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Abstract. We define the class of explorable automata on finite or infinite words. This is a
generalization of History-Deterministic (HD) automata, where this time non-deterministic
choices can be resolved by building finitely many simultaneous runs instead of just one.
We show that recognizing HD parity automata of fixed index among explorable ones is
in PTime, thereby giving a strong link between the two notions. We then show that
recognizing explorable automata is ExpTime-complete, in the case of finite words or parity
automata up to index [0, 2]. Additionally, we define the notion of ω-explorable automata
on infinite words, where countably many runs can be used to resolve the non-deterministic
choices. We show ExpTime-completeness for ω-explorability of automata on infinite words
for the safety and coBüchi acceptance conditions. We finally characterize the expressivity
of (ω-)explorable automata with respect to the parity index hierarchy.

1. Introduction

In several fields of theoretical science, the tension between deterministic and non-deterministic
models is a source of fundamental open questions, and has led to important lines of research.
The most famous of this kind is the P vs NP question in complexity theory. This paper aims
at further investigating the frontier between determinism and non-determinism in automata
theory. Although Non-deterministic and Deterministic Finite Automata (NFA and DFA) are
known to be equivalent in terms of expressive power, many subtle questions remain about
the cost of determinism, and a deep understanding of non-determinism will be needed to
solve them.

One of the approaches investigating non-determinism in automata is the study of
History-Deterministic (HD) automata, introduced in [HP06] under the name Good-For-
Games (GFG) automata. An automaton is HD if, when reading input letters one by one,
its non-determinism can be resolved on-the-fly without any need to guess the future. This
constitutes a model that is intermediary between non-determinism and determinism, and
can sometimes bring the best of both worlds. Like deterministic automata, HD automata
on infinite words retain good properties such as their soundness with respect to composition
with games, making them appropriate for use in Church synthesis algorithms [HP06]. On
the other hand, like non-deterministic automata, they can be exponentially more succinct

Preprint submitted to
Logical Methods in Computer Science

© E. hazard, O. Idir, and D. Kuperberg
CC⃝ Creative Commons

ar
X

iv
:2

41
0.

23
18

7v
1 

 [
cs

.F
L

] 
 3

0 
O

ct
 2

02
4

https://orcid.org/HTTPS://ORCID.ORG/0000-0001-5406-717X
http://creativecommons.org/about/licenses
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than deterministic ones [KS15]. There is a very active line of research trying to understand
the various properties of HD automata, see e.g. [AK22, BKLS20, BL22, Cas23] for some of
the recent developments. The terminology history-deterministic, was introduced originally in
the theory of regular cost functions [Col09]. The name “history-deterministic” corresponds
to the above intuition of solving non-determinism on-the-fly, while the earlier name of
“good-for-games” refers to sound composition with games. These two notions may actually
differ in some quantitative frameworks, but coincide on boolean automata [BL21], and
have been used interchangeably in most of the literature on the topic. In this paper, since
we are mainly interested in resolving the non-determinism on-the-fly, we choose the HD
denomination to emphasize this aspect1.

The goal of this paper is to pursue this line of research by introducing and studying the
class of explorable automata on finite and infinite words. The intuition behind explorability
is to limit the amount of non-determinism required by the automaton to accept its language,
in a more permissive way than HD automata. If k ∈ N, an automaton is k-explorable if
when reading input letters, it suffices to keep track of k runs to build an accepting one, if it
exists. An automaton is explorable if it is k-explorable for some k ∈ N. This can be seen
as a variation on the notion of HD automaton, which corresponds to the case k = 1. The
present work can be compared to [KM19], where a notion related to k-explorability (called
width) is introduced and studied, see Section 2.4. In particular, some results of [KM19] also
apply to k-explorability, notably ExpTime-completeness of deciding k-explorability of an
NFA if k is part of the input. Surprisingly however, the techniques used in [KM19] are quite
different from the ones we need here. This shows that fixing a bound k for the number of
runs leads to very different problems compared to asking for the existence of such a bound.

One of the motivations to introduce the notion of explorability is to tackle one of the
important open questions about HD automata: what is the complexity of deciding whether
an automaton is HD? We explain in the following why explorability is relevant for this
question, and show obstructions to some of our initial hopes in this direction.

Recognizing HD automata is known to be in PTime for Büchi [BK18] and coBüchi
[KS15] automata, but even for 3 parity ranks, the only known upper bound is ExpTime
via the naive algorithm from [HP06]. We show how explorable automata can simplify this
question: if the input automaton is explorable, then the problem becomes PTime for any
fixed acceptance condition. Therefore, the question of recognizing HD automata can be
shifted to: how hard is it to recognize explorable automata?

We then proceed to study the decidability and complexity of the explorability problem:
deciding whether an input automaton on finite or infinite words is explorable. For this,
we establish a connection with the population control problem studied in [BDG+19]. This
problem asks, given an NFA with an arbitrary number of tokens in the initial state, whether
a controller can choose input letters, thereby forcing every token to reach a designated state,
even if tokens are controlled by an opponent. It is shown in [BDG+19] that the population
control problem is ExpTime-complete, and we adapt their proof to our setting to show that
the explorability problem is ExpTime-complete as well, already for NFAs. We also show
that a direct reduction is possible, but at an exponential cost, yielding only a 2-ExpTime
algorithm for the NFA explorability problem. In the case of infinite words, we adapt the
proof to the Büchi case, thereby showing that the Büchi explorability problem is in ExpTime

1This departs from earlier practices consisting in using HD and GFG in a way coherent with their contexts
of introduction: HD for cost functions and GFG for boolean automata. Hence most of the papers cited here
use GFG.
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as well. We also remark that, as in [BDG+19], the number of tokens needed to witness
explorability can go as high as doubly exponential in the size of the automaton.

This ExpTime-completeness result means that we unfortunately cannot directly use
the intermediate notion of explorable automata to improve on the complexity of recognizing
HD automata in full generality, as could have been the hope. However, there can also be
some frameworks where we can guarantee to obtain an explorable automaton, and therefore
easily decide whether it is HD. A recent example of this from [BL22] is detailed in Section
2.5.2. More generally, we believe that this explorability notion is of interest towards a better
understanding of non-determinism in automata theory.

Notice that interestingly, from a model-checking perspective, our approach is dual
to [BDG+19]: in the population control problem, an NFA is well-behaved when we can
“control” it by forcing arbitrarily many runs to simultaneously reach a designated state, via
an appropriate choice of input letters. On the contrary, in our approach, the input letters
form an adversarial environment, and our NFA is well-behaved when its non-determinism is
limited, in the sense that it is enough to spread finitely many runs to explore all possible
behaviors.

We also establish the expressivity of explorable automata, through reduction to or from
deterministic parity automata. Surprisingly, the expressivity hierarchy of the explorable
automata collapse, just as the hierarchy of non-determinist automata, albeit one step later.
The general case is reached with parity-[1,3] explorable automata, which can recognize all
regular languages.

On infinite words, we push further the notion of explorability, by remarking that for
some automata, even following a countably infinite number of runs is not enough. This
leads to defining the class of ω-explorable automata, as those automata on infinite words
where non-determinism can be resolved using countably many runs. We show that ω-
explorable automata form a non-trivial class even for the safety acceptance condition (but
not for reachability), and give an ExpTime algorithm recognizing ω-explorable automata,
encompassing the safety and coBüchi conditions. We also show ExpTime-hardness of
this problem, by adapting the ExpTime-hardness proof of [BDG+19] to the setting of
ω-explorability.

Summary of the contributions. We show that given an explorable parity automaton
of fixed parity index, it is in PTime to solve its HDness problem, i.e. decide whether it
is HD. The idea was already used in [BK18], and in [BL22] for quantitative automata.
The algorithm used for Büchi HDness in [BK18] is conjectured to work for any acceptance
condition (this is the “G2 conjecture”), and it is in fact this algorithm that is shown here to
work on any explorable parity automaton.

We show that given an NFA or a parity automaton with parities ⊆ [0, 2], it is decidable
and ExpTime-complete to check whether it is explorable. We also study the expressivity
in terms of recognized languages of the different parity classes of explorable automata.
Our proof of ExpTime-completeness for NFA explorability uses techniques developed in
[BDG+19], where ExpTime-completeness is shown for the NFA population control problem.
We generalize this result to ExpTime explorability checking for parity [0,2] automata,
requiring further adaptations. We also give a black box reduction using the result from
[BDG+19]. This is enough to show decidability of the NFA explorability problem, but it
yields a 2-ExpTime algorithm. As in [BDG+19], the ExpTime algorithm yields a doubly
exponential tight upper bound on the number of tokens needed to witness explorability.
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We show that deciding the explorability of parity [1,3] automata amounts to deciding the
explorability of automata in the general parity case.

On infinite words, we show that any reachability automaton is ω-explorable, but that this
is not the case for safety automata. We show that both the safety and coBüchi ω-explorability
problems are ExpTime-complete. We also show that the Büchi case corresponds to the
general case : any non-deterministic parity automaton can be converted in PTime to a
Büchi automaton with same ω-explorability status.

Related Works. Many works aim at quantifying the amount of non-determinism in
automata. A survey by Colcombet [Col12] gives useful references on this question. Let us
mention for instance the notion of ambiguity, which quantifies the number of simultaneous
accepting runs. Similarly to [KM19], we can note that ambiguity is orthogonal to k-
explorability. Remark however that our finite/countable/uncountable explorability hierarchy
is reminiscent of the finite/polynomial/exponential ambiguity hierarchy (see e.g. [WS91]).

In [HKK+00], several ways of quantifying the non-determinism in automata are studied
from the point of view of complexity, including notions such as the number of advice bits
needed.

Another approach is studied in [PSA17], where a measure of the maximum non-
deterministic branching along a run is defined and compared to other existing measures.

Following the HD approach, a hierarchy of non-determinism and an analysis of this
hierarchy via probabilistic models is given in [AKL21].

The idea of k-explorability stems from the approach in [BK18], using games with tokens
to tackle the HDness problem for Büchi automata. In this previous work, the idea of
following a finite number of runs in parallel plays a central role in the proof. Remark
however that the notion of explorability as studied here is stronger than what is needed in
[BK18]. The k-explorability (and explorability) property was explicitly defined under the
name k-History-Determinism in [BL22], as a proof tool to decide the HDness of LimInf and
LimSup automata. The work [BL22] is part of a research effort to understand how partial
determinism notions such as HDness play out in quantitative automata, see survey [Bok22].
Our goal here is to investigate explorability as defining a natural class of automata on finite
and infinite words, somehow giving it an “official status” not restricted to an intermediate
proof tool.

History of this work. It is traditional in our community to present results as a
finished product, abstracting away the path that led to it. This paragraph is an experiment:
we believe that in addition to this practice, it can be interesting for the reader to have access
to a history of how ideas developed.

The interest we took in the explorability notion originated in the fact that it makes
deciding HDness much easier, and the hope was that by using this notion as an intermediate,
we could obtain an algorithm improving on the ExpTime upper bound for deciding GFGness
of parity automata of fixed index, e.g. to PSpace. As we described above, we ended up
showing that this approach cannot yield an algorithm below ExpTime (at least not in
full generality). However, although this was initially only a tool for this decision problem,
explorability turns out to be a natural generalisation of HD automata, and an interesting class
to study in itself. The first investigation of this notion, and in particular of its decidability,
was the object of a short research internship by Milla Valnet under the supervision of the
third author. It was expected that decidability of explorability would be a reachable goal
for such a short internship, but it turned out that this was overly optimistic. The internship
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yielded preliminary results, and in particular was useful to introduce and study the notion
of “coverability”. This version of the problem does not take acceptance conditions into
account, but only asks that at any point of the run, every state that could be reached is
actually occupied by a token. After the internship, we continued to use this coverability
notion as a stepping stone towards an understanding of explorability. However, after more
preliminary results and unsuccessful attempts at obtaining decidability, we discovered the
connection between explorability and population control from [BDG+19], that rendered
the intermediate notion of coverability useless for our purposes, and we then focused on
exploiting that link. We chose to leave coverability out of the present exposition, as it feels
like a “watered-down” version of explorability, but it could be useful in some contexts, hence
we briefly mention it in this chronological account. Let us just informally state here that it
is straightforward to modify our proofs in order to show that deciding whether an NFA is
coverable is ExpTime-complete as well. The first results were obtained during the PhD of
Emile Hazard, and published in [HK23]. Some new results, namely ExpTime algorithm for
coBüchi and [0, 2]-explorability, and expressivity results, were obtained during the internship
of Olivier Idir. This paper, extending [HK23], aims at gathering what we currently know
about explorable automata.

2. Explorable automata

2.1. Preliminaries. If i ≤ j are integers, we will denote by [i, j] the integer interval
{i, i+ 1, . . . , j}. If S is a set, its cardinal will be denoted |S|, and its powerset P(S).

2.2. Automata. We work with a fixed finite alphabet Σ. We will use the following default
notation for the components of an automaton A: QA for its set of states, qA0 for its initial
state, FA for its accepting states, ∆A for its set of transitions. If the automaton is clear from
context, the subscript/superscript A might be omitted. We might also specify its alphabet
by ΣA instead of Σ for cases where different alphabets come into play. If ∆ ⊆ Q× Σ×Q is
the transition relation, and (p, a) ∈ Q× Σ, we will note ∆(p, a) = {q ∈ Q, (p, a, q) ∈ ∆}. If
X ⊆ Q, we note ∆(X, a) =

⋃
p∈X ∆(p, a). A transition (p, a, q) will often be noted p

a−→ q.

To simplify definitions, all automata in this paper will be assumed to be complete (by
adding a rejecting sink state if needed). This means that for all (p, a) ∈ Q× Σ, we assume
∆(p, a) ̸= ∅. The rejecting sink state will often be implicit in our constructions and examples.

We will consider non-deterministic automata on finite words (NFAs). A run of such an
automaton on a word a1a2 . . . an ∈ Σ∗ is a sequence of transitions δ1 . . . δn ∈ ∆∗, such that
there exists a sequence of states q0, . . . , qn with for all i ∈ [1, n], δi = (qi−1, ai, qi), (q0 being
the initial state). Such a run is accepting if qn ∈ F . As usual, the language of an automaton
A, denoted L(A), is the set of words that admit an accepting run.

We will also deal with automata on infinite words, and we recall here some of the standard
acceptance conditions for such automata. A run on an infinite word w = a1a2 · · · ∈ Σω is
now an infinite sequence of transitions δ1, δ2, . . . , i.e. an element of ∆ω. As before there
must exist an underlying sequence of state q0, q1, q2, . . . with q0 the initial state, such that
for each i ≥ 1, we have δi = (qi−1, ai, qi).

The acceptance conditions safety, reachability, Büchi and coBüchi are defined with
respect to an accepting subset of transitions F ⊆ ∆. Here are the languages of accepting
runs among ∆ω, for these four acceptance conditions:
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• Safety: Fω

• Reachability: ∆∗F∆ω

• Büchi: (∆∗F )ω

• coBüchi: ∆∗Fω

Transitions from F will be called Büchi transitions in Büchi automata, and transition from
∆ \ F will be called coBüchi transitions in coBüchi automata.

Finally, we will also use the parity acceptance condition: it uses a ranking function rk
from ∆ to an interval of integers [i, j], called the parity index of the automaton. A run is
accepting if the maximal rank appearing infinitely often is even.

For conciseness, we will simply write [i, j]-automaton for a parity automaton using
ranks from [i, j]. Remark that Büchi automata correspond to [1, 2]-automata, and coBüchi
automata to [0, 1]-automata.

For all these acceptance conditions on infinite words, we will sometimes use state-based
acceptance instead of transition-based when more convenient for our constructions. Recall
that we can switch from transition-based to state-based with a doubling of the number
of states, and the translation from state-based to transition-based can be done without
changing the size of the automaton. These translations do not affect any of the explorability
properties considered in this paper. See [Cas23] for details on the merits of transition-based
acceptance conditions over the state-based ones.

2.3. Games. A game G = (V0, V1, vI , E,W ) of infinite duration between two players 0 and 1
consists of: a finite set of positions V being a disjoint union of V0 and V1; an initial position
vI ∈ V ; a set of edges E ⊆ V × V ; and a winning condition W ⊆ V ω. We will later use
names more explicit than 0 and 1 for the players, describing their roles in the various games
we will define.

A play is an infinite sequence of positions v0v1v2 · · · ∈ V ω such that v0 = vI and for all
n ∈ N, (vn, vn+1) ∈ E. A play π ∈ V ω is winning for Player 0 if it belongs to W . Otherwise
π is winning for Player 1.

A strategy for Player 0 (resp. 1) is a function σ0 : V ∗ × V0 → V (resp. σ1 : V ∗ × V1 → V ),
describing which edge should be played given the history of the play u ∈ V ∗ and the current
position v ∈ V . A strategy σP has to obey the edge relation, i.e. there has to be an edge in
E from v to σP (u, v). A play π = v0v1v2 . . . is consistent with a strategy σP of a player P
if for every n such that vn ∈ VP we have vn+1 = σP (v0 . . . vn−1, vn).

A strategy for Player 0 (resp. Player 1) is positional (or memoryless) if it does not use
the history of the play, i.e. it can be seen as a function V0 → V (resp. V1 → V ).

We say that a strategy σP of a player P is winning if every play consistent with σP is
winning for P . In this case, we say that P wins the game G.

A game is positionally determined if one of the players has a positional winning strategy
in the game.

See e.g. [GTW02] for more details on games and strategies.
In the interest of readability, when describing games in the paper, we will not give

explicit definitions of the sets V0, V1 and E, but give slightly more informal descriptions in
terms of possible actions of players at each round. It is straightforward to build a formal
description of the games from such a description.
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Figure 1: An explorable and a non-explorable automata

2.4. Explorability. We start by introducing the k-explorability game, which is the central
tool allowing us to define the class of explorable automata.

Definition 2.1 (k-explorability game). Consider a non-deterministic automaton A on finite
or infinite words, and an integer k. The k-explorability game on A is played on the arena
Qk. The two players are called Determiniser and Spoiler, and they play as follows.

• The initial position is the k-tuple S0 = (q0, . . . , q0).
• At step i ≥ 1, from a position Si−1 ∈ Qk, Spoiler chooses a letter ai ∈ Σ, and Determiniser

chooses Si ∈ Qk such that for every token l ∈ [1, k], Si−1(l)
ai−→ Si(l) is a transition of A

(where Si(l) stands for the l-th component in Si).

The play is won by Determiniser if for all β ≤ ω such that the word (ai)1≤i<β is in L(A),
there is a token l ∈ [1, k] being accepted by A, meaning that the sequence (Si(l))i<β is an

accepting run2. Otherwise, the winner is Spoiler.
We will say that A is k-explorable if Determiniser wins the k-explorability game (i.e. has a
winning strategy, ensuring the win independently of the choices of Spoiler).
We will say that A is explorable if it is k-explorable for some k ∈ N.

Example 2.2. Consider the automata from Figure 1. The NFAAk on alphabet {a, a1, . . . , ak}
is k-explorable, but not (k − 1)-explorable. It can easily be adapted to a binary alphabet,
by replacing in the automaton a1, . . . , ak by distinct words of the same length.

On the other hand, the NFA C is a non-explorable NFA accepting all words on alphabet
Σ = {a, b}. Indeed, Spoiler can win the k-explorability game for all k, by eliminating tokens
one by one, choosing at each step the letter b if q1 is occupied by at least one token, and the
letter a otherwise.

Example 2.3. The NFA Bk from Figure 2 with 3k + 1 states on alphabet Σ = {a, b} is
explorable, but requires 2k tokens. Indeed, since when choosing the 2ith letter Spoiler can
always pick the state pi or ri containing the least amount of tokens to decide whether to play
a or b, the best strategy for Determiniser is to split his tokens evenly at each qi. This means
he needs to start with 2k tokens to end up with at least one token in qk after a word of Σ2k.

Let us mention a few facts that follow from the definition of explorability:

2This condition β ≤ ω is actually accounting separately for the two cases of finite and infinite words,
corresponding respectively to β < ω and β = ω.
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Figure 2: An explorable automaton Bk requiring exponentially many tokens

Lemma 2.4.

• Any automaton for a finite language is explorable.
• If A is k-explorable, then it is n-explorable for all n ≥ k.
• If A is k-explorable and B is n-explorable, then
– A ∪ B (with states Q = {q0} ∪QA ∪QB) is (k + n)-explorable,
– the union product A× B (with F = (FA ×QB) ∪ (QA × FB)) is max(k, n)-explorable,
– the intersection product A× B (with F = FA × FB) is (kn)-explorable.

Proof. If L(A) is finite, it is enough to take k = |L(A)| tokens to witness explorability: for
each u ∈ L(A), the token tu assumes that the input word is u and follows an accepting run
of A over u as long as input letters are compatible with u. As soon as an input letter is not
compatible with u, the token tu is discarded and behaves arbitrarily for the rest of the play.

If A is k-explorable and n ≥ k, then Determiniser can win the n-explorability game by
using the same strategy with the first k tokens and making arbitrary choices with the n− k
remaining tokens.

If A and B are k- and n-explorable respectively, then Determiniser can use both strategies
simultaneously with k + n tokens in A ∪ B, using k tokens in A and n tokens in B. If the
input word is in A (resp. B), then the tokens playing in A (resp. B) will win the play.

In the union product A×B, it is enough to take max(k, n) tokens: if 1 ≤ i ≤ min(k, n),
the token number i follows the strategy of the token i in A on the first coordinate, and
the strategy of the token i in B in the second one. If min(k, n) < i ≤ max(k, n), say wlog
k < i ≤ n, the token i follows an arbitrary strategy on the A-component and the strategy of
token i on the B-component.

However, Determiniser may need up to kn tokens to play in A× B when the accepting
set is FA × FB: the token (i, j) will use the strategy of the token i in the k-explorability
game of A together with the strategy of the token j in the n-explorability game of B.
This lower bound of kn cannot be improved: consider for instance the intersection product
Ak × An, where Ak,An are from Example 2.2, using as alphabet the cartesian product
of their respective alphabets: {a, a1, a2, . . . , ak} × {a, a1, . . . , an}, or {a, b}2 in their binary
alphabet versions.

Notice that a similar notion was introduced in [KM19] under the name width. In
[KM19], the emphasis is put on another version of the explorability game, where tokens can
be duplicated, and |Q| is an upper bound for the number of necessary tokens. In this work,
we will on the contrary focus on non-duplicable tokens. However, some results of [KM19]
still apply here. In particular the following holds:
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Theorem 2.5 ([KM19, Rem. 6.9]). Given an NFA A and an integer k, it is ExpTime-
complete to decide whether A is k-explorable (even if we fix k = |QA|/2).

We aim here at answering a different question:

Definition 2.6 (Explorability problem). The explorability problem is the question, given
a non-deterministic automaton A, of deciding whether it is explorable (i.e., whether there
exists k ∈ N such that it is k-explorable).

Another difference with the width setting from [KM19] is that here, some automata are
explorable and some are not. Explorable automata can be seen as an intermediary model
between deterministic and non-deterministic. Since deterministic and non-deterministic have
very different expressive powers for each parity index, this naturally brings the question:
what is the expressivity of explorable automata for each parity index ?

Questions: Is the explorability problem decidable? If yes, what is its complexity? How
expressive are explorable automata for each parity index ?

2.5. Links with HD automata. An automaton A is History-Deterministic (HD) if ond
only if it is 1-explorable, i.e. if there is a strategy σ : Σ∗ → Q resolving the non-determinism
based on the word read so far, with the guarantee that the run piloted by this strategy is
accepting whenever the input word is in L(A). See e.g. [BKKS13] for an introduction to
HD automata.

We will give here additional and stronger links between explorable and HD automata.
In this part, we will mainly be interested in automata on infinite words.

2.5.1. Explorability in terms of HDness. Similarly to [KM19, Lem 3.5], we can express the
k-explorability condition as a product automaton being HD.

Let A be any non-deterministic parity automaton, and k > 0.

Definition 2.7. We denote by Ak the union product of k copies of A, i.e. the states are
Qk, and Ak accepts if one of its copies follows an accepting run. The acceptance condition
of Ak is therefore the union of k parity conditions.

Lemma 2.8. A is k-explorable if and only if Ak is HD.

Proof. Winning strategies for Determinizer in the k-explorability game of A are in bijection
with winning strategies of Determinizer in the 1-explorability game of Ak.

2.5.2. Recognizing HD automata among explorable ones. In this section we give some moti-
vation for considering explorable automata.

The arguments in this section are already hinted at in [BK18], and made explicit in the
context of quantitative automata in [BL22]. We give them here for completeness, in order
to provide some context for the relevance of the class of explorable automata.

One of the main open problems related to HD automata on infinite words is to decide,
given a non-deterministic parity automaton, whether it is HD. For now, the problem is only
known to be in PTime for coBüchi [KS15] and Büchi [BK18] automata. Extending this
result even to 3 parity ranks is still open, and only a naive ExpTime upper bound [HP06] is
known in this case. The following result shows that explorability is relevant in this context:
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Theorem 2.9. Given an explorable parity automaton A of fixed parity index, it is in PTime
to decide whether it is HD.

This is one of the motivations to get a better understanding of explorable automata.
Indeed, if we can obtain an efficient algorithm for recognizing them, or if we are in a context
guaranteeing that we are only dealing with explorable automata, this result shows that
we can obtain an efficient algorithm for recognizing HD automata. Alternatively, even if
membership to the class of explorable automata is provably hard to decide in general (as it
will turn out), there can be some contexts where explorable automata are sufficient for the
intended purposes. An example is given in [BL22], where it is shown that for LimSup and
LimInf automata, Eve winning the game G2 (defined below) implies that the automaton is
explorable. Since Theorem 2.9 actually shows that Eve winning G2 characterizes HDness
for explorable automata, in this case it implies that the automaton is HD, as was shown in
[BL22].

Let A be an explorable [i, j]-automaton.
We briefly recall the definition of the k-token game Gk(A) defined in [BK18], for an

arbitrary k ∈ N. At each round, Adam plays a letter a ∈ Σ, then Eve moves her token
according to an a-transition, and finally Adam moves his k tokens according to a-transitions.
Eve wins the play if her token builds an accepting run, or if all of Adam’s tokens build a
rejecting run.

We will prove that the game G2(A) is won by Eve if and only A is HD.
First, it is clear that if A is HD, then Eve wins G2(A) [BK18]: Eve can simply play her

HD strategy with her token, ignoring Adam’s tokens.
The interesting direction is the converse: we assume that Eve wins G2(A), and we show

that under this assumption, A is necessarily HD. We use the following lemma:

Lemma 2.10 ([BK18, Thm. 14]). Eve wins G2(A) if and only if Eve wins Gk(A) for all
k ≥ 2.

Here we will combine this general result with the following lemma, that is specific to
explorable automata:

Lemma 2.11. If A is k-explorable and Eve wins Gk(A), then A is HD.

Proof. Let us note Q = QA the set of states of A. We will build an explicit strategy
witnessing that A is HD.

Let τk be a winning strategy for Determiniser in the k-explorability game of A, and σk
a winning strategy for Eve in Gk(A).

Let us explicit in detail the shape of these strategies. The strategy τk has access to the
history of the play in the k-explorability game, and must decide on a move for Determiniser.
Notice that in absence of memory limitations, it is always enough to know the history of
the opponent’s moves (here the letters of Σ played so far), since this allows to compute the
answer of Determiniser at each step, and therefore build a unique play. Thus, we can take
for τk a function Σ∗ → Qk. If the word played so far is u ∈ Σ∗, the tuple of states reached
by the k tokens moved according to τk is τk(u) ∈ Qk. In particular τk(ε) = (qA0 , . . . , q

A
0 ).

If w = a1a2 · · · ∈ Σω, and i ∈ N, let us note (qiw,1, . . . , q
i
w,k) = τk(a1 . . . ai). That is

qiw,j is the state reached by the jth token after i steps in the run induced by τk and w. If

j ∈ [1, k], let us note ρw,j the infinite run q0w,jq
1
w,jq

2
w,j . . . , followed by the jth token in this

play. Since τk is a winning strategy in the k-explorability game of A, we have the guarantee
that for all w ∈ L(A), there exists j ∈ [1, k] such that ρw,j is accepting.
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If u = a1 . . . an ∈ Σ∗ is a finite word, we define τ ′k(u) = (τk(ε), τk(a1), τk(a1a2) . . . , τk(u)),
this is a description of the k partial runs induced by τk on u.

Let us now turn to the strategy σk of Eve in Gk(A). The type of this strategy is
σk : Σ∗ × (Qk)∗ → Q. Indeed, this time, the history of Adam’s moves must contain his
choice of letters together with his choices of positions for his k tokens. So σk(u, γ) gives the
state reached by Eve’s unique token after a history (u, γ) for the moves of Adam. Notice
that at each step, Eve must move before Adam in this game Gk(A), so γ does not contain
the choice of Adam on the last letter of u. This means that except for u = ε, we can always
assume |u| = |γ|+ 1 in a history (u, γ).

We have the guarantee that if Adam plays an infinite word w together with runs
ρ1, . . . , ρk on w, such that at least one of these runs is accepting, then the run yielded by σk
against (w, (ρ1, . . . , ρk)) is accepting.

We finally define the HD strategy σ for A, of type Σ∗ → Q, by induction: σ(ε) = qA0 ,
and σ(ua) = σk(ua, τ

′
k(u)).

This amounts to playing the strategy σk in Gk(A), against Adam playing a word w and
moving his k tokens according to the strategy τk against w. If the infinite word w = a1a2 . . .
chosen by Adam is in L(A), then by correctness of τk one of the k runs ρw,1, . . . , ρw,k yielded
by τk is accepting. Hence, by correctness of σk, the run σ(ε)σ(a1)σ(a1a2) yielded by σ
(based on σk) is accepting. This concludes the proof that σ is a correct HD strategy for A,
witnessing that A is HD.

Combining the results of this section, we obtain that if A is explorable, then A is
HD if and only if Eve wins G2(A). It remains to show that the winner of G2(A) can be
computed in PTime, for fixed parity index of A. This is already stated without proof in
the conclusion of [BK18], but let us explicit it here for completeness, thereby achieving the
proof of Theorem 2.9.

Lemma 2.12. For parity automata of fixed parity index [i, j], it is in PTime to decide the
winner of G2(A).

Proof. The arena of G2(A) can be formalized as Q3 ∪ (Q3 × Σ × {E,A}). In a state
(p, q1, q2) ∈ Q3, it is Adam’s turn to choose a letter, so he can move to any (p, q1, q2, a, E) with
a ∈ Σ. The E means that it is Eve’ turn to choose a transition. In such a state (p, q1, q2, a, E),

Eve must choose a transition p
a−→ p′, moving to a global position (p′, q1, q2, a, A). It is now

Adam’s turn to move his two tokens according to transitions q1
a−→ q′1 and q2

a−→ q′2, going
to a global position (p′, q′1, q

′
2) in the game. So the arena of the game is of size O(n3|Σ|),

with n = |Q| the size of A. It is known that parity games of fixed index can be solved in
PTime [McN93, Thm 5.4 and 5.5]. However, the game G2(A) is not a parity game, since
the winning condition is of the form W = W1 ∨ (W2 ∧W3), where W1 is a parity condition
expressing that Eve’s token follows an accepting run, and W2,W3 are parity conditions
on Adam’s tokens, asking that they follow rejecting runs. Let Γ = [i, j]3 be the alphabet
used by these simultaneous parity conditions, each one using one of the components of the
alphabet. We can view a play in G2(A) as outputting a word α ∈ Γω, such that Eve wins
the play if and only if α ∈ W . Let D be a deterministic parity automaton recognizing the
language W on alphabet Γ. Notice that since [i, j] is fixed, D is a fixed parity automaton,
and its size is a constant, not depending on n or Σ. We can now compose the game G2(A)
with D, to obtain a game G′, on arena G2(A)×D × ([i, j] ∪ { }) (we abuse notation here
and use G2(A) and D to denote their sets of positions/states). This composition will work
as follows:
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• From a position ((p, q1, q2, a, E), qD, ), when Eve chooses a successor position in G2(A)
according to a transition δ = (p, a, p′), the game G′ will move to ((p′, q1, q2, a, A), qD, rk(δ)),
i.e. remembering in the last component the parity rank seen by Eve’s token.

• From a position ((p′, q1, q2, a, A), qD, k), when Adam chooses a successor position in G2(A)
according to transitions δ1 = (q1, a, q

′
1) and δ2 = (q2, a, q

′
2), the game G′ will move

to ((p′, q′1, q
′
2), δD(qD, (k, rk(δ1), rk(δ2))), ), i.e. the automaton D will deterministically

advance according to the parity ranks seen on the 3 tokens.
• Eve’s winning condition in G′ is the parity condition of D.

Such a composition of a game with a deterministic automaton is standard (up to the
bookkeeping needed here to remember Eve’s transition rank), and we obtain that G′ and
G2(A) have same winner: the winning condition of G2(A) is simply taken care of by D in
G′, allowing to simplify the winning condition of the game. Since D is of fixed size, G′ is
still of polynomial size in A, and it is a parity game, so we can decide its winner in PTime.
This completes the description of the PTime algorithm algorithm to decide the winner of
G2(A): build the game G′ by composing G2(A) with a fixed deterministic parity automaton
D, and solve the game G′.

3. Expressivity of explorable automata

In this section, we ask the following question: what does the parity expressivity hierarchy
look like for explorable automata? Recall that for deterministic automata, this hierarchy is
strict, i.e. adding parity ranks allows recognizing more language. On the contrary, for non-
deterministic automata, the hierarchy collapses at the Büchi level: any ω-regular language
can be recognized by a non-deterministic Büchi automaton.

Finally, let us recall a classical result on expressivity of HD automata. We will also very
briefly sketch its proof, as this will be useful in the following.

Lemma 3.1. [BKKS13] For any parity index [i, j], HD [i, j]-automata recognize the same
languages as deterministic [i, j]-automata.

Proof. (Sketch) The HD strategy can always be chosen as using a finite memory M . This
memory M can be incorporated into the states of the automaton, making it deterministic,
without changing its acceptance condition.

We will show in this section that explorable automata have an expressivity that is
initially akin to the one of deterministic automata, but surprisingly the parity hierarchy
collapses at the level [1, 3], i.e. any ω-regular language can be recognized by an explorable
[1, 3]-automaton.

Let us start with the Büchi case to show some of the behaviours involved.

Lemma 3.2. Languages recognized by explorable Büchi automata are equal to the languages
recognized by deterministic Büchi automata.

Proof. Notice that the converse inclusion is straightforward: if L is recognized by a deter-
ministic Büchi automata D, then D is 1-explorable.

For the direct sense: Let L be a language recognized by a k-explorable Büchi automaton
A. We will build a deterministic Büchi automaton recognizing L. Let Ak be the union
product automaton from Definition 2.7. By Lemma 2.8, Ak is HD. Moreover, Ak can
easily be turned into a Büchi automaton: we can exploit the fact the union of finitely many
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Büchi conditions is a Büchi condition, by considering that any transition that is Büchi on
some component is Büchi globally. This does not change the accepting status of any run, so
the resulting Büchi automaton is still HD, using the same witness strategy as Ak. Thus L is
recognized by a HD Büchi automaton.

As recalled earlier, for any parity index [i, j], HD [i, j]-parity automata have same
expressivity as deterministic [i, j]-automata [BKKS13]. This is in particular true at the
Büchi level, so there exists a deterministic Büchi automaton D recognizing L. Notice that in
the particular case of Büchi condition, this deterministic Büchi automaton can be guaranteed
to be polynomial-size with respect to the HD Büchi automaton [KS15], and can also be
obtained in PTime [AJP24].

The above proof can easily be adapted to get the following lemma:

Lemma 3.3. Languages recognized by explorable safety (respectively reachability) automata
are equal to the languages recognized by deterministic safety (respectively reachability) au-
tomata.

We will now generalize this to [0, 2]-automata:

Lemma 3.4. Languages recognized by explorable [0, 2]-automata are equal to the languages
recognized by deterministic [0, 2]-automata.

Proof. Just as in the above proof, the converse inclusion is straightforward, as a deterministic
automaton is always explorable. Let L be a language recognized by some k-explorable [0, 2]-
automaton A. Similarly as above, this means that the union product Ak is HD, and this is
witnessed by a HD strategy with finite memory M . This allows us to build a deterministic
automaton B with states Qk × M , where the acceptance condition only depends on the
Qk component, and is a union of k [0, 2]-conditions. In order to obtain a deterministic
[0, 2]-automaton, we need to compose B with a deterministic [0, 2]-automaton C on alphabet
Γ := [0, 2]k, that accepts an infinite word if and only if one of its k-components is [0, 2]-
accepting. This can be obtained, by combining the well-known breakpoint construction on
the [0, 1] part, with the construction from Lemma 3.2, with ranks 2 playing the role of
Büchi states.

Intuitively, the automaton will remember which components has seen a 1 since the
last reset. Seeing a 2 anywhere causes to produce a 2 globally, and reset the memory. On
intervals without any 2, if a 1 has been seen on every component, the automaton produces a
1 globally and resets its memory. The automaton C = (Γ, QC , q

C
0 , δC) can be built as follows:

• QC = {0, 1}k
• qC0 = (0, 0, . . . , 0)
• We directly label the transitions of C by their parity rank, by giving a transition function
δC : (QC × Γ) → (QC × [0, 2]). It is defined as

δC((a1, . . . , ak), (b1, . . . , bk)) =

 (qC0 , 2) if some bi is 2,
(qC0 , 1) otherwise if for all i, a1 = 1 or bi = 1,
((ai ∨ bi)1≤i≤k, 0) otherwise.

Indeed, it is straightforward to verify that a run of C is [0, 2]-accepting if and only if this
is the case for one of the k components of its input word. This means that C deterministically
translate the union of k [0, 2]-conditions into one [0, 2]-condition.
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Figure 3: The composition of C with B = Ak×M (here with k = 3). Internal ranks/memory
states labelled 1 are represented in red, until the reset to qC0 (in green) is performed
when a 1 is reached on each component. Input letters and global ranks of the
resulting automaton are shown on top.

Similarly to what was done in Lemma 2.12, it now suffices to compose B with C, i.e.
having C read the ranks output by B, and using the [0, 2] acceptance condition of C. This
yields a deterministic [0, 2]-automaton recognizing L, represented in Figure 3.

We finally get to the general case with [1, 3]-parity:

Theorem 3.5. Let L be any ω-regular language, there exists an explorable [1, 3]-automaton
that recognizes L.

Proof. Without loss of generality, the language L can be recognized by some deterministic
[1, d]-automaton A with d even. We will build an explorable [1, 3]-automaton recognizing L.
For any given accepting run of A, there is a unique even l ∈ [1, d] such that l is the biggest
priority encountered infinitely often. Conversely, if the run is rejecting, there exists no such
even l. We will use this property to build an explorable automaton based on A.
For l even, we define Al as the copy of A where all priorities < l are replaced with 1, all
priorities > l are replaced with 3, and all priorities equal to l are replaced with 2. Al is thus
a deterministic [1, 3]-automaton. It has the notable property that a word w is accepted by
Al if and only if it is accepted by A with highest priority l. Therefore A is equivalent to
the union of the {Al | l even ∈ [1, d]}. We thus build the automaton A′ where the initial
state branches non-deterministically via ε-transitions towards all the different Al for all
even l ∈ [1, d]. This automaton is non-deterministic, of parity index [1, 3], and recognizes
exactly the words recognized by A. It is d

2 -explorable, as this is the maximum number of
tokens needed to place one in each Al at the start, after which their progression becomes
deterministic.

This construction can actually by applied to non-deterministic automata as well, yielding
the following result:
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Figure 4: The parity hierarchy of languages recognized by the Deterministic/Explorable/Non-
deterministic automata. Classes not included in the green collapse region always
match their deterministic counterpart.

Lemma 3.6. Let A be a non-deterministic [1, d]-automaton with d even. We can build in
PTime a [1, 3]-automaton A′ recognizing L(A), such that A′ is explorable if and only if A is
explorable.

Proof. We use the same construction as in the proof of Theorem 3.5 above. This construction
is clearly PTime in the size of A, and produces an automaton A′ of size |A| · d

2 . Moreover,
language equivalence still holds: a word is accepted in A if and only if it is accepted in at
least one of the Al if and only if it is accepted in A′. We now need to show the equivalence
between explorability of A and explorability of A′.
If A is k-explorable, then it suffices to initially send k tokens to each copy Al and from there
use the k-explorability strategy in each copy locally. We get that if the input word can be
accepted with some token i via the k-explorability strategy in A with highest parity l, then
the corresponding token is accepting in Al, and A′ is thus kd

2 -explorable.
If A′ is k-explorable, the behaviour of each of the k tokens can be projected to A, giving
a candidate strategy for k-explorability of A. This is indeed a valid strategy, as if a token
is accepting in Al, it is also accepting in A. We can conclude that A is k-explorable as
well.

We thus obtain the hierarchy of languages recognized by explorable automata, represented
in Figure 4. This picture will be completed in Section 5.4, where we will show that the
hierarchy collapses at the Büchi level for ω-explorable automata.

4. Decidability and complexity of the explorability problem

In this section, we prove that the explorability problem is decidable and ExpTime-complete
for NFAs. We also exhibit an exponential upper-bound for deciding the explorability of
[0, 2]-automata.
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We start by showing in Section 4.1 decidability of the explorability problem for NFAs
using the results of [BDG+19] as a black box. This yields an algorithm in 2-ExpTime.
We give in Section 4.2 a polynomial reduction in the other direction, thereby obtaining
ExpTime-hardness of the NFA explorability problem. To obtain a matching upper bound
and show ExpTime-completeness, we use again [BDG+19], but this time we must “open the
black box” and dig into the technicalities of their ExpTime algorithm while adapting them
to our setting. We do so in Section 4.3, directly treating the more general case of Büchi
automata.

4.1. 2-ExpTime algorithm via a black box reduction. Let us start by recalling the
population control problem (PCP) of [BDG+19].

Definition 4.1 (k-population game). Given an NFA B with a distinguished target state
f ∈ QB, and an integer k ∈ N, the k-population game is played similarly to the k-explorability
game, only the winning condition differs: Spoiler wins if the game reaches a position where
all tokens are in the state f .

The PCP asks, given B and f ∈ QB, whether Spoiler wins the k-population game for all
k ∈ N. Notice that this convention is opposite to explorability, where positive instances are
defined via a win of Determiniser. The PCP is shown in [BDG+19] to be ExpTime-complete.
We will present here a direct exponential reduction from the explorability problem to the
PCP.

Theorem 4.2 (Direct reduction to the PCP). The NFA explorability problem is decidable
and in 2-ExpTime.

Let A = (Σ, QA, q
A
0 , FA,∆A) be an NFA. Our goal is to build an exponential NFA B

with a distinguished state f such that (B, f) is a negative instance of the PCP if and only if
A is explorable.

We choose QB = (QA×P(QA))⊎{f,⊥}, where f,⊥ are fresh sink states. The alphabet
of B will be ΣB = Σ ⊎ {atest}, where atest is a fresh letter.

The initial state of B is qB0 = (qA0 , {qA0 }). Notice that we do not need to specify accepting
states or priorities in B, as acceptance plays no role in the PCP.

We finally define the transitions of B in the following way:

• (p,X)
a−→ (q,∆A(X, a)) if a ∈ Σ and q ∈ ∆A(p, a),

• (p,X)
atest−→ f if p /∈ FA and X ∩ FA ̸= ∅.

• (p,X)
atest−→ ⊥ otherwise.

We aim at proving the following Lemma:

Lemma 4.3. For any k ∈ N, A is k-explorable if and only if Determiniser wins the
k-population game on (B, f).

Notice that as long as letters of Σ are played, the second component of states of B
evolves deterministically and keeps track of the set of reachable states in A. Moreover, the
letter atest also acts deterministically on QB. Therefore, the only non-determinism to be
resolved in B is how the first component evolves, which amounts to building a run in A.
Thus, strategies driving tokens in A and B are isomorphic. It now suffices to observe that
Spoiler wins the k-population game on (B, f) if and only if he has a strategy allowing to
eventually play atest while all tokens are in a state of the form (q,X) with q /∈ FA and
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X ∩ FA ̸= ∅. This is equivalent to Spoiler winning the k-explorability game of A, since
X ∩ FA ̸= ∅ witnesses that the word played so far is in L(A).

This concludes the proof that A is explorable if and only if (B, f) is a negative instance
of the PCP. So given an NFA A that we want to test for explorability, it suffices to build
(B, f) as above, and use the ExpTime algorithm from [BDG+19] as a black box on (B, f).
Since B is of exponential size compared to A, this achieves the proof of Theorem 4.2.

4.2. ExpTime-hardness of NFA explorability.

Theorem 4.4. The NFA explorability problem is ExpTime-hard.

We will perform here an encoding in the converse direction: starting from an instance
(B, f) of the PCP, we build polynomially an NFA A such that A is explorable if and only if
(B, f) is a negative instance of the PCP.

It is stated in [BDG+19] that, without loss of generality, we can assume that f is a sink
state in B, and we will use this assumption here.

Let C be the 4-state automaton of Example 2.2, that is non-explorable and accepts all
words on alphabet ΣC = {a, b}. Recall that, as an instance of the PCP, B does not come
with an acceptance condition. We will define its accepting set as FB = QB \ {f}.

We will take for A the product automaton B × C on alphabet ΣA = ΣB × ΣC, with
the union acceptance condition: A accepts whenever one of its components accepts. The

transitions of A are defined as expected: (p, p′)
a1,a2−→ (q, q′) in A whenever p

a1−→ q in B and

p′
a2−→ q′ in C.
Since L(C) = (ΣC)

∗, and A accepts whenever one of its components accepts, we have
L(A) = (ΣA)

∗. The intuition for the role of C in this construction is the following: it allows
us to modify B in order to accept all words, without interfering with its explorability status.

We claim that for any k ∈ N, A is k-explorable if and only if Determiniser wins the
k-population game on (B, f).

Assume that A is k-explorable, via a strategy σ. Then Determiniser can play in the
k-population game on (B, f) using σ as a guide. In order to simulate σ, one must feed to it
letters from ΣC in addition to letters from ΣB chosen by Spoiler. This is done by applying
a winning strategy for Spoiler in the k-explorability game of C. Assume for contradiction
that, at some point, this strategy σ reaches a position where all tokens are in a state of the
form (f, q) with q ∈ QC . Since f is a sink state, when the play continues it will eventually
reach a point where all tokens are in (f, q3), where q3 is the rejecting sink of C. This is
because we are playing letters from ΣC according to a winning strategy for Spoiler in the
k-explorability game of C, and this strategy guarantees that all tokens eventually reach q3 in
C. But this state (f, q3) is rejecting in A, and L(A) = (ΣA)

∗, so this is a losing position for
Determiniser in the k-explorability game of A. Since we assumed σ is a winning strategy
in this game, we reach a contradiction. This means that following this strategy σ together
with an appropriate choice for letters from ΣC , we guarantee that at least one token never
reaches the sink state f on its B-component. This corresponds to Determiniser winning in
the k-population game on (B, f).

Conversely, assume that Determiniser wins in the k-population game on (B, f), via a
strategy σ. The same strategy can be used in the k-explorability game of A, by making
arbitrary choices on the C component. As before, this corresponds to a winning strategy in
the k-explorability game of A, since there is always at least one token with B-component in
FB = QB \ {f}. This completes the hardness reduction, and thus the proof of Theorem 4.4.



18 E. HAZARD, O. IDIR, AND D. KUPERBERG

Remark 4.5. Using standard arguments, it is straightforward to extend Theorem 4.4
to ExpTime-hardness of explorability for automata on infinite words, using any of the
acceptance conditions defined in Section 2.1.

Let us give some intuition on why we can obtain a polynomial reduction in one direction,
but did not manage to do so in the other direction. Intuitively, the explorability problem is
“more difficult” than the PCP for the following reason. In the PCP, Spoiler is allowed to
play any letters, and the winning condition just depends on the current position. On the
contrary, the winning condition of the k-explorability game mentions that the word chosen
by Spoiler must belong to the language of the NFA. In order to verify this, we a priori need
to append to the arena an exponential deterministic automaton for this language, and this
is what is done in Section 4.1. This complicated winning condition is also the source of
difficulty in the problem of recognizing HD parity automata.

4.3. EXPTIME algorithm for [0,2]-explorability. The present work is an extended
version of [HK23], where the following was proven:

Theorem 4.6. The explorability problem can be solved in ExpTime for Büchi automata
(and all simpler conditions: NFA, safety, reachability).

The algorithm was adapted from the ExpTime algorithm for the PCP from [BDG+19].
We will use a variant of this first algorithm, and thus recall here the main ideas of the latter
algorithm, and describe how we adapt it to our setting.

Let A be an NFA, together with a target state f . The idea in [BDG+19] is to abstract
the population game with arbitrary many tokens by a game called the capacity game. This
game allows Determiniser to describe only the support of his set of tokens, i.e. the set of
states occupied by tokens. The sequence of states obtained in a play can be analysed via
a notion of bounded capacity, in order to detect whether it actually corresponds to a play
with finitely many tokens. This notion can be approximated by the more relaxed finite
capacity, which is a regular property that is equivalent to bounded capacity in a context
where games are finite-memory determined. This property of finite capacity can be verified
by a deterministic parity automaton, yielding a parity game that can be won by Spoiler if and
only if (A, f) is a positive instance of the PCP. Since this parity game has size exponential
in A, this yields an ExpTime algorithm for the PCP.

In the present extended version, we will perform some tweaks to this construction, in
order to give an ExpTime algorithm for deciding explorability of [0, 2]-automata:

Theorem 4.7. The explorability problem can be solved in ExpTime for [0, 2]-automata
(and all simpler conditions: Büchi , co-Büchi , safety, reachability).

Let us first give a general scheme of the proof, before going to a more formal and detailed
description.

We start with a [0, 2]-automaton A, and want to decide whether it is explorable.
Our aim is to build a parity game G of size exponential in A such that deciding whether

A is explorable amounts to deciding the winner of G. We want G to be an abstraction
of the explorability game, where the number of tokens is not explicitly present. First, we
need to control that the infinite word played by Spoiler is in L(A). This requires to build
a deterministic parity automaton D recognizing L(A), and incorporate it into the arena.
The size of D is exponential with respect to A, and the number of priorities is polynomial.
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We then follow [BDG+19] and build the capacity game augmented with D. In this game,
Spoiler plays a letter at each step, and Determiniser chooses a subgraph of the run-DAG of
A, that intuitively describes all the transitions taken by his tokens. The condition inherited
from the capacity game is enforced as well, in order to force Determiniser to play a run-DAG
compatible with a finite number of tokens. Such a DAG is 2-winning if there are infinitely
many steps containing a 2-transitions. If it is not 2-winning, it may be unable to have a
given token avoid seeing 1-transitions infinitely often, which means that no run through the
support would be accepting. Therefore, Determiniser also has, at all time, a ”challenger”
that they want to prevent from seeing a 1-transition. If they fail at such a task infinitely
often, the run is said to be 1-losing.

By combining all these ingredients, we show that we can as in [BDG+19] obtain a parity
game of exponential size characterizing explorability of A, yielding the wanted ExpTime
algorithm.

We also remark that, as in [BDG+19], this construction gives a doubly exponential
upper bound on the number of tokens needed to witness explorability. Moreover, the proof
from [BDG+19] that this is tight also stands here.

Let us now give a more detailed description of the construction.
We consider a non-deterministic [0, 2]-automaton A = (Σ, Q, qA0 ,∆A, rk), where rk is a

function Q → [0, 2] giving the parity rank of each transition.
Let D be a deterministic parity automaton for L(A), that we can obtain via any

standard ExpTime algorithm. We will also make use of the capacity game from [BDG+19],
in particular let T be the deterministic parity automaton built in [BDG+19, Thm 4.5], that
accepts a run-DAG if and only if infinitely many tokens are needed to instantiate it.3 The
alphabet of this automaton consists in transfer graphs of A, i.e. subsets of Q×Q. Both D
and T have an exponential size and a polynomial number of priorities with respect to the
size of A.

Definition 4.8 ([0, 2]-capacity game). The [0, 2]-capacity game is played in the arena
P(Q)×Q×QD ×QT , called [0, 2]-capacity arena. It is played as follows by Determiniser
and Spoiler.

• The starting position is S0 = ({qA0 }, qA0 , qD0 , qT0 ).
• At any given step with position (B, q, qD, qT ) with q ∈ B, Spoiler chooses a letter a ∈ Σ,
then Determiniser chooses a transfer graph G ⊆ ∆A(B, a), i.e. a subset of possible
a-transitions starting from B, and a state q′ such that (q, a, q′) ∈ B.

• If (q, a, q′) is of priority 1, then Determiniser can switch q′ to any state in Im(G). This
event is recorded as an elimination. Else, q′ does not change.

• The play then moves to the position (Im(G), q′, δD(q
D, a), δT (q

T , G)). I.e. the set of tokens
is updated to the image of G, the state of the challenger is updated to q′, and the states
of D and T are updated deterministically.

A play can be represented by a sequence (B0, q0, q
D
0 , q

T
0 )

a1,G1,e1−→ (B1, q1, q
D
1 , q

T
1 )

a2,G2,e2−→
. . ., where ei is a bit with value 1 if and only if an elimination took place at step i. The
state qi will be called the challenger.

We say that Spoiler wins the play if the run qD0 q
D
1 q

D
2 . . . of D is parity accepting, while

only finitely many Gi contain 2-transitions (from ∆A) and there is an infinite number of
eliminations. Spoiler also wins if the run qT0 q

T
1 q

T
2 . . . of T is parity accepting, witnessing

3The notation T stands for “tracking list automaton” as it is called in [BDG+19].
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that the sequence G1G2 . . . of transfer graphs cannot be instantiated with finitely many
tokens.

The following lemmas will allow us to show that the game functions as intendend, i.e.:

• the capacity game still captures the finiteness of number of tokens in this extended
construction.

• the elimination mechanism is a sound abstraction of the [0, 2]-parity condition.

It thus remains to prove that if Spoiler wins the [0, 2]-capacity game, if and only if he
wins the k-explorability game for all k ∈ N.

Let us begin by an observation that will allow us to prove this result:

Lemma 4.9. The [0, 2]-capacity game is finite-memory determined.

Proof. The winning condition is a boolean condition of parity conditions, hence the game is
ω-regular, and thus finite-memory determined.

In order to relate the [0, 2]-capacity game to the k-explorability game, we will define the
notion of projection of a play.

Definition 4.10 (Projection of a play). The support arena is the P(Q) component of the
[0, 2]-capacity arena, where Spoiler plays letters and Determiniser plays transfer graphs.

Given a play S0
a1−→ S1

a2−→ S2 . . . in the k-explorability game, the projection of that play in

the support arena is the play B0
a1,G1−→ B1

a2,G2−→ B2 . . ., where:

• Bi is the support of Si (states occupied in Si),
• Gi+1 = {(Si(j), Si+1(j)) | j ∈ [0, k − 1]}.
This corresponds to forgetting the multiplicity of tokens and only keeping track of the
transitions that are used. Any play in the [0, 2]-capacity game induces a play in the support
arena as well, by simply forgetting the challenger and the deterministic components D and
T .

In the following, we will not recall in detail the notion of capacity or other intricacies of
the construction from [BDG+19], and will try to use them in a blackbox manner as much as
possible. Since the [0, 2]-capacity game is an extension of the capacity game from [BDG+19]
with extra components, some results can be readily applied.

In this spirit, combining [BDG+19, Lem 3.5] with finite-memory determinacy of the
[0, 2]-capacity game, we obtain the following lemma:

Lemma 4.11. If Determiniser has a finite-memory winning strategy τ in the [0, 2]-capacity
game, then he has a strategy σ in the k-tokens explorability game for some k, such that any
play consistent with σ has its projection consistent with τ . Additionnally, it is possible to
chosse σ such that the challenger token in the [0, 2]-capacity game is always instantiated by
a particular token in the k-explorability game, that can change at each elimination event in
the [0, 2]-capacity game.

Proof. The strategy τ is in particular winning for the original capacity game, as Spoiler wins
any play where T accepts. We can therefore directly import the results from [BDG+19]: the
finite memory m of τ ensures that the capacity of any winning play is actually bounded
by a constant depending on m. From there, [BDG+19, Lem 3.5] ensures that there is a
strategy that moves k tokens to realize the transfer graphs of τ , for some k exponential in
m. This yields overall a doubly exponential upper bound on the number of tokens needed to
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instantiate the strategy τ . Let us now describe how to build σ in order to additionally ensure
that the challenger token is always instantiated by a particular token in the k-explorability
game, that can only change at an elimination event. Whenever the challenger is instantiated
(at the beginning or at each elimination), σ will simply choose the token of minimal index
r among those in the new challenger state. Then, as all tokens play the same role in
the instantiation strategy from [BDG+19], it is always possible to have token r follow the
challenger path in σ, until the next elimination event or forever if there is no more elimination.
Indeed, we are guaranteed that the wanted transition is always available, as it is part of the
current transfer graph G.

We can now move to the main results of this section:

Lemma 4.12. If Determiniser wins the [0, 2]-capacity game , then he wins the k-explorability
game for some k ∈ N.

Proof. Since the [0, 2]-capacity game is finite-memory determined, we can assume that
Determiniser has a finite-memory strategy τ , allowing us to apply Lemma 4.11. We will
describe how to build a strategy for Determiniser in the k-explorability game, for some k
given by Lemma 4.11. First of all, we have to lift the actual play in the k-explorability game
to a play in the [0, 2]-capacity game. This is done by simply projecting the set of tokens
onto their support. The additional choices of challenger token will be given by the strategy
τ . Determiniser is therefore able to simulate τ in this projected [0, 2]-capacity, against
letters played by Spoiler. We can then apply Lemma 4.11 to obtain a strategy σ in the
k-explorability game, instantiating the behaviour of τ by actual tokens. Let us show that the
resulting strategy σ from Lemma 4.11 is indeed winning in the k-explorability game. Let π
be a play of the strategy τ in the [0, 2]-capacity game, yielding a corresponding play π′ of the
strategy in the k-explorability game. If Determiniser wins π by witnessing infinitely many
priorities 2, then one of the k tokens in π′ will see infinitely many 2-transitions as well, and
therefore π′ is winning for Determiniser. Otherwise, if Determiniser wins π by preventing
the challenger from seeing a 1-transition, then by the additional property requested of σ
in Lemma 4.11, one of the tokens in π′ will never see a 1-transition after some point, and
therefore π′ is winning for Determiniser as well. This achieves the proof that Determiniser
has a winning strategy in the k-explorability game.

Let us now show the converse direction:

Lemma 4.13. If Determiniser wins the k-explorability game for some k ∈ N, then he wins
the [0, 2]-capacity game.

Proof. Here we do not need any finite-memory determinacy result. Let σ be a winning
strategy for Determiniser in the k-explorability game. We will show that this strategy can be
lifted to a winning strategy τ in the [0, 2]-capacity game. When playing in the [0, 2]-capacity
game, Determiniser will keep in memory a corresponding play of the k-explorability game,
and follow the strategy σ in it. Then, to answer to the letters played by Spoiler, Determiniser
will do the followingc:

• project the k tokens to their support, and play the corresponding transfer graph in the
[0, 2]-capacity game

• for the challenger, simply loop over all tokens: when the current challenger is token i and
sees a 1-transition, an elimination event is witnessed, and the challenger is switched to
token i+ 1, looping back to 0 after k − 1.



22 E. HAZARD, O. IDIR, AND D. KUPERBERG

Since the strategy σ is winning in the k-explorability game, the corresponding play in
the [0, 2]-capacity game will be winning as well:

• the automaton T will be rejecting as the transfer graphs can be instantiated with a finite
number of tokens

• Either infinitely many 2 will be seen in the run-DAG, or after some point the challenger
will never see a 1-transition.

This achieves the description of a winning strategy τ for Determiniser in the [0, 2]-capacity
game.

To conclude and obtain 4.7, we have to show that the [0, 2]-capacity game can actually
be solved with the wanted complexity.

Theorem 4.14. The [0, 2]-capacity game can be solved in ExpTime.

Proof. Let G be the [0, 2]-capacity game associated to a [0, 2]-automaton A. We will show
that the winning condition of the game G for Spoiler can be seen as a disjunction of parity
conditions. Recall that the winning condition for Spoiler is (T accepts) or (D accepts and
finitely many 2 and infinitely many eliminations). Therefore, it is of the form Parity∨(Parity
∧ coBüchi ∧ Büchi). But we can turn the second disjunct into a parity condition, at the price
of some memory. Indeed, coBüchi ∧ Büchi amounts to a [1, 2, 3] condition. A condition of the
form [1, 2j]-Parity ∧ [1, 2, 3]-Parity can then be accepted by deterministic [1, 2j + 1]-parity
automaton D′ performing the following task:

• Whenever a 3-transition is seen on the second component, produce a rejecting 2j +1 rank,
• During sequence of 1-transitions on the second component, produce a rank of 1 and
remember the highest rank h seen on the first component. This takes 2j states.

• When a 2-transition is seen on the second component, produce h.

This automaton D′ has a size polynomial in A, as the number of priorities of D is polynomial
in A. Thus, by incorporating D′ in the game, we obtain a game G′ equivalent to G, still of
size exponential in A, and with winning condition a disjunction of two parity conditions.
Such games are studied in [CHP07], which gives us an algorithm for solving G′ in time

O(m4dm2) (2d)!
d!2

, where d is the number of priorities and m the size of the game.

If we take n = |A|, using the fact that m = O(2poly(n)) and d = poly(n), we obtain an
overall ExpTime complexity for solving G.

Remark 4.15. We can also be interested in the number of tokens needed for Determiniser
to witness explorability of an automaton. By inspecting our proof, we can see that we
obtain a doubly exponential upper bound. Moreover, we can use the same construction
as in [BDG+19, Prop 6.3] to show that this is tight, i.e. some automata require a doubly
exponential number of tokens to witness explorability. It is straightforward to lift this lower
bound to the more difficult problem of NFA explorability (or more complex conditions on
infinite words), so we do not detail this proof here.

4.4. The Parity explorability problem. We leave open the decidability of the explorabil-
ity problem for parity automata beyond index [0, 2].

However, we remark that from Lemma 3.6, the only remaining case to be treated is
index [1, 3]. Indeed, for any parity automaton A with n states and d parity ranks, Lemma
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3.6 allows us to reduce (in polynomial time) explorability of A to that of an equivalent

[1, 3]-automaton with
nd

2
states.

5. Explorability with countably many tokens

In this section, we look at a variant of explorability where we now allow for infinitely many
tokens. More precisely, we will redefine the explorability game to allow an arbitrary cardinal
for the number of tokens, then consider decidability problems regarding that game. This
notion will mainly be interesting for automata on infinite words.

5.1. Definition and basic results. The following definition extends the notion of k-
explorability to non-integer cardinals:

Definition 5.1 (κ-explorability game). Consider an automaton A and a cardinal κ. The
κ-explorability game on A is played on the arena (QA)

κ, between Determiniser and Spoiler.
They play as follows.

• The initial position is S0 associating q0 to all κ tokens.
• At step i, from position Si−1, Spoiler chooses a letter ai ∈ Σ, and Determiniser chooses Si

such that for every token α, Si−1(α)
ai−→ Si(α) is a transition in A.

The play is won by Determiniser if for all β ≤ ω such that the word (ai)1≤i<β is in L(A),
there is a token α ∈ κ building an accepting run, meaning that the sequence (Si(α))i<β is
an accepting run. Otherwise, the winner is Spoiler.

We will say in particular that A is ω-explorable if Determiniser wins the game with
ω tokens. We use here the notation ω for convenience, it should be understood as the
countably infinite cardinal ℵ0. We will however explicitly use the fact that such an amount
of tokens can be labelled by N, in order to describe strategies for Spoiler or Determiniser
in the ω-explorability game. The following lemma gives a first few results on generalized
explorability.

Lemma 5.2.

• Determiniser wins the explorability game on A with |L(A)| tokens.
• ω-explorability is not equivalent to explorability.
• There are non ω-explorable safety automata.

Proof. For the first item, a strategy for Determiniser is to associate a token to each word
of L(A) and to have it follow an accepting run for that word. Let us add a few details on
the cardinality of L(A). First, a dichotomy result has been shown in [Niw91] (even in the
more general case of infinite trees): if L(A) is not countable, then it has the cardinality of
continuum, and this happens if and only if L(A) contains a non ultimately periodic word.
In this case, we can simply associate a token with every possible run. In the other case
where L(A) is countable, we have to associate an accepting run to each word, and this can
be done without needing the Axiom of Countable Choice: a canonical run can be selected
(e.g. lexicographically minimal).

We now want to prove that there are automata that are ω-explorable but not explorable.
One such automaton is given in Figure 5 (left), where the rejecting sink state is omitted.
Against any finite number of tokens, Spoiler has a strategy to eliminate them one by one,
by playing a while Determiniser sends tokens to q1, and b the first time q1 is empty after
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the play of Determiniser. On the other hand, with tokens indexed by ω, Determiniser can
keep the token 0 in q0, and send token i to q1 at step i. Those strategies are winning, which
proves both non explorability and ω-explorability of the automaton.

The last item is proven by the second example from Figure 5. A winning strategy for
Spoiler against ω tokens consists in labelling the tokens with integers, then targeting each
token one by one (first token 0, then 1, 2, etc.). Each token is removed using the correct
two-letters sequence (a, then b if the token is in q1 or a if it is in q2). With this strategy,
every token is removed at some point, even if there might always be tokens in the game.

q0 q1 q2

a

a b

a, b

q0

q1

q2

a
a

a

b

Figure 5: Two safety automata.
Left: ω-explorable but not explorable. Right: not ω-explorable.

The first item of Lemma 5.2 implies that the ω-explorability game only gets interesting
when we look at automata over infinite words: since any language of finite words over a
finite alphabet is countable, Determiniser wins the corresponding ω-explorability game. We
will therefore focus on infinite words in the following.

Let us emphasize the following slightly counter-intuitive fact: in the ω-explorability
game, it is always possible for Determiniser to guarantee that infinitely many tokens occupy
each currently reachable state. However, even in a safety automaton, this is not enough
to win the game, as it does not prevent that each individual token might be eventually
“killed” at some point. As the following Lemma shows, this phenomenon does not occur in
reachability automata on infinite words.

Lemma 5.3. Any reachability automaton is ω-explorable.

Proof. Notice first that although the argument is very similar to the one for finite words, we
cannot use exactly the same property: a reachability language can still be uncountable, so
using one token per word of the language is not possible.

For every w ∈ Σ∗ labelling a finite run ρ leading to an accepting state, Determiniser
can use a single token following ρ. This token will accept all words of w · Σω. Since Σ∗ is
countable, and all accepted words are accepted after a finite run, we only need countably
many such tokens to cover the whole language, hence the result.

Let us give another equally simple view: a winning strategy for Determiniser in the
ω-explorability game is to keep infinitely many tokens in each currently reachable state, as
described before the statement of the Lemma. Since acceptance in a reachability automaton
is witnessed at a finite time, this strategy is winning.
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5.2. ExpTime algorithm for coBüchi automata. We already know, from the example
of Figure 5, that the result from Lemma 5.3 does not hold in the case of safety automata. For
automata which are not automatically ω-explorable, we aim at deciding their ω-explorability
status. We show the following decidability result on coBüchi automata. It holds in particular
for safety automata as a subclass of coBüchi.

Theorem 5.4. The ω-explorability of coBüchi automata is decidable in ExpTime.

To prove this result, we will use the following elimination game. A will from here
on correspond to a coBüchi (complete) automaton. We start by building a deterministic
coBüchi automaton D for L(A) (e.g. using the breakpoint construction [MH84]). We will
assume here that the coBüchi condition of A is state-based to simplify a bit the presentation,
but as remarked in the introduction it is straightforward to accomodate transition-based
acceptance as well.

Definition 5.5 (Elimination game). The elimination game is played on the arena P(QA)×
QA ×QD. The two players are named Protector and Eliminator, and the game proceeds as
follows, starting in the position ({qA0 }, qA0 , qD0 ).
• From position (B, q, p) Eliminator chooses a letter a ∈ Σ.
• If the challenger q is not a coBüchi state, Protector picks a state q′ ∈ ∆A(q, a).
• If the challenger q is a coBüchi state, Protector picks any state q′ ∈ ∆A(B, a) as the new
challenger. Such an event is called elimination.

• The play moves to position (∆A(B, a), q′, δD(p, a)).

Such a play can be written (B0, q0, p0)
a1−→ (B1, q1, p1)

a2−→ (B2, q2, p2) . . ., and Eliminator
wins if infinitely many qi and finitely many pi are coBüchi states.

Intuitively, what is happening in this game is that Protector is placing a token that he
wants to protect, the challenger, in a reachable state, and Eliminator aims at bringing this
challenger to a coBüchi state while playing a word of L(A). If Protector eventually manages
to preserve the challenger from elimination on an infinite suffix of the play, he wins.

Notice that this is similar to the technique used for [0, 2]-explorability, except that in
absence of the capacity gadget T , we do not enforce that finitely many tokens are used.

Lemma 5.6. The elimination game is positionally determined and can be solved in polynomial
time (in the size of the game).

Proof. To prove this result, we simply need to note that the winning condition is a parity
condition of fixed index. If we label the coBüchi states pi of D with rank 3, the coBüchi
states qi of A with rank 2, and the others with 1, then take the highest rank in (Bi, qi, pi)
(ignoring Bi), Eliminator wins if and only if the highest rank appearing infinitely often is 2.
As any parity game with 3 ranks can be solved in polynomial time [CJK+17], this is enough
to get the result. Since parity games are positionnally determined [EJ91], the elimination
game is as well.

We want to prove the equivalence between this game and the ω-explorability game to
obtain Theorem 5.4.

Lemma 5.7. A is ω-explorable if and only if Protector wins the elimination game on A.

Proof. First, let us suppose that Eliminator wins the elimination game on A. To build a
strategy for Spoiler in the ω-explorability game of A, we first take a function f : N → N
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such that for any n ∈ N, |f−1(n)| is infinite (for instance we can take f described by
the sequence 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . .). The strategy for Spoiler will focus on sending
token f(0), then f(1), then f(2), etc. to a coBüchi state. Let σ be a memoryless winning
strategy for Eliminator in the elimination game. Spoiler will follow this strategy σ in the
ω-explorability game, by keeping an imaginary play of the elimination game in his memory:
M = P(QA)×QA ×QD × N.
• At first, the memory holds the initial state ({qA0 }, qA0 , qD0 , 0), and the current challenger is
given by the last component via f : it is the token f(0).

• From (B, q, p, n) Spoiler plays in both games the letter a given by σ(B, q, p).
• Once Determiniser has played, Spoiler moves the memory to (∆A(B, a), q′, δD(p, a), n)
where q′ is the new position of the token f(n), except if q was a coBüchi state, in which
case we move to (∆A(B, a), q′, δD(p, a), n+ 1) where q′ is the new position of the token
f(n+ 1). We then go back to the previous step.

This strategy builds a play of the elimination game in the memory, that is consistent with σ.
We know that σ is winning, which implies that the word played is in L(A), and that every
n ∈ N is visited (each elimination increments n, and there are infinitely many of those). An
elimination happening while the challenger is the token f(n) corresponds, on the exploration
game, to that token visiting a coBüchi state. Ultimately this means that Determiniser
did not provide any accepting run on any token (by definition of f that visits each index
infinitely many times), while Spoiler did play a word from L(A), and therefore Spoiler wins.

Let us now consider the situation where Protector wins the elimination game, using
some strategy τ . We want to build a winning strategy for Determiniser in the ω-explorability
game. Similarly, this strategy will keep track of a play in the elimination game in its memory.
Determiniser will maintain ω tokens in any reachable state, while focusing on a particular
token which follows the path of the current challenger in the elimination game. When that
token visits a coBüchi state, we switch to a token in the new challenger state specified by τ .

Since τ is winning in the elimination game, either the word played by Spoiler is not in
L(A), which ensures a win for Determiniser, or there are no eliminations after some point,
meaning that the challenger token at that point never visits another coBüchi state, which
also implies that Determiniser wins.

With Lemmas 5.6 and 5.7 we get a proof of Theorem 5.4, since the elimination game
associated to A is of exponential size and can be built using exponential time.

5.3. ExpTime-hardness of the ω-explorability problem.

Theorem 5.8. The ω-explorability problem for (any automaton model embedding) safety
automata is ExpTime-hard.

Before giving the detailed proof of this result, we will give a quick sketch to convey the
main ideas.

5.3.1. Proof sketch of Theorem 5.8.
We give a quick summary of the proof in this section. The full proof can be found

in Section 5.3.2. The main idea will be to reduce the acceptance problem of a PSpace
alternating Turing machine (ATM) to the ω-explorability problem of some automaton that
we build from the machine. This reduction is an adaptation of the one from [BDG+19]
showing ExpTime-hardness of the NFA population control problem (defined in Section 4.1).
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The computation of an ATM can be seen as a game between two players, who respectively
aim for acceptance and rejection of the input. These players influence the output by choosing
the transitions when facing a non-deterministic choice, that can belong to either one of them.

Let us first describe the automaton built in [BDG+19]. In that reduction, the choices
made by the ATM players are translated into choices for Determiniser and Spoiler. The
automaton has two main blocks: one dedicated to keeping track of the machine’s configuration,
which we call Config, and another focusing on the simulation of the ATM choices, which
we call Choices. In Config, there is no non-determinism: the tokens move following the
transitions of the machine given as input to the automaton. In Choices, Determiniser can
pick a transition by sending his token to the corresponding state, while Spoiler uses letters
to indicate which transition of the ATM he wants to follow.

The automaton constructed this way will basically read a sequence of runs of the ATM.
At each run, some tokens must be sent into both blocks. Reaching an accepting state of a
run lets Spoiler send some tokens from Choices to his target state ⊥. He can then restart
with the remaining tokens until all are in the target state ⊥. This process will ensure a win
for Spoiler if he has a winning strategy in the ATM game. If he does not, then Determiniser
can use a strategy ensuring rejection in the ATM game to avoid the configurations where he
loses tokens, provided he starts with enough tokens.

This equivalence between acceptance of the ATM and the automaton being a positive
instance of the PCP provides the ExpTime-hardness of their problem.

In our setup, getting rid of tokens one by one is not enough: Spoiler needs to be able to
target a specific token and send it to the target state (which is now the rejecting state ⊥)
in one run. If he can do that, repeating the process for every token, without omitting any,
ensures his win. If he cannot, then Determiniser has a strategy to pick a specific token and
preserving it from ⊥, and therefore wins.

This is why we adapt our reduction to allow Spoiler to target a specific token, no matter
where it chooses to go. To do so, we change the transitions so that winning a run additionally
lets Spoiler send every token from Config into ⊥. With that and the fact that he can already
target a token in Choices, we get a winning strategy for Spoiler when the ATM is accepting.

If the ATM is rejecting, Spoiler is still able to send some tokens to ⊥, but he no longer
has that targeting ability, which is how Determiniser is able to build a strategy preserving a
specific token to win. To ensure the sustainability of this method, Determiniser needs to
keep ω additional tokens following his designated token, so that he always has ω tokens to
spread into the gadgets every time a new run starts.

Overall, we are able to compute in polynomial time from the ATM a safety automaton
that is ω-explorable if and only if the ATM rejects its input. Since acceptance of a polynomial
space ATM is known to be ExpTime-hard, we obtain Theorem 5.8.

5.3.2. Detailed proof of Theorem 5.8.
We take an alternating Turing machine M = (ΣM, QM,∆M, qM0 , qMf ) with QM =

Q∃ ⊎ Q∀ and ∆M ⊆ QM × ΣM × QM. It can be seen as a game between two players:
existential (∃) and universal (∀). On a given input, the game creates a run by starting from
qM0 , and letting ∃ (resp. ∀) solve the non-determinism in states from Q∃ (resp. Q∀) by
picking a transition from ∆M compatible with the current letter of the input word. Player
∃ wins if the play reaches the accepting state qMf , and w is accepted if and only if ∃ has a

winning strategy on w. We assume that M uses polynomial space P (n) in the size n of its
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input, i.e. the winning strategies can avoid configurations with tape longer than P (n). We
also fix an input word w ∈ (ΣM)∗.

We will assume for simplicity that ΣM = {0, 1} and that the machine alternates between
existential and universal states, starting with an existential one (meaning that q0 ∈ Q∃ and
the transitions are either Q∃ → Q∀ or Q∀ → Q∃). In our reduction, this will mean that we
give the choice of the transition alternatively to Spoiler (playing ∃) and Determiniser (∀).

We create a safety automaton A = (Q,Σ, q0,∆,⊥) with:

• Q = QM ⊎ Pos ⊎Mem ⊎ Trans ⊎ {q0, store,⊥,⊤} where:

Pos = [1, P (n)] (representing where is the reading head on M’s tape)

Mem = {mb,i | b ∈ {0, 1}, i ∈ [1, P (n)]} (representing the current content of M’s tape)

Trans = {E} ∪ {At | t ∈ ∆M} (encoding players’ choices)

• Σ = {at,p | t ∈ ∆M and p ∈ [1, P (n)]}
⊎{init, end, restart, win}
⊎{checkq | q ∈ QM}
⊎{checkb,i | (b, i) ∈ {0, 1} × [1, P (n)]}

.

• ⊥ is a rejecting sink state: a run is accepting if and only if it never reaches this state.

Let us give the intuition for the role of each state of A. First, the states in QM, Pos and
Mem are used to keep track of the configuration of M, as described in Lemma 5.9. Those
in Trans are used to simulate the choices of ∃ and ∀ (played by Spoiler and Determiniser
respectively). The state store keeps tokens safe for the remaining of a run when Spoiler
decides to ignore their transition choice. The sinks ⊤ and ⊥ are respectively the one Spoiler
must avoid at all cost, and the one in which he wants to send every token eventually.

We now define the transitions in ∆. The states ⊤ and ⊥ are both sinks (⊤ accepting
and ⊥ rejecting). We then describe all transitions labelled by the letter at,p with p ∈ Pos
and t = (q, q′, b, b′, d) ∈ ∆M, where q and q′ are the starting and destination states of t, b
and b′ are the letters read and written at the current head position, and d ∈ {L,R} is the
direction taken by the head. These transitions are:

• q → q′.
• p → p′ with p′ = p+ 1 if d = R, or p− 1 if d = L. It goes to ⊤ if p′ /∈ [1, P (n)].
• mb,p → mb′,p, and mb′′,p′′ → mb′′,p′′ for any b′′ and any p′′ ̸= p.
• E → At′ for any transition t′.
• At → E.
• q′′ → ⊤ for any q′′ ̸= q.
• m¬b,p → ⊤ (¬b is the boolean negation of b).
• p′ → ⊤ for any p′ ̸= p.
• At′ → store for any transitions t′ ̸= t.

This is represented in Figure 6.
The first three bullet points manage the evolution of the configuration of M. The next

two deal with the alternation between players, and the next three punish Spoiler if the
transition is invalid (the check letters will handle the case where Determiniser is the one
giving an invalid transition). The last one saves the tokens that are not chosen for the
transition.

The other letters give the following transitions.
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QM Pos Mem Trans

q q′

q′′

p p′

p′′

mb,p mb′,p

m¬b,p

E At

At′

⊤
store

Figure 6: Transitions for at,p, where t = (q, q′, b, b′, d), p′ is the position at direction d from
p, and q′′, p′′, and t′ are different from q, p, t respectively.

q0 E At

store ⊥

init

at,p, at′,p

at,p

at′,pΣ \ {end, checkq, checkb,i}

end
end

Σ

end

Figure 7: Gadget for simulating the choice of ∀ in the alternation (transitions labelled by
check are not represented, and t′ represents any transition different from t).

• init goes from q0 to the states E, qM0 , and 1 ∈ Pos, and also to the states mb,p

corresponding to the initial content of the tape, i.e. all mb,p such that b is the p-th letter
of w (or 0 if i > |w|).

• end labels transitions from any non-accepting state of M to ⊤, from store to q0, and
from any other state to ⊥.

• checkq creates a transition from At to ⊥ for any t ∈ ∆ starting from q. It also creates a
transition from q to ⊤. Any other state is sent back to q0. Intuitively, playing that letter
means that q is not the current state and that any transition starting from q is invalid.

• checkb,p creates a transition from At to ⊥ for any t ∈ ∆ reading b on the tape. It also
creates transitions from any j ∈ Pos \ {p} and from mb,p to ⊤. Any other state is sent to
q0. Intuitively, playing that letter means that the current head position is p, and that its
content is not b, so any transition reading b is invalid.

To summarize, the states of A can be seen as two blocks, apart from q0, ⊤ and ⊥: those
dealing with the configuration of M (QM, Pos and Mem), and those from the gadget of
Figure 7 which deal with the alternation and non-deterministic choices.

The following result provides tools to manipulate the relation between A and M.

Lemma 5.9. Let us consider a play of the ω-explorability game on A, that we stop at some
point. Suppose that the letters at,p played since the last init are at1,p1 , . . . , atk,pk . If ⊤ is
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not reachable from q0 with this sequence, then we can define a run ρ of M on w taking the
sequence of transitions t1, . . . , tk. The following implications hold:

Token present in implies that at the end of ρ

q ∈ QM the current state is q
p ∈ Pos the head is in position p

mb,p ∈ Mem the tape contains b at position p
E it is the turn of ∃
At it is the turn of ∀

Proof. These results are obtained by straightforward induction from the definitions. The
unreachability of ⊤ is used to ensure that only valid transitions are played.

We will now prove that A is ω-explorable if and only if the Turing machine M rejects
the word w. Let us first assume that w ∈ L(M). There is a winning strategy σ∃ for ∃ in
the alternating Turing machine game, and Spoiler will use that strategy in the explorability
game to win against ω tokens. He will consider that the tokens are labelled by integers, and
always target the smallest one that is not already in ⊥. He proceeds as follows.

• Spoiler plays init from a position where every token is either in q0 or ⊥. We can assume
from here that Determiniser sends tokens to each possible state, and just add imaginary
tokens if he does not. Additionally, if the target token does not go to E, then it means that
it is in a deterministic part of the automaton. In this case Spoiler creates an imaginary
target token in E that will play only valid transitions (we will describe what this means
later). Its purpose is to ensure that we actually reach an accepting state of M to destroy
the real target token.

• When there are tokens in E, Spoiler plays letters according to σ∃. More formally,
if the letters played since init are at1,p1 . . . ati,pi , then Spoiler plays ati+1,pi+1 where
ti+1 = σ∃(t1, . . . , ti) and pi+1 = pi + 1 or pi − 1 depending on the head movement in ti.

• After such a play, Determiniser can move tokens to any state At. If there is more than
one occupied state, Spoiler picks the one containing the current target token (possibly
imaginary).
– If that state corresponds to an invalid transition (wrong starting state or wrong tape

content at the current head position), then Spoiler plays the corresponding check letter.
Formally, if the target token (not the imaginary one, since Spoiler can avoid invalid
transitions for that one) is in At, Spoiler plays checkq if the starting state q of t does
not match the current state of the tape (given by Lemma 5.9), or checkb,p if the current
head position is p and does not contain b. In both cases, the target token is sent to ⊥
with no other token reaching ⊤ (by Lemma 5.9). This sends us back to the first step,
but with an updated target.

– If the state instead corresponds to a valid transition, then Spoiler can play the corre-
sponding at,p, where p is the current head position (again, given by Lemma 5.9), then
go back to the previous step (where there are tokens in E).

• If no invalid transition is reached, the run eventually gets to an accepting state of M
because σ∃ is winning. This corresponds to a stage where Spoiler can safely play end to
get rid of the target token along with all tokens outside of store, by sending them to ⊥
(the only reason not to play end would be the existence of tokens in non-accepting states
of QM). This sends us back to the first step, but with an updated target. Notice that if
there was a virtual target token, we will always reach this event, and send the real target
token (located in QM or Pos or Mem) in ⊥.
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This strategy guarantees that after k runs, at least the first k tokens are in state ⊥, and
therefore cannot witness an accepting run. We also know that the final word is accepted by
A, because an accepting run can be created by going to the state store as soon as possible
in each factor corresponding to a run of M.

Conversely, if there is a winning strategy σ∀ for the universal player in the alternation
game on M(w), then we can build a winning strategy for Determiniser in the ω-explorability
game. This strategy is more straightforward than the previous one, as we can focus on the
tokens sent to E (while still populating each state when init is played, but these other
tokens follow a deterministic path until the next init).

Determiniser will initially choose a specific token, called leader. He then sends ω tokens
to every reachable state when Spoiler plays init, with the leader going to E. Determiniser
then moves the tokens in the leader’s state according to σ∀. Spoiler cannot send the leader to
⊥, since the only way to do that would be using the letter end, but this would immediately
ensure the win for Determiniser, as there will always be some token in non-accepting states
of M (because σ∀ is winning), and those tokens would be sent to ⊤ upon playing end.
This means that Spoiler has no way to send the leader to ⊥ without losing the game, and
therefore Determiniser wins.

Note that with that strategy, Spoiler can still safely send some tokens to ⊥ by playing
the wrong transition, which sends the tokens following the leader to store, then some
well-chosen check letter to send the remaining ones to ⊥. However, Determiniser will start
the next run with still ω tokens, including the leader. This is why the choice of a specific
leader is important, as it can never be safely sent to ⊥.

This proves that the automaton A created from M and w (using polynomial time) is
ω-explorable if and only if M rejects w. This completes the proof, since the acceptance
problem is ExpTime-hard for alternating Turing machines using polynomial space.

5.4. Büchi case, or the general case. Surprisingly, compared to the situation with a
finite number of tokens, in the ω-explorability case, the expressivity hierarchy collapses as
early as the Büchi case, as ω-explorable Büchi automata can recognize all ω-regular languages.
We can even build in PTime a Büchi automaton whose ω-explorability is equivalent to the
one of an input parity automaton.

Theorem 5.10. Let A be a parity automaton. We can build in PTime a Büchi automaton
B recognizing L(A), such that B is ω-explorable if and only if A is ω-explorable.

Proof. Intuitively, the idea is to build an automaton that will make a case disjunction over
the different even parities l of A, and will ensure that the run never encounters any priority
> l after some time. This is a classical way to turn a parity automaton into a Büchi one.
We just need to ensure that the non-determinism introduced in this construction preserve
ω-explorability.

Let us first describe formally the construction. We define, for l even parity of A, a copy
Al of A where all transitions of priority < l become non-Büchi transitions, all transitions of
priority l become Büchi transitions, and all transitions of priority > l are rerouted towards a
rejecting sink state ⊥. The automaton Al recognizes the language of words of L(A) which
can be accepted in A with infinitely many priorities l and never encounter any priority > l.
We define A′ as the copy of A where the rank of all transitions is changed to 1 (i.e.
non-Büchi ).
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⊥

Figure 8: Illustration of the construction of B from A for the proof of Theorem 5.10. All

transitions associated to a transition p
a:4−→ q are represented (label a omitted), in

bold green for the Büchi transition.

The automaton B will simply be the union of A′ all the Al: the run starts in A′, then
can non-deterministically jump to any Al at any time, keeping the local state coherent.

The transitions of B are those of A′,Al, plus transition of the form p′
a−→ ql with p′ ∈ A′

and ql ∈ Al for some l, corresponding to a transition p
a−→ q in the original automaton A,

regardless of priorities. See Figure 8 for an illustration.
It is clear that L(B) = L(A): an accepting run in B must jump to some Al at some

point, and from there witness that the word is accepted in A with priority l. Conversely, a
l-accepting run in A can be simulated in B by jumping to the corresponding Al after the
last priority > l is encountered.

We will now show that B is ω-explorable if and only if A is ω-explorable.

=⇒ If B is ω-explorable, the strategy for Determinizer can simply be copied to A, by projecting
states and transitions of B to A in the canonical way. When a token follows an accepting
run in B, the corresponding token will follow an accepting run in A, so this strategy
witnesses ω-explorability of A.

⇐= If A is ω-explorable with σ winning strategy for Determinizer, we will build a winning
strategy σ′ for Determinizer in the ω-explorability game B.
To do so, we will associate to each token i of σ a countable set of tokens {ti,j,l | j ∈
N, l even parity of A}. The strategy σ′ will have token ti,j,l will follow the same path as
token i in σ, starting out in copy A′, and jumping in copy Al at time j.

Since some token i accepts in σ, by seeing infinitely many priority l, with no priority
> l after some time j, the token ti,j,l will accept according to σ′.
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There are still countably many tokens (which can be re-indexed by N), so this witnesses
ω-explorability of B.

Theorem 5.10 gives us the following corollary:

Corollary 5.11. If ω-explorability is decidable for Büchi automata, then it is decidable for
parity automata.

We leave open the decidability of ω-explorability for Büchi automata.

The expressivity picture is complete for ω-explorable automata: the hierarchy collapses
at the Büchi level, while the coBüchi level recognizes only deterministic coBüchi languages,
as it is the case for non-deterministic automata in general.

Conclusion

We introduced and studied the notions of explorability and ω-explorability, for automata on
finite and infinite words. We showed that these problems are ExpTime-complete (and in
particular decidable) for [0, 2]-parity condition in the first case and coBüchi condition in the
second case.

We leave open the cases of deciding explorability of [1, 3]-automata and ω-explorability
of Büchi automata. These correspond to the general case: (ω)-explorability of any parity
automaton can be reduced to these cases.

We showed that the original motivation of using explorability to improve the current
knowledge on the complexity of the HDness problem for all parity automata cannot be
directly achieved, since deciding explorability is at least as hard as HDness. Although this
is a negative result, we believe it to be of importance. Moreover, some contexts naturally
yield explorable automata, such as [BL22] where it leads to a PTime algorithm deciding
the HDness of quantitative LimInf and LimSup automata. More generally, explorability
is a natural property in the study of degrees of non-determinism, and this notion could
be used in other contexts as a middle ground between deterministic and non-deterministic
automata. We also saw that despite its apparent abstractness, ω-explorability captures a
natural property that we believe can be useful in verification: the ability of Spoiler to “kill”
any run of its choice.

Acknowledgments. We thank Milla Valnet for her preliminary work on the explorability
question.
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