy is important because the
viscosity of the material should not be time-dependent, and
the successive layers should recover their initial structure

within a few seconds after extrusion.®*>127128 A thixotropic
material is likely to have a viscosity that decreases as printing
progresses, causing the dosage form to collapse. Shear-
thinning behavior ensures uniform extrusion with smooth
extrudates,® preventing nozzle clogging. Conversely, if the
viscosity is too low, there is a risk of collapse of the dosage
form .58 Therefore, it is necessary to formulate a semi-
solid raw material with appropriate viscosity, neither too
high to impede extrusion nor too low to prevent collapse.
The viscosity of the material should allow extrusion only
when pressure is applied and ensure a consistent extrusion
rate so that the dosage form obtained meets specified
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requirements (e.g., API content, release kinetics, etc.).®
Rheological properties also influence the nozzle and print
bed temperatures: higher viscosity typically requires higher
printing temperatures for extrusion. Compared to FFE,
SSE has two main advantages: the required temperatures
are lower, generally between ambient temperature and
80°C® (Table 1); and the printing rate is generally faster.
For instance, Hu et al. reported that 50 dosage forms
can be printed in 13-15 min.'” To facilitate technology
transfer between teams, it is important to translate these
rheological properties into force parameters for the
printer system. This data allows for the calibration of the
printers to obtain consistent results.'*”'** Additionally, it
is crucial that the pharma-ink remains stable in terms of
its rheological properties in the cartridge before printing,
enabling on-demand printing without the need to prepare
the pharma-ink each time.

2.2.5. Printheads and nozzle

The nozzle diameter must be sufficiently precise to achieve
high resolution for the dosage form, ensuring accurate
dosage and API release kinetics while minimizing the
risk of obstruction due to the size of the raw material
components or the rheological properties of the
material.**** Consequently, the mean particle size of the
API should be smaller than a few hundred micrometers.®

The number of print heads determines the range of
printed products that can be produced by the machine.
Each nozzle can only handle one filament. Machines with
at least two nozzles are particularly advantageous for
multi-layer printed products (also known as polypills).
These machines can alternate between layers containing
two different APIs or between an API and an excipient.
There are several examples of polypills produced using
SSE technology."*"'*

2.2.6. Extrusion pressure

Pressure is a critical parameter in the SSE process.®’ The
pressure applied to the top of the syringe containing
the raw material increases progressively until a certain
threshold is reached, at which point the material begins to
be extruded. The extrusion rate is directly correlated with
the pressure applied, making it essential for this pressure
to remain constant with only slight fluctuations to ensure
the quality of the finished product.®® Poorly controlled
pressure would lead to inconsistencies in material flow,
potentially affecting API content. Therefore, pressure must
be accurately measured using sensors integrated into the
3D printer. These sensors can detect process problems,
e.g., a clogged nozzle would be signaled by an unexpected
increase in pressure or the presence of air in the syringe that
would be indicated by an unexpected drop in pressure.”!

In general, pressure measurement can be used to establish
correlations between pressure and critical quality attributes
of the finished product (e.g., mass, dimensions, etc.).*

2.3. Post-processing steps

Post-processing is an optional stage in the 3D printing
process. For SSE, when post-treatment is necessary, it is
almost always drying (Table 2). Drying involves removing
water or other volatile liquids from a product, either in a
free or adsorbed state. This step is often critical depending
on the quality attributes of the dosage form.*® The need
for drying depends on material parameters, ie., the
quantitative and qualitative composition of the pharma-
ink, as well as the thermal and rheological properties of
the material. It also depends on the printing temperature.

Drying influences the residual moisture content,
which affects various parameters of the product. For
example, the limits of residual moisture content for
orodispersible films are in the range of 3-6%."”* The
moisture content within orodispersible films influences
their chemical and microbiological stability, as well as
properties like stickiness, tensile strength, flexibility,
and disintegration time.'” Microbiological stability is a
particularly important parameter, given the transition
from a semi-solid gel containing a significant amount of
water to a solid oral dosage form, where the water activity
must be reduced to less than 0.6 to minimize the risk of
biological contamination.'""**

In the reviewed articles, three possibilities regarding
post-processing are noted: (i) obtaining a finished
pI‘OduCt Without pOst_processing83,84,89,93,95,100,101,103,107,120,121;
(ii) drying is necessary (Table 2); and (iii) other post-
treatment operations, besides drying, are necessary, such
as crosslinking the printed parts,'**'** adsorption of the
active substance'"” or coating.'*

The most common drying method is open-air drying at
room temperature, with drying times generally between 12
and 48 h. Drying is also carried out in an oven (sometimes
under vacuum), at low temperatures (20-80°C), for
periods ranging from a few hours to 24 h. The printing
bed is sometimes used to dry printed materials, with
temperatures of 60-70°C for 10 min to 2 h. Desiccators
or freeze-drying are sometimes used. Some studies
combined different drying techniques. Falcone et al. used
a combination of open-air drying, a low-power microwave
(200-400 W), an oven, and a desiccator.’? Except for freeze-
drying, most drying techniques are simple and do not
require complex equipment, making them feasible to use
with SSE in hospitals. However, these methods generally
require several hours to complete.
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3. Discussion
sl el al<la 3.1. Challenges
|| ® === Based on the literature review on the SSE process for AM
of drugs, it is evident that the SSE process is currently the
most suitable and mature technology for manufacturing
compounded preparations. The SSE process enables the
manufacturing of many different products, allowing
for easy product changeovers. Additionally, it offers
easy-to-use technology with equipment and excipients
adapted to clinical use. Finally, SSE makes it possible
to design a wide range of dosage forms tailored to each
% patients needs, mainly for oral administration, with
g immediate or modified release kinetics. Therefore, this
5 technology could significantly benefit patients whose
E medical needs are unmet by existing industrial therapies
g or conventional compounding methods. Currently, the
8 s design and production of compounded medicines are
£ g subject to various constraints, which can be classified into
g g three categories: (i) scientific and technical aspects, (ii)
§ Eé .regulator.y aspe.cts, and (iii) persongel—related aspects (i.e.,
involved in design and manufacturing).'*
3.1.1. Scientific and technical aspects
According to Pluta," the scientific and technical aspects of
. compounded medicines encompass several critical factors:
;E. (i) formulation quality (i.e., ensuring the dosage form
B meets the patient’s needs and is stable), (ii) formulation
‘§ calculations (e.g., renal clearance, the half-life of the API,
_ g“ stability data, etc.), (iii) operating procedures, and (iv) post-
jga P ; preparation steps (e.g., control preparation, pharmacopeial
g s|l<|.|E|lT standards, etc.). The SSE process introduces several
2 S|d|~|=|F technical challenges to these factors. The first challenge is
related to the CAD, which is the model on which printed
medicines are based. In particular, 3D modeling provides
the flexibility to produce different dosages by modifying
g £ parameters, such as size or filling density. However, the
o g £ resolution of the infill pattern is less precise compared
§ f: g to FFE and the extruded gel tends to be more cohesive.
;é E 5 ‘é ololo This can make it.diﬁ‘icult to obta’in a porous dosage form,
3 § alglglele potentially affecting the release kinetics.
E As a result, the computational aspects of compounding
'é ol becqme more. comple.tx, with mathematical modeling
3 %) %’ _E pla.ymg a crugal r'ole in the drgg development process.
2 2|2 This complexity highlights the importance of adopting
= | 2|2 a Quality by Design (QbD) approach, which integrates
- E _q; _E ,q: comprehensive modeling aspects and the use of
e g ARARS experimental designs in drug development. In parallel,
£ [ % 5 g f>~ g the formulation must not only be compatible with these
§ ?E, % o 2 '("Z P g numerical aspects but also satisfy rheological constraints.
N | @ 5 T8 8¢ As highlighted in the technical aspects of SSE, formulations
2B E |BZglg = for drug production can be highly diverse and complex.
g |R[A° SR In this context, the development of formulations using
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SSE should be based on mathematical modeling, enabling
adjustments of numerous variables to achieve desired
outcomes, such as specific dosages and targeted drug
release kinetics. Consequently, adopting the QbD approach
is a key to the success of SSE in drug manufacturing. This
approach involves developing a control strategy defined
in ICH Q10 as “a planned set of controls, resulting from
the understanding of the product and the manufacturing
process, which ensures the performance of the process and
the quality of the product”'*® The control strategy should
ideally favor non-destructive quality controls conducted
“in line” during the manufacturing process. Such controls
are technically through the use of process analytical
technology (PAT). PAT is defined in ICH Q8(R2) as “a
system of design, analysis, and control of production
through the in-production measurement of critical quality
and performance attributes of raw materials and materials
in use, with the aim of ensuring the quality of the finished
product”* In essence, PAT enables the design, analysis,
and control of pharmaceutical manufacturing processes by
measuring process variables, ensuring that they conform to
the parameters set by mathematical modeling and that the
quality ofthe finished product meets the expected standards.
The key advantage of PAT in the context of SSE is its ability
to provide non-destructive controls. This is particularly
valuable as the batches produced for each patient are often
very small in size and may not be adequate for statistical
analysis of the batch by representative sampling. For
instance, in the SSE process, pressure sensors integrated
into printers can measure extrusion pressure, facilitating
control of the drugs quality attributes (e.g., dose, size,
and weight).*! On-line near-infrared spectroscopy can be
employed to quantify API content.”* Likewise, integrating
an in-built balance within 3D printers allows for precise
control over the mass of medicines manufactured.

3.1.2. Regulatory aspects

From a regulatory standpoint, current regulations in
both Europe and the USA do not require compliance
with GMP"*>'¥ as they are designed to regulate the
mass manufacturing of standardized products. Hospital
preparations are typically made in small batches for a
small number of patients. This approach allows for the
control of associated risks and ensures the maintenance
of an appropriate level of quality. However, the FDA and
the French Medicines Agency have recently revised their
quality recommendations, raising the required standards
closer to those of GMP.¥

As a result, batch-release controls for compounding
are not required. However, the 3D printing of drugs at
the point of care may necessitate regulatory changes. AM
enables the production of highly sophisticated dosage

forms with highly complex release kinetic profiles (e.g.,
different kinetics for different APIs) through a process
based on digital technology. The benefit for patients lies
specifically in the precision and flexibility of the products
manufactured, which can vary significantly from one
patient to another. Given these factors, it would be
surprising if release quality controls were not implemented
for printed drugs, as the risks to patient safety and drug
efficacy are substantial. Therefore, incorporating PAT into
3D printers seems essential.

3.1.3. Personnel

Compounding requires qualified personnel with expertise
in technical, scientific, and quality aspects. Drug AM via
SSE will require in-depth training to fully understand and
master the technology. Specific training on the machinery
(particularly its use, control, cleaning, and maintenance)
should be provided to all staff involved in this process.
In addition, staff should also comprehensive training on
slicing software that enables treatment customization to
ensure the quality and safety of the drugs produced.

3.2. Manufacturing scenarios

Currently, “traditional” compounded medicines are
manufactured at the point of care using pharmacy or
hospital staff and equipment (and regulated by section
503A of the Federal Food, Drug, and Cosmetic Act).
Bearing in mind what has been said above, the crucial
question is whether hospital premises and the staff who
work there can manufacture these SSE-printed medicines,
guaranteeing their safety, efficacy, and quality. We can
identify the following players involved in the development
and production of printed dosage forms.

The structure responsible for drug development follows
a Quality by Design approach, ensuring the development
of the drug formulation, the design of the 3D digital model
at the origin of the dosage form, and different calculations
and mathematical modeling allowing the prediction
of critical quality attributes of the product from input
variables. This structure will thus oversee defining and
validating the production procedure, ensuring the quality
of the process, its reliability, and its performance. In the
remainder of this text, this structure will be referred to as
“structure (a)”

The structure responsible for manufacturing the
intermediate pharma-ink (the gel or paste placed in a
cartridge or syringe, mixture of drug and excipients). In
the remainder of this text, this structure will be referred to
as “structure (b)”

The structure responsible for 3D printing is the
pharma-ink, the post-processing, and the batch release.
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We have seen that generally post-processing consists of
a simple drying operation in the open air or in an oven.
Freeze-drying is probably the most sophisticated drying
process found in the literature for SSE, but it remains little
used (see Table 1). This is why it is very likely that the
structure that prints the drugs is the same as that which
carries out post-processing. In the remainder of this text,
this structure will be referred to as “structure (c)”

We can identify different scenarios for pharmaceutical
3D printing at the point of care, which are being considered
by regulatory agencies such as the FDA' or in other works
such as Jorgensen et al.'*!

Development and production at the point of care: In
this first scenario, the hospital or pharmacy the hospital
would bring together the activities of structures (a), (b),
and (c). Printed medicines would therefore be developed,
manufactured, and distributed in the same way as other
compounded medicines made within hospitals. The
pharma-ink would be prepared at the point of care before
printing the medicines. This would imply a certain number
of constraints for hospitals, like maintaining qualified
personnel for ensuring the development of printed dosage
forms as well as maintaining the equipment in a state of
qualification that ensures its operability and performance.

Point of care ensures only manufacturing of the final
product: the second scenario separates the development
and production of the pharma-ink from the production of
the finished product between two different structures. In
this case, we could imagine that a pharmaceutical company
would bring together the activities of structures (a) and
(b), and oversee the research and development (R&D) for
printed medicines, in collaboration with health authorities,
3D printer manufacturers, and hospitals. Hospitals would
only ensure that they manufacture the finished product. A
case study carried out by Seoane et al. and published in
2023 studies the feasibility of decentralized production
of printed medicines in hospitals based on 3D printer
pharma-ink manufactured by a third party.”® On this
basis, a pharmaceutical company could take on the task
of manufacturing the pharmaceutical ink and distributing
it to hospitals. The commercialization of the pharma-inks
may require the need for new regulations, as the pharma-
in is not a final medicine nor a raw material.

Outsourced development and manufacturing: An
alternative business model to the production of medicines
in a hospital or pharmacy would be one where the hospital
outsources the development and manufacturing of the
printed drug to a third party that would be structures (a),
(b), and (c) all in one. The latter is a traditional industrial
manufacturer subject to GMP or another hospital that has
the capacity to develop and manufacture the printed drugs.

These scenarios are likely to coexist, depending on
the hospitals’ ability to manage the development and
manufacture of printed drugs. For a hospital, the use of
a third party for the development and/or manufacture of
pharmaceutical inks should be based on a risk assessment
that will determine if the hospital can perform these
activities while ensuring the quality, safety, and efficacy of
the printed medicine.

3.3. Applications of 3D printing technology in the
compounding unit

Chronic conditions have been estimated to affect 10-30%
of children, depending on the criteria used."*> Examples
of chronic diseases include asthma, cystic fibrosis, HIV,
congenital heart disease, diabetes, attention-deficit/
hyperactivity disorder, depression, and cancer. For these
patients, as with adults, personalized medication based
on genetic and physiological parameters is increasingly
feasible. However, this often requires adjustments to the
treatment, risking non-adherence or sub/supra therapeutic
effects. In many cases, it necessitates adapting the form
and strength of a licensed medicine."*® For example, in a
phase I-II trial evaluating metronomic chemotherapy
in patients with a relapsed or refractory Wilms tumor
(MetroWilms), there was a need to administer adjusted
doses of cis-retinoic acid or etoposide. The dosage forms
in the market did not accommodate these adjustments,
and patients were even required to drink an injectable
solution of irinotecan due to the lack of an oral form for
the product."* Changing the route of administration of a
medicinal product is not a recommended practice, as it
may have harmful consequences for pediatric patients.”
Indeed, these practices may alter the efficacy and safety
parameters of the medication by modifying its absorption
characteristics, stability, and palatability.*’~** For instance,
in the MetroWilms clinical trial, the etoposide injection
was unsuitable for children because it contained alcohol
and had an unpleasant taste, which significantly reduced
patient compliance.

To reduce this practice, hospital pharmacies are
currently producing various capsules and liquid forms to
meet patient needs with specific doses.'*> As described by
Curtietal., compounding does not have high dose accuracy,
which is a problem for drugs with a narrow therapeutic
index."® With 3D printing, it is possible to manufacture
medicines in more accurate doses for patients based on
their weight, age, and specific needs.'"” The accuracy and
flexibility of 3D printing have been studied for low-dose
formulations for neonates®’ and high-dose medications
to reduce the number of tablets required.'*® For certain
anticancer drugs or medications used in cardiology with

Volume X Issue X (2024)

19

doi: 10.36922/ijb.4063



International Journal of Bioprinting

Semi-solid extrusion for pediatric medicine

a narrow therapeutic index, 3D printing could provide a
viable solution.

3D printing can also improve patient compliance by
reducing the number of tablets to be taken. For example,
polypills that combine multiple APIs with different release
profiles into a single dosage form offer a practical solution.
An example is a polypill that incorporates nifedipine
and captopril, both used to treat arterial hypertension in
patients with type II diabetes, along with glipizide, which is
used for the treatment of type II diabetes.”*! Incorporating
all three drugs into a single solid dosage form would be
highly beneficial in treating diabetic patients; however,
the formulation would require the distinct release profile
of each drug. Additionally, polypills that combine, for
example, an antiemetic with an oral anticancer drug or two
antibiotics in one dose could improve compliance, which
is a major factor in managing pediatric chronic diseases.

One of the significant advantages of 3D printing is its
ability to enhance adherence by developing novel dosage
forms that are easy to administer and designed with child-
friendly formulations.'*” These can include different flavors
and color profiles,* addressing one of the major challenges
in pediatrics, i.e., making medicines acceptable to children
who are often reluctant to swallow bitter tablets. For
example, BACTRIM® (40 mg/mL trimethoprim + 8 mg/
mL sulfamethoxazole, oral suspension) and DALACIN®
(75 mg/5 mL clindamycin granules for suspension) are
marketed in liquid oral form but are often poorly tolerated
due to their unpleasant taste and large volumes required
for administration.”">! This can lead to non-compliance,
increasing the risk of opportunistic diseases or the
development of antibiotic resistance.

3D printing can make oral dosage forms more
appealing for children by producing tablets with eye-
catching appearances and favorable palatability. Some
studies have produced chewable dosage forms, while
others focused on taste-masking by adjusting excipients
and incorporating pleasant flavors, which can increase
adherence to treatment.”” For example, Karavasili et al.
produced pediatric-friendly chocolate-based dosage forms
of paracetamol and ibuprofen, suggesting the possibility of
encapsulating the drug paste within a matrix that masks
its unpleasant flavor, as in the case of some bitter-tasting
drugs.®

Following these strategies to make medicines more
pleasant for children, 3D-printed gummies were fabricated
with different shapes (heart, bear, and disc) and colors
using mixtures of gelatin, carrageenan, xanthan gum,
and sweeteners. Additionally, gelatin and hydroxypropyl
methylcellulose (HPMC) hydrogels were used to prepare
gummies with lamotrigine.” The viscosity and strength

of the formulation were easily modified by varying the
amounts of the two main excipients, HPMC and gelatin.
Moreover, the production of dispersible film with
personalized doses, such as hydrocortisone, can enhance
dose accuracy while improving patient compliance.*

An important benefit of AM in drug manufacturing
is the possibility to tailor treatments to individual patient
requirements and adapt drug release profiles as needed. For
example, ranitidine hydrochloride was used asa model drug,
and it was observed that the addition of corn starch among
the components resulted in a greater extended release of
the drug. '’ Similarly, a study prepared immediate-release
levetiracetam tablets to treat epilepsy, where the dose in
pediatric patients is subsequently increased over time."*
This flexibility offered by AM enables tablet preparation
that can be easily modified to follow the required dosage
regimen.”* In France, for example, the preparation most
frequently made in hospitals is an immediate-release
melatonin capsule for various uses, such as alleviating
stress before imaging exams or aiding sleep during
hospitalization.” However, this formulation often requires
adjustments (i.e., frequently opened) before administration,
which can compromise the stability of the drug.

An alternative approach to enhance compliance
involves preparing solid lipid tablets based on emulsion
gels.!"" Unlike previous approaches where blends of lipid
excipients are directly printed, these formulations are
printed using preformed oil-in-water (O/W) emulsions
loaded with the poorly soluble drug fenofibrate. The
resulting formulations disintegrated in less than 15 min.
Besides printing the tablets at room temperature, which
is particularly useful for thermolabile compounds, these
formulations are effective for poorly water-soluble drugs,
as they help improve their oral bioavailability. The low
temperatures required for material extrusion make
this technique suitable for printing proteins and other
thermosensitive drugs.*

Due to the lack of commercially available tacrolimus
suppositories, these are commonly compounded
in hospital pharmacy settings using a molding
technique, which requires several steps and long
periods of solidification. Suppositories loaded with the
immunosuppressant tacrolimus, which are commonly
used in patients with therapy-resistant inflammatory
bowel disease (IBD), have already been prepared.'*® Using
SSE and a suitable combination of lipid excipients, self-
supporting suppositories were directly printed without the
aid of molds. Moreover, the suppositories were fabricated
in various sizes to accommodate patient comfort and
dosage requirements. They were prepared using a mixture
of Gelucire 44/14 or Gelucire 48/16 and coconut oil, the
latter served as a plasticizer. Both pharma-inks displayed
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good printability without the need for solid-phase carriers
or a cooling system on the build plate. These active
substances, for which pharmacies already produce various
preparations, are excellent candidates for the approach.

The application of 3D printing in pharmaceutical
manufacturing minimizes the need for excessive excipients.
The two major components of a 3D-printed tablet or
dosage form are the polymer matrix and drug component.
Hence, the use of 3D-printed dosage forms for disease
treatment reduces the risk of unwanted side effects and
enhances therapeutic efficacy.””” Personalized medicine
demands tailored treatments, which can be provided
by compounding. Besides an individualized dose, other
specific patient needs, such as sensory processing disorders,
food allergies, and dietary needs, can be accommodated by
compounding.'*®

Due to their ease of administration, absence of toxic
excipients, improved palatability, and flexible dosing, 3D
printing has demonstrated its significant value across
various pharmaceutical applications. 3D-printed tablets
can be produced to avoid swallowing issues (chewable
tablets), with different release profiles (e.g., immediate or
controlled release), unique features (e.g., high drug loads),
and better palatability that can be tailored to individual
patient needs.*

Despite the technological challenges, several teams
have successfully addressed these issues in real-world
applications, particularly focusing on rare diseases with
low therapeutic indices. This approach optimizes treatment
effectiveness while reducing undesirable effects.!’"!?*!%
Although current technology exhibits limitations with
regard to its applications, enhancements in printing velocity
and the concurrent utilization of multiple printheads are
expected to improve the quantity of material that can
be produced.

In the forthcoming years, the capacity to optimize these
parameters will prove pivotal in determining whether the
focus remains on rare diseases, where the demand is high,
or shifts to more prevalent diseases with similarly high
demand. Nevertheless, the ability to meet the demand will
remain a crucial consideration.

4, Conclusion

This review highlights significant advancements in
pediatric pharmacotherapy through 3D printing
technology. Traditional formulations have long struggled
to meet the specific needs of the populations, leading to
off-label use and potential safety risks. In contrast, 3D
printing, particularly SSE technology, offers promising
solutions by enabling the production of customized
drug formulations tailored to individual patient needs.

This technology addresses critical issues for small-scale
production, such as dose accuracy, palatability, and ease
of administration, thereby improving adherence and
therapeutic outcomes.

The ability to produce polypills with varying release
profiles and chewable, taste-masked formulations
demonstrates 3D printing’s potential to revolutionize
medication for conditions requiring precise therapeutic
control. Moreover, the flexibility and precision of 3D
printing make it an invaluable tool for creating personalized
treatments that traditional compounding methods cannot
achieve with the same efliciency or safety.

Despite these promising developments, the practical
production of these drugs will depend on the pharmacies’
and hospitals’ ability to manage the risks involved in
production, considering the criticality of the drug and
the hospital’s resources for development and production.
Furthermore, the successful integration of 3D printing into
routine clinical practice requires ongoing research, as well
as clarification of legislation and harmonization between
countries. Ensuring the safety, efficacy, and quality of
3D-printed medications will involve robust quality control
measures and specialized training for personnel involved
in the drug manufacturing process.

The challenges associated with this novel production
method include the need for personalization, ease of
administration, and long-term patient compliance. It is
of paramount importance to monitor patient compliance
with these novel drugs, even if initial studies yield favorable
feedback indicating that these personalized forms are well
adhered to by patients.”

In conclusion, 3D printing technology represents
a transformative approach to personalized medicine,
addressing long-standing formulation challenges and
paving the way for safer, more effective, and more
acceptable medications. Continued innovation and
regulatory support will be essential to fully realize its
potential in improving patient care and outcomes.
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