

RESET
Recherches en sciences sociales sur Internet

11 | 2022
Codes. L'informatique comme elle s'écrit

Writing code, making software
Gabriel Alcaras and Antoine Larribeau

Electronic version
URL: https://journals.openedition.org/reset/3944
DOI: 10.4000/reset.3944
ISSN: 2264-6221

This article is a translation of:
Codes. L’informatique comme elle s’écrit - URL : https://journals.openedition.org/reset/3914 [fr]

Publisher
Association Recherches en sciences sociales sur Internet

Electronic reference
Gabriel Alcaras and Antoine Larribeau, “Writing code, making software”, RESET [Online], 11 | 2022,
Online since 22 April 2022, connection on 11 October 2024. URL: http://journals.openedition.org/reset/
3944 ; DOI: https://doi.org/10.4000/reset.3944

This text was automatically generated on October 11, 2024.

The text and other elements (illustrations, imported files) are “All rights reserved”, unless otherwise
stated.

https://journals.openedition.org
https://journals.openedition.org
https://journals.openedition.org/reset/3944
https://journals.openedition.org/reset/3914

Writing code, making software
Gabriel Alcaras and Antoine Larribeau

1 How is the software we use every day created? Who builds the informational

infrastructure of our contemporary societies? What is the digital world made of? These

questions can and do receive many answers, sometimes idealized, sometimes

disenchanted. Whatever the tone of the discourse, one thing is taken for granted:

software is efficient machinery and produces effects on the social world. The growing

debates on algorithms, especially concerning their power and opacity, perfectly

illustrate this particular logic of interpretation of the computer world. Although

studies devoted to the appropriation of techniques warn against a deterministic view of

technologies and document "the possibilities of autonomy and emancipation for

individuals and groups"1 (Proulx, 2015), digital infrastructures retain their aura of

fascinating devices, at once incredibly complex and perfectly ordered.

2 To question this illusion of order and efficiency, one possible strategy is to enter the

heart of the system: "from the outside, one is struck by the marvelous arrangement of

the elements, well-aligned with each other, harmoniously united; from the inside, one

discovers the twisted elements, the creases, the blockages, the rough edges" (Dodier,

1995, p. 5). But what does "inside" mean when the infrastructures are so vast and so

diverse? Should we look at buildings, circuit boards, servers, network cables, databases,

programs, platforms, or a host of other objects − not to mention the people who

create, maintain, and use them? Making a choice is not easy, especially in the face of

the polysemy of the term digital, whose uses and definitions vary greatly according to

context (Moatti, 2012; Drot-Delange and Bruillard, 2012; Baron, 2018).

3 This special issue of RESET aims to encourage the social sciences to explore a path that

is seldom taken − software. By this term, we mean both the scientific discipline and

the industrial engineering that participate in the production of our digital

infrastructures and whose resource is code, i.e. text intended to be executed by a

computer2. Studying software as it is written is therefore a particularly engaging way to

understand the construction of software infrastructures from the inside.

Writing code, making software

RESET, 11 | 2022

1

1. Programming or coding?

4 Recently, the term "program" has been used to address software in all its globality and

ambivalence (Méadel and Sire, 2017), from code to uses, from interfaces (Galloway,

2012) to APIs3 (Ermoshina, 2017), from physical infrastructures to databases. This

special issue furthers this line of research. It argues that starting the analysis from a

more precise object, computer code, and a more circumscribed activity, the writing of

code, can not only document software in the making but also contribute to a more

global understanding of software infrastructures.

1.1. Hacker, geek, entrepreneur: beyond the mythical figures

5 As an activity, making software largely remains in the shadow of great mythical

figures. Whether it be hackers (Hikkamen, 2001; Auray, 2013; Lallement, 2015), geeks

(Kelty, 2008), or even genius entrepreneurs (Turner, 2006), these emic4 representations

often attract attention to the detriment of concrete software practices. The latter are

then regularly obscured from academic work, in favor of the − sometimes

conflicting − discourses that coders hold about their worlds. These discourses include,

for example, the observation that code is the law of cyber-space (Lessig, 1999); the view

that programming is an instrument of political (Auray and Ouardi, 2014) or economic

emancipation (Stevens 2012; Vicente 2017); the promise of a reinvention of work

through play and experimentation in the programming activity (Berrebi-Hoffmann et

al, 2018; Flichy, 2017); the enthusiastic remark that "software is eating the world"5 and

that all aspects of our contemporary societies could be transformed, even improved, by

putting them into code.

6 Accounting for these representations is undoubtedly a strength for sociological and

anthropological research. Thanks to this work, we have gained a much more granular

understanding of essential elements of the technical (Coleman, 2010), political

(Coleman, 2013; Auray, 2007; Broca, 2013), and economic (Rosental, 2017; Vincente

2017) cultures of computing environments. These discourses help us to understand the

interest in code, the relationships that individuals have with their activity, or the

strategies of distinction and legitimization deployed by certain social groups. But

discourses, however operative they may be, are not practices. If the former have been

remarkably invested by the social sciences, we cannot say the same about the latter.

When surveys and fieldwork are carried out, they often approach it through the prism

of these discourses, whether to verify or invalidate them. Despite the answers provided

by this body of research, the questions remain, on the whole, unchanged − and these

questions are what we need to renew today.

1.2. Avoiding the algorithmic reduction

7 When software is not overshadowed by these mythical figures, it is regularly reduced to

the problem of algorithms. The growing centrality of the concept of algorithm is easily

understood. On the one hand, algorithms seem to find ever more concrete applications

and more data to process, from the recommendation of cultural goods, such as music

(Beuscart et al 2019), to the dissemination of information (Benkler, 2018), to justice

(Christin, 2017), to predictive policing (Benbouzid, 2017), and so many others, not to

Writing code, making software

RESET, 11 | 2022

2

mention the social sciences themselves (Edelman et al 2020). On the other hand,

algorithms are seemingly constantly gaining autonomy thanks to systems such as

neural networks (Cardon et al. 2018). The fear is that these technologies, pictured as

capable of learning, will absorb the inequalities inherent in data and reproduce systems

of oppression (Noble, 2018). Algorithms are now part of a double mise en scène, which

presents them both as lacking transparency and as omnipotent. The power of the

"algorithmic drama" (Ziewitz, 2017) lies in this interplay between opacity and power,

which reinforce each other. If we assume that algorithms have power, it is not easy to

understand how they exercise it, which makes them all the more mysterious.

Conversely, their opacity can be interpreted as an additional clue of their power. In

short, if we do not know what algorithms are and what they do, everyone agrees on

their status as objects of power.

8 However, sociologists and anthropologists who follow the trail of algorithms rarely

come across such entities because, in the practice of making software, the word

designates very different objects, with changing contours. For example, many

developers understand "algorithm" as a reference to the classic sequences of

instructions they learned at university or in engineering school. In this sense,

algorithms manifest themselves when a developer is reviewing her algorithmic

knowledge for a job interview or an engineer is searching a forum for a precise

implementation of quicksort6. No matter how complex or impressive, algorithms are

just one element in a vast toolbox − a far cry from the mysterious objects of power we

mentioned earlier. Conversely, if we understand an algorithm to mean any sequence of

instructions that can be executed by a computer, the meaning becomes so broad that it

could encompass every aspect of software production, to the point that the object

struggles to be operational for the social sciences. Nick Seaver rightly points out that in

computer science, the word "algorithm" is undergoing a trajectory similar to that of

the word "culture" in anthropology (Seaver, 2017), becoming so popular inside and

outside its discipline that it is almost overused. Under these circumstances, sociological

inquiry struggles to define and identify these infamous black boxes. And often, when it

does find them, opening them proves to be extremely difficult, all for a confusing,

sometimes disappointing result (Winner, 1993).

9 Algorithms are therefore not always the right entry point for understanding computer

activity; an excessive focus on algorithms could even end up obscuring a large part of

the practices, knowledge, and above all the meaning of computer activity. Our aim is

not to contest the algorithm as a sociological object − several articles in this issue deal

with this question by approaching it from a different angle − but rather to re-situate it

among the many other objects of computing activity.

1.3. Studying software as it is written

10 Our proposal to consider software activity as a form of writing finds many echoes in

various research traditions. Let us note, at the turn of the 1990s, the will to take the

history of computing out of its internalist preoccupations to inscribe it in the

contemporary questions of the history of techniques (Mahoney, 1988) and, more

precisely, of information technologies (Kranakis, 1994; Aspray, 1994). At the same time,

a new wind swept through several disciplines, from design to sociology, asking how

computer technology assists (or can assist) cooperation in work situations: studies on

Writing code, making software

RESET, 11 | 2022

3

Computer Supported Cooperative Work (CSCW) have opened up several theoretical and

practical debates, for example around performativity (Suchman, 1994; Winograd, 1994).

In the early 2000s, it was the turn of Software Studies to bring together a group of

diverse fields, from Media Studies to engineering, to apprehend software as cultural

objects and practices. Later, Critical Code Studies encouraged a more specific focus on

source code; they were the first to assiduously participate in the construction of code as

a textual object, resulting from writing practice. In the French-speaking scientific

literature, the sociology of work has also examined the organization of software

production in the context of open source software (Demazière et al., 2007), while the

sociology of writing has appropriated code by extending the intuition of Critical Code

Studies to consider it as a text (Couture, 2012). If many others before us have opened

the way of software writing, we think that this lead deserves more exploration and that

it still holds many discoveries. But what exactly does it mean to study software as it is

written?

11 To be interested in the writing of codes means, first of all, to place the activity in the

foreground. The goal is to detach ourselves, if only for a moment, from the mythical

figures and discourses that surround it in order to think of this object in the context of

its ordinary, routine, vulnerable aspects. Writing software is not simply a matter of

producing new code. Many operations involve, for example, "caring for things" with

respect to scriptural infrastructures that must be maintained (Denis & Pontille, 2012;

Denis & Pontille, 2020). Others simply involve understanding and managing existing

code (Couture, 2012). As in any anthropological study of infrastructure, the

investigation sheds light on these laborious, tedious, or invisible actions to better

explore this interplay between the transparent and the opaque (Star, 1999).

Understanding the writing of code in all its nuances reveals how these differences serve

to support distinctions, legitimization strategies, for example when an engineer

automates what he considers to be thankless "manual" work (Alcaras, 2020), and more

broadly the construction of a professional ethos (Zarca, 2009).

12 Studying software as it is written also implies taking into account the relationship that

coders have with this activity. This is part of a sociological approach that is concerned

with technique (Desrosières, 2013; Dagiral and Martin, 2017) and that refuses to "leave

aside the realities experienced by those who develop, distribute and promote the

software and technologies concerned" (Vinck & al., 2018). Beyond this approach,

relationship to software writing participates in the construction of identities in the

professional sense (Perrenoud et al., 2018) as well as in the broader sense through, for

example, gender performance (Faulkner, 2000) in a male-dominated world of work

(Jorgenson, 2002; Collet, 2006). Finally, since work and relationship to activity inform

the structure and values of professions (Abbott, 1988), focusing on the content and

experience of software writing sheds light on the professional worlds of computing as a

whole.

13 Taking the writing of codes as an object invites us to consider this activity in all its

materiality, starting with the concrete conditions of work. If code is written

everywhere, it is written differently according to these conditions of production.

Indeed, the software worlds testify to a vast heterogeneity of statuses (from the

freelance developer to the salaried engineer), of contexts (militant spaces, IT

departments in non-tech industry, prominent software company in Silicon Valley), of

scales (from small personal scripts to the vast projects of digital multinationals) and of

Writing code, making software

RESET, 11 | 2022

4

spaces (traditional office, co-working spaces, remote work). The analysis of the

materiality of software writing continues with how one relates to the matter of code.

While the algorithm allows us to think in terms of a conceptual device, code encourages

us to look at the concrete act of writing programs, i.e. the production of a text that will

be interpreted or compiled by machines, inserted into hardware and software

infrastructures, read and amended by colleagues, copied and pasted by amateurs or

hobbyists and so on. By firmly anchoring our analysis of software in the materiality of

code, we can then account for the diversity, tensions, or conflicts that run through

these practices, that is to say how codes are written.

14 The ambition of this special issue is not to proclaim that everything is code or that code

is the only valid object; that would be tantamount to denouncing one reductionism and

immediately replacing it with another. To separate completely the program from the

code would be artificial; on the other hand, this distinction can help us to think about

software from all angles. Thus, if programming refers to planning and computer

architecture, then coding refers to the concrete and material task of making software.

By taking a close look at codes, we are not only documenting an essential, everyday

activity of computing: we can also observe and analyze how other objects, algorithms

or otherwise, manifest themselves in material practices. This is why this special issue

considers software writing both as an object of analysis and as a gateway into the

"inside" of digital infrastructures.

2. Asking old questions to new objects

15 Although computing has been democratized, massified, and made commonplace over

the last four decades, code still gives the impression of being a new object for sociology.

This feeling of novelty is probably explained by the limited amount of existing

empirical research compared to the immensity of the software field. As a result, code

can sometimes appear to be a frightening object, requiring considerable efforts of

theorizing to become a sociological object. In our opinion, software writing precisely

has the advantage of being at the crossroads of many research traditions. In other

words, this object allows researchers to use a wide range of theories, heuristic

questions, and empirical approaches. In the spirit of the RESET journal, this special

issue is an invitation to borrow and develop long-standing and classical sociological

concerns to apply them to computer codes.

2.1. Starting with software know-how

16 Discourses on the mythical figures of the digital world as well as on algorithms focus, in

their own way, on the power of software. The representation of the hacker emphasizes

the emancipating role of this activity for individuals, while the algorithmic reduction is

more commonly seen in the form of technological determinism. Despite their

differences, these discourses first raise the question of power. Looking at the writing of

codes puts aside − at least temporarily − the question of what software can do to

investigate what coders know.

17 How does an engineer find the right line of code to solve a bug? Why does a coder

choose one styling convention over another? How does a systems architect become

constrained by decisions made over thirty years ago? How does a group of developers

Writing code, making software

RESET, 11 | 2022

5

build a collective representation of the code they are working on? What does one

person mean when he or she says that they need to fix this infrastructure "manually"?

In summary, we suggest returning to the first questions of cognitive anthropology and

applying them to the people who write software. What do they need to know to do what

they do? How do they manage to know what they know (Hutchins, 1994)? Software

writing is thus revealed as a vast set of practices, bits of knowledge, and, above all,

skills and savoir-faire (know-how).

18 Surprisingly, this shift from the political to the epistemic does not limit software to a

mere intellectual exercise. On the contrary, studying software as it is written invites us

to consider it a concrete activity. The code is seen as a text, i.e. as a material that has its

own constraints. This material becomes an object of knowledge and action thanks to

the many tools that compose a digital environment. As an inscription, the code is from

the start closely inserted into a vast scriptural infrastructure (Denis, 2018) which is

itself the result of a long history of construction and maintenance. Analyzing software

writing means investigating the know-how involved in the materiality of text, which is

based on knowledge and actions situated in a scriptural environment. Such skills are

inherited from past technical constraints and grow around collective norms and

representations.

19 By bringing to light what code workers know, we also see how much is beyond their

knowledge. To write code is to constantly come up against gray areas and unexpected

events, whether it be a minor bug that appears without any apparent cause. The lack of

knowledge can also be more radical and yet pose no problem, for example when

engineers use an algorithm without understanding how it works. The sociology of

software writing can then draw the contours of computer knowledge in action, explain

why certain gray areas go unnoticed while others become territories to be explored,

and underline the strategies implemented both to circumvent the obscurity or to shed

light on it.

2.2. How acts of writing question the power of code

20 Questioning software writing skills gradually clarifies what coders can do and,

ultimately, what code can actually do. A detailed analysis of these practices avoids the

trap of "code fetishism" denounced by Wendy Chun, a pioneer in code studies (Chun,

2008). This pitfall consists, she says, of confusing source code with its machine

execution. This confusion is explained by the military and gendered history of

software: "in the military, there is supposed to be no difference between a command

given and a command completed" (p. 304). This critical approach toward the power of

code leads her to question Lawrence Lessig's famous expression "code is law".

According to Chun, this statement expresses a fantasy of what the law should be, based

on an embellished image of code execution. Instead, she invites us to wonder how

software can emerge from code and how code can become executable and

performative.

21 While the algorithmic object allows us to think in terms of dispositive (in a Foucaldian

sense), it also favors an intellectual vision of programming, separated from the

resources by which the code is implemented. Programming is not necessarily grounded

in digital technology, nor does it always involve computers (Aspray, 1990). Before the

appearance of the first alphanumeric languages in the 1950s, algorithms were directly

Writing code, making software

RESET, 11 | 2022

6

programmed using material objects, such as the well-known punched cards of the

Jacquard machine or tabulating machines (Gardey, 2008, pp. 263-267). Indeed, Alan

Turing (1937) uses the term computer to designate a "calculator", i.e. not a machine,

but a human being who calculates (Mélès, 2015). Similarly, the latest developments in

machine learning make it possible to execute instructions that have not been coded

explicitly. Understood as systematic methods for solving a problem, algorithms even

exist outside the digital realm, for example in the solution of puzzles such as the

Rubik's Cube. To borrow from the anthropology of writing, code and algorithms refer

to different intellectual technologies and material cultures (Goody, 1979) − although

they sometimes overlap, they are not equivalent.

22 However, thinking of code execution as an act of writing (Fraenkel & Pontille, 2003;

Fraenkel, 2007) emphasizes the whole set of material, technical and social conditions

that allow code to become effective. Execution is a long road; it does not always

succeed. Beyond the scriptural restraints that affect the code as a text (syntax, style,

integration), we also think of the social phenomena that make it possible (for instance,

to agree on which version of the code is the official "source"). Finally, following

software writing shows the duality between code and its execution. A line of code that

seems perfectly clear, that runs without glitches, can yet produce a completely

unexpected outcome: a situation that some coders use to their advantage in "sneaky"

code challenges7. Engineers can also play with this confusion between code and

execution to their advantage, such as when they perform an artificial intelligence that

is not present in the code (see Ionescu, 2022 in this issue).

23 At the same time, we can also consider how the act of writing, once it has taken effect,

becomes authoritative in software worlds. This authority explains why engineers prefer

to use software rather than simple guidelines to enforce technical standards. It also

explains why certain codes can become crucial for groups with diverging interests, thus

creating conflict to control these strategic resources. Thinking of computer science as a

form of writing thus questions the technical and social construction of a scriptural

power, while simultaneously taking into consideration the reality of effects that

writing produces (Denis, 2018).

2.3. Discourses of codification and code practices

24 The activity of writing code is therefore not immune to the process of "intellectualist

rationalization that we owe to science and scientific technique" (Weber, 1959). Indeed,

some discourses insist on the "mastery", "efficiency" and "predictability" of the

practice. Rather than reinforcing this illusion of a fully normed and rationalized field,

like the "truth discourses" of Web 2.0 promoters (Bouquillion and Matthews, 2010), we

prefer to "show how social actors negotiate the meaning of each of these words before

imposing them on others as primary truths" (Callon, 2013). In response to these

discourses, many researchers show that the uses of a technology can escape its

producers (Jouët, 2000; Proulx, 2015), for example when users appropriate, divert or re-

invent scripts (Akrich 1987; 2010). The papers in this issue take inspiration from these

works and extend them by investigating the uses of the people who produce software.

In other words, coding is not only creating; it also implies using tools and techniques.

25 This perspective leads us to distinguish between the code practices and the discourses

about code, which are often discourses of codification. In a paper entitled "Habitus,

Writing code, making software

RESET, 11 | 2022

7

code and codification" (1986), Pierre Bourdieu focuses on the social processes of norm

formalization, particularly in the legal and linguistic fields. According to him, "to

codify is both to put into form and to put into shape [mettre en forme et mettre des

formes]”: the rules meant to formalize practice become an area of struggle and control

themselves. Similar phenomena run through software writing. We observe both formal

codification processes (such as the setting up and negotiation of web standards within

the W3C) and a play on informal practices, such as copying and pasting from the

StackOverflow Q&A platform. Mastery of code is therefore accompanied by mastery of

codes, be they explicit or implicit.

26 The respect of norms ("to obey rules"), their subversion ("to play with the rules"), or

their abrogation ("to break the rules") will not have the same symbolic value

depending on the context: rationalization and optimization of production processes in

engineering, values promoted by the hacker ethic, aesthetic appreciation of the code as

an art form (Knuth, 1974), proximity with the "disciplinary matrix" of computer

science (Millet, 2003). By studying the relationship between activity and discourse,

between code and codification, between "making " and "talking about making [dire sur

le faire]” (Lahire, 1998), software writings are placed in the continuum of literary,

scholarly and ordinary writings.

27 To do this, the discourse of coders that gives coherence and meaning to practices must

be considered accordingly. This is why studying software as it is written requires an

empirical observation of writing to shed light on a set of informal practices, micro-

practices, and invisible practices. The sociology of software writing is therefore faced

with two challenges. The first challenge is to overcome a double methodological

difficulty: what does it mean to "observe" in the context of a digital field? How can we

understand what is a't stake in these practices without systematically relying on

codification discourses, without forgetting the importance of such discourses? The

second challenge concerns the question of scientific writing. How can we describe a

teeming activity without losing the thread of analysis? How can we account for

messiness without being messy ourselves? How do we shape these descriptions without

adopting the same codification discourse?

28 These questions run, of course, through all social sciences. If the task seems especially

difficult in the case of software, it is undoubtedly because we still have only a small

number of works documenting the specific pitfalls of these fields (Mahoney, 2008). For

this reason, we are particularly pleased to bring together, in this special issue of RESET,

seven pieces of research, each proposing an original way of approaching software

writing, each responding in its own way to the questions mentioned above.

3. Investigating software writing

29 This issue opens with an exploration of the world of Silicon Valley developers, which

situates software in its material writing conditions. Olivier Alexandre explores the daily

life and specificities of professional careers marked by a high degree of uncertainty.

Through observations, interviews, and online activity monitoring, the author presents

the many strategies used by these workers to address the various expressions of these

uncertainties, whether in design and maintenance activities, in their project

orientation, or in their professional trajectories. The career of a computer developer is

depicted as a series of orientations within a variety of mediations and tools, far from

Writing code, making software

RESET, 11 | 2022

8

the representations of a controlled and predictable job. By revealing the individual

"catches" likely to guide the action and manage uncertainty (such as the rapid

obsolescence of certain skills) this paper provides more subtle insights about the

processes involved within a labor market with recurring injunctions to "evolution,

agility, and fluidity".

3.1. Knowledge and ignorance in software production

30 After this analysis of software engineering careers, two ethnographic studies immerse

us in the details of software writing, especially in its epistemic and practical

dimensions.

31 First, Tudor Ionescu devotes a rich ethnographic study to a common and yet frowned-

upon practice, hardcoding. This practice consists in specifying a mechanism or a piece

of data as explicitly as possible in the code itself, without considering a more global

solution to a particular problem. Through several "vignettes", the author follows the

activities of a development team that is about to demo an intelligent robot on an

assembly line. But the engineers have neither the time nor the means to develop this

technology. So they resort to hardcoding and dictate in an extremely precise and −

literally − millimetric way the motions that the machine must make, rather than

creating an intelligence that would decide on the motions by itself. While the code

reflects the extent of what the machine cannot do, its execution results in a convincing

performance by the robot, which gives the impression that this artificial intelligence is

within reach. In addition to informing many of the typical problems of industrial

software writing (technical debt, integration hell), this investigation offers a

fascinating examination of the duality between code and execution as well as the

question of performativity. The author also shows how software writing is directly

influenced by the economy of promise, project-based processes, and the mundane

constraints of production.

32 The next article provides a perspective on a very ordinary sequence of software

writing: an episode of debugging. In a meticulous investigation, Florian Jaton chooses

to analyze step by step a scene that lasts only a few minutes to better understand the −

sometimes dizzying − depth of each writing phase. In an Image Processing laboratory

and alongside a researcher who encounters a bug, the author shows how the coder

temporarily adopts the attitude of an investigator and tries to understand where the

problem comes from. For a few moments, her computer becomes a kind of laboratory

where she conducts a series of small experiments to isolate the line responsible for the

bug. The author closely observes and describes these various experiments, which

involve the use of documentation, online forums, and technical tools such as a

debugger. Throughout this detailed and original description, the activity gradually

gains consistency. The coder mobilizes different skills to inform the state of "distant

entities" that are poorly known, such as the Interpreter, through a series of

inscriptions (code, documentation, output of the Interpreter) that must be properly

aligned. These small moments of knowledge production, quite similar to the scientific

approach, shed light on these trivial and ephemeral moments of code writing.

Writing code, making software

RESET, 11 | 2022

9

3.2. Codifying code: from style to standards

33 Code practices, such as hardcoding or debugging, are often caught up in codification

processes. These interactions between code and codification are the subject of the

following two articles in this special issue. The first one looks at standardization in the

web arena ; the second one focuses on the codification of style in the software industry.

34 By focusing on the standardization arenas of the W3C and the IETF, Julien Rossi

describes the discussions, the controversies, and the consensus forms that develop

there. In these places where communication takes place at the junction of face-to-face

meetings and digital coordination tools, the author documents the methodological

challenges of multiplying the types of data. Interviews, observations, analyses of

meeting records, and mailing lists provide relevant leads, provided that their

respective limitations are identified and the background of these sources is resituated.

In these arenas, where the "injunction to reach consensus" is omnipresent, the actors

give priority to the regime of technical justification to express their disagreements and

criticisms. This norm is strengthened and regulated by the types of sanctions and

(re)framings that take place in the debates. The intersection of the data then reveals

the critical and political postures of the participants and reveals the discursive

strategies that are deployed in these negotiation spaces.

35 Pierre Depaz addresses another sphere of the codification of software writing: the

regulation and negotiation of style. The author analyses the tension between the

subjective dimension of style (such as a personal preference for the use of a semicolon

at the end of a line of code) and the emergence of collective norms. The latter aim to

maintain consistency of style across a project, even when several people are involved.

These norms are often codified in style guides, which are the focus of this article. By

comparing three common style guides that are used for the Javascript language, the

author seeks to understand how the content of these guides is negotiated, which

arguments are mobilized, and which registers of justification ultimately prevail. If the

argumentative repertory is common to the three guides, each one presents its

specificities, in particular when the guide is accompanied by software that identifies, or

even automatically corrects, the passages that deviate from its standards. Among other

tensions between code and codification, the article explores the strength of the

argument of technical authority.

3.3. The autonomy of software writing in question

36 This issue ends with two contributions that study how software writing fits into a set of

industrial practices. They examine the relative autonomy of software writing, first in

the face of insecurity processes while developing an encryption protocol, and then in

the face of a set of guiding practices in the context of the development of

recommendation algorithms.

37 In a survey of developers working on a cryptographic protocol, Sylvain Besençon

explores the issues surrounding the security of computer code. By focusing on both the

critical and routine aspects of maintenance and care, he makes explicit the constant

efforts to make it less vulnerable. Far from the representation of a security universe

regularly disrupted by flaws, he insists on the collective and cyclical dimension of

securing and insecuring the code. Each new entry risks making the code more fragile,

Writing code, making software

RESET, 11 | 2022

10

even when the writing is intended to solve a security problem. By informing little-

documented practices with a variety of material (public conferences, interviews,

observations, online discussions, code-sharing platforms), the author invites us to shift

the sensational gaze on security issues to the examination of routine practices of

clarification, ad hoc amendments, and daily maintenance. The (in)securitization is thus

analyzed as a process of continuity rather than rupture, inscribed in collaborative

dynamics at the crossroads of different spheres of actors (organizations, companies,

academia).

38 The last article shows how a number of tools, especially algorithmic ones, are used to

write code. Camille Roth and Jérémie Poiroux examine numerous interviews with

people responsible for developing recommendation algorithms. The authors show that

this writing relies on a large number of infrastructures and algorithmic tools to repair,

adjust or evolve the code of their own algorithms. They are particularly interested in

the widespread, but so far little documented, practice of A/B testing. A/B testing

consists of proposing different versions of the same functionality to quantify the effect

of each variation on the uses of a given platform. Exploring these practices highlights

that, contrary to the image of a completely rationalized and planned software

engineering, many developers tinker. They do not try to open the algorithmic black

boxes they deploy; most of them simply multiply the tests to retain the variations that

seemingly give the best result. The authors discuss the theoretical and methodological

consequences of this result since, in the end, this form of software writing seems to be

less affected by algorithmic problems than by issues of quantification and

benchmarking.

4. Conclusion. Software as practice and belief

39 In their famous paper L'informatique comme pratique et comme croyance (Software as

practice and belief), Michel Gollac and Francis Kramarz (2000) note "the impossibility

of an autonomous 'software field'" meaning any practice related to the use of a

computer, from office work to writing code. Without neglecting research that considers

programs and their digital uses in their entirety, this issue shows the interest in

adopting a more precise definition of computing, captured by code practices. While the

object of software writing seems particularly promising, it is only one starting point

among others to explore the "inside" of digital infrastructures.

40 Asking new questions and constructing new objects: this issue is above all an invitation

to explore software from all angles, with renewed curiosity and enthusiasm. Beyond

the theoretical questions and their insights into computing activity, we hope above all

that the contributions in this issue will provide concrete examples of original

investigations and accounts − and that they will encourage further exploration of the

practices and beliefs of software worlds.

Writing code, making software

RESET, 11 | 2022

11

BIBLIOGRAPHY

ABBOTT A., 1998, The System of Professions. An Essay on the Division of Expert Labor, University of

Chicago Press, 452 p.

AKRICH M., 1987, « Comment décrire les objets techniques ? », Techniques & Culture. Revue

semestrielle d’anthropologie des techniques, 9.

AKRICH M., 2010, « Retour sur « Comment décrire les objets techniques ? » », Techniques & Culture.

Revue semestrielle d’anthropologie des techniques, 54‑55, p. 202‑204.

ALCARAS G., 2020, « Des biens industriels publics. Genèse de l’insertion des logiciels libres dans la

Silicon Valley », Sociologie du travail, 62, 3.

ASPRAY W., (dir.) 1990, Computing before computers, Iowa State University Press, 266 p.

ASPRAY W., 1994, « The history of computing within the history of information technology »,

History and Technology, 11, 1, p. 7‑19.

AURAY N., 2007, "Le modèle souverainiste des communautés en ligne : impératif participatif et

désacralisation du vote", Hermès, n°47, p.137-145.

AURAY N., OUARDI S., 2014, « Numérique et émancipation », Mouvements, 3, p. 13‑27.

AURAY N., VÉTEL B., 2013, « L’exploration comme modalité d’ouverture attentionnelle », Réseaux, 6,

p. 153‑186.

BARON G.-L., 2018, « Informatique et numérique comme objets d’enseignement scolaire en France:

entre concepts, techniques, outils et culture »,.

BENBOUZID B., 2017, « Des crimes et des séismes », Reseaux, 206, 6, p. 95‑123.

BENKLER Y., FARIS R., ROBERTS H., 2018, Network Propaganda: Manipulation, Disinformation, and

Radicalization in American Politics, New York, Oxford University Press, 472 p.

BERREBI-HOFFMANN I., BUREAU M.-C., LALLEMENT M., 2018, Makers-Enquête sur les laboratoires du

changement social, Média Diffusion.

BEUSCART J.-S., COAVOUX S., MAILLARD S., 2019, « Les algorithmes de recommandation musicale et

l’autonomie de l’auditeur », Reseaux, 213, 1, p. 17‑47.

BOUQUILLION P., MATTHEWS J.T., 2010, Le Web collaboratif: mutations des industries de la culture et de la

communication, Presses Universitaires de Grenoble.

BOURDIEU P., 1986, « Habitus, code et codification », Actes de la Recherche en Sciences Sociales, 64, 1, p.

40‑44.

BROCA S., s. d., Utopie du logiciel libre, Passager clandestin (Le).

CALLON M., 2013, « Pour une sociologie des controverses technologiques », dans AKRICH M., LATOUR B.

(dirs.), Sociologie de la traduction : Textes fondateurs, Paris, Presses des Mines (Sciences sociales), p.

135‑157.

CARDON D., COINTET J.-P., MAZIÈRES A., 2018, « La revanche des neurones », Reseaux, 211, 5, p. 173‑220.

Writing code, making software

RESET, 11 | 2022

12

CHRISTIN A., 2017, « Algorithms in practice: Comparing web journalism and criminal justice », Big

Data & Society, 4, 2, p. 2053951717718855.

CHUN W.H.K., 2008, « On “Sourcery,” or Code as Fetish », Configurations, 16, 3, p. 299‑324.

COLEMAN E.G., 2010, « The Hacker Conference: A Ritual Condensation and Celebration of a Lifeworld

», Anthropological Quarterly, 83, p. 42-76.

COLLET I., 2006, L’informatique a-t-elle un sexe?, Editions L’Harmattan.

COUTURE S., 2012, « L’écriture collective du code source informatique », Revue d’anthropologie des

connaissances, 6, 1.

DAGIRAL É., MARTIN O., 2017, « Liens sociaux numériques », Sociologie, N° 1, vol. 8.

DEMAZIÈRE D., HORN F., ZUNE M., 2007, « Des relations de travail sans règles ? L'énigme de la

production des logiciels libres », Societes contemporaines, 66, 2, p. 101‑125.

DENIS J., PONTILLE D., 2012, « Travailleurs de l'écrit, matières de l'information », Revue d’anthropologie

des connaissances, 6, 1, p. 1-20.

DENIS J., 2018, Le travail invisible des données : Éléments pour une sociologie des infrastructures

scripturales, Paris, Presses des Mines (Sciences sociales), 206 p.

DENIS J., PONTILLE D., 2020, « Maintenance et attention à la fragilité », SociologieS.

DESROSIÈRES A., 2013, Pour une sociologie historique de la quantification: L’Argument statistique I, Presses

des Mines via OpenEdition, 331 p.

DODIER N., 1995, Les hommes et les machines: la conscience collective dans les sociétés technicisées,

FeniXX.

DROT-DELANGE B., BRUILLARD E., 2012, « Éducation aux TIC, cultures informatique et du numérique:

quelques repères historiques », Études de Communication. Langages, information, médiations, 38, p.

69‑80.

EDELMANN A., WOLFF T., MONTAGNE D., BAIL C.A., 2020, « Computational Social Science and Sociology »,

Annual Review of Sociology, 46, 1, p. 61‑81.

ERMOSHINA K., 2017, « Le code peut-il réparer les routes? », Reseaux, 6, p. 155‑189.

FAULKNER W., 2000, « Dualisms, Hierarchies and Gender in Engineering », Social Studies of Science, 30,

5, p. 759‑792.

FLICHY P., 2017, Les nouvelles frontières du travail à l’ère numérique, Média Diffusion.

FRAENKEL B., 2007, « Actes d’écriture : quand écrire c’est faire », Langage et société, 121‑122.

FRAENKEL B., PONTILLE D., 2003, « L'écrit juridique à l'épreuve de la signature électronique, approche

pragmatique », Langage et societe, 104, 2, p. 83‑122.

GALLOWAY A.R., 2012, The interface effect, Polity.

GARDEY D., 2008, Écrire, calculer, classer: Comment une révolution de papier a transformé les sociétés

contemporaines (1800-1940), Paris: La Découverte.

GOLLAC M., KRAMARZ F., 2000, « L’informatique comme pratique et comme croyance », Actes de la

Recherche en Sciences Sociales, 134, 1, p. 4‑21.

GOODY J., 1975, La raison graphique, Editions de Minuit, Paris

HIMANEN P., LEBLANC C., 2001, L’éthique hacker et l’esprit de l’ère de l’information, Exils Paris.

Writing code, making software

RESET, 11 | 2022

13

HUTCHINS E., 1994, Cognition in the wild. Cambridge, MIT Press.

JORGENSON J., 2002, « Engineering Selves: Negotiating Gender and Identity in Technical Work »,

Management Communication Quarterly, 15, 3, p. 350‑380.

JOUËT J., 2000, « Retour critique sur la sociologie des usages », Réseaux. Communication - Technologie -

Société, 18, 100, p. 487‑521.

KRANAKIS E., 1994, Introduction, History and Technology, 11, pp. 1-5

KELTY C.M., 2008, Two bits: The cultural significance of free software, Duke University Press.

KNUTH D.E., 1974, « Computer programming as an art », Communications of the ACM, 17, 12, p.

667‑673.

LAHIRE B., 1998, « Logiques pratiques : le « faire » et le « dire sur le faire » », Recherche & formation,

27, 1, p. 15‑28.

LALLEMENT M., 2015, L’Âge du Faire. Hacking, travail, anarchie: Hacking, travail, anarchie, Média

Diffusion.

LESSIG L., 1999, Code: And other laws of cyberspace, Basic Books.

MAHONEY M.S., 1988, « The History of Computing in the History of Technology », Annals of the

History of Computing, 10, 2, p. 113‑125.

MAHONEY M.S., 2008, « What Makes the History of Software Hard », IEEE Annals of the History of

Computing, 30, 3, p. 8‑18.

MÉADEL C., SIRE G., 2017, « Les sciences sociales orientées programmes », Reseaux, 6, p. 9‑34.

MÉLÈS B., 2015, « L’informatique sans ordinateur », Site CNRS : Images des mathématiques.

MILLET M., 2021, Les Étudiants et le travail universitaire : Étude sociologique, Lyon, Presses

universitaires de Lyon (Hors collection), 256 p.

MOATTI A., 2012, « Le numérique, adjectif substantivé », Le débat, 3, p. 133‑137.

NOBLE S.U., 2018, Algorithms of Oppression: How Search Engines Reinforce Racism, New York University

Press.

PERRENOUD M., SAINSAULIEU I., 2018, « Pour ne pas en finir avec l’identité au travail », SociologieS.

PROULX S., 2015, « La sociologie des usages, et après? », Revue française des sciences de l’information et

de la communication, 6.

ROSENTAL C., 2017, « Les conditions sociales des échanges dans la Silicon Valley », Zilsel, 1, 1, p.

55‑81.

SEAVER N., 2017, « Algorithms as culture: Some tactics for the ethnography of algorithmic systems

», Big Data & Society, 4, 2, p. 2053951717738104.

STAR S.L., 1999, « The Ethnography of Infrastructure », American Behavioral Scientist, 43, 3, p.

377‑391.

STEVENS H., 2012, « Autonomie récusée, autonomie fabriquée. Informaticiens à l’épreuve de

l’Entreprise de Soi », Genèses, 87, 2, p. 90‑112.

SUCHMAN L., 1994, « Do categories have politics? The language/action perspective reconsidered »,

Computer Supported Cooperative Work (CSCW), 2, p. 177-190.

Writing code, making software

RESET, 11 | 2022

14

TURING A.M., 1937, « On Computable Numbers, with an Application to the Entscheidungsproblem »,

Proceedings of the London Mathematical Society, s2-42, 1, p. 230‑265.

TURNER F., 2006, From counterculture to cyberculture, University of Chicago Press.

VICENTE M., 2017, « Apprentissage du code informatique et entrepreneuriat: de la création

d’entreprise à l’esprit d’entreprendre », Formation emploi. Revue française de sciences sociales, 140, p.

87‑106.

VINCK D., CAMUS A., JATON F., OBERHAUSER P.-N., 2018, « Localités distribuées, globalités localisées:

actions, actants et me·diations au service de l’ethnographie du nume·rique », Symposium, 22, 1, p.

41‑60.

WEBER M., 1959, Le savant et le politique, Paris, Plon.

WINNER L., 1993, « Upon Opening the Black Box and Finding It Empty: Social Constructivism and

the Philosophy of Technology », Science, Technology, & Human Values, 18, 3, p. 362‑378.

WINOGRAD T., 1993, « Categories, disciplines, and social coordination », Computer Supported

Cooperative Work (CSCW), 2, 3, p. 191‑197.

ZARCA B., 2009, « L’ethos professionnel des mathématiciens, The professional ethos of

mathematicians. », Revue française de sociologie, 50, 2, p. 351‑384.

ZIEWITZ M., 2016, « Governing Algorithms: Myth, Mess, and Methods », Science, Technology, & Human

Values, 41, 1, p. 3‑16.

NOTES

1. Translations from French are our own.

2. Our conceptualization partly comes from the French term "informatique", which has the

advantage of uniting fields and activities that are often separated in the English language,

namely computer science (the scientific discipline) and software engineering (industrial

engineering). Since the word “informatics” already has a specific meaning, we prefer translating

using the more generic term of “software”.

3. An API, an acronym for Application Programming Interface, commonly refers to a system that

enables communications and interactions beween several programs.

4. We borrow the term “emic” from the anthropological tradition (Sardan, 1998). It refers to the

discourses and representations that make sense within the social world under study, in this case

the software worlds.

5. See statement by investor Mark Andreesen, "Why Software Is Eating The World," Wall Street

Journal, August 20, 2011: https://www.wsj.com/articles/

SB10001424053111903480904576512250915629460 (accessed January 15, 2022).

6. Quicksort belongs to the family of sorting algorithms, which aim to order the

elements of a data structure, such as a list or an array. Known for its speed in most

situations, this algorithm uses a pivot system: it selects an element around which the

other elements are permuted, so that those below it are on its left and those above it

are on its right. The operation is repeated recursively within each partition.

7. For example, http://underhanded-c.org/ : « The Underhanded C Contest is an annual

contest to write innocent-looking C code implementing malicious behavior. ».

Writing code, making software

RESET, 11 | 2022

15

https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://underhanded-c.org/
http://underhanded-c.org/

ABSTRACTS

Digital infrastructures often appear as fascinating devices, both incredibly complex and perfectly

ordered. While these infrastructures are the subject of much discourse, we know little about

their production and maintenance practices, especially given their scope and diversity. How is

the software we use every day created? Who builds the IT infrastructures of our contemporary

societies? What is the digital world made of? This text provides a theoretical backdrop to

introduce the contributions of the special issue. In order to go beyond the mythical figures

(hacker, geek, entrepreneur) and to escape the algorithmic reduction, studying software as it is

written offers multiple outlets for empirical investigation. This object is also at a fruitful

intersection between several research traditions. It opens up promising avenues of inquiry into

software know-how, performativity and the process of codification.

INDEX

Mots-clés: Code, infrastructure, digital, writing, practices

AUTHORS

GABRIEL ALCARAS

Centre Maurice Halbwachs, i3

ANTOINE LARRIBEAU

EXPERICE (Université Sorbonne Paris Nord)

Writing code, making software

RESET, 11 | 2022

16

	Writing code, making software
	1. Programming or coding?
	1.1. Hacker, geek, entrepreneur: beyond the mythical figures
	1.2. Avoiding the algorithmic reduction
	1.3. Studying software as it is written

	2. Asking old questions to new objects
	2.1. Starting with software know-how
	2.2. How acts of writing question the power of code
	2.3. Discourses of codification and code practices

	3. Investigating software writing
	3.1. Knowledge and ignorance in software production
	3.2. Codifying code: from style to standards
	3.3. The autonomy of software writing in question

	4. Conclusion. Software as practice and belief

