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Chen et al. (2023) reported serpentinized, SiO2-rich ophiolitic 

peridotites from Central Asia and argued that these were formed by 
reworking of residual mantle by boninite melts in arc settings. While SiO2-
rich ophiolitic peridotites were reported and linked to subduction zone 
processes earlier (e.g., Ionov et al., 2017), Chen et al. claimed that boninite 
percolation is a “viable manner to induce silica enrichment and keep ultra-
depleted signature,” as an alternative to the models of Bénard et al. (2017, 
2021) for “residual supra-subduction zone (SSZ) peridotites” sampled in 
island arcs. 

Yet, the samples reported by Chen et al. do not fit the petrological 
features of residual SSZ peridotites. The latter are spinel harzburgites with 
coarse-grained, protogranular textures reflecting SiO2-enrichment at high 
temperature (e.g., Soustelle et al., 2010). Late-stage clinopyroxene and 
amphibole are rare and occur only as small anhedral grains in true residual 
SSZ peridotites (≤4% and ≤1%, respectively; Ionov, 2010; Bénard et al., 
2017, 2021). By contrast, subhedral amphibole (up to 8%; Chen et al.’s 
Table S1) and clinopyroxene, as well as large orthopyroxene grains 
replacing olivine, are common in the samples of Chen et al. (see their 
Figures 2 and S3). These features rather resemble those of rare composite 
xenoliths formed by post-melting boninite intrusion (e.g., Bénard et al., 
2022). 

The samples described by Chen et al. do not fit the geochemical features 
of residual SSZ peridotites either. They clearly have lower MgO and NiO, 
but higher SiO2, CaO, and Na2O for a given Al2O3 content (Figs. 1A–1C), 
notably leading to much higher Ca/Al (~2–13). Neither metasomatic 

additions of amphibole nor small-scale post-melting modifications 
previously identified in residual SSZ peridotites (including 
serpentinization) can account for these geochemical differences (Figs. 1A–
1C; Bénard et al., 2021) or explain the compositions of mineral phases, 
like spinel showing much wider Mg# and Cr# ranges in the samples of 
Chen et al. than in ‘residual SSZ peridotites’ (e.g., Figure 2 in Bénard et 
al. 2022). 

The boninite percolation model presented by Chen et al. does not 
reproduce the composition of true residual SSZ peridotites in a consistent 
way, nor does it account for the high CaO and Na2O contents of their 
ophiolite samples (Fig. 1C). Notably, the elevated Cr2O3, the nearly 
constant MnO, and the relatively wide FeOt range (~7.25–8.75 wt%; 
Bénard et al., 2021) in residual SSZ peridotites are not predicted by the 
models. Other chemical elements useful for comparisons with residual 
SSZ peridotites are absent from their models (e.g., Ni; Fig. 1A), while the 
composition of the initial peridotite cannot be reconciled with the results 
of earlier H2O-fluxed melting models (Figs. 1A and 1B; Bénard et al., 
2021). 

In summary, the process proposed by Chen et al. is not viable to produce 
residual SSZ peridotites. Therefore, the extent to which post-melting 
boninite percolation can modulate the geochemistry of mantle wedges, as 
suggested by Chen et al., remains undetermined. 
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Figure 1. Major oxide compositions of Central Asia peridotites (gray diamonds; Chen et al., 2023), compared 
with residual SSZ peridotites (red circles; Ionov, 2010; Bénard et al., 2017, 2021). Also shown are residual 
peridotites from various tectonic settings (green dots—off-craton continental xenoliths; blue dots—abyssal 
peridotites; yellow dots—cratonic xenoliths), as compiled by Bénard et al. (2021) (see references therein). 
The post-melting boninite percolation models of Chen et al., using an initial peridotite hypothetically formed 
by ∼20% of flux melting (dark-gray star), are shown with solid and dotted dark-gray lines. The compositions 
of peridotite residues, calculated for ∼20% of H2O-fluxed melting at 1.25 GPa by Bénard et al. (2021) are 
shown with light-gray bars in (A) and (B). Nickel contents for the simulations of Chen et al. are calculated 
using their modeled modal compositions and the averaged NiO measured in each mineral of their samples. 
Also shown are simple amphibole addition models (thin black lines; each cross marks a 1% addition 
increment), using the averaged compositions of residual SSZ peridotites (large red dot) and amphibole in 
each sample from Chen et al. 
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