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Highlights

Local Hybrid Newton method for the acceleration of well event
handling in the simulation of CO2 storage using supervised learning

Antoine Lechevallier, Sylvain Desroziers, Thibault Faney, Eric Flauraud,
Frédéric Nataf, Tor Harald Sandve

• Innovative Approach: We develop a local machine-learning based New-
ton preconditioning method, showcasing its potential through a proof
of concept.

• Local Hybrid Initialization: Our approach integrates Newton’s method
with a local initialization strategy, enabling faster convergence while
preserving numerical guarantees.

• Application in CO2 Storage Simulation: Our method is applied to ac-
celerate the numerical simulation of CO2 storage, using a open-source
Python framework.

• Initialization Strategy: We initialize the pressure using a linear ap-
proximation and the saturation using a Fourier Neural Operator neural
network trained in a supervised way.

• Performance Boost: Our method significantly reduces the number of
Newton iterations across various well events and well locations, show-
casing its efficiency.
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Abstract

Reservoir simulation is crucial in understanding and predicting the be-
havior of subsurface reservoirs, aiding in efficient resource management. By
modeling fluid flow, pressure changes, and other dynamic processes, it pro-
vides valuable insights for optimizing development strategies. This helps in
making informed decisions, minimizing risks, and maximizing the sustainable
use of natural resources such as water, geothermal energy, or carbon storage.
However, simulating fluid flow in porous media is computationally intensive;
accurately modeling a single injection scenario for a large CO2 reservoir can
take several hours on a high-performance computing cluster. This becomes a
bottleneck when running numerous simulations, such as in the ’Uncertainty
Quantification’ process. For any context involving reservoir simulation (such
as CO2 storage, Hydrogen storage, or oil extraction), well events, includ-
ing their opening and closure, introduce significant numerical challenges due
to their immediate effects on pressure and saturation variables. This often
necessitates a drastic reduction in time step size to solve the non-linear equa-
tions derived from the discretization of the continuous mathematical model.
Despite this, the impact of these specific well events tends to be relatively
similar over space and time. We propose a local preconditioning strategy in
the near-well region to mitigate the impact of well events. We complement
the standard fully implicit solver by predicting an initialization in the near-
well region of Newton’s method using supervised learning. More specifically,
we replace the initialization in pressure by a linear approximation obtained
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through an implicit solver and we use a Fourier Neural Operator (FNO) to
predict a local saturation initialization. We apply our methodology to a test
case derived from a CO2 storage in saline aquifer benchmark (SHPCO2). We
test out two different datasets for the training of the Fourier Neural Opera-
tor, the first ”physical” one is generated by running simulations at a single
location using the SHPCO2 case and the second ”synthetic” one is generated
using a cheap synthetic dataset. We then apply both models to either the
single well location dataset used to train the first model or to multiple well
locations to assess the generalization capabilities of the models. Overall, we
reduce the required number of Newton iterations, i.e the required number of
linear system to solve; to handle a well opening by at least 27% up to 45%
depending on the test case. Finally, we discuss a way to estimate the quality
of a ”synthetic” dataset used for training in order to make predictions on a
”physical” case.

Keywords: Newton’s method, Non-linear preconditioning, Neural
Operator, CO2 storage

1. Introduction1

Reservoir simulation is crucial in understanding and predicting the be-2

havior of subsurface reservoirs, aiding in efficient resource management. By3

modeling fluid flow, pressure changes, and other dynamic processes, it pro-4

vides valuable insights for optimizing development strategies. This helps in5

making informed decisions, minimizing risks, and maximizing the sustainable6

use of natural resources such as water, geothermal energy, carbon storage or7

hydrogen storage.8

Numerical simulations of fluid flow in porous media require substantial9

computational resources. Simulating a single injection scenario in a large10

CO2 reservoir with precision can take hours on an HPC cluster due to the11

complexity and the size of the physical processes. This becomes a bottleneck12

when numerous simulations are needed.13

Industrial solvers frequently employ fully implicit methods (FIM) (Daw-14

son et al., 1997; Palomino Monteagudo and Firoozabadi, 2007; Liu et al.,15

2013; Eymard et al., 2000; LeVeque, 2002), known for their unconditional16

stability, which allows them to handle problems over a wide range of time17

scales. However, this stability requires solving a large system of equations18

with mixed elliptic and hyperbolic characteristics. The resulting nonlinear19
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system is typically addressed using Newton’s method, which is not guaran-20

teed to converge (Cai et al., 2002; Skogestad et al., 2013). Achieving a so-21

lution within a specified tolerance for a given time step involves performing22

multiple Newton iterations until the nonlinear algebraic equations converge.23

Yet, when faced with poor initial estimates or large time steps, the standard24

Newton method may struggle to converge. In such cases, a common approach25

is to retry with a smaller time step, leading to increased computational costs.26

In recent decades, significant efforts have been made to improve the con-27

vergence of Newton’s method for multiphase flow problems. This has in-28

cluded modifications to the time-step size and the use of nonlinear precon-29

ditioners (Yang et al., 2016). These preconditioners can either enhance the30

initial guess by implementing either explicit methods (IMPES) (Chen et al.,31

2004, 2006) or implicit sequential methods (IMPIMS) Quandalle and Savary32

(1989); Ouaki (2013), as well as domain decomposition techniques like the33

Additive Schwarz Preconditioned Inexact Newton method (ASPIN) (Cai and34

Keyes, 2001; Hwang and Cai, 2005; Liu and Keyes, 2015). Another approach35

at the Newton iteration level involves damping, where a cell-wise damping36

factor is applied to ensure that the absolute variations in saturations stay37

below a specified threshold. This threshold can be either heuristic Schlum-38

berger (2013) or based on physics, such as in Trust regions (Pour et al., 2023;39

Klemetsdal et al., 2019), which define safe updates for saturation regions us-40

ing inflection points.41

Well events, such as openings and closures, introduce significant numer-42

ical challenges due to their substantial effects on pressure and saturation43

variables. This often necessitates a considerable reduction in time step size44

to effectively solve the nonlinear equations generated by the discretization of45

the continuous mathematical model.46

However, these well events tend to exhibit similar characteristics across47

different spatial and temporal contexts. The degree of similarity between two48

well events is influenced by several factors, including the injection conditions,49

the reservoir state at the time of the event, boundary conditions, and the50

porous media properties (like permeability and porosity) surrounding each51

well. Therefore, exploring the potential of machine learning algorithms to52

mitigate the numerical difficulties associated with well events is a promising53

avenue for investigation.54

Recent interest in applying machine learning to predict physical processes55

has led to the emergence of ”Physics-Informed Deep Learning.” This ap-56

proach involves using machine learning models to either replace or augment57
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traditional numerical algorithms while maintaining the essential constraints58

of the physical model.59

A common strategy to learn the behavior of physical processes is super-60

vised learning, where a significant amount of numerical simulations are run61

to generate a database, and the Deep Learning model is trained to match the62

labeled data from this often expensive database. Specifically, the supervised63

learning of mappings between infinite-dimensional function spaces using neu-64

ral operators (Kovachki et al., 2021; Lu et al., 2019) has produced significant65

results in learning solutions to PDEs (Takamoto et al., 2022). In particular,66

the Fourier Neural Operator (FNO) Li et al. (2020) has shown impressive67

performance, resulting in the development of numerous recent architectures68

built upon it (Wen et al., 2022; Li et al., 2021; Raonić et al., 2023).69

Physics-Informed Deep Learning has been applied to the geological se-70

questration of CO2 using various machine learning techniques (Seabra et al.,71

2024; Sasal et al., 2024; Diab and Kobaisi, 2024; Kompantsev et al., 2024).72

Validating an injection scenario requires numerous numerical simulations,73

which can be expensive. Machine learning, used as surrogate model, has74

the potential to expedite these simulations, enhancing decision-making and75

enabling faster, scalable deployment of carbon capture and storage (CCS).76

A striking example is found in Chu et al. (2023), where simulations uti-77

lizing a FNO-based architecture achieved an acceleration of 8000 times com-78

pared to conventional numerical solvers, while still maintaining significant79

accuracy. Another innovative architecture, also grounded in FNO, was pre-80

sented in Wen et al. (2023), showcasing remarkable speed enhancements in81

CO2 storage simulations. Furthermore, several other studies highlight con-82

siderable reductions in the computational costs associated with CO2 storage83

numerical simulations (Witte et al., 2023, 2022; Jiang et al., 2023; Shokouhi84

et al., 2021; Wen et al., 2021).85

In many cases, the resulting machine learning model serves as a surrogate86

that replaces the traditional solver. This enables faster evaluation of new in-87

put parameters compared to the original numerical solver. This advantage is88

particularly important when the numerical solver is computationally expen-89

sive and time-consuming, as surrogate models can offer rapid approximations.90

However, this ’black-box’ approach does not guarantee accurate predictions,91

in contrast to the reliability of numerical solvers. Thus, exploring hybrid ap-92

proaches that incorporate machine learning models within numerical solvers93

is valuable for enhancing speed or accuracy while preserving numerical guar-94

antees for evaluation.95
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A recent hybrid strategy that leverages the predictive capabilities of neu-96

ral networks to accelerate numerical solvers is known as ’Hybrid Newton’s97

Method’ (Aghili et al., 2024; Bhattacharyya and Vyas, 2022; Huang et al.,98

2020). This approach employs a prediction-correction strategy in which a99

neural network predicts a new initial guess that is closer to the solution than100

the standard one, followed by applying Newton’s method to refine the solu-101

tion to the desired accuracy. Ideally, the prediction should fall within the102

quadratic convergence zone of Newton’s method, requiring fewer iterations103

for convergence.104

We propose a direct extension of the global hybrid Newton method, as in-105

troduced by (Lechevallier et al., 2023; Lechevallier, 2024), which addresses the106

primary limitations of the original approach. This proof-of-concept method-107

ology aims to adapt the hybrid Newton method by predicting a local initial-108

ization in the near-well region to improve handling of well events. Although109

the physical model we use is relatively simple, it still presents numerical110

issues that are typical in more complex, realistic models. All reservoir sim-111

ulations are conducted using an open-source Python framework developed112

for this purpose. For pressure initialization, we employ a linear approxima-113

tion, while for saturation, we use a nonlinear prediction obtained through114

supervised learning with a Fourier Neural Operator.115

The main advantage of this local initialization, compared to a global116

approach, lies in its flexibility. It can be applied to any well location, offering117

reduced data generation and training costs while still achieving a notable118

acceleration in Newton’s method convergence.119

We compare two different saturation predictors trained on two distinct120

datasets. The first dataset is generated using a single well location with a121

wide range of well events, resulting in a model called the ”Single Location122

Well Model” (SLWM). The second dataset is designed to move toward a123

”Generalized Well Model” (GWM), an accurate saturation predictor capable124

of handling any well event, at any location, and under varying discretizations.125

In this study, we use a constant discretization and generate a dataset for the126

GWM to be trained on by simulating a synthetic small reservoir with a broad127

range of well events, allowing for fast data generation and training.128

Once trained, the SLWM and GWM are integrated into the hybrid New-129

ton preconditioning strategy, and their numerical performances are compared130

based on the number of Newton iterations required to achieve convergence131

given a well event scenario. Our results indicate that the SLWM accelerates132

Newton’s method by about 45% when applied within its training or testing133
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distributions. In contrast, the GWM achieves a 28% speedup regardless of134

well location, while the SLWM’s acceleration drops to 15% when applied135

to different well locations, highlighting the GWM’s superior generalization136

capabilities.137

Finally, we introduce a quality measure based on the Wasserstein distance138

to assess the suitability of the synthetic dataset used to train the GWM for139

application to more realistic physical datasets. Our findings show that this140

quality measure correlates well with the observed numerical performance.141

We first detail in section 2 the selected physical model and its numeri-142

cal resolution. Then in section 3 we detail the construction of the hybrid143

Newton preconditioners and, in section 4, the data generation process that144

we use for training and inference of the methodology. Finally we expose145

in section 5 the training process of the preconditioning predictors, the nu-146

merical performances obtained on the different datasets and a discussion on147

means to evaluate the quality of the cheap synthetic dataset used to train148

the ’Generalized Well Model’.149

2. Mathematical model and numerical resolution150

2.1. Mathematical Model151

We consider the 2D incompressible two-phase flow in porous medium152

models for the gas g and water w phases. Capillary pressure effects and153

gravity are neglected. This model can be described using conservation of154

mass equation (1) and Darcy’s law (2) (Hubbert, 1956) for each phase, the155

closure of the system is ensured by (3):156

ϕ
∂

∂t
(Sw) + div(vw) = qw, ϕ

∂

∂t
(Sg) + div(vg) = qg, (1)

vw = −Kkrw(Sw)

µw

∇P, vg = −Kkrg(Sg)

µg

∇P, (2)

Sg + Sw = 1, (3)

with for α ∈ {w, g}, the saturation Sα of the phase α, vα the mean velocity157

of phase α and qα represents the injection or production of phase α induced by158

sources, sinks or wells. Additionally, krα is the relative permeability of phase159

α and µα is the viscosity of the phase α. ϕ represents the porosity, which160

is assumed to remain constant over time, while K denotes the permeability,161
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which is also constant over time but may vary spatially. In this work, we use162

a quadratic relative permeability i.e krα(Sα) = S2
α.163

2.2. Numerical resolution164

The continuous model is discretized using a two-points finite volume spa-165

tial scheme on a cartesian mesh (Eymard et al., 2000; LeVeque, 2002) and an166

implicit Euler time scheme. The pressure and saturation are solved simulta-167

neously through a fully implicit scheme (Dawson et al., 1997; Palomino Mon-168

teagudo and Firoozabadi, 2007; Liu et al., 2013). More precisely, we consider169

the system (1) written in the following form:170 
ϕ
∂

∂t
(Sw) + div(vw) = qw,

ϕ
∂

∂t
(Sg) + div(vg) = qg,

(4)

with Sw + Sg = 1, and where vw, vg are given by (2) and qg, qw are the171

water flow and gas flow in the wells. By summing the equations of (4) and172

considering Sw + Sg = 1, we obtain the elliptic equation in pressure:173

div(vt) = qt, (5)

with vt = vg + vw, the total velocity inside the reservoir. qt = qg + qw is174

the total injection/production flow rate through the wells. The system (4)175

can then be rewritten as176  div(vt) = qt,

ϕ
∂

∂t
(Sg) + div(vg) = qg.

(6)

We choose P and S = Sg as primary unknowns and Sw = 1−S as secondary177

unknown.178

The fully implicit finite volume discretization of the two equations of (4)179

in each cell k of the grid can be written as:180 
− |k|ϕS

n+1
k − Sn

k

dt
+

∑
f∈Nk

F n+1
wk,f

−
∑

q∈Nqk

Qn+1
wk,q

= 0,

|k|ϕS
n+1
k − Sn

k

dt
+

∑
f∈Nk

F n+1
gk,f

−
∑

q∈Nqk

Qn+1
gk,q

= 0,

(7)
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where |k| is the measure of the cell k and dt = tn+1 − tn the time step.181

F n+1
αk,f

is the two points flux approximation of the flux of the phase α between182

the cell k and f and Qn+1
αk,q

is an approximation of the source term qα in the183

cell k. Nk and Nqk are respectively the set of adjacent cells of k and the set184

of wells in the cell k.185

Summing the equations of (7) gives the following discrete form of the system186

(6):187 
∑
f∈Nk

F n+1
tk,f

−
∑

q∈Nqk

Qn+1
tk,q

= 0,

|k|ϕS
n+1
k − Sn

k

dt
+

∑
f∈Nk

F n+1
gk,f

−
∑

q∈Nqk

Qn+1
gk,q

= 0,
(8)

where F n+1
tk,f

= F n+1
wk,f

+ F n+1
gk,f

and Qn+1
tk,q

= Qn+1
wk,q

+Qn+1
gk,q

.188

189

The system of equations (8) can be written, with Rαk
the residual of190

phase α in cell k and Rtk = Rwk
+Rgk , in residual format as:191 {

Rtk(P
n+1, Sn+1) = 0,

Rgk(P
n+1, Sn+1) = 0.

(9)

Then, the resulting non-linear system of equations is linearized and solved192

using Newton’s method for Xn+1
i = (P n+1

i , Sn+1
i ) and i the Newton iteration:193

− ∂R

∂X
(Xn+1

i )∆Xn+1
i = R(Xn+1

i ), Xn+1
i+1 = Xn+1

i +D(∆Xn+1
i ), (10)

with D(∆Xn) maintains physical bounds for the unknowns. In practice,194

we use Appleyard damping Schlumberger (2013) of the saturation using a195

factor of 0.2, and clipping to ensure that the saturation remains between 0196

and 1. Regarding the stopping criterion, at the Newton iteration number i,197

we use a criterion based on the infinity norm of the residual:198

max
α∈{w,g}

max
k=1,N

|Ri
αk
| dt
|k|

< ϵ, (11)

where |k|, the cell volume, aims to put into perspective the error between199

the large and small cells and epsilon the stopping criterion value. In this200

work, we select ϵ = 10−6.201
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The fully implicit scheme is unconditionally stable but large time-steps202

can prevent Newton’s method from converging. In practice, if Newton’s203

method does not converge in Nl iterations, we half the time-step and restart204

the step, the effort on this step, he effort already invested in this step is205

therefore lost. This process can be time-consuming as each Newton iteration206

requires to solve a linear system of equations. Also, the mechanisms allow-207

ing to increase the time-step are often more cautious than the mechanisms208

reducing the time-step.209

Well events, such as openings, often prevent Newton’s method from con-210

verging within Nl iterations due to their drastic and immediate impact on211

pressure and saturation variables (Ahmed et al., 2022). These events can sig-212

nificantly increase the total simulation time, as they require a large number213

of iterations and time-step reductions for the solver to accurately capture the214

variations in saturation and pressure.215

However, well events are often similar across space and time, and their216

characteristics can be described using only a few parameters. With sufficient217

data, it should therefore be possible to learn their behavior and improve the218

convergence of Newton’s method.219

3. Methodology220

3.1. Local hybrid Newton preconditioning221

We propose to use the hybrid Newton methodology (Aghili et al., 2024;222

Bhattacharyya and Vyas, 2022), particularly we adapt the global Hybrid223

Newton methodology introduced in Lechevallier (2024) by predicting a local224

initialization in the near-well region instead of a global one as in the origi-225

nal method. By predicting an initialization closer to the solution than the226

standard one, ideally in the quadratic convergence zone, the hybrid Newton227

methodology serves as a preconditioning strategy to accelerate the conver-228

gence of Newton’s method through well events. This hybrid Newton precon-229

ditioning strategy can be seen as a prediction-correction strategy.230

In practice, the system of equations (9) requires an initialization in satu-231

ration and pressure. We propose two different local saturation initialization,232

based on machine-learning. We denote by Xn+1
init Newton’s method initializa-233

tion at the time step n + 1. The standard or classic initialization is usually234

the solution at the previous step: Xn+1
init := Xn = (P n, Sn).235

Now we focus on the construction of a new initial guess Xn+1
HN for the236

hybrid Newton, closer to the solution in the context of well opening.237
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3.2. Initial guess construction238

We use the same initial guess construction as introduced in (Lechevallier,239

2024; Lechevallier et al., 2023):240

1. Pressure: linear approximation,241

2. Saturation: Machine-learning regression.242

The main details regarding each initial guess are described in the following243

sections.244

3.2.1. Pressure245

During a well event, the pressure discontinuity is global throughout the246

reservoir and occurs instantaneously in time. We use the solution from an247

implicit pressure solver Pimp (IMP) (Sheldon and Cardwell, 1959) at step n+1248

as a prediction guess. The implicit pressure solver solves the linear elliptic249

equation (5), capturing the main global variations in pressure, but it does250

not account for the small local variations in pressure caused by saturation251

changes. Additionally, the implicit pressure solver only requires solving a252

linear system of size number of grid cells, making it computationally efficient.253

3.2.2. Saturation254

In this physical model, saturation follows a non-linear hyperbolic behav-255

ior, and during a well event, the saturation discontinuity is localized near256

the well. To capture these non-linear dynamics, we employ a neural net-257

work to predict the saturation in the near-well region, as neural networks are258

well-suited for modeling complex non-linear behaviors. Specifically, we train259

a Fourier Neural Operator in a supervised manner to act as the saturation260

predictor. The predicted saturation is denoted SML.261

In the standard approach, the initial guess is set as Xn+1
init = Xn

sol =262

(P n, Sn), while the hybrid approach uses Xn+1
HN = (Pimp, SML) as the initial263

guess. To provide a fair comparison of the impact of the saturation predictive264

model, we evaluate the hybrid initialization against a reference initialization.265

As such, for the reference method used in this article, the initial guess is266

Xn+1
init = (Pimp, S

n).267

3.3. Neural Network architecture268

We use a a standard Fourier Neural Operator (FNO) as introduced by Li269

et al. (2020) and visualized in figure 2. It consists, given a discretized input270
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Figure 1: A Fourier layer begins with an input vector v, to which the Fourier transform F
is applied. A linear transformation is then performed on the lower Fourier modes, while
the higher modes are filtered out. Afterward, the inverse Fourier transform F−1 is applied.
Simultaneously, a local linear transformation w is applied to the original input vector v.
The outputs of these two operations are then combined, followed by the application of an
activation function σ.

Figure 2: Fourier Neural Operator architecture as introduced by Li et al. (2020), visual-
ization from Lechevallier (2024).

function, of a uplifting dense layer P , T Fourier layers depicted in figure 1271

and a projection dense layer Q. In this study we use T=4 Fourier layers. This272

architecture is well-suited for learning mappings between infinite-dimensional273

function spaces and has proven effective as a surrogate for forward reservoir274

simulation modeling (Jiang et al., 2023; Tang et al., 2023; Wen et al., 2023;275

Witte et al., 2023, 2022).276

4. Test case and Dataset generation277

4.1. SHPCO2 Reservoir test case278

We use the SHPCO2 reservoir geometry introduced in Haeberlein (2011)279

as a practical use case as shown in figure 3. It consists in a 2D reservoir of280

size 4 750m in the X axis and 3 000m in the Y axis. We discretize the domain281

using a cartesian mesh with 95 cells in the X axis and 60 cells in the Y axis,282

each cell being of size 50× 50 meters. The reservoir contains 3 permeability283

barriers of value 10−15 m2 and depicted in green on the figure. The remaining284

part of the domain has a permeability of 100 × 10−15 m2. The porosity in285

the reservoir is constant and equal to 0.2. Then, three Dirichlet boundary286
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Figure 3: 2D SHPCO2 case geometry

conditions are applied and shown through blue boxes on the border of the287

reservoir in figure 3. The first one, ’Injector 1’, has a pressure of 11 MPa288

and a gas saturation of 0 i.e water only. The ’Injector 2’ has a pressure of289

10.5MPa and a gas saturation of 0 also. Finally, the Productor has a pressure290

of 10MPa and no imposed saturation as the flow leaves the reservoir through291

this productor. The CO2 injection well is described by an orange circle on292

the figure and injects only CO2 at a rate qg m2/s.293

4.2. Dataset Generation294

We consider three experimental setups corresponding to three datasets.295

The first setup, called ’Single well location,’ involves sampling well event296

parameters at a fixed location in the SHPCO2 reservoir and then running297

simulations for each set of parameters.298

The second setup, ’Multiple well locations,’ is similar to the first but299

samples well events at different locations in the reservoir. These first two300

datasets are costly to generate because they require simulations across the301

entire reservoir to create a local dataset near the wells.302

To address this cost issue, the third setup, called ’Synthetic local domain,’303

focuses on a small local area. Here, we sample well events and run simulations304

within this smaller domain, which results in a much smaller set of non-linear305
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equations to solve.306

The ’Single well location’ and ’Synthetic local domain’ datasets are used307

to train a neural network through supervised learning. This neural network is308

designed to learn the impact of a well event across a wide range of parameters.309

For inference, we apply these two models in a hybrid Newton’s method pre-310

conditioning strategy. We then rerun all the simulations that generated the311

’Single well location’ and ’Multiple well locations’ datasets and compare the312

numerical performance, specifically the number of Newton iterations needed313

to converge, between the standard and hybrid Newton’s methods.314

The local domain size for training and inference in all setups is a constant315

9× 9 cells, with the well at its center.316

All simulations are run using the YADS open-source reservoir simulation317

python library available at the following GitHub repository: YADS.318

4.2.1. Single well location319

Well events can be described through an injection flow rate qg, a step of320

time dt representing the injection duration, and reservoir properties like the321

initial gas saturation S0. We sample 5004 parameter combinations using a322

Latin Hypercube Sampling (LHS) (Stein, 1987) strategy within the following323

ranges: qg ∈ [10−5, 10−3]m2/s, dt ∈ [0.1, 10] years and S0 ∈ [0, 0.6]. The well324

location is shown on the following figure:325

Generating this dataset took approximately a day on a High Performances326

Computing (HPC) cluster.327

4.2.2. Multiple well locations328

In this case, we generate 10 parameter combinations using a LHS strategy329

within the same range as in the single well location case. Next, we randomly330

select 200 well locations within possible well locations, ensuring they are not331

too close to a permeability barrier of the boundary. Finally we run simula-332

tions for each well location using the 10 parameter combinations, resulting333

in 2000 data points.334

This dataset was generated in about half a day on a HPC cluster.335

4.2.3. Synthetic local domain336

We aim to create a synthetic dataset for training that replicates the be-337

havior of well events for any well location or set of parameters. To achieve338

this, we consider a reservoir of size 9 × 9 with cell sizes based on SHPCO2339

discretization, with a well positioned at the center of the domain. Although340
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Figure 4: Possible well locations

there is only a single well location in this setup, the key difference between341

locations lies in the velocity field generated by the pressure field through342

Darcy’s law. Therefore, to build a comprehensive synthetic database that343

captures a wide range of well event scenarios, we need to generate diverse344

pressure fields.345

We propose using the implicit pressure solver to generate these pres-346

sure fields. However, the IMP solver requires pressure boundary conditions.347

Therefore, the main challenge is to generate these boundary conditions. We348

suggest the following protocol described in figure 5:349

1. Sample N boundaries (N ∈ [1, 4]) and 1 random face on each sampled350

boundary,351

2. Sample pressure P ∈ [Pa, Pb] for selected face,352

3. Apply correction to the sampled pressure, see below353

4. Linear interpolation between the corrected pressures to create pressure354

boundary conditions for all boundary faces,355

5. Apply Implicit Pressure Solver to generate pressure field.356

The pressure correction is based on the idea that if two sampled pressures357

are close in location, they should also be close in value. We apply a correction358
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Figure 5: Pressure sampling in MPa protocol and resulting pressure field in Pa (right
figure). No wells have been taken into account in this example.

matrix A to regularize the pressure P based on the cartesian distance d359

between their positions. The resulting corrected pressure is denoted as P ∗.360

P ∗ = AP, A(i, j) = sign(P (Xj)− P (Xi)) exp(−(
d(Xi, Xj)

θ
+

µ

|P (Xi)− P (Xj)|
))

θ and µ can be interpreted respectively as characteristic distance and361

pressure.362

Using this approach we first generate 3100 boundary condition profiles363

using Pa = 10MPa and Pb = 20MPa: 100 with 1 boundary (N=1), 1000364

with 2 boundaries (N=2), 1000 with N=3 and 1000 with N=4. We then365

increase the number of profiles to 243,100 by including all possible rotations366

for the profiles generated using N=2,3,4 as N=1 yields constant boundary367

pressures.368

Next we sample well event parameter combinations using a LHS for all369

these pressure boundary condition profiles, using the range of values for q,370

dt and S0 as in the previous dataset. We then remove all cases where the371

well injection flow rate q is too low to result in an injection well and we run372

all simulations resulting in 111,600 data points.373

This dataset was generated in under two hours on a single CPU.374

To summarize, we generated three main datasets, two of them are used375

for training models: the single well location and the synthetic and are there-376

fore both split in train and test sets with a ratio of 80/20. Then, two of377

them are used to evaluate the numerical performances of the hybrid newton378
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Figure 6: Synthetic dataset qualitative representation of implicit pressure fields (upper
figure) and their corresponding saturation fields after a well event (lower figures).

preconditioning strategy for each machine learning model: the single well379

location and the multiple well location datasets.380

5. Results381

In this section, we present our main findings. First, we demonstrate that382

a neural network can learn the near-well behavior across a wide range of383

well events. Next, we integrate the neural networks into the hybrid Newton384

method and show that this preconditioning strategy significantly reduces the385

number of Newton iterations needed for convergence. Finally, we discuss386

how to assess the quality of a synthetic dataset for training, ensuring that387

the resulting neural network still performs well in more ”physical” scenarios.388

5.1. Neural Network training389

We train the Fourier Neural Operator presented in 3.3 to learn the fol-390

lowing mapping: {q, dt, S0, Pimp} 7→ S. In practice, S0, Pimp and S are used391

directly as 9× 9× 1 images. The scalars q and dt are reshaped as 9× 9× 1392

images: q image is zero everywhere except at the well location and dt is393

constant image of value dt. After concatenation, the neural network input394

has the shape 9× 9× 4 and the output has shape 9× 9× 1.395

Each dataset we train on is split in 80% for training and 20% for testing.396

We use the relative L2 error as a loss function and Adam optimizer. Also, we397

keep the model parameters corresponding to the minimum test loss value.398
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Figure 7: Input and output features of the neural network.

5.1.1. Single well location model399

We train a Fourier Neural Operator on the Single well location dataset400

introduced in 4.2.1 resulting in the ’Single well location model’ (SLWM). The401

training is realised on a NVIDIA A100 GPU using Adam optimizer with a402

learning rate of 1 × 10−4 during 1500 epochs and takes approximately 15403

minutes. The minimum loss value on the test set is 2.5×10−3 and is reached404

at the epoch 1368. Its corresponding train loss value is 2.5× 10−3. The loss405

evolution through epochs is shown on figure 8.406

5.1.2. Generalized Well Model407

We train a Fourier Neural Operator on the synthetic local domain dataset408

introduced in 4.2.3 resulting in the ’Generalized Well Model’ (GWM). The409

training is realised on a NVIDIA A100 GPU using Adam optimizer with a410

learning rate of 5 × 10−4 during 2500 epochs and takes approximately 20411

minutes. The minimum loss value on the test set is 2.5×10−3 and is reached412

at the epoch 1368. Its corresponding train loss value is 2.5× 10−3. The loss413

evolution through epochs is shown on figure 9.414

To visualize the quality of the trained neural network, we use a parity415

plot based on the L2 norm of the predicted saturation versus the L2 norm416

of true or observed saturation. A parity plot ideally shows a 45-degree line417

if predictions perfectly match the data. We show on figure 10 the resulting418
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Figure 8: Relative L2 loss over epochs during supervised training of a Fourier Neural
Operator on the Single Well Location dataset.
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Figure 9: Relative L2 loss over epochs during supervised training of a Fourier Neural
Operator on the synthetic local domain dataset.
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Figure 10: GWM Parity plot

plot for the train and test set, resulting in a close to ideal fit.419

5.2. Newton’s method performances420

We apply the hybrid Newton’s non-linear preconditioning strategy to the421

single well location dataset 4.2.1 on which we trained the single well location422

model (SWLM) and then to the multiple well location dataset 4.2.2 dedicated423

for inference. In practice, we use the SLWM and the GWM as saturation424

predictors and compare the number of newton iterations required to achieve425

convergence.426

We first illustrate on a single example before showing performances over427

whole datasets. Figure 11 shows the a predicted local saturation (upper428

left), the global saturation guess (upper right) after concatenation, the solu-429

tion (lower left) and the qualitative error between the global guess and the430

solution. We notice that the error is relatively low in the local domain com-431

pared to slightly outside the local domain. Without the saturation guess, this432

well event requires Newton’s method 8 iterations to converge while using this433

saturation guess, it requires only 4 iterations. If the totality of the saturation434

variations were caught by the local domain, even less newton iterations may435

be required. Therefore, we derive two main behaviours from this example:436

1. Local domain catches all variations of saturation,437
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Local saturation guess Global saturation guess

Saturation solution Saturation error

Figure 11: Local saturation machine learning prediction example (upper left), global sat-
uration guess (upper right), saturation solution (lower left) and saturation error between
the global guess and the solution (lower right).

2. Local domain is too small and does not catch all variations of satura-438

tion.439

In the first case and given a sufficiently accurate prediction, we expect440

Newton’s method to be directly initialized in the quadratic convergence zone441

while in the second case, we may expect some constant speed up proportional442

to the local domain size but not an initialization in the quadratic convergence443

zone. These two trends are clearly visible in the next sections.444

5.2.1. Single well location dataset445

We show in figure 12 and 13 the numerical performances over the whole446

training and testing sets using the standard newton initialization versus the447

hybrid newton initialization and using respectively the SLWM (see figure448

12) and the GWM (see figure 13) as saturation predictors. Overall, we ob-449

serve that the hybrid Newton initialization requires lesser or equal number450

of Newton iterations to achieve convergence. We notice the two behaviours451

depicted in the previous section. The first corresponding to cases where the452

variations of saturation induced by the well events caught by the local do-453

main, resulting in an initialization in the quadratic convergence zone. The454

second one corresponds to cases where the local domain does not catch the455
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Figure 12: Scatter plots showing the number of Newton iterations required to achieve
converge using standard Newton versus using hybrid Newton with SLWM on the single
well location train set (left figure) and test set (right figure).

totality of saturation variations induced by the well event and results in a456

constant reduction of newton iterations required to converge. This reduction457

should be proportional to the size of the local domain.458

5.2.2. Multiple well locations dataset459

We apply the hybrid newton preconditioning strategy with the SWLM460

and the GWM to the multiple well locations dataset, described in 4.2.2, and461

compare with the standard newton method in terms of number of iterations462

required to converge. Results are shown in figure 14 and 15:463

Figure 14 shows the performances obtained using the SLWM. We observe464

that the hybrid preconditioning strategy requires more Newton iterations465

than the standard for a non-negligible portion of data points in both train-466

ing and test sets. However, for cases requiring the most number of newton467

iterations, the preconditioning seems to have a positive impact. The SLWM468

has been trained at a single reservoir location for different well events scenar-469

ios, therefore when applying to other locations, the velocity field may be far470

from the training distribution and the predictions are far from the solution,471

explaining the poor performances.472

Then for the GWM performances shown in figure 15, the two trends473

depicted in the previous section are clear and the Hybrid Newton method474

achieves convergence in less iterations than the standard Newton method for475
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Figure 13: Scatter plots showing the number of Newton iterations required to achieve
converge using standard Newton versus using hybrid Newton with GWM on the single
well location train set (left figure) and test set (right figure).

most of the data points. In some cases, it requires one more iterations to476

converge but this is not a big issue as it only appears for cases requiring477

few iterations to converge already, i.e the standard and hybrid initialization478

are both in or close to the quadratic convergence zone. These results are479

important as it shows the capacity of the GWM to speed up convergence for480

a wide range of well events and well locations.481

We summarize the speed up obtained through the hybrid Newton’s method,482

i.e the reduction of newton iterations required to achieve convergence, for the483

two models on the datasets in the following table 1:

Hybrid initialization SLWM GWM

Single location
Train 46% 28%
Test 45% 27%

Multiple locations 15% 27%

Table 1: Total acceleration in percent obtained using the hybrid Newton preconditioning
strategy for the SLWM and the GWM on each dataset.

484

We observe that the SLWM applied on the same location significantly485

outperforms the GWM for the train and test sets. This is expected as the486

SLWM has been trained at this location and on the same well event distribu-487

tion. This performance can be interpreted as closest to the best possible for488
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Figure 14: Scatter plots showing the number of Newton iterations required to achieve
converge using standard Newton versus using hybrid Newton with SLWM on the multiple
well locations train set (left figure) and test set (right figure).

this problem if we are able to pay the costly data generation process. Then,489

when applying the hybrid newton preconditioning strategy on different well490

locations, the GWM significantly outperforms the SWLM in terms of total491

number of newton iterations. Moreover, the GWM has similar performances492

for all datasets, denoting its ’General’ property. Ideally, the GWM should493

have performances close to the SLWM applied on the single location dataset494

for all dataset. This may be achieved by improving the data generation495

process and by quantifying the GWM training set quality.496

5.3. Dataset quality analysis497

The Generalized Well Model requires to train a machine learning model498

on a synthetic dataset. However, how can we be sure that this synthetic499

distribution is close to a ”physical” one, and therefore the prediction of the500

machine learning model is adapted to the inference case. Ideally, we would501

like the synthetic training distribution to cover the whole space of physical502

possibilities which is quite challenging considering the variability of the input503

parameters. We therefore propose to measure the quality of a synthetic504

dataset through a metric based onWasserstein distance between the synthetic505

and the physical implicit pressure datasets as the pressure field contains most506

of the variability. We first assess on two examples if Wasserstein distance is507

suitable as a quality indicator, then over the whole datasets.508
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Figure 15: Scatter plots showing the number of Newton iterations required to achieve
converge using standard Newton versus using hybrid Newton with GWM on the multiple
well locations train set (left figure) and test set (right figure).

5.3.1. Single examples evaluation509

We select two samples: one representing the best-case scenario, where510

the hybrid Newton methodology performs better than the standard Newton511

method, and another representing the worst-case scenario, where the hybrid512

Newton methodology requires more iterations than the standard Newton513

method. In practice, we calculate the minimum distance between the implicit514

pressure samples, P ϕ
imp, from the best and worst cases (both part of the515

physical dataset) and all implicit pressure samples from the synthetic dataset516

P synth
imp :517

min
i∈P synth

imp

(d(P i
imp, P

ϕ
imp)), (12)

We sum up the quality measurement in table 2:518

The relatively lower the quality measurement is, the better the perfor-519

mances should be as there exists at least one training sample in the synthetic520

dataset close in distance with the sample from the physical dataset. In this521

case, we observe that all ’Best’ samples have a quality measurement lower522

than the ’Worst’ sample quality measures. This indicates that Wasserstein523

distance may be suitable as a quality measure.524

24



Dataset Sample Standard iters Hybrid iters Quality measure

Single Well location
Train

Best 10 6 4.4× 10−3

Worst 3 4 8.6× 10−3

Test
Best 9 5 5.2× 10−3

Worst 4 4 8.5× 10−3

Multiple Well locations
Best 17 12 5.1× 10−3

Worst 3 4 5.7× 10−3

Table 2: Evaluation of quality measurement using Wasserstein distance for best and worth
hybrid newton cases between different implicit pressure physical datasets and the synthetic
dataset.

5.3.2. Dataset evaluation525

We now evaluate the quality of learning datasets with respect to inference526

physical datasets. We use the following formula as quality measurement with527

d the Wasserstein distance:528

max
i∈Pϕ

imp

( min
j∈P synth

imp

(d(P i
imp, P

j
imp))), (13)

The resulting quality measurements are summed up in table 3:529

Training sets
Dataset Single well location Synthetic

Single well location
Train – 1.4× 10−2

Test 7.5× 10−4 1.4× 10−2

Multiple well locations 8.3× 10−2 2.3× 10−2

Table 3: Evaluation of quality measurement using Wasserstein distance between different
implicit pressure physical training sets and inference datasets.

We observe that for the single well location test set, the quality measure-530

ment is significantly smaller with respect to the single well location training531

set than for the synthetic training set. This is expected as this test set is532

generated from the same distribution as the single well location test set.533

Then regarding the multiple well locations dataset, the synthetic training set534

shows the smallest quality measure value. Therefore, the quality measure-535

ment matches the numerical performances in terms of total acceleration as536

presented in table 1.537
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6. Conclusion and perspectives538

We introduced an innovative proof-of-concept non-linear preconditioning539

strategy known as the local hybrid Newton strategy. This method initializes540

Newton’s method closer to the solution compared to standard approaches by541

employing a linear approximation in pressure and a non-linear approxima-542

tion in saturation, the latter being obtained through a supervised training543

of a Fourier Neural Operator. Our results demonstrated that this local pre-544

conditioning strategy significantly mitigates the impact of well events across545

a wide range of scenarios and well locations.546

Additionally, we developed a methodology to reduce the cost of gener-547

ating training data for the supervised learning of the saturation predictor.548

This synthetic dataset, when applied to physical datasets, exhibited strong549

performance across various well events and locations. We also introduced550

a measurement to assess the quality of the synthetic dataset as a training551

set. The observed Wasserstein distance quality values were consistent with552

numerical experiment observations, suggesting its potential for further inves-553

tigations.554

This research is still in its early stages, and several avenues remain to555

be explored. Firstly, the hybrid Newton preconditioning strategy should be556

adapted and tested on more realistic physical models to fully validate its557

potential. While local preconditioning accelerates the training phase, it still558

requires full reservoir simulations to generate data. The synthetic dataset559

we introduced helps speed up this data generation process, offering a path-560

way towards the integration of artificial intelligence models into traditional561

solvers—by generating a cost-effective dataset to expedite expensive simula-562

tions.563

Further research is needed to address other aspects such as the opti-564

mal shape of the local domain, the effects of heterogeneities, and reservoir565

discretization. Exploring these factors will enhance the applicability and566

efficiency of our approach in real-world scenarios.567
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