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ABSTRACT

Context. The Planck mission provided all-sky dust emission maps in the submillimeter (submm) to millimeter (mm) range at an
angular resolution of 5′. In addition, some specific sources can be observed at long wavelengths and higher resolution using ground-
based telescopes. These observations are limited to small scales and are sometimes not delivered to the community. These ground-based
observations require extensive data processing before they become available for scientific analysis, and suffer from extended emission
filtering.
Aims. At present, we are still unable to fully understand the emissivity variations observed in different astrophysical environments at
long (submm and mm) wavelengths. Several models have been developed to reproduce the diffuse Galactic medium, and each distinct
environment requires an adjustment of the models. It is therefore challenging to estimate any dust emission in the submm-mm at a
better resolution than the 5′ from Planck. In this analysis, based on supervised deep learning algorithms, we produced dust emission
predictions in the two Planck bands centered at 850 µm (353 GHz) and 1.38 mm (217 GHz) at the Herschel resolution (37′′). Prediction
or forecasting is a frequently used term in machine learning or neural network research that refers to the output of an algorithm that
has been trained on a given dataset and that is being used for modeling purposes.
Methods. Herschel data of Galactic environments, ranging from 160 µm to 500 µm and smoothed to an angular resolution of 5′, were
used to train the neural network. This training aimed to provide the most accurate model for reproducing Planck maps of dust emission
at 850 µm and 1.38 mm. Then, using Herschel data only, the model was applied to predict dust emission maps at 37′′.
Results. The neural network is capable of reproducing dust emission maps of various Galactic environments with a difference of only
a few percent at the Planck resolution. Remarkably, it also performs well for nearby extragalactic environments. This could indicate
that large dust grains, probed by submm or mm observations, have similar properties in both our Galaxy and nearby galaxies, or at
least that their spectral behaviors are comparable in Galactic and extragalactic environments. For the first time, we provide to the
community dust emission prediction maps at 850 µm and 1.38 mm at the 37′′ of several surveys: Hi-GAL, Gould Belt, Cold Cores,
HERITAGE, Helga, HerM33es, KINGFISH, and Very Nearby Galaxies. The ratio of these two wavelength brightness bands reveals
a derived emissivity spectral index statistically close to 1 for all the surveys, which favors the hypothesis of a flattened dust emission
spectrum for wavelengths larger than 850 µm.
Conclusions. Neural networks appear to be powerful algorithms that are highly efficient at learning from large datasets and achieving
accurate reproductions with a deviation of only a few percent. However, to fully recover the input data during the training, it is essential
to sample a sufficiently large range of datasets and physical conditions.
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1. Introduction

Reproducing the global spectral behavior of dust emission
throughout our Galaxy from the infrared (IR) to the millimeter
(mm) with dust models has proven to be more difficult than envi-
sioned. In this wavelength regime, the sky brightness (Iν(λ)) is
often simply described by a single modified black-body model,
assuming a single dust temperature (T ) and spectral index (β)
along the line of sight and an optically thin medium. Even in
the diffuse interstellar medium (ISM) of our Galaxy, where the
largest grains may be thought to be at a single temperature and
to have homogeneous properties, there is no consensus yet on
either the dust temperature determination or the exact spectral
shape of the dust emission in the far-infrared (FIR) to mm. The
sub-millimeter (submm) behavior varies over the sky and its
variations are not yet understood. This behavior could be the
result of a nonuniformity in the emissivity power law through
the environments – in other words, β variations – or the result
⋆ Corresponding author; deborah.paradis@irap.omp.eu

of a break in the emissivity power law described by a change in
β from the FIR to the submm (usually described as a two modi-
fied black-body model). The spectral behavior of the emissivity
is not constant over the sky and the origin of these variations
is still uncertain. Several dust emission models have been devel-
oped in order to reproduce the emission of the large-scale diffuse
ISM in our Galaxy (Désert et al. 1990; Draine and Li 2007;
Compiègne et al. 2011; Jones et al. 2013; Siebenmorgen 2023;
Hensley and Draine 2023; Ysard et al. 2024). Unfortunately, the
interpretation of the dust emission spectrum relies on the dust
model being used. At present, large-scale observations at long
wavelengths (>500 µm) only exist at an angular resolution of
5′, thanks to the Planck1 mission (Planck Collaboration I 2011).

1 Planck (http://www.esa.int/Planck) is a project of the Euro-
pean Space Agency – ESA – with instruments provided by two scientific
consortia funded by ESA member states (in particular the lead coun-
tries: France and Italy) with contributions from NASA (USA), and
telescope reflectors provided in a collaboration between ESA and a
scientific Consortium led and funded by Denmark.
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It is therefore not possible to investigate from large surveys the
dust emission at small scales in this wavelength range. Ground-
based observatories from facilities such as ALMA and NOEMA,
or instruments such as SCUBA-2, Bolocam, and NIKA2, can
provide continuum observations of dust at high angular resolu-
tion for specific sources at long wavelengths (see for instance
Sadavoy et al. 2013; Enoch et al. 2006; Turner et al. 2019;
Katsioli et al. 2023). However, some of the observations are not
available to the community. In addition, the reduction of the
data is a complex task and most of the extended emission is
lost when removing the contribution from Earth’s atmosphere.
Furthermore, to properly compare these observations with those
of space-based telescopes, a specific filtering should be applied
to the on-board satellite observations. Only a few experts are able
to properly perform this kind of processing (Roussel et al. 2020,
for example).

The submm and mm wavelength data are crucial to explore
the behavior of the dust emission spectrum. Using Herschel2
data, Juvela et al. (2015) evidenced statistically an increase in the
dust spectral index toward the coldest regions of Galactic cold
cores. They obtained values significantly larger than the mean
value of ∼1.6 obtained for the diffuse Galactic emission (Planck
Collaboration XI 2020). Paradis et al. (2014) also showed dis-
tinct trends in the dust emission between cold and warm Galactic
environments, with changes in the dust emissivity index, using
Herschel data. Several studies have also revealed variations in
the spectral index over large areas (see for instance Paradis
et al. 2012b; Planck Collaboration Int. XXIX 2016). Variations
in β across the high-latitude sky between β = 1 and β = 2 with a
30′ angular resolution have been reported, along with an optical
depth different than the one expected from uniform dust emis-
sion properties. Grain coagulation from the diffuse to the dense
medium could explain the relative change in the dust emission
behavior between these two environments. Indeed, grain coag-
ulation is expected in cold regions due to the presence of ice
mantle at the surface of the grains (Stepnik et al. 2003; Kohler
et al. 2011, 2012; Jones et al. 2013; Ysard et al. 2015) and
could engender a change in the emissivity spectral shape. The
two-level-system model (Mény et al. 2007; Paradis et al. 2011),
which takes the physical aspect of amorphous dust material into
account, could also explain the emissivity behavior. Indeed, dust
in the ISM is mostly amorphous, as is evidenced by the 10 µm
silicate absorption profile in the region around Sgr A⋆ (Kemper
et al. 2004). The dust injected in the ISM after its formation in
AGB stars is amorphous and crystalline in proportions that are
not known. The absence of crystalline dust in the ISM probably
results from the processing of the dust grain by cosmic rays and
supernovae-generated shock waves.

Draine & Hensley (2012) argues that the flattening of the
dust emission spectrum could be partly explained by a mixture of
normal dust with a population of small magnetic nano-particles,
such as metallic iron, magnetite Fe3O4, or maghemite γ-Fe2O3.
However, the addition of spinning dust is required to account
for the observed spectral energy distribution (SED) of the Small
Magellanic Cloud (SMC) in the mm domain. Nevertheless, the
results of Planck Collaboration XI (2020) using polarization data
from Planck do not favor this hypothesis.

The resolution and sensitivity of Herschel data allowed the
analysis of the ISM of more distant, but still close galaxies.

2 Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with
important participation from NASA.

Dale et al. (2012) analyzed 61 nearby galaxies as part of the
KINGFISH program, and found that the low-metallicity galax-
ies in the sample are not colder than average but reveal an
excess of emission at 500 µm with respect to the Draine and Li
(2007) model fits. Even if this behavior is often detected in low-
metallicity galaxies (Izotov et al. 2014) and the most significant
excesses are detected in this type of environment (Galametz et al.
2011; Kirkpatrick et al. 2013; Rémy-Ruyer et al. 2013), the link
between the excess and metallicity has not been demonstrated
yet. Long-wavelength observations are crucial to explore the dust
emission behavior. The Planck satellite has been precious to get
dust emission information at long wavelengths, all over the sky.
However, the combination of Herschel and Planck data induces
a loss of resolution in the Herschel data. In that case, the SEDs
of dust emission in external Galaxies are reduced to the global
brightness in the galaxies and do not allow one to probe the ISM
therein (see for instance Hermelo et al. 2016; Davies et al. 2017;
Tibbs et al. 2018).

The outline of this paper is to produce dust prediction maps
in the two Planck bands centered at 850 µm (353 GHz) and
1.38 mm (217 GHz) at the Herschel resolution (37′′). Such maps
could help us to understand the dust emission spectrum varia-
tions, to carefully derive dust masses in various environments,
to help select targets to be observed at higher angular resolu-
tions, or to undertake foreground subtraction. The content of
the paper is as follows. After a brief description of the datasets,
we explore the different correlations between multiwavelength
data (Sect. 3). Then, we describe the neural network methodol-
ogy in Sect. 4, and present different tools used in this analysis
for manipulating HEALPix data (Sect. 5). In Sect. 6 we present
the prediction maps we produced, in Sect. 7 we discuss some
interesting results, and in Sect. 8 we summarize this work.

2. Data

2.1. Planck and additional components

We used the Planck/HFI 850 µm and 1.38 mm maps at an
angular resolution of 5′ (Planck Collaboration I 2011), cor-
rected from the Zodiacal emission, available in the ESA archive3,
to trace the dust emission. We used the Planck third release
maps. Units in KCMB have been converted to MJy/sr accordingly
to Planck Collaboration IX (2014). We subtracted the cosmic
infrared background (CIB) monopole prediction by removing
0.13 MJy/sr and 0.033 MJy/sr at 850 µm and 1.38 mm, as is
described in Planck Collaboration VIII (2014). We removed the
CMB contribution in each HFI map by using the Planck CMB
map reconstruction at 5′ obtained from LGCMA4, a component
separation method. As is evidenced in Planck Collaboration XIII
(2014), a total of nine lines could contaminate the HFI chan-
nels. However, the authors concluded that only the J = 1–0, J =
2–1 and J = 3–2 CO lines could contribute to the total emis-
sion, with significant transitions at 100 GHz (3 mm) (50% of
the total emission in molecular clouds and in the Galactic plane)
and 217 GHz (1.38 mm) (15% of the total emission), weak at
353 GHz (850 µm) (less than 1%), respectively. Hence, the
CO contamination is negligible in the other bands.The 217 GHz
data and 353 GHz were corrected for CO contamination using
the 12CO (J = 2–1) map produced as part of the Commander

3 https://pla.esac.esa.int/
4 see http://www.cosmostat.org/product/
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multicomponent processing (Planck Collaboration X 2016). Fol-
lowing Planck Collaboration X (2016), free-free emission has a
low impact at 217 GHz. Katsioli et al. (2023) decomposed the
emission of the nearby edge-on galaxy NGC 891 at an angular
resolution of 25′′ into dust, free-free, and synchrotron emission
from 1 mm to 20 cm. They found negligible free-free emission
at 1.15 mm (less than 2%). The resulting Planck maps therefore
represent the most reasonable description of the dust emission
only. These are the final maps we use in the following.

2.2. Herschel

Thanks to the “Centre d’Analyse de Données Etendues”
(CADE5), large maps of dust emission at different wavelengths
and resolution, in the HEALPix format6, are available. For
instance, the service delivers Herschel maps of the different
large programs at 37′′ (NSIDE = 16 384), 1′ (NSIDE = 8192),
and 4′ (NSIDE = 2048) angular resolutions, all of which we
have produced and made available on CADE. All Herschel data
from this analysis come from this service. We used HEALPix
maps from 70 µm to 500 µm of the Hi-GAL (Molinari et al.
2010), Galactic Cold Cores (Juvela et al. 2010), and Gould Belt
(André et al. 2010) programs for training and testing the neu-
ral network. We added maps of the HERITAGE (Meixner et al.
2010), KINGFISH (Kennicutt et al. 2011), Very Nearby Galaxies
(Bendo et al. 2012), HerM33es (Kramer et al. 2010), and Helga
(Fritz et al. 2012) programs to predict dust emission maps. We
used data at a 37′′ angular resolution to predict dust emission,
and 4′ angular resolutions convolved to 5′ to match the Planck
resolution in order to train and test the neural network. With full
HEALPix files, which is the case for the 4′ files, the smooth-
ing was performed using the smoothing function of the healpy
Python package.

2.3. Spitzer

Additional Spitzer data have been used before running the neu-
ral network algorithms, especially for studying and evaluating
any possible correlations between the different datasets. For this,
we used HEALPix data from the two large GLIMPSE pro-
grams (I/II/3D/360/Deep/Proper/APO surveys) combined with
the SMOG survey (Carey et al. 2008) at 3.6, 4.5, 5.8, and 8 µm
(Churchwell et al. 2009) and MIPSGAL at 24 µm (Mizuno et
al. 2008), taken from CADE, at an angular resolution of 4′, and
then smoothed to 5′.

2.4. SCUBA-2/JCMT

To compare our 850 µm predictions at 37′′ with observa-
tional data, we used the James Clerk Maxwell Telescope
(JCMT)/SCUBA-2 (Holland et al. 2013) 850 µm contin-
uum observations as part of the Continuum Observations of
Pre-protostellar Evolution (SCOPE) program (Eden et al. 2019).
This program consisted of observations of 1235 Planck Galac-
tic cold clumps. We randomly selected seven observations of
this program from the EAO archive7, which we converted from
mJy/arcsec2 to MJy/sr, and smoothed from 14.4′′ to 37′′. The
coordinates of the sources are provided in Table 1. In addi-
tion, we considered SCUBA-2 850 µm observations of M31

5 https://cade.irap.omp.eu
6 https://healpix.jpl.nasa.gov/
7 https://www.eaobservatory.org/jcmt/science/
large-programs/scope/

Table 1. Central position of the JCMT/SCOPE sources used in this
work.

Sources RA Dec
1 283.2 5.42
2 303.39 31.36
3 303.43 31.93
4 316.09 60.15
5 324.29 43.35
6 335.35 63.86
7 335.39 63.62

obtained as part of the HASHTAG Program and delivered by
the consortium8.

2.5. Bolocam

We used Bolocam 1.1 mm data from the Bolocam Galactic Plane
Survey (Aguirre et al. 2011, BGPS), at a resolution of 33′′, in
order to compare these with our 1.38 mm predictions. With a
total coverage of 17 sq. deg, we used observations of 12 ultra-
compact HII regions (UCHIIs), already used and described in
Paradis et al. (2014) (see their Table 1 for the central position
of the sources). Data in units of Jy/beam were converted to
MJy/sr using Eq. (16) from Aguirre et al. (2011) before being
convolved to an angular resolution of 37′′. However, it is impor-
tant to emphasize that Bolocam data suffer from noise, but also
from filtering, which induces an important loss of the extended
emission. For instance, 50% of the flux is attenuated for struc-
tures extending to 3.8′. For this reason, we did not include data
for cold cores, for which the significant extended emission has
been filtered, inducing a bad quality in the Bolocam data.

3. Correlations between multiwavelength infrared
data

To decide which wavelengths are required for the neural network
to be able to predict dust emission at 850 µm and 1.38 mm and
which ones can be omitted, we performed a correlation analysis.
Only the inner part of the Galactic plane has been observed from
the NIR to the FIR using Spitzer and Herschel data. This anal-
ysis has therefore been performed using the GLIMPSE (from
3.6 to 8 µm), MIPSGAL (24 µm), and Hi-GAL (from 70 to
500 µm) surveys, smoothed to an angular resolution of 5′ (see
Sect. 2). To evaluate the quality of the correlations, we used the
three following coefficients: Kendall (to measure the strength
of the dependence between two variables), Pearson (to measure
the degree of the relationship between linearly related variables),
and Spearman (to measure the degree of association between two
variables). The Pearson correlation is frequently used for normal
distributed data, whereas Spearman’s and Kendall’s coefficients
are suggested for non-normal data. The Kendall correlation is
usually more robust and efficient than the Spearman correlation,
especially in the case of small samples or some outliers. The
results of the correlations are presented in Fig. 1 for the three
coefficients. We used the Python Seaborn package to perform a
hierarchically clustered heat map to facilitate the visualization
of the correlations. Each case gives the correlation coefficient
between the data at two different wavelengths. Since the entire
dust emission spectrum increases with dust temperature, to

8 https://hashtag.astro.cf.ac.uk/DR1.html
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Fig. 1. Hierarchically clustered heat map of the different correlations
between datasets (GLIMPSE at 3.6, 4.5, 5.8, and 8 µm; MIPSGAL at
24 µm; Hi-GAL from 70 µm to 500 µm, and Planck at 850 µm and
1.38 mm). All datasets have been smoothed to an angular resolution of
5′ and normalized to the 160 µm data. Kendall, Pearson, and Spear-
man’s correlation coefficients are given in each case.

remove this effect, which could bias the correlations, all of the
data were divided by the 160 µm brightnesses. For this reason,
data at 160 µm do not appear in the figure. Whichever coeffi-
cient correlation we inspect, the best correlations (with values
larger than 0.66 or 0.85 depending on the coefficient) are visi-
ble for wavelengths between 250 µm and 850µm or 1.38 mm.
The coefficient values tend to decrease for wavelengths below
70 µm (with values close to 0). Emission in the NIR and the
underlying processes do not affect or have a very low impact
on the long-wavelength emission. The 70 µm data are primar-
ily dominated by emission from the large grain component, but
they are often contaminated by emission from smaller grains,
which weakens the correlation with longer wavelengths (λ > 250
µm). The negative correlation of the Iν(70)/Iν(160) ratios with
the long-wavelength data arises because the 70 µm and 160 µm
data lie on opposite sides of the peak of large grain emission.
We therefore only consider data from 160 µm to 500 µm in the
following to predict dust emission in the submm/mm using the
neural network.

We note the absence of a correlation between the FIR and
the MIR 24 µm. Unfortunately, in the inner Galactic plane cov-
ered by our observations, we do not have any cold clumps for
which a decrease in the small grain abundance is observed in
our Galaxy, probably because they stick to the largest grains or
are not sufficiently heated in these dense clumps and then do not
radiate. However, this behavior has not been evidenced in the
Large Magellanic Cloud (LMC) clumps, for instance Paradis et
al. (2019). Conversely, large grains should be intensively heated
to have a visible effect on the 24 µm emission. Such required
high temperatures (>80 K) of grains are probably not observed
at an angular resolution of 5′ because of dilution.

4. Neural network methodology

To create our neural network, we used a multilayer perceptron
model, which consists of a supervised learning algorithm that
learns a function on a dataset using multiple layers. The mul-
tilayer perceptron model is a feed-forward neural network with
a structure that consists of an input layer, one or more hidden
layers, and an output layer, an activation function, and a set of
weights and biases. The activation function determines the out-
put of a neuron based on its input, deciding whether a neuron
should be activated or not. A neural network without any activa-
tion function becomes a linear regression model. Figure 2 shows
a simple description of the neural network we use. The algorithm
of our neural network consists of two phases:
– Forward propagation: the input is fed into the neural network

and the result is the output from the computations applied to the
data through the network.
– Back-propagation: a supervised learning technique for training
a neural network. The error between the predicted output and
the actual output is computed and propagated into the network.
A gradient descent optimization method is used to update the
weights and biases in order to reduce the error.
Our input layer consists of four neurons that are the logarithms
of the data at 160, 250, 350, and 500 µm. Our two hidden layers
process the information received from the input layer. The out-
put layer is the resulting logarithm of the prediction at 850 µm
or 1.38 mm. The loss function of the neural network compares
the target (Planck data) and the predicted output values and mea-
sure the errors by giving a “loss” score. An optimizer algorithm
is used to update the weights and biases in order to reduce the
losses. We split our data to get 2/3 of the pixels for training the
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Fig. 2. Overview of a neural network for
machine learning.

neural network and 1/3 for testing. We used the tanh activation
function for all hidden layers. We implemented a custom metric
function defined as the coefficient of determination R2, used the
Adam optimizer with a learning rate of 0.001, and applied the
Huber loss function.

For training, the input corresponds to the Herschel Hi-GAL,
Gould Belt, and Cold Cores maps from 160 to 500 µm, at a 5′
angular resolution. The output layer is the Planck 850 µm or
1.38 mm. We removed from the analysis any potential negative
brightness values in the maps. The strength of this work is the
important number of pixels resulting from the HEALPix format
that combines a multitude of world coordinate system (WCS) fit
images and that allows one to perform such a statistical analysis.
Indeed, the neural network was applied on 1 242 681 independent
pixels in total, with 832 596 pixels for training and 410 085 pix-
els for testing. Input and output maps were normalized using the
RobustS caler function. We performed hyper-parameter tuning
in order to obtain a high-performing model, which results in only
two hidden layers with 12 and 8 neurons in each, respectively, to
predict the 850 µm output map, and 60 and 30 neurons with
the 1.38 mm output map. Applying the dropout regularization
function to improve the performance of the model is not rec-
ommended in our neural network, since we do not have a large
number of nodes.

5. Tools for manipulating data in the HEALPix
format

All of the input data were in the HEALPix format, which is very
useful to analyze a large area on the sky. However, to visual-
ize specific regions it can be easier to extract a WCS fits file.

In addition, so far, astronomers use their own codes to extract
an SED, either using the HEALPix format or the WCS one.
The CADE service, created in 2012, provides astronomical data
production in the HEALPix format at different resolutions, data
archiving, and dissemination to the community. All the data are
made to be Virtual Observatory-compatible, through the HiPS
format (Fernique et al. 2015). In addition to the database, the ser-
vice offers different tools for manipulating data in the HEALPix
format:
– The drizzling software library9 (in Python), which reprojects
data from HEALPix to the local WCS,
– A web interface of the Drizzlib (DrizzWeb)10,
– The first SED extractor tool11 (in Python), which extracts an
SED from HEALPix, WCS, or a mixture of HEALPix-WCS fits
files.
In the following, we give a brief description of each tool.

5.1. World coordinate system fits file extraction

The first version of Drizzlib has been developed in the Interactive
Data Language (IDL), in the framework of the Planck mission, to
manipulate HEALPix data. The advantage of this format is that
it has a unique pixelization over the entire sky, with each pixel
covering the same surface area. The description of the method
for the transformation from WCS fits files to HEALPix files is

9 http://cade.irap.omp.eu/dokuwiki/doku.php?id=
software
10 http://drizzweb.irap.omp.eu/
11 http://cade.irap.omp.eu/dokuwiki/doku.php?id=sed$_
$extractor

A241, page 5 of 18

http://cade.irap.omp.eu/dokuwiki/doku.php?id=software
http://cade.irap.omp.eu/dokuwiki/doku.php?id=software
http://drizzweb.irap.omp.eu/
http://cade.irap.omp.eu/dokuwiki/doku.php?id=sed$_$extractor
http://cade.irap.omp.eu/dokuwiki/doku.php?id=sed$_$extractor


Paradis, D., et al.: A&A, 691, A241 (2024)

Fig. 3. Comparison between Planck data and predictions performed on
the test set (850 µm on the left and 1.38 mm on the right). Top: Correla-
tion plots between Planck data and neural network predictions. Bottom:
Histograms of the relative errors between the data and neural network
predictions in blue, and Gaussian fits in orange.

given in Paradis et al. (2012a) (see Appendix A). The method
works in exactly the same way in the inverse transformation.

The IDL Drizzlib version has been replaced by a Python
version, usable for all projections and coordinate systems. With
the improvement of the resolution, the Drizzlib has been exten-
sively modified to be able to work with HEALPix files with large
NSIDE (>8192). A simplified web interface of the Drizzlib is
also available online. These are the only tools able to manipulate
large HEALPix files, ensuring the flux conservation from one
pixelization to the other. We use a mosaicking method that com-
putes the surface of the pixel intersections, and use these values
as weights to extract the WCS fits file from the HEALPix format.

In this work, Drizzlib and DrizzWeb have extensively been
used to extract WCS fits files in specific regions of the HEALPix
prediction maps, for comparison with other maps or to produce
an SED. The extraction time depends on the NSIDE of the orig-
inal HEALPix map, as well as the size of the output WCS fits
map. In the case of NSIDE = 16 384 and for output regions of
several degrees (such as the Magellanic Clouds and part of the
Hi-GAL region), the process takes too long. In that case, we gen-
erated HiPS of the prediction maps and extracted the WCS file
using the Aladin tool. This process is acceptable for visualiza-
tion only and not for data analysis, since the flux conservation is
not guaranteed.

5.2. Spectral energy distribution extraction

All the SEDs presented in the following sections have been pro-
duced using the SED extractor. The SED extractor offers large
flexibility in the method of extraction. The interest of such a
tool is to accept WCS fits and/or HEALPix files as inputs. The
conversion from one format to the other is based on the Python
Drizzlib code, which ensures flux conservation. In addition, we
can specify different shapes of extraction regions, allowing cuts
in the coordinates limit, cuts in units of the maps, but also mix-
ing the different possibilities. Further developments of this tool
will improve the speed of the format conversion and allow for
correlation plots.

We used the same regions as in Paradis et al. (2014) for
extractions using Herschel-Bolocam data and the prediction
maps; that is, using circles of 27.8′′ centered on the source to
compute the average brightness, and a circle annulus extended
up from 27.8′′ to 55.6′′ to compute the median brightness in the
background. As opposed to Paradis et al. (2014), in which the
SEDs were generated in Jy using aperture photometry codes, we
extracted SEDs in MJy/sr. The method of extraction is different
as well as the considered pixels in the region and background,
since some pixels are masked in the prediction maps (if relative
errors are larger than 20% in the 5′ maps). To compute the SED
using Herschel-JCMT data and prediction maps, we used the
same circle radius, as well as a circle annulus for the background.

In the case of M31, we produced the SED of the galaxy by
averaging the brightnesses inside an ellipse centered at (l,b) =
(121.2;–21.58) and defined by a width of 0.55◦, height of 2◦,
and angle inclination of 38◦. We removed a background corre-
sponding to the median brightness into a circle of 0.1◦ in radius
centered at (l,b) = (121.3; –20.9).

We considered calibration uncertainties of 7% for Herschel
(see Balog et al. 2014, for PACS 160 µm, and the observer man-
ual v2.4 for SPIRE), 10% for SCUBA-2 (Jenness et al. 2002),
20% for Bolocam (Ginsburg et al 2013), and 4% and 7% for
predictions at 850 µm and 1.38 mm (see Sect. 6.1).

6. Dust emission predictions at 850 µm
and 1.38 mm

After training the neural network, we first used as inputs the
Herschel maps that we converted to the HEALPix format and
made available on the CADE service. The maps have been
smoothed to 5′ (see Sect. 2.2), to be compared with the Planck
dust emission data. Then, we used the Herschel HEALPix maps
at an angular resolution of 37′′ to predict dust emission in the
Planck bands centered at 850 µm and 1.38 mm.

6.1. Prediction maps at 5′

We applied the best models derived from our neural networks to
the Hi-GAL, Gould Belt, and Cold Cores HEALPix maps at 5′.
We compare in Fig. 3 the predicted output and the Planck maps,
restricted to the pixels used in the test set. The correlation plots
show that the predicted data reproduce well the real data. There
is clearly a low bias and a low variance at both wavelengths. The
histograms of relative errors (see Fig. 3) indicate slightly larger
relative errors for the 1.38 mm than the 850 µm. This point is
not surprising, since emission at 1.38 mm can still be slightly
contaminated by other emission features in the dust continuum,
even after CMB, CIB, and CO removal (see Sect. 2.1). These
potential contaminations can induce more complexity to recover
the Planck dust emission data. However, for both wavelengths,
the histograms are centered on values close to 0 (0.0023 and
–0.0037 at 850 µm and 1.38 mm) and have small standard devia-
tions (∼4% and 7% at 850 µm and 1.38 mm for 95% confidence
interval).

We show the correlations for the Hi-GAL and Cold Cores
programs in Figs. 4 and 5, and for all the Herschel programs
described in Sect. 2.2 in Figs. A.1 and A.2. We removed very
low-brightness pixels in the correlation plots, for all the exter-
nal galaxy surveys (HERITAGE, KINGFISH, Helga, HerM33es,
and VNGS). Indeed, these pixels are dominated by the noise
in the data, for a brightness level below 0.05 to 0.1 MJy/sr at
1.38 mm, depending on the surveys. Again, correlations appear
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Fig. 4. Correlation plots between Planck data and neural network pre-
dictions at 850 µm, for the two Hi-GAL and Cold Cores Herschel large
programs. See Fig. A.1 for the correlation plots of all the Herschel large
programs described in Sect. 2.2.

Fig. 5. Correlation plots between Planck data and neural network pre-
dictions at 1.38 mm, for the two Hi-GAL and Cold Cores Herschel large
programs. See Fig. A.2 for correlation plots of all the Herschel large
programs described in Sect. 2.2.

slightly better at 850 µm than 1.38 mm. However, we observe a
systematic trend: predictions for high brightness can be underes-
timated (mainly in the Hi-GAl, Gould Belt, and HERITAGE pro-
grams). These very bright regions correspond to specific UCHII
regions (Galactic center and Orion regions for the Milky Way
(MW), and 30-Doradus for the LMC, for instance). However,
these discrepancies between data and predictions only concern a
few pixels (less than 0.2% in the Hi-GAL program at 1.38 mm,
for instance), and are not even visible in the relative error his-
tograms. However, to be rigorous, in the delivered maps, we
removed pixels with relative errors exceeding 20%. These same
regions have been removed in the prediction maps at an angu-
lar resolution of 37′′. The other UCHII regions do not evidence
any bias in the prediction maps. This impossibility of the neu-
ral network reproducing the very bright pixels could come from
two reasons. The first one is that very bright pixels represent
only a few pixels and in that case the statistics may not be suf-
ficient for the neural network to be correctly trained on these
pixels. Secondly, the dust emission in these very bright masked
pixels may exhibit behavior distinct from other bright regions.
One possibility is a low but non-negligible contamination by
free-free emission in these areas, particularly at 1.38 mm. We
tried to train a distinct neural network for these specific pixels
but the low statistics did not allow us to get better results. We
therefore preferred to remove these pixels from the prediction
maps.

Prediction maps were generated in the HEALPix format with
NSIDE = 2048. We extracted some selected regions for various
astronomical features (filaments, cold cores, and star-forming
regions) or galaxies using the DrizzWeb interface (see Sect. 5.1).
We compare predictions and observations in the Galactic plane
(Fig. 6), LMC (Fig. 7), SMC (Fig. 8), M31 (Fig. 9), M33

(Fig. 10), Orion (Fig. 11), Taurus (Fig. 12), LDN1642 (Fig. 13),
L134 (Fig. 14), L183 (Fig. 15), and MBM12 (Fig. 16). The rela-
tive errors between the data and the predictions are also shown in
each figure. Pixels in black correspond to pixels that have been
removed, either because of negative values in the inputs maps, or
because of errors greater than 20% (mainly in very bright regions
or, conversely, in faint noisy regions).

6.2. Prediction maps at 37′′

The main goal of this work is to provide prediction maps at
higher resolution (37′′ here) in order to analyze large regions of
the sky in the submm/mm wavelength range, at the Herschel res-
olution instead of the Planck one. In addition, prediction maps at
37′′ are crucial to selecting potential regions for proposed obser-
vations with ground-based telescopes at higher resolution. The
regions used to train the neural network mix different environ-
ments, with different distances and obviously different spatial
scales. We do not expect to observe significant changes in the
SED from an angular resolution of 5′ to 37′′ for most regions of
the Galaxy, or any significant impact from free-free emission at
1.38 mm at 37′′ resolution, except possibly in a few very bright
regions. This is particularly true in the Orion region, where
dust temperatures can reach as high as 70 K (Arab et al. 2012).
However, these very bright pixels in Orion (and in a few other
UCHII regions) are masked in the final maps due to their relative
errors exceeding 20% (see Sect. 6.1), regardless of any potential
contamination. A strong contribution of free-free emission could
occur at angular resolutions of a few arcseconds.

We therefore consider that the regions we used from training
the neural network reveal a large diversity of dust emission spec-
tra that could be representative of the overall of dust emission
properties at long wavelengths. In consequence, we applied the
parameters of the neural network that give the best agreement
with the Planck data to the 37′′ Herschel input maps. These new
prediction maps (with NSIDE = 16 384) are presented in all pre-
vious figures (from Figs. 6 to 16). This way, we can clearly see
the benefit of a better angular resolution, compared to the Planck
one.

We next compare the prediction maps with available ground-
based data, from the JCMT/SCUBA-2 850 µm and Bolocam
data at 1.1 mm. Because of the filtering, we compare brightnesses
in aperture photometry after removing the same background in
each maps.

6.2.1. Comparison of cold core predictions with
JCMT/SCUBA-2

Figure 17 presents the extracted SED for each source (see
Sect. 5.2). An additional modified black-body fit was adjusted
to give a simple view of the spectral shape of the SEDs. The
difference between JCMT 850 µm data and the predictions is
less than 10% for most of the source; therefore, the data and
predictions are compatible within the error bars, except for one
source that evidences a difference of less than 30%. The com-
parison is nevertheless impressive, with the 37′′ predictions and
JCMT data showing similar brightnesses. This agreement sug-
gests that the dust emission behavior observed at an angular
resolution of 5′ across a wide range of pixels with various phys-
ical conditions can be reliably reproduced at sensibly higher
resolution. However, predictions at 850 µm do not systematically
follow the modified black-body emission model. For instance,
one source (RA = 303.43; Dec = 31.93) shows a 850 prediction
that falls below the fit, while predictions for two other sources
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Fig. 6. Comparison between Planck data and predictions for a portion of the Galactic plane, at 850 µm on the left and 1.38 mm on the right. From
top to bottom: Planck data (5′ angular resolution), neural network predictions (5′), relative error between data and predictions (5′), and neural
network predictions (37′′).

Fig. 7. Comparison between Planck data and predictions for the LMC,
at 850 µm on the left and 1.38 mm on the right. From top to bottom:
Planck data (5′ angular resolution), neural network predictions (5′),
relative error between data and predictions (5′), and neural network pre-
dictions (37′′).

Fig. 8. Comparison between Planck data and predictions for the SMC,
at 850 µm on the left and 1.38 mm on the right. From top to bottom:
Planck data (5′ angular resolution), neural network predictions (5′),
relative error between data and predictions (5′), and neural network pre-
dictions (37′′).
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Fig. 9. Comparison between Planck data and predictions for M31, at
850 µm on the left and 1.38 mm on the right. From top to bottom: Planck
data (5′ angular resolution), neural network predictions (5′), relative
error between data and predictions (5′) and neural network predictions
(37′′).

(RA = 316.09; Dec = 60.15 and RA = 324.29; Dec = 43.35)
appear to slightly exceed the fit. The low JCMT brightness of
one source is probably due to an inaccurate flux calibration. For
instance, the 450 µm cannot be used due to its low accuracy in
the flux calibration.

6.2.2. Comparison of UCHII regions predictions with
Bolocam

To compare the 1.38 mm prediction maps with observational
data, we used Bolocam data at 1.1 mm. However, these data
suffer from an important attenuation of the extended emission.
For that reason, data from UCHII regions (except perhaps from
the Galactic center, Orion bar, and 30-Doradus) should be more
reliable, since they are compact and their emission largely dom-
inates any potential contribution from the extended emission.
The comparison is given in Fig. 18 for four UCHII regions,
and in Fig. A.3 for the 12 UCHII regions of this study. Except
for one UCHII region, the Bolocam data are most of the time
slightly below the modified black-body fit. Only three SEDs

Fig. 10. Comparison between Planck data and predictions for M33, at
850 µm on the left and 1.38 mm on the right. From top to bottom:
Planck data (5′ angular resolution), neural network predictions (5′),
relative error between data and predictions (5′) and neural network pre-
dictions (37′′).

of UCHII show a significant difference between Bolocam and
the fits (17 279, 18 469, and 18 502). For the rest of the UCHII
regions, the comparison is quite favorable and strongly suggests
a compatibility between the predictions and Bolocam data. And
again, these results confirm the reliability of the prediction maps.
Furthermore, the prediction maps do not suffer from filtering, or
from other data processing artifacts, and therefore can bring a lot
advantages and reliability when compared to ground-based data.
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Fig. 11. Comparison between Planck data and predictions for the Orion
region, at 850 µm on the left and 1.38 mm on the right. From top to
bottom: Planck data (5′ angular resolution), neural network predictions
(5′), relative error between data and predictions (5′) and neural network
predictions (37′′).

6.2.3. Prediction map delivery

The prediction maps generated at angular resolutions of 5′ and
37′′ are provided on the CADE website12, as well as the Planck
data at 850 µm and 1.38 mm after CMB, CIB, and CO removal
(see Sect. 2.1).

7. Discussion

7.1. From the Iν(850)/Iν(1380) ratio to the spectral index and
dust emissivity index

We first computed the Iν(850)/Iν(1380) ratios derived from
Planck data for each survey, and derived from the prediction
maps at 37′′. The histograms and Gaussian fits of the Hi-GAL
and Cold Cores programs are shown in Fig. 19, and of all the
programs described in Sect. 2.2 in Figure A.4. The first differ-
ence appears for the Hi-GAL and Gould Belt surveys, which
evidence distinct histograms: a Gaussian profile in the case of
Planck data, and a double Gaussian profile in the case of pre-
dictions. This difference does not come from the resolution,
because we observe the same histograms when using predic-
tions at 5′ (not shown in the paper), but rather from an intrinsic
effect of the neural network. The neural network slightly modi-
fied the peak of the Iν(850)/Iν(1380) histogram ratio. This effect
is the result of small variations of a few percent in the predic-
tions compared to the data. The two peaks in the prediction

12 https://cade.irap.omp.eu/dokuwiki/doku.php?id=
nnpredictions

Fig. 12. Comparison between Planck data and predictions for the Taurus
region, at 850 µm on the left and 1.38 mm on the right. From top to
bottom: Planck data (5′ angular resolution), neural network predictions
(5′), relative error between data and predictions (5′) and neural network
predictions (37′′).

histogram correspond to a decrease or increase of a few per-
cent (∼3–4% compared to the single peak centered at 4.29 in
the Planck histogram of Hi-GAL at 5′, for instance) induced
by the neural network, which is negligible. In the other cases,
the 37′′ prediction histograms show narrower profiles, except for
the VNGS survey, which exhibits the opposite behavior, likely
due to there being significantly fewer pixels in the histograms.
These differences in histogram profiles result from an inherent
effect of the neural network. The extreme dispersion of the ratio
is approximately 13% at the full width at half maximum (in the
VNGS histograms). However, the most important result here is
that the central values of the histograms are quite similar for all
environments (see the µ values in the figure). This means that
statistically the ratio is between 4 and 4.3. From a general point
of view, the mean slope in the submm-mm wavelength range is
statistically the same whatever the environment, indicating a cer-
tain stability in the dust emission spectrum at long wavelengths.
We note however that the most diffuse part of the Galactic ISM,
used to derive the “standard” Galactic SED, is not represented in
this analysis.

We computed the observed spectral index, α850−1380µm,obs,
for all Herschel large programs using Planck data at 5′,
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Fig. 13. Comparison between Planck data and predictions for
LDN1642, at 850 µm on the left and 1.38 mm on the right. From top to
bottom: Planck data (5′ angular resolution), neural network predictions
(5′), relative error between data and predictions (5′) and neural network
predictions (37′′).

defined as

α850−1380 µm =
log (Iν(850)/Iν(1380))

log(850/1380)
. (1)

Assuming optically thin emission at long wavelengths and in
the Rayleigh-Jeans approximation, we can deduce the dust emis-
sivity index (β⋆) by using this simple relation: β⋆ = α–2. For
simplicity, we note β⋆, the dust emissivity index derived from the
Iν(850)/Iν(1380) ratio, compared to the standard β derived from a
temperature (T)-spectral index (β) model. We obtain β⋆850−1380µm
values around 1, which indicates a low emissivity index at
long wavelengths. Table 2 gives the correspondence between
Iν(850)/Iν(1380) and β⋆850−1380µm for the central value (µ) of
each histogram. However, we note that computing β⋆850−1380µm
using predictions (at 37′′ or 5′) can be biased by the neural
network due to variations in the histogram profiles (see above).
These variations could lead to a change of spectral index up to
+0.25 in extreme cases, observed in the VNGS survey. Statisti-
cally, several analyses evidenced significantly higher β values at

Fig. 14. Comparison between Planck data and predictions for L134, at
850 µm on the left and 1.38 mm on the right. From top to bottom: Planck
data (5′ angular resolution), neural network predictions (5′), relative
error between data and predictions (5′) and neural network predictions
(37′′).

Table 2. Correspondence between the intensity ratio derived from
Planck (5′) and the dust emissivity index.

Region I(850)/I(1380) β⋆850−1380µm
Planck (5′)

Hi-GAL 4.289 1.005
Cold Cores 4.130 0.927
Gould Belt 4.110 0.917
Heritage 4.198 0.960
HerM33es 4.202 0.962
Helga 4.247 0.984
KINGFISH 4.122 0.922
VNGS 3.960 0.840

shorter wavelengths (see for instance Stepnik et al. 2003; Abergel
et al. 2010; Paradis et al. 2010; Juvela et al. 2011) – that is, in
the FIR wavelength range – meaning that a break in the spectral
shape in the dust emission spectrum is a realistic assumption, as
has already been proposed by several authors (see for instance
Mény et al. 2007; Paradis et al. 2009; Juvela et al. 2015).
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Fig. 15. Comparison between Planck data and predictions for L183, at
850 µm on the left and 1.38 mm on the right. From top to bottom: Planck
data (5′ angular resolution), neural network predictions (5′), relative
error between data and predictions (5′) and neural network predictions
(37′′).

Reach et al. (1995) tried to explain the flattening in the
COBE/FIRAS spectrum (Fixsen et al. 1994) of the diffuse ISM.
They found a good fit to the data, with the use of a two modi-
fied black-body model with dust populations at ∼16–21 K and
∼4–7 K. The authors, however, argued against the existence of
such a cold dust component. Finkbeiner et al. (1999) also pro-
vided a two-component dust model, in which the components
are described by two distinct emissivity spectral indices. This
model required amorphous silicate grains at 9.5 K (β = 1.7) and
carbonaceous grains at around 16 K (β = 2.7). The Planck 2014
data release was analyzed by Meisner and Finkbeiner (2015),
who proposed an update of the Finkbeiner et al. (1999) model,
with best temperatures of 15.7 K (β = 2.82) and 9.75 K (β = 1.63),
as a better model than the Planck Collaboration XI (2020) model
(T = 19.74 K, β = 1.6).

Adding long-wavelength data (in the mm range) usually
decreases the global β value, mainly in the diffuse medium (see
for instance Planck Collaboration Int. XVII 2014). However,

Fig. 16. Comparison between Planck data and predictions for MBM12,
at 850 µm on the left and 1.38 mm on the right. From top to bottom:
Planck data (5′ angular resolution), neural network predictions (5′),
relative error between data and predictions (5′) and neural network pre-
dictions (37′′).

β values have always been derived including FIR wavelengths,
which induces an increase in β compared to the use of the
submm-mm range only. This work reinforces the idea that the
dust emissivity spectral index could be wavelength-dependent,
as has been observed in laboratory experiments (see for instance
Agladze et al. 1994, 1996; Mennella et al. 1998; Boudet et al.
2005; Coupeaud et al. 2011; Demyk et al. 2017a,b). However,
thermal free-free emission of ionized gas could also be respon-
sible for this behavior by contaminating the submm-mm data.
For instance, Izotov et al. (2014) studied dust emission in a
large sample of emission-line star-forming galaxies. They found
important free-free emission of ionized gas in the submm and
mm range that could cause the submm excess, as was discussed
by Rémy-Ruyer et al. (2013). Lisenfeld et al. (2002) and Galliano
et al. (2005) also analyzed the contamination by free-free emis-
sion in dwarf galaxies and identified a contribution that can reach
13% of the emission at 850 µm and 23% at 1.2 mm. However,
in the Magellanic Clouds, the different components such as free-
free, synchrotron, and foreground emissions do not really affect
the 850 µm and 1.38 emissions in the LMC and SMC SEDs after
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Fig. 17. SEDs of Cold Cores (Galactic coordinates given in the paren-
thesis), with Herschel data (from 160 to 500 µm) in black, JCMT
(850 µm) in red, and predictions (850 and 1380 µm) in green. A modi-
fied black-body fit is shown for convenience.

CMB subtraction (see Table 2 in Planck Collaboration XVII
2011). Their contribution may affect the SED at longer wave-
lengths. In addition, we do not expect to observe free-free nor
synchrotron emission in cold cores. If the low emissivity index
were the result of these additional components, we would there-
fore statistically expect to observe important variations from one
environment to the other, which is not the case.

Moreover, β⋆850−1380µm seems to be much lower than has
previously been thought. For instance, Planck Collaboration XI
(2020) derived a mean spectral index of 1.62 over the whole sky
using a modified black-body model between 100 and 850 µm.
First, this value of β is highly temperature-dependent with this
model, as well as uncertainty-dependent, and was computed on a
shorter wavelength range compared to our analysis, which could
explain a higher value. Nevertheless, looking at their Fig. 9,
we observe β values going from ∼1.2 to 2.2 along the Galac-
tic plane, and with high values in the inner Galactic plane. Our
lower value could be recovered assuming a flattening of the dust
emission spectrum for wavelengths larger than 850 µm. Planck
Collaboration Int. XVII (2014) confirm this behavior by compar-
ing the βmm (λ > 850µm) with the βFIR. We note, however, that
the β⋆850−1380µm that we obtain is a strict value derived from a
brightness ratio and does not take any uncertainty into account.
The inclusion of FIR data that requires knowing the dust tem-
perature would probably induce a higher β value. If we compute

β⋆850−1380µm in the LMC and SMC derived from the global SED
using Planck data from Planck Collaboration XVII (2011) (see
their Table 2), we get values of 1.02 and 0.67 in the LMC and
SMC, respectively, significantly lower than the values derived
from a T-β model applied from FIR to mm wavelengths, which
are 1.5 and 1.2, respectively. For the SMC, the authors observed
a significant flattening of the dust emission for λ > 850 µm
that could explain the lower value of β⋆850−1380µm based on the
Iν(850)/Iν(1380) ratio. For the LMC, we note that β derived from
a T-β fit is not well constrained when looking at the χ2 values,
and is highly degenerate with the dust temperature value.

For M33, Tibbs et al. (2018) recovered an effective dust
emissivity index derived from the 100 µm to 3 mm data going
from 0.93 to 1.44 depending on the CMB-subtraction method,
whereas, using their Planck brightness values, we computed
β⋆850−1380µm between 0.87 and 1.1. For the same galaxy, we find
β⋆850−1380µm of 0.98 using values from Hermelo et al. (2016) (see
their Table 2).

We can conclude that the dust spectral index seems to vary
with wavelength, with a FIR dust emissivity index that could be
significantly higher than its value at long wavelengths. However,
at a different spatial scale and in particular at an angular resolu-
tion of a few arcseconds, we do not know if this spectral behavior
can still occur.

7.2. Predicting dust emission in nearby extragalactic
environments

One of the most impressive results is that even if the neural net-
work has been trained on Galactic data only (Hi-GAL, Gould
Belt, and Cold Cores), it is able to predict dust emission in
other nearby galaxies, and in the Magellanic Clouds in particu-
lar (Figs. 7 and 8). The Magellanic Clouds are two of the nearest
galaxies and as such are easily resolved by observations. These
galaxies are characterized by a lower metallicity compared to the
MW ( 1

2 Z⊙ and 1
5 Z⊙ for the LMC and SMC, Russel and Dopita

1992). The physical conditions in the Magellanic Clouds are dif-
ferent from the MW: the radiation field is higher (Dufour 1984;
Lequeux 1984), the filling factor of dense clouds is lower in the
Magellanic clouds than in the MW (Pineda et al. 2012), and
the average dust emission spectrum appears significantly flat-
tened in the FIR-submm range in the LMC and even more in
the SMC (Israel et al. 2010; Bot et al. 2010; Rémy-Ruyer et al.
2013). Therefore, it is accepted that the dust properties differ
from those of Galactic dust, though the origin of this difference
remains unexplained. Each model that has its own dust properties
(abundances, sizes, optical properties, etc.) can always repro-
duce (more or less) the NIR to submm/mm data by changing the
parameters (Chastenet et al. 2017; Paradis et al. 2023). It is possi-
ble to interpret the emissivity variations in the framework of one
model and reproduce them by changing the parameters, but in the
end we are not able to determine the dust emission brightness at
a specific wavelength for a given region of the sky. Conversely,
the neural network seems to be able to predict the dust emis-
sion in various environments by analyzing only the dust spectral
behavior between 160 µm and 500µm. That means that the
submm/mm emission is fully predictable using the FIR domain.
Therefore, the submm excess already appears in the FIR wave-
length range. For instance, several analyses explored the 500 µm
excess (Paradis et al. 2012b; Gordon et al. 2014; Rémy-Ruyer et
al. 2013), which is also a crucial wavelength at which a change
in the emissivity spectral index with wavelengths was reported
in the framework of dust modeling (Mény et al. 2007).

A241, page 13 of 18



Paradis, D., et al.: A&A, 691, A241 (2024)

Fig. 18. SEDs of four UCHII regions (coordinates given in Paradis et al. 2014), with Herschel data (from 160 to 500 µm) in black, Bolocam
(1.1 mm) in pink, and predictions (850 and 1380 µm) in green. A modified black-body fit is shown for convenience. See Fig. A.3 for the SEDs of
the 12 UCHII regions described in Sect. 2.5 and in Paradis et al. (2014).

Fig. 19. Histograms of the Iν(850)/Iν(1380)
ratio for the two Hi-GAL and Cold Cores
Herschel large programs, deduced from the
Planck data at 5′ in black, and from the predic-
tions at 37′′ in green. Gaussian fits are overplot-
ted, with the central values (µ) and the standard
deviations (σ) given in each panel. The left and
right y axes in each panel correspond to the
number of pixels for the Planck data and pre-
diction histograms. See Fig. A.4 for histograms
of all the Herschel large programs described in
Sect. 2.2.

Fig. 20. SED of M31, with Herschel data (from 160 to 500 µm) in black,
JCMT (850 µm) in red, and predictions (850 and 1380 µm) in green.
A modified black-body fit is shown for convenience.

In a similar way, predictions at 5′ are very convincing for
M31 and M33 (Figs. 9 and 10). Several analyses of dust emis-
sion in M31 and M33 did not converge on the variation in the
dust opacity index in dense environments using Herschel images.
Tabatabaei et al. (2014) showed a decrease in the spectral index
with galactocentric distance in M33, whereas Smith et al. (2012)
evidenced the opposite behavior as a function of radius in M31,
both with Herschel data and a similar linear resolution. This dis-
crepancy could be the result of the degeneracy between the dust
temperature and the spectral index in M31, as was pointed out
by Tabatabaei et al. (2014). This point shows the complexity of
understanding the dust emission behavior, and so of determining
the dust temperature and dust masses. With the lack of long-
wavelength data at the Herschel resolution, no one is capable of
predicting the spectral behavior of the dust emission in the mm
range.

The SED of M31 combining Herschel, SCUBA-2, and pre-
dictions is given in Fig. 20. We can note that predictions at
850 µm are in very good agreement with SCUBA-2 data. This
confirms again the goodness of the calculated prediction maps.
Moreover, these maps do not suffer from extended emission fil-
tering; the noise level is also significantly reduced compared to
ground-based data. Prediction maps of the KINGFISH survey
also evidence good agreement when comparing with Planck data
in Figs. A.1 and A.2. Comparisons with the VNGS predictions
show, however, some discrepancies for a few pixels that have
then been removed in the final maps produced.

If the neural network is able to predict emission in any region
of the sky, this means that the spectral behaviors of the dust emis-
sion in the FIR-mm are not necessarily too different from one
nearby galaxy to another. Whatever the composition of the large
dust grains and their dust properties, their spectral behaviors are
included in the FIR-mm global emission and can be reproduced
across various environments. Or, within a simple hypothesis, the
large dust components could have similar dust properties in our
Galaxy and in some nearby extragalactic environments, but their
proportions could spatially vary.

8. Conclusions

By applying neural networks to large datasets from the Herschel
and Planck missions, we have produced, for the first time, pre-
diction maps of dust emission at a 37′′ angular resolution, in the
two Planck bands centered at 850 µm (353 GHz) and 1.38 mm
(217 GHz). We are making these maps available to the com-
munity through the CADE service, covering surveys such as
Hi-GAL, Cold Cores, Gould Belt, Magellanic Clouds, M33,
M31, KINGFISH, and VNGS. We estimate the uncertainties on
these predictions to be approximately 4% at 850 µm and 7%
at 1.38 mm. Although the supervised deep learning algorithms
were trained primarily on Galactic environments, the neural
networks are also capable of accurately reproducing data from
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nearby extragalactic environments. This impressive result sug-
gests that variations in dust properties could be reproducible
across different regions of the sky, provided that appropriate
training datasets are used. In that sense, the spectral behaviors
of the FIR to the mm dust emission are similar in Galactic and
nearby extragalactic environments.

The prediction maps have been compared with
JCMT/SCUBA-2 observations at 850 µm, as well as with
Bolocam data at 1.1 mm. The agreement between predictions
and SCUBA-2 data is very good (less than 10% for most of
the sources and within the error bars). Bolocam data are also
compatible with predictions of UCHIIs. Another important
result is the low spectral index between 850 µm and 1.38 mm,
statistically close to 1, which could support the hypothesis that
dust emission flattens at long wavelengths.

The large spatial coverage of the prediction maps will help
in statistically probing the dust emission variations at long wave-
lengths in specific regions due to the important benefit for the
angular resolution compared to Planck. In addition, these maps
could play the role of first templates of dust emission at this res-
olution in the framework of foreground subtraction. Moreover,
they will help in preparing future observations at high angular
resolutions. The powerful capabilities of neural networks could
allow future analyses to make predictions in different regions of
the sky, and/or at other wavelengths. As a second step, it would
be promising to apply deep learning techniques, including con-
volutional neural networks, to recover the best angular resolution
of the data used in the process.
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Appendix A: Additional material

Fig. A.1. Correlation plots between Planck data and neural network pre-
dictions at 850 µm, for the different Herschel large programs.

Fig. A.2. Correlation plots between Planck data and neural network pre-
dictions at 1.38 mm, for the different Herschel large programs.
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Fig. A.3. SEDs of twelve UCHII regions (coordinates given in Paradis et al. 2014), with Herschel data (from 160 to 500 µm) in black, Bolocam
(1.1 mm) in pink, and predictions (850 and 1380 µm) in green. A modified black-body fit is shown for convenience.
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Fig. A.4. Histograms of the
Iν(850)/Iν(1380) ratio for each Her-
schel large program, deduced from the
Planck data at 5′ in black, and from the
predictions at 37′′ in green. Gaussian fits
are overplotted, with the central values (µ)
and the standard deviations (σ) given in
each panel. The left and right y axes in
each panel correspond to the number of
pixels for the Planck data and prediction
histograms.
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