
HAL Id: hal-04774128
https://hal.science/hal-04774128v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Personalized Algorithmic Recourse with Preference
Elicitation

Giovanni de Toni, Paolo Viappiani, Stefano Teso, Bruno Lepri, Andrea
Passerini

To cite this version:
Giovanni de Toni, Paolo Viappiani, Stefano Teso, Bruno Lepri, Andrea Passerini. Personalized Algo-
rithmic Recourse with Preference Elicitation. Transactions on Machine Learning Research Journal,
2024, �https://doi.org/10.48550/arXiv.2205.13743�. �hal-04774128�

https://hal.science/hal-04774128v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Published in Transactions on Machine Learning Research (01/2024)

Personalized Algorithmic Recourse
with Preference Elicitation

Giovanni De Toni giovanni.detoni@unitn.it
Augmented Intelligence Center, Fondazione Bruno Kessler, Italy
DISI, University of Trento, Italy

Paolo Viappiani paolo.viappiani@lamsade.dauphine.fr
LAMSADE, CNRS, Université Paris-Dauphine, PSL, France

Stefano Teso stefano.teso@unitn.it
CIMeC & DISI, University of Trento, Italy

Bruno Lepri lepri@fbk.eu
Augmented Intelligence Center, Fondazione Bruno Kessler, Italy

Andrea Passerini andrea.passerini@unitn.it
DISI, University of Trento, Italy

Reviewed on OpenReview: https: // openreview. net/ forum? id= 8sg2I9zXgO

Abstract

Algorithmic Recourse (AR) is the problem of computing a sequence of actions that – once
performed by a user – overturns an undesirable machine decision. It is paramount that
the sequence of actions does not require too much effort for users to implement. Yet, most
approaches to AR assume that actions cost the same for all users, and thus may recommend
unfairly expensive recourse plans to certain users. Prompted by this observation, we introduce
PEAR, the first human-in-the-loop approach capable of providing personalized algorithmic
recourse tailored to the needs of any end-user. PEAR builds on insights from Bayesian
Preference Elicitation to iteratively refine an estimate of the costs of actions by asking
choice set queries to the target user. The queries themselves are computed by maximizing
the Expected Utility of Selection, a principled measure of information gain accounting for
uncertainty on both the cost estimate and the user’s responses. PEAR integrates elicitation
into a Reinforcement Learning agent coupled with Monte Carlo Tree Search to quickly
identify promising recourse plans. Our empirical evaluation on real-world datasets highlights
how PEAR produces high-quality personalized recourse in only a handful of iterations.

1 Introduction

Automated decision support systems are increasingly employed in high-risk decision tasks with the aim of
empowering human decision-makers and improving the quality of their decisions. Example applications
include bail requests (Dressel & Farid, 2018), loan approvals (Sheikh et al., 2020), job applications (Liem et al.,
2018), and prescription of medications and treatments (Yoo et al., 2019). Despite their promise, often these
systems are opaque – meaning that users, and even engineers, have trouble understanding and controlling their
decision process – and provide no means for overturning unwanted outcomes, such as denied loan requests.
One way of addressing these issues is through the lens of Algorithmic Recourse (AR) (Venkatasubramanian
& Alfano, 2020; Karimi et al., 2021). In AR, given an undesirable machine-generated decision, the goal is to
identify a sequence of actions – or interventions for short – that once implemented by the user overturns
said decision, for instance, changing job or obtaining a master’s degree. Motivated by this, a number of

1

https://openreview.net/forum?id=8sg2I9zXgO

Published in Transactions on Machine Learning Research (01/2024)

approaches have been recently proposed for computing AR (De Toni et al., 2023; Naumann & Ntoutsi, 2021;
Karimi et al., 2022; Ramakrishnan et al., 2020; Yonadav & Moses, 2019; Ustun et al., 2019; Karimi et al.,
2020; Tsirtsis & Rodriguez, 2020; Russell, 2019; Mothilal et al., 2020; Wang et al., 2023; Dandl et al., 2020).

It is critical that the suggested recourse plans are not too difficult or expensive to carry out. This entails
that recourse should be personalized, because different users in the same situation may need substantially
different recourse plans. To see this, consider a user who is denied a loan. Based on a profile made by
the financial institution, an AR algorithm might suggest the user reduce their monthly expenses. However,
unlike the “average” customer, our user is incurring high medical expenses because they recently contracted
an invalidating illness. Thus, the AR suggestion is highly inappropriate. Clearly, it is impossible to infer
such a constraint from their profile alone. Most approaches, however, completely neglect the user’s own
preferences. The few that do require feedback that is difficult to obtain in practice, e.g., preferences over
a large pool of alternatives (Russell, 2019; Mothilal et al., 2020; Wang et al., 2023; Dandl et al., 2020) or
upfront quantification of action costs (Yadav et al., 2021; Karimi et al., 2022; Rawal & Lakkaraju, 2020;
Wang et al., 2023; Mahajan et al., 2019).

We argue that algorithmic recourse should make users first-class citizens in the recourse generation process
rather than viewing them as passive observers. To this end, we introduce PEAR (Preference Elicitation for
Algorithmic Recourse), the first human-in-the-loop approach for generating personalized recourse tailored
for a target end-user. Our algorithm integrates AR and ideas from interactive Preference Elicitation (PE)
(Chajewska et al., 2000; Boutilier, 2002; Braziunas & Boutilier, 2007; Guo & Sanner, 2010; Viappiani &
Boutilier, 2010; Dragone et al., 2018) in a fully Bayesian setup. PEAR goes beyond existing approaches in
that the costs of actions are estimated from user feedback and prior information. In each iteration, PEAR
identifies a small selection of alternative interventions – a choice set – that optimizes a sound measure of
information gain (the Expected Utility of Selection (EUS) (Viappiani & Boutilier, 2010; 2020)) and then asks
the user to pick their preferred option. Using this feedback, PEAR quickly improves its estimate of the user’s
preferences and generates interventions that get progressively closer to the user’s ideal. Furthermore, PEAR
takes interactions and dependencies between actions costs into account when computing suggested recourse,
whenever this information is available. See Fig. 1 for an overview.

Contributions: Summarizing, we:

• Introduce the problem of personalized algorithmic recourse, and show that existing approaches are
insufficient to solve it.

• Develop PEAR, the first human-in-the-loop, Bayesian approach for computing personalized interventions
that is robust to noise in user feedback and minimizes user effort.

• Evaluate PEAR on synthetic and real-world datasets and show that it can generate substantially – up to
50% – cheaper interventions than user-agnostic competitors after only a handful of queries.

2 Problem Statement

The user state s = (s1, . . . , sd) ∈ S ⊆ Rd is a vector of d categorical and real-valued features encoding, e.g.,
instruction level and income. An action a ∈ A is a map that takes a state s and changes a single feature,
yielding a new state s′ = a(s), and expresses a recommendation of the form “Increase your income by $100.”
Given a (black-box) binary classifier1 h : S → {0, 1} and a user state s leading to an undesirable decision
y = h(s), AR computes an intervention – i.e., an ordered set of actions I = {a(1), . . . , a(|I|)} – that can
be applied to s to obtain a counterfactual state s′ associated to a more desirable outcome h(s′) ̸= y, all
while minimizing user effort. We formalize the user effort required to perform an action via a cost function
C : A × S → R+. The cost of an intervention is the sum of the costs of all actions it contains, that is
C(I) =

∑|I|
i=0 C(a(i), s(i)). Here, s(i) is the state obtained by applying action a(i−1) to state s(i−1), and

s(0) = s is the initial state. We denote with I(s(0)) the operation of applying each action a ∈ I sequentially.
1It is straightforward to adapt our approach to deal with multiclass classification problems.

2

Published in Transactions on Machine Learning Research (01/2024)

Figure 1: Overview of PEAR. (1) Given the initial state s(0) of the user and weights w(0), PEAR computes
a pool of candidate interventions achieving recourse. (2) A choice set O(t) is selected from the pool and
presented to the user. (3) The user picks their preferred intervention from the set. (4) An improved estimate
of the weights w(t+1) is computed using this feedback, and (5) the user’s state s(t+1) is updated. After T
rounds, the estimated weights are used to compute a final intervention I∗.

Approaches to AR assume the user effort is proportional to the number of actions that need to be carried
out, and minimize it by searching for short interventions I. However, this is unrealistic and impractical. For
instance, changing job into a highly skilled one may not be realistic without obtaining a Master’s degree first.
In reality, the user effort also depends on users’ preferences w ∈ W ⊆ Rd which we represent as d-dimensional
vectors. For example, for some people, it might be easier to improve their education than get new employment.
Thus, we parameterize the cost function using the user preferences as C(I | w), or C(a, s | w) if we refer to
single actions. In the following, we distinguish between the (typically unknown) user preferences wGT and
the preferences w used by the recourse algorithm, which might differ from the former. Motivated by this,
we introduce a new problem setting, denoted personalized algorithmic recourse:

Definition 1 (Personalized Algorithmic Recourse) Given a black-box binary classifier h and a user
state s, acquire a cost function C(I | w) for interventions such that the intervention I∗ obtained by solving
the following optimization problem:

I∗ ∈ argminI C(I | w) s.t. h(I(s(0))) ̸= h(s(0)) (1)

has minimal regret for the target user, defined as:

Reg(I∗, IGT) = C(I∗ | wGT)− C(IGT | wGT) (2)

where wGT ∈ W encodes the ground-truth but unobservable preferences of the user and IGT is the “ideal”
intervention that would be obtained by solving Eq. (1) using wGT.

The similarity of Eq. (1) to existing formulations of AR can be misleading, as here the key challenge is that
of obtaining weights w that reflect the user’s own preferences. We discuss how PEAR does so in Section 4.

3 Related work

Counterfactual explanations (CEs) are a class of local, human-understandable explanations (Wachter et al.,
2017; Byrne, 2019) that convey information about changes to input variables that overturn a machine decision
(Guidotti et al., 2018; Stepin et al., 2021). AR aims to identify actionable CEs that attain recourse for the user
(Verma et al., 2020; Karimi et al., 2022). Existing approaches to AR solve Eq. (1) via diverse optimization
methods (Wachter et al., 2017; Ramakrishnan et al., 2020; Poyiadzi et al., 2020; Naumann & Ntoutsi, 2021;
Russell, 2019; Mothilal et al., 2020; Wang et al., 2023; Dandl et al., 2020) or by learning a general policy

3

Published in Transactions on Machine Learning Research (01/2024)

(Yonadav & Moses, 2019; De Toni et al., 2023; Verma et al., 2022). Most methods simply return a set of
actions, disregarding their order. However, recent research showed that ignoring the causal relationship
between features prevents reaching optimal recourse (Karimi et al., 2021). Some methods thus optimize for
recourse plans, i.e., sequences of actions attaining recourse, following a purely causal or causal-inspired setup
(Ustun et al., 2019; Karimi et al., 2021; 2020; De Toni et al., 2023; Naumann & Ntoutsi, 2021; Mahajan et al.,
2019). PEAR fully supports this paradigm and considers the interplay between features when finding recourse,
whenever this information is available.

Most AR approaches assume that the cost function is fully specified beforehand (Wachter et al., 2017;
Ramakrishnan et al., 2020; Rawal & Lakkaraju, 2020; Wang et al., 2023; Mahajan et al., 2019), ignoring the
problem of modelling user preferences altogether. The few that explicitly deal with user preferences do so in a
naïve manner. Some of them (Russell, 2019; Mothilal et al., 2020; Dandl et al., 2020; Yadav et al., 2021) ask
users to pick their preferred option from a large pool of user-agnostic recourse plans, that is not guaranteed to
contain a low-cost option for the user. This is also impractical, as users can only properly evaluate a limited
number of alternatives at a time (Simon, 1955; March, 1978). Others require users to quantify the cost of
each possible action upfront (Karimi et al., 2022; Rawal & Lakkaraju, 2020; Wang et al., 2023; Mahajan
et al., 2019), or via numerical constraints (Poyiadzi et al., 2020; Wang et al., 2023), yet end-users can rarely
articulate their preferences in a quantitative manner (Keeney & Raiffa, 1993). PEAR sidesteps this issue by
learning preferences from ranking data, i.e., relative judgments of the form “I prefer option A to option
B” (Furnkranz & Hullermeier, 2010).

AR is specifically concerned with high-stakes scenarios, such as loan requests, that users face at most a
handful of times in their lifetime. In these settings, it is impossible to estimate user preferences from historical
data. In recommender systems, this issue has been solved through preference elicitation, whereby the user’s
preferences are estimated through a human-friendly interaction protocol (Boutilier, 2002). In order to converge
to high-quality options with minimal user effort, PE algorithms select queries (i.e., questions to the user)
that maximize information gain and that are easy to answer. A popular option is choice queries, in which the
user has to select a preferred item from a small set of alternatives. PEAR builds on Bayesian PE methods, as
they account for imprecision in users’ answers (Chajewska et al., 2000; Guo & Sanner, 2010; Viappiani &
Boutilier, 2010) in a principled way by measuring the information gain of choice sets in terms of Expected
Utility of Selection (Viappiani & Boutilier, 2020). Similarly to PEAR, Rawal & Lakkaraju (2020) estimate cost
weights from preference feedback. However, they collect feedback from domain experts in a non-interactive
fashion and learn population-level preferences that are not personalized, thus failing to minimize Eq. (2).
Population-level estimates can lead to recourse that is largely suboptimal for specific individuals, as will be
shown in our experimental evaluation.

4 Personalized Algorithmic Recourse with PEAR

Before describing PEAR, we discuss how we model the user’s preferences and how these impact the costs
of actions and interventions. Equally importantly, actions influence each other’s costs – e.g., obtaining an
additional degree can dramatically lower the cost of landing a better-paying job – and we need to account for
this if we wish to minimize the cost of recourse. In order to account for interactions between action costs,
we model C using a set of linear equations, parameterized by weights w ∈ W, by taking inspiration from
generalised additive independence models (Pigozzi et al., 2016) from decision theory and structural causal
models (Pearl, 2009). We call such formalization cost correlation structure (CCS). A CCS corresponds to a
directed acyclic graph (DAG) where each node is associated with the cost wk of changing a single feature
sk and each edge represents a (causal) relationship between two costs, parameterized by wjk ∈ R. Then,
following the equation induced by the DAG, we define the cost of applying an action ak to a state s to change
the k-th feature from sk to s′

k as a linear combination:

C(ak, s | w) = wk|s′
k − sk|+

∑
j ∈ P ak

wjksj (3)

Here, Pak are the parents of the k-th node in the graph. For example, we can use Eq. (3) to describe the
cost of the action "increase your salary". Such cost depends linearly on the raise asked (|s′

k − sk|). However,
it also depends on some causally related variables (

∑
j ∈ P ak

wjksj), such as the user’s current job. We can

4

Published in Transactions on Machine Learning Research (01/2024)

(a) Cost Correlation Structure (CCS) (b) The cost of an intervention I

Figure 2: The cost model (Left) A cost correlation structure (CCS) for cost modelling. (Right) Given
s(0) = [1, 1, 1] and unit w, let us imagine we want to reach s(3) = [5, 5, 5] by following the presented CCS and
the intervention I = {a1, a2, a3}, where ai assign si ← 5 for all i ∈ {1, 2, 3}. Clearly, we incur different costs
by applying permuted versions of I. The green path indicates the lower-cost intervention.

imagine that it might be easier to ask for a raise for a company’s manager rather than a simple employee. A
formal example of a cost function and of its corresponding DAG is shown in Fig. 2a. Again, the cost of an
intervention is the sum of the costs of all actions it contains applied sequentially, that is:

C(I | w) =
∑|I|

i=0 C(a(i), s(i) | w) (4)

Eq. (3) does not define a simple linear model, but it accounts for a richer set of interactions. For example,
given two actions a1 and a2, their cost is not additive, meaning C(a1, s | w)+C(a2, s | w) ̸= C({a1, a2}, s | w).
We can show it with a simple example.

Example of non-additivity of Eq. (3). Consider a simple CCS with two nodes s1 → s2, with s = (s1, s2)
and w = (w1, w2, w12), and an instance s = (1, 1) and w = (1, 0.5, 1). We define two actions, a1 and a2,
which simply set the corresponding features si to 2. Using Eq. (3), we can compute the cost of applying the
single action as

C(a1, s | w) = 1|2− 1| = 1 C(a2, s | w) = 0.5|2− 1|+ 1 = 1.5 (5)

By Eq. (4), the cost of the intervention {a1, a2} is C({a1, a2}, s | w) = 3.5 ̸= 1.5 + 1, hence the costs are not
additively independent. Moreover, Eq. (4) considers the order in which actions are applied, i.e., ∃ w such
that C({a1, a2}, s | w) ̸= C({a2, a1}, s | w), as shown in Fig. 2b.

Note that if dependencies between actions costs are not available, Eq. (3) boils down to a simple linear
function, namely C(ak, s | w) = wk|s′

k − sk|. This case matches the typical setup of algorithmic recourse
methods, which assume the weights are independent from one another. Eq. (3) is however more flexible in
that, if dependencies between costs are in fact available, they are automatically leveraged by PEAR.

We formalized the cost of an action (Eq. (3)) by following a standard assumption made in decision theory
(Keeney & Raiffa, 1993) called "generalised additive independence" (GAI) (Pigozzi et al., 2016) which is shared
by many preference elicitation algorithms. It defines utility functions that measure both the contribution of a
single feature and the contribution of a subset of features. Following causality theory (Pearl, 2009), each
subset consists of features causally related to the one we are acting on. In support of this strategy, previous
research highlighted how it is impossible to offer optimal recourse recommendations without considering
relationships between features (Karimi et al., 2020).

In Karimi et al. (2020), the authors refer to knowing the impact of an intervention on causally related features
(e.g., will getting a new degree increase my salary?). However, it is known that such causal knowledge about
the world is hard to obtain unless we make specific restricting assumptions (Pearl, 2009). In our work, rather
than considering how features causally change after an intervention, we focus on learning how the "cost"

5

Published in Transactions on Machine Learning Research (01/2024)

of acting on those features changes after an intervention (e.g., will getting a new degree make it easier to
increase my salary?). In our case, the cost of modifying a feature is something we can easily learn by asking
the user.

Ultimately, with our setup, we make learning the cost function feasible, and we can also represent complex
non-additive behaviour which arises from the sequential nature of recourse. Our formalization in Eq. (3) and
Eq. (4) goes along the lines of previous works (Naumann & Ntoutsi, 2021; De Toni et al., 2023), that address
the problem from the same perspective, but assume to know these costs a-priori.

On Cost Correlation Structure and Causality. The cost correlation structure shares some similarities
with Structural Causal Models (SCMs) (Pearl, 2009), since they both use a directed acyclic graph, also
called causal graph, to represent causal relationships between features X. In the context of AR, SCMs model
relationships between features rather than between costs. For example, Karimi et al. (2020) frames the
recourse problem as finding a counterfactual sCF optimizing Eq. (1) given an approximated SCM describing
the joint distribution P (X), while the cost function is a simple p-norm, such as C(sCF, s) = ∥sCF− s∥2. In our
case, CCSs do not allow for do-actions or to compute counterfactuals via abduction, since they do not model
P (X). Similarly to Naumann & Ntoutsi (2021), we use the causal DAG to represent consequence-aware cost
equations as shown in Eq. (3), without taking any explicit causal angle. Indeed, following the non-causal AR
literature, we assume actions a ∈ A to influence only the target feature sk, without any causal effect on any
of its children sj in the DAG. However, actions over sk will affect the cost of subsequent actions changing the
user features.

4.1 The PEAR Algorithm

In order to account for uncertainty over the user’s weights w, PEAR explicitly models a distribution P (w)
over them and progressively refines it by interacting with a target user. A high-level overview of PEAR is
given in Fig. 1 and the pseudo-code is listed in Algorithm 1.

In each iteration t = 1, . . . , T , where T is the iteration budget, PEAR computes a choice set O(t) ∈ Ik containing
k candidate interventions achieving recourse (for a small k, e.g., 2 to 4) and asks the user to indicate their
most preferred option in the set. Importantly, O(t) is chosen so as to maximize the (expected) information
gained from the user, and in a way that is robust to noise in their feedback. We detail the exact procedure
used by PEAR in Section 4.3. These user choices are stored in an initially empty dataset D(t). In each step,
PEAR integrates the user’s feedback by inferring a posterior over the weights P (w | D(t)) ∝ P (D(t) | w)P (w)
using Bayesian inference, and updates the user state by applying the first action Î1 of the chosen intervention.
We apply a single action so as to elicit user preferences in all intermediate states. If a state achieving recourse
is reached, the user state is reinitialized. After T rounds,2 PEAR computes a low-cost personalized intervention
by applying the intervention generation procedure described in Section 4.2, biased according to the latest
posterior p(w | D(t)).

PEAR makes no assumption on the form of the prior P (w), meaning that the prior can be adjusted based on
the application. In order to model both variances across the preferences of individuals and for sub-groups in
the population, in this work we model them as a mixture of Gaussians with M components Ni(µi, Σi), for
i = 1, . . . , M . This choice works well in our experiments, see Section 5. Note that, analogously to Rawal &
Lakkaraju (2020), it is also possible to fit the prior on population-level preference data or domain expert
input, whenever this is available. In our experiments, we do this for all competitors.

4.2 Generating Personalized Interventions with W-FARE

PEAR generates personalized interventions by leveraging a novel, user-aware extension of FARE (De Toni et al.,
2023), a state-of-the-art algorithm for generating short – but user-agnostic – interventions, which we briefly
outline next. In FARE, each action a ∈ A is implemented as a tuple (f, x), where f is a function changing one
feature and x is the value that feature takes, e.g., (change_income, $1000). Given an initial state s, FARE
uses reinforcement learning to learn two probabilistic policies πf (s) and πx(s), which are used as priors to
guide a Monte Carlo Tree Search procedure that incrementally builds an intervention I by selecting actions

2In practice, the loop can be terminated as soon as the user is satisfied with one of the interventions in O(t).

6

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 1 The PEAR algorithm: h : S → {0, 1} is a classifier, s(0) ∈ S the initial state, A the available
actions, p(w) the prior, T ≥ 1 the query budget, k ≥ 2 is the size of choice sets.

1: procedure PEAR(h, s(0),A, T, k)
2: Initialize t← 0, D(0) ← ∅
3: for t = 1, . . . , T do
4: O(t) ← SUBMOD-CHOICE(h, s(t−1),A, k,D(t−1)) ▷ Algorithm 2
5: Ask the user to pick the best intervention Î ∈ O(t)

6: D(t) ← D(t−1) ∪ {Î}
7: Update weight estimate p(w | D(t))
8: s(t) ← Î1(s(t−1))
9: if h(s(t)) ̸= h(s(0)) then

10: s(t) ← s(0)

11: I∗ = W-FARE(h, s(0), w∗) with w∗ = EP (w|D(T))[w] ▷ Section 4.2
12: return I∗

a(i) ∈ A. In order to ensure interventions are actionable, actions a are only chosen if they satisfy given
preconditions. The reward used by FARE is r(I) = ρ|I| · 1

{
h(I(s(0))) ̸= h(s(0))

}
, where ρ > 0 is a discount

factor and the indicator evaluates to 1 if I attains recourse and to 0 otherwise. FARE is highly scalable and
very effective at identifying counterfactual interventions even under minimal training budget (De Toni et al.,
2023).

FARE is user-agnostic, while PEAR needs to generate personalized interventions. We fill this gap by introducing
W-FARE, a novel extension of FARE that integrates the user’s costs into the reward while inheriting all benefits
of the latter. Recall that PEAR maintains a posterior over the weights. The expected cost of an action can
thus be obtained by marginalizing over the posterior:

E[C(a, s) | D(t)] =
∫

w C(a, s | w)P (w | D(t)) dw (6)

Analogously, the cost of an intervention I is replaced by the expectation:

E[C(I) | D(t)] =
∑|I|

i=0 E[C(a(i), s(i)) | D(t)] (7)

The W-FARE reward function is then given by r(I | w) ∝ ρE[C(I|D(t))] ·1
{

h(I(s(0))) ̸= h(s(0))
}

(see Appendix B
for a more in-depth description of W-FARE). This explicitly drives RL to learn policies that optimize user-
specific action costs and that, therefore, help MCTS to more quickly converge to personalized interventions. We
show empirically that PEAR is substantially more effective than FARE at computing personalized interventions
in Section 5.

4.3 Computing Informative Choice Sets

Given the current posterior P (w | D(t)), PEAR computes a choice set containing k interventions I that
maximizes information gain (Chajewska et al., 2000). We measure the latter using the Expected Utility of
Selection (EUS) (Viappiani & Boutilier, 2020), a measure of the goodness of a set defined as the expectation,
under the uncertainty over w, of the utility of its most preferred element. EUS is closely related to the
Expected Value of Information (EVOI), and frequently used in Bayesian PE (Price & Messinger, 2005;
Viappiani & Boutilier, 2010; Akrour et al., 2012; Viappiani & Boutilier, 2020). The EUS builds on the notion
of expected utility of an intervention I, which is defined as:

EU(I | D(t)) = E[−C(I) | D(t)] = −
∫

w C(I | w)P (w | D(t)) dw (8)

The EUS of a choice set O can then be defined as:

EUSR(O | D(t)) =
∑

I∈O PR(O ⇝ I)EU(I | D(t))
= −

∫
w

[∑
I∈O PR(O ⇝ I | w)C(I | w)

]
P (w | D(t)) dw (9)

7

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 2 Greedy procedure to efficiently compute a choice set O: s(t) ∈ S the current state, A the
available actions, k ≥ 2 is the size of choice sets, D(t) the user choices so far.

1: procedure SUBMOD-CHOICE(s(t), k,A,D(t))
2: O ← ∅
3: w̄← Ep(w|D(t))[w]
4: while |O| < k do
5: Generate the candidate interventions I with W-FARE using A and w̄
6: Î ← argmaxÎ EUSNL(O ∪ Î | D(t))− EUSNL(O | D(t))
7: O ← O ∪ {Î}
8: return O

Here, PR(O ⇝ I | w) is the probability that a user with weights w picks I from O, under a specific choice
of response model R modelling noise in user choices. Intuitively, we expect users to prefer the cheapest
interventions I ∈ O. Moreover, we also expect that interventions in O with similar costs have a similar
probability of being chosen. Motivated by this, and following common practice in choice modelling (Luce,
2012), in PEAR we implement a logistic response model (L), defined as:

PL(O ⇝ I | w) = exp(−λC(I | w))∑
I∈O exp(−λC(I | w)) (10)

Here, λ ∈ R is a temperature parameter. Finding a choice set O maximizing the EUS is intractable in general
– NP-hard (Nemhauser et al., 1978; Krause & Golovin, 2014), in fact – and computationally intensive in
practice, and risks slowing down the interaction loop to the point of estranging users. We observe that,
however, under some response models R, the EUS becomes submodular and monotonic (Viappiani & Boutilier,
2010). This is the case for the noiseless response model (NL), according to which the user always prefers the
lowest-cost option, i.e.,3

PNL(O ⇝ I | w) =
∏

I,I′∈O : I ̸=I′ 1{C(I | w) < C(I ′ | w)} (11)

This means that, for NL, greedy optimization is sufficient to find a choice set O that achieves high EUSNL

with approximation guarantees. Formally, it holds that for choice sets O found via greedy optimization,
EUSNL(O | D) ≥ (1− e−1)EUSNL(O∗ | D), where O∗ is the truly optimal choice set (Viappiani & Boutilier,
2010; Nemhauser et al., 1978; Krause & Golovin, 2014). In PEAR, we leverage the fact that EUSL − EUSNL is
always smaller than a problem independent (tight) bound (Viappiani & Boutilier, 2010), meaning that instead
of minimizing EUSL directly, we can compute a high-quality choice set by greedily maximizing EUSNL. This
immediately leads to a practical algorithm for the logistic response model L, listed in Algorithm 2.

4.4 Benefits and limitations

PEAR is designed to facilitate the application of AR to practical high-stakes tasks like loan approval. The main
benefit of PEAR is that it provides personalized algorithmic recourse, which existing approaches are not capable
of. Also, it follows a fully Bayesian setup for handling uncertainty over the estimated preferences and noise in
user feedback. It also leverages ideas from preference elicitation – such as small choice sets and elicitation of
relative preferences – to ensure the interaction is cognitively affordable. Finally, PEAR makes use of a novel
cost function that automatically takes dependencies between action costs into consideration, whenever these
are known or can be estimated, thus facilitating the identification of better recourse suggestions. At the same
time, the cost function is linear, enabling PEAR to leverage efficient algorithms from preference elicitation
tailored for eliciting such cost functions.

Several steps of the algorithm – namely, evaluating the EUS (Eq. (9)) and the expected cost of interventions
(Eq. (7)), and updating the posterior p(w | D(t)) – require marginalizing over the weights. Doing so involves
evaluating a complex integral that cannot be solved analytically. We sidestep this issue by leveraging

3For the sake of presentation, we assume that there are no ties. Note that the EUS formula is invariant to the way ties are
broken. In our implementation, ties are broken uniformly at random.

8

Published in Transactions on Machine Learning Research (01/2024)

Figure 3: Normalized Average Regret for PEAR when varying the number of questions, the choice set size and
the user response model on both datasets (sampled from All users).

an efficient Monte Carlo approximation, and specifically ensemble split sampling (Karamanis & Beutler,
2020; Karamanis et al., 2021) and then averaging over the samples with the highest likelihood. We find
that, empirically, this procedure is efficient – so much that it can support interactive usage – and leads to
competitive results in our experiments, cf. Section 5.

Lastly, as is typical in PE, our approach focuses on the “myopic” value of information by looking to maximize
the expected posterior utility, thus reducing as much as possible the regret one step ahead. As we ask more
questions, the regret will tend to zero. However, one main theoretical challenge currently faced in the PE
domain is the development of optimal elicitation policies that consider a sequential version of the value of
information, which may be more efficient but intractable in general (Boutilier, 2002).

5 Experiments

Our experimental evaluation is aimed at answering the following research questions:

Q1 Does PEAR succeed in minimizing regret for an increasing amount of user feedback?

Q2 Does PEAR outperform competitors in terms of validity and cost?

Q3 Is PEAR robust to imprecise knowledge of the cost correlation structure of the user?

Datasets and Classifiers. We evaluated our approach on two real-world datasets taken from the relevant
literature: GiveMeSomeCredit (Kaggle, 2011) and Adult (Dua & Graff, 2017). They are (unbalanced) binary
classification problems for income prediction and loan assignment, respectively. The datasets have both
categorical and numerical features. Some of these features are actionable (e.g., occupation, education), while
others are immutable (e.g., age, sex, native_country). These datasets come without a causal graph and users’
preferences over the features. Following previous work (Karimi et al., 2021; De Toni et al., 2023; Naumann
& Ntoutsi, 2021), we manually defined and fixed the cost correlation structures for both. We randomly
generated user-specific weights for each instance by sampling from a (dataset-specific) mixture of Gaussians
with M = 6 components and uniform mixture weights. In Appendix A, we give a description of the feature
space, action space and the directed acyclic graphs needed by the CCS for both datasets. We then split the
data into training (70%), validation (10%) and test (20%) sets. For each dataset, we designed the black-box
classifier h as an MLP with two hidden layers. We trained it by cross-entropy minimization, selecting the
hyperparameters which maximise the F1 score on the validation set. In Appendix C we show additional
experiments with shallow classifiers, such as a logistic model and a decision tree.

“Easy” vs. “Hard” Users. Intuitively, users close to the decision boundary of the black-box h will require
few actions to achieve recourse, while users to whom h assigns a low score might need longer and more complex
interventions. Understanding the preferences of these “hard” users is crucial since a wrong suggestion might

9

Published in Transactions on Machine Learning Research (01/2024)

Table 1: Performance of all competitors averaged over 10 runs. A ‘-’ indicates that the method did not find
any successful intervention for any user. PEARNL and PEARL indicate PEAR associated with the noiseless and
logistic response model, respectively. The best results are boldfaced.

Adult GiveMeSomeCreditUsers Method Validity Cost Length Validity Cost Length
FARE 0.90 ± 0.27 285.63 ± 195.68 3.45 ± 1.19 0.86 ± 0.23 161.77 ± 107.42 3.27 ± 1.13
CSCF 0.78 ± 0.28 154.28 ± 125.34 2.53 ± 0.57 0.57 ± 0.42 100.69 ± 120.22 2.51 ± 1.12
EFARE 0.76 ± 0.39 306.11 ± 199.02 3.54 ± 1.25 0.67 ± 0.38 155.92 ± 109.19 3.18 ± 1.18

RL 0.76 ± 0.38 283.31 ± 167.86 3.36 ± 1.08 0.12 ± 0.32 59.66 ± 0.00 2.00 ± 0.00
MCTS 0.44 ± 0.44 445.65 ± 201.28 4.60 ± 1.19 0.70 ± 0.42 214.33 ± 119.38 4.09 ± 1.31
FACE 0.15 ± 0.27 397.49 ± 128.43 3.76 ± 0.64 0.24 ± 0.38 327.18 ± 78.85 5.97 ± 0.62

PEARNL (ours) 1.00 ± 0.03 142.23 ± 61.75 2.84 ± 0.59 0.89 ± 0.00 96.04 ± 31.96 2.79 ± 0.42

All

PEARL (ours) 1.00 ± 0.04 146.54 ± 63.09 2.84 ± 0.56 0.89 ± 0.00 100.19 ± 29.53 2.85 ± 0.48

FARE 0.71 ± 0.44 438.97 ± 188.50 4.54 ± 1.21 0.47 ± 0.37 319.46 ± 96.36 4.97 ± 0.70
EFARE 0.55 ± 0.48 454.05 ± 202.76 4.52 ± 1.25 0.22 ± 0.36 371.58 ± 82.18 5.31 ± 0.71

RL 0.55 ± 0.47 433.64 ± 152.67 4.33 ± 1.24 - - -
CSCF 0.25 ± 0.36 382.84 ± 126.31 3.70 ± 0.56 0.13 ± 0.32 190.81 ± 119.99 3.36 ± 1.11
MCTS 0.21 ± 0.40 599.20 ± 153.44 5.53 ± 0.72 0.40 ± 0.43 353.75 ± 99.26 5.43 ± 0.88
FACE 0.00 ± 0.04 448.72 ± 0.00 5.20 ± 0.00 0.20 ± 0.36 455.20 ± 92.10 7.09 ± 0.53

PEARNL (ours) 0.99 ± 0.08 296.37 ± 43.84 3.35 ± 0.55 0.58 ± 0.04 251.60 ± 51.16 4.59 ± 0.40

Hard

PEARL (ours) 0.99 ± 0.09 301.13 ± 52.61 3.34 ± 0.58 0.58 ± 0.02 262.23 ± 45.36 4.64 ± 0.36

substantially increase the overall cost for them. For each dataset, we thus built two separate testing sets. The
first one, named All, is obtained by sampling 300 users s with an unfavourable classification (h(s) < 0.5),
regardless of the actual value of h. The second one, named Hard, is obtained by sampling 300 users with an
unfavourable classification having a score in the lower quartile of the black-box score distribution.

Competitors. We compare PEAR against several baselines: FARE and its explainable version EFARE (De Toni
et al., 2023), CSCF (Naumann & Ntoutsi, 2021), an evolutionary algorithm which, similarly to FARE, generates
recourse options by considering consequence-aware cost functions and action sets A, and FACE (Poyiadzi
et al., 2020), a well-know AR algorithm, which optimizes for population-based "feasible paths" to achieve
recourse. We also consider two simpler baselines, a brute-force search (MCTS) and a vanilla reinforcement
learning agent (RL), trained in a similar way as in (Hamrick et al., 2019; Verma et al., 2022). Note that all
the competitors are model-agnostic and not interactive, since they assume the users’ costs to be fixed. We
provide more in-depth details on the baselines and their implementations in Appendix A.

Experimental Protocol. For PEAR, we vary the number of questions T to the user from 0 to 10. For T = 0,
we initialize the weights with the expected value of the prior, EP (w)[w], that represents a user-independent
population-based prior. Moreover, we employ two user response models, the noiseless model (Eq. (11)), to
check the effectiveness of our approach in the best-case scenario where the user can perfectly express their
preferences, and the logistic model (Eq. (10)), to challenge our approach in a more realistic scenario. To
provide a fair comparison, we equip the competitors with our cost function (Eq. (3)) and set their weights to
the expected value of the prior.

Q1: PEAR successfully minimizes the regret. Fig. 3 shows the evaluation of the regret as a function of the
number of queries to the user. Here the ground-truth intervention IGT (which is unknown) is approximated
by running PEAR with the correct user costs wGT , and the regret is normalized by rescaling the costs between
C(IGT | wGT) and C(I(0) | wGT) where we generate I(0) using the expectation of the prior. We run PEAR
with two different choice set dimensions, k = 2 and k = 4, and for both noiseless and logistic response models.
After a few questions, PEAR reaches a low regret in all settings. Generally, a larger choice set produces a lower
regret, irrespective of the response model, with the downside of increasing the cognitive burden for the user.
We now briefly summarize the results when T = 10. For the Adult dataset, the best regret is ≈ 0.09 for the
noiseless user and k = 4, while the worst regret is ≈ 0.40 for the logistic response model and k = 2. For

10

Published in Transactions on Machine Learning Research (01/2024)

Table 2: Evaluation of PEAR (with q = 10 and a logistic noise model) for an increasing amount of CCS graph
corruption, averaged over 10 runs. "None" indicates that the correct causal graph is being used.

Adult GiveMeSomeCreditUsers Corruption Validity Cost Length Validity Cost Length
None 1.00 ± 0.04 146.54 ± 63.09 2.84 ± 0.56 0.89 ± 0.00 100.19 ± 29.53 2.85 ± 0.48
0.15 1.00 ± 0.00 165.11 ± 46.19 2.79 ± 0.24 0.90 ± 0.00 98.02 ± 18.37 2.46 ± 0.16
0.25 1.00 ± 0.00 162.05 ± 48.05 2.89 ± 0.34 0.90 ± 0.07 99.51 ± 18.53 2.48 ± 0.18
0.5 1.00 ± 0.00 175.54 ± 62.29 2.82 ± 0.36 0.90 ± 0.11 110.35 ± 19.93 2.56 ± 0.20

All

1.0 0.99 ± 0.02 172.51 ± 61.13 2.96 ± 0.40 0.91 ± 0.04 106.63 ± 28.84 2.64 ± 0.28

None 0.99 ± 0.09 301.13 ± 52.61 3.34 ± 0.58 0.58 ± 0.02 262.23 ± 45.36 4.64 ± 0.36
0.15 1.00 ± 0.00 308.22 ± 38.40 3.47 ± 0.26 0.63 ± 0.04 237.00 ± 35.72 4.06 ± 0.31
0.25 1.00 ± 0.02 305.62 ± 39.73 3.32 ± 0.35 0.66 ± 0.11 238.92 ± 28.66 3.90 ± 0.27
0.5 1.00 ± 0.03 314.36 ± 37.93 3.38 ± 0.32 0.59 ± 0.14 250.47 ± 29.71 4.16 ± 0.24

Hard

1.0 0.99 ± 0.03 313.51 ± 61.64 3.69 ± 0.44 0.64 ± 0.09 256.24 ± 12.04 4.24 ± 0.18

GiveMeSomeCredit, we get ≈ 0.15 (noiseless, k = 4) and ≈ 0.45 (logistic, k = 2). Overall, we can provide
interventions which are at least 50% cheaper than their preference-agnostic counterparts.

Q2: PEAR outperforms competitors in terms of validity and cost. Following the AR literature (Karimi
et al., 2022; Verma et al., 2020), we compare PEAR (with T = 10) and all competitors in terms of average
validity, i.e., fraction of users for which we obtained recourse, intervention cost and length (or sparsity),
i.e., the number of features that have to be changed. Intervention costs are computed by using the true
weights wGT . Table 1 shows the results. PEAR manages to achieve the highest validity while also providing
substantially cheaper interventions than the non-personalized competitors on average. This is true both
for the noiseless and logistic response models. While CSCF tends to produce shorter interventions, these
are in general more costly and have a larger cost variance with respect to those found by PEAR, confirming
the intuition that length is a suboptimal proxy of intervention complexity. The only exception is the Hard
setting of GiveMeSomeCredit, where however CSCF manages to achieve recourse for only 22% of the users,
whereas PEAR achieves recourse in 58% of the cases. The difficulty of CSCF in achieving recourse is visible in
all settings and severely limits its applicability. Furthermore, CSCF is 10 to 50 times more computationally
expensive than PEAR, making it unsuitable for real-time interactive scenarios. The MCTS baseline has rather
poor performance both in terms of validity and cost in all settings, while the RL baseline has a reasonably
high validity on Adult but it completely fails to learn a policy achieving recourse on GiveMeSomeCredit. On
the other hand, methods which combine MCTS and RL (FARE and EFARE) give better performance, which is
aligned with previous results (De Toni et al., 2023), but are still suboptimal with respect to PEAR in terms of
both validity and cost. Finally, FACE struggles to achieve recourse since it needs to find a "feasible path" from
the current user to a similar one in the training set, which is favourably classified.

Q3: PEAR is robust to misspecifications of the cost correlation structure. In the previous experiments,
following other research works (Karimi et al., 2021; De Toni et al., 2023; Naumann & Ntoutsi, 2021), we
assumed to know the structure of the CCS a-priori. However, in a real scenario, we might have instead
an approximate causal graph from which to derive the CCS. Table 2 shows the validity, cost and length of
the interventions found by removing X% of edges from the causal graph, with X ∈ {0.15, 0.25, 0.50, 1.00}.
Validity is almost unaffected by corruption in all settings since it only impacts the computation of the cost.
On the other hand, as expected, increasing the amount of graph corruption reduces the effectiveness of user
feedback. However, the degradation is not dramatic. Indeed, if we look at the Hard evaluation, the increase
in cost is negligible (around 4%) with up to 50% randomly removed edges. On GiveMeSomeCredit, we do not
see any significant increase in costs. Surprisingly, we see instead an improvement for 15% and 25% corruption
levels. We hypothesize that lacking causal knowledge about features which are not needed for recourse can
be beneficial since it simplifies the elicitation process. However, at higher levels of corruption, this effect
disappears. The setting X = 1.0 is equivalent to a non-causal cost function, in which acting on a feature
has always the same cost, irrespective of the others. It is the common choice of many works dealing with

11

Published in Transactions on Machine Learning Research (01/2024)

AR (Wachter et al., 2017; Ramakrishnan et al., 2020; Poyiadzi et al., 2020). Under such a setting, when
considering All users, the degradation is more evident, but still within 6% for GiveMeSomeCredit, while for
Adult it goes up to 15%. Overall, results clearly indicate that PEAR can suggest reasonable cost interventions
even with a largely misspecified cost correlation structure. This is apparent when comparing these results
with those in Table 1. Even with 50% randomly removed edges, PEAR recommends interventions that are
cheaper than all competitors but CSCF, that however has a substantially lower validity.

Further experimental evaluations. We performed some additional experiments which explored the
relationship between the cost and length of an intervention I and validated the usage of the model score
h(x) as a proxy for identifying the difficulty of finding a recourse suggestion. We report our findings in
Appendix E. Lastly, following the example of De Toni et al. (2023), we also provide an explainable version
of our method, XPEAR, which complements interventions with Boolean explanations during the elicitation
process by taking into consideration the user effort. We then compared XPEAR against the corresponding
baselines EFARE (De Toni et al., 2023) and while it provides good performances at the expense of being more
interpretable, it is still outperformed by PEAR. The results are presented in Appendix D.

6 Broader Impact

Algorithmic recourse focuses on developing methods to increase the user’s agency in contesting automated
decision systems outcomes and the fairness of the current machine learning models. As for all systems
impacting humans, we need to consider the possible bad ethical ramifications of these technologies and
potential mitigation strategies. In the context of personalized algorithmic recourse systems, we can identify
two sources of algorithmic bias which could hinder the quality of our recommendations:

(1) Different recourse suggestions when conditioned on a protected attribute. Users who share a
similar profile, but differ in some sensitive features (e.g., sex, age, etc.) might obtain different interventions
I. We believe this might be the most important source of unfairness. In such a scenario, a method might
successfully optimize both Eq. (1) and Eq. (2), but some categories of users will always get costlier interventions.
However, this is an issue shared by almost the totality of methods in the AR literature.

(2) Uninformative prior lacking information about sensitive categories. The prior P (w) used by
the Bayesian procedure in PEAR might not describe the preferences of less-represented groups, thus making it
more difficult to learn such cost functions. Critically, methods employing a population-level estimate of w or
which relies on expert evaluation (Rawal & Lakkaraju, 2020) have the same limitation.

We believe issue (1) relates to the quality underlying recourse generator method (e.g., W-FARE, CSCF, FACE,
etc.). A solution could be employing AR strategies that are specifically optimized to satisfy a notion of
fairness (Gupta et al., 2019; Haldar et al., 2022; von Kügelgen et al., 2022). However, to the best of our
knowledge, this is a little-explored area in the recourse literature which would require additional investigation
beyond the scope of the present work. Regarding issue (2), we could imagine focusing our efforts on collecting
additional data on sensitive groups to learn a more informative prior to running PEAR. Additionally, we
could raise the iteration budget (T) to increase the number of pairwise constraints we apply to our MCMC
procedure. However, it would also increase the cognitive burden for the user.

Lastly, eliciting users’ preferences might entail asking sensitive questions, or malicious entities could exploit
these procedures to "hack" and twist the intervention generation via strategic behaviour (Hardt et al., 2016).
These considerations can be mitigated by research on adversarial attacks to ensure the method’s robustness
(Chen et al., 2020). Moreover, legal advice might be needed to manage personal user data.

7 Conclusion

In this work, we identify the problem of personalized algorithmic recourse as a fundamental stepping stone for
ensuring recourse is usable in real-world applications, and develop PEAR, the first algorithm able to provide
personalized interventions. Our experimental evaluation shows that PEAR substantially outperforms existing
(non-personalized) solutions in terms of both validity and intervention cost with only a handful of queries to
the user. We hope that this initial contribution can foster further research in the community to work towards

12

Published in Transactions on Machine Learning Research (01/2024)

a more realistic form of algorithmic recourse that can be successfully deployed in real-world scenarios. As
for all methods dealing with algorithmic recourse, the effectiveness of the approach should, in principle, be
evaluated on real users. However, this evaluation is highly non-trivial (and thus still missing in the algorithmic
recourse literature) because it requires the creation of a realistic scenario where a user feels to be unfairly
treated in some machine-driven decision involving her life. The legal requirements that are progressively
being introduced to regulate AI systems (Voigt & Von dem Bussche, 2017) could contribute to making the
information needed to set up such a scenario available in the near future.

Acknowledgments

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency
(HaDEA). Neither the European Union nor the granting authority can be held responsible for them. Grant
Agreement no. 101120763 - TANGO. AP and BL also acknowledge the support of the MUR PNRR project
FAIR - Future AI Research (PE00000013) funded by the NextGenerationEU. BL also acknowledges the
support of the European Commission under Horizon Europe Programme, grant number 101120237 - ELIAS.
The work of Giovanni De Toni was partially supported by the project AI@Trento (FBK-Unitn).

References
Riad Akrour, Marc Schoenauer, and Michèle Sebag. APRIL: active preference learning-based reinforcement

learning. In Peter A. Flach, Tijl De Bie, and Nello Cristianini (eds.), Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012.
Proceedings, Part II, volume 7524 of Lecture Notes in Computer Science, pp. 116–131. Springer, 2012. doi:
10.1007/978-3-642-33486-3_8. URL https://doi.org/10.1007/978-3-642-33486-3_8.

Craig Boutilier. A pomdp formulation of preference elicitation problems. In AAAI, pp. 239–246, 2002.

Darius Braziunas and Craig Boutilier. Minimax regret based elicitation of generalized additive utilities. In
UAI, pp. 25–32, 2007.

Ruth M. J. Byrne. Counterfactuals in explainable artificial intelligence (xai): Evidence from human reasoning.
In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19, pp. 6276–6282. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/876. URL https://doi.org/10.24963/ijcai.2019/876.

Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions using adaptive utility
elicitation. In AAAI/IAAI, pp. 363–369, 2000.

Yatong Chen, Jialu Wang, and Yang Liu. Strategic recourse in linear classification. arXiv preprint
arXiv:2011.00355, 236, 2020.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Computers and
Games: 5th International Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers 5, pp.
72–83. Springer, 2007.

S. Dandl, C. Molnar, M. Binder, and B. Bischl. Multi-objective counterfactual explanations. In PPSN, pp.
448–469. Springer, 2020.

Giovanni De Toni, Bruno Lepri, and Andrea Passerini. Synthesizing explainable counterfactual policies for
algorithmic recourse with program synthesis. Mach. Learn., 112(4):1389–1409, feb 2023. ISSN 0885-6125.
doi: 10.1007/s10994-022-06293-7. URL https://doi.org/10.1007/s10994-022-06293-7.

Paolo Dragone, Stefano Teso, and Andrea Passerini. Constructive preference elicitation. Frontiers in Robotics
and AI, 4:71, 2018.

Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism. Science advances, 4
(1):eaao5580, 2018.

13

https://doi.org/10.1007/978-3-642-33486-3_8
https://doi.org/10.24963/ijcai.2019/876
https://doi.org/10.1007/s10994-022-06293-7

Published in Transactions on Machine Learning Research (01/2024)

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Johannes Furnkranz and Eyke Hullermeier. Preference Learning. Springer-Verlag, Berlin, Heidelberg, 1st
edition, 2010. ISBN 3642141242.

José Fernando Gonçalves and Mauricio GC Resende. Biased random-key genetic algorithms for combinatorial
optimization. Journal of Heuristics, 17(5):487–525, 2011.

R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Giannotti. Local rule-based explanations
of black box decision systems. CoRR, abs/1805.10820, 2018. URL http://arxiv.org/abs/1805.10820.

Shengbo Guo and Scott Sanner. Real-time multiattribute bayesian preference elicitation with pairwise
comparison queries. In AISTATS, pp. 289–296, 2010.

Vivek Gupta, Pegah Nokhiz, Chitradeep Dutta Roy, and Suresh Venkatasubramanian. Equalizing recourse
across groups. arXiv preprint arXiv:1909.03166, 2019.

Aparajita Haldar, Teddy Cunningham, and Hakan Ferhatosmanoglu. Raguel: Recourse-aware group unfairness
elimination. In Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, pp. 666–675, 2022.

Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Tobias Pfaff, Theophane Weber, Lars Buesing,
and Peter W Battaglia. Combining q-learning and search with amortized value estimates. arXiv preprint
arXiv:1912.02807, 2019.

Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification. In
Proceedings of the 2016 ACM conference on innovations in theoretical computer science, pp. 111–122, 2016.

Kaggle. Give me some credit, Sep 2011. URL https://www.kaggle.com/competitions/GiveMeSomeCredit/
overview.

Minas Karamanis and Florian Beutler. Ensemble slice sampling: Parallel, black-box and gradient-free
inference for correlated & multimodal distributions. arXiv preprint arXiv: 2002.06212, 2020.

Minas Karamanis, Florian Beutler, and John A Peacock. zeus: A python implementation of ensemble slice
sampling for efficient bayesian parameter inference. arXiv preprint arXiv:2105.03468, 2021.

Amir-Hossein Karimi, Julius Von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse
under imperfect causal knowledge: a probabilistic approach. Advances in Neural Information Processing
Systems, 33:265–277, 2020.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counterfactual
explanations to interventions. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, pp. 353–362, 2021.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algorithmic recourse:
Contrastive explanations and consequential recommendations. ACM Comput. Surv., 55(5), dec 2022. ISSN
0360-0300. doi: 10.1145/3527848. URL https://doi.org/10.1145/3527848.

Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-Offs.
Cambridge University Press, 1993. doi: 10.1017/CBO9781139174084.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Machine Learning: ECML 2006:
17th European Conference on Machine Learning Berlin, Germany, September 18-22, 2006 Proceedings 17,
pp. 282–293. Springer, 2006.

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3:71–104, 2014.

14

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1805.10820
https://www.kaggle.com/competitions/GiveMeSomeCredit/overview
https://www.kaggle.com/competitions/GiveMeSomeCredit/overview
https://doi.org/10.1145/3527848

Published in Transactions on Machine Learning Research (01/2024)

Cynthia Liem, Markus Langer, Andrew Demetriou, Annemarie MF Hiemstra, Achmadnoer Sukma Wicaksana,
Marise Ph Born, and Cornelius J König. Psychology meets machine learning: Interdisciplinary perspectives
on algorithmic job candidate screening. In Explainable and interpretable models in computer vision and
machine learning, pp. 197–253. Springer, 2018.

R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 2012.

Divyat Mahajan, Chenhao Tan, and Amit Sharma. Preserving causal constraints in counterfactual explanations
for machine learning classifiers. arXiv preprint arXiv:1912.03277, 2019.

James G March. Bounded rationality, ambiguity, and the engineering of choice. The bell journal of economics,
pp. 587–608, 1978.

R. K. Mothilal, A. Sharma, and C. Tan. Explaining machine learning classifiers through diverse counterfactual
explanations. In FAT*, pp. 607–617, 2020.

Philip Naumann and Eirini Ntoutsi. Consequence-aware sequential counterfactual generation. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 682–698. Springer,
2021.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Martin Pawelczyk, Sascha Bielawski, Johan Van den Heuvel, Tobias Richter, and Gjergji Kasneci. CARLA: A
python library to benchmark algorithmic recourse and counterfactual explanation algorithms. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.
URL https://openreview.net/forum?id=vDilkBNNbx6.

Judea Pearl. Causality. Cambridge university press, 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Gabriella Pigozzi, Alexis Tsoukias, and Paolo Viappiani. Preferences in artificial intelligence. Annals of
Mathematics and Artificial Intelligence, 77:361–401, 2016.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: feasible and
actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and
Society, pp. 344–350, 2020.

Robert Price and Paul R. Messinger. Optimal recommendation sets: Covering uncertainty over user preferences.
In Manuela M. Veloso and Subbarao Kambhampati (eds.), Proceedings, The Twentieth National Conference
on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference,
July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pp. 541–548. AAAI Press / The MIT Press, 2005. URL
http://www.aaai.org/Library/AAAI/2005/aaai05-085.php.

G. Ramakrishnan, Y. C. Lee, and A. Albarghouthi. Synthesizing action sequences for modifying model
decisions. In AAAI, volume 34, pp. 5462–5469, 2020.

15

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=vDilkBNNbx6
http://www.aaai.org/Library/AAAI/2005/aaai05-085.php

Published in Transactions on Machine Learning Research (01/2024)

Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: Interpretable and interactive
summaries of actionable recourses. Advances in Neural Information Processing Systems, 33:12187–12198,
2020.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artificial
Intelligence, 61(3):203–230, 2011.

Chris Russell. Efficient search for diverse coherent explanations. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, FAT* ’19, pp. 20–28, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450361255. doi: 10.1145/3287560.3287569. URL https://doi.org/
10.1145/3287560.3287569.

Mohammad Ahmad Sheikh, Amit Kumar Goel, and Tapas Kumar. An approach for prediction of loan
approval using machine learning algorithm. In 2020 International Conference on Electronics and Sustainable
Communication Systems (ICESC), pp. 490–494. IEEE, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Herbert A Simon. A behavioral model of rational choice. The quarterly journal of economics, pp. 99–118,
1955.

Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using nondominated sorting in genetic
algorithms. Evolutionary computation, 2(3):221–248, 1994.

I. Stepin, J. M. Alonso, and A. Catalaand M. Pereira-Fariña. A survey of contrastive and counterfactual
explanation generation methods for explainable artificial intelligence. IEEE Access, 9:11974–12001, 2021.

S. Tsirtsis and M. Rodriguez. Decisions, counterfactual explanations and strategic be-
havior. In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c2ba1bc54b239208cb37b901c0d3b363-Abstract.html.

B. Ustun, A. Spangher, and Y. Liu. Actionable recourse in linear classification. In FAT*, pp. 10–19, 2019.

Suresh Venkatasubramanian and Mark Alfano. The philosophical basis of algorithmic recourse. In Proceedings
of the 2020 conference on fairness, accountability, and transparency, pp. 284–293, 2020.

Sahil Verma, Varich Boonsanong, Minh Hoang, Keegan E Hines, John P Dickerson, and Chirag Shah.
Counterfactual explanations and algorithmic recourses for machine learning: A review. arXiv preprint
arXiv:2010.10596, 2020.

Sahil Verma, Keegan Hines, and John P Dickerson. Amortized generation of sequential algorithmic recourses
for black-box models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
8512–8519, 2022.

Paolo Viappiani and Craig Boutilier. Optimal Bayesian recommendation sets and myopically optimal choice
query sets. Advances in neural information processing systems, 23, 2010.

Paolo Viappiani and Craig Boutilier. On the equivalence of optimal recommendation sets and myopically
optimal query sets. Artificial Intelligence, 286:103328, 2020.

Paul Voigt and Axel Von dem Bussche. The EU general data protection regulation (gdpr). A Practical Guide,
1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Julius von Kügelgen, Amir-Hossein Karimi, Umang Bhatt, Isabel Valera, Adrian Weller, and Bernhard
Schölkopf. On the fairness of causal algorithmic recourse. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 9584–9594, 2022.

16

https://doi.org/10.1145/3287560.3287569
https://doi.org/10.1145/3287560.3287569
https://proceedings.neurips.cc/paper/2020/hash/c2ba1bc54b239208cb37b901c0d3b363-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c2ba1bc54b239208cb37b901c0d3b363-Abstract.html

Published in Transactions on Machine Learning Research (01/2024)

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening the
black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

Zijie J Wang, Jennifer Wortman Vaughan, Rich Caruana, and Duen Horng Chau. Gam coach: Towards
interactive and user-centered algorithmic recourse. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1–20, 2023.

Prateek Yadav, Peter Hase, and Mohit Bansal. Low-cost algorithmic recourse for users with uncertain cost
functions. arXiv preprint arXiv:2111.01235, 2021.

S. Yonadav and W. S. Moses. Extracting incentives from black-box decisions. CoRR, abs/1910.05664, 2019.
URL http://arxiv.org/abs/1910.05664.

Tae Keun Yoo, Ik Hee Ryu, Geunyoung Lee, Youngnam Kim, Jin Kuk Kim, In Sik Lee, Jung Sub Kim, and
Tyler Hyungtaek Rim. Adopting machine learning to automatically identify candidate patients for corneal
refractive surgery. NPJ digital medicine, 2(1):1–9, 2019.

17

http://arxiv.org/abs/1910.05664

Published in Transactions on Machine Learning Research (01/2024)

A Competitors and Experimental Settings

We now briefly illustrate the competitors’ main principles and describe their most important hyperparameters.
We also discuss W-FARE and its new reward function in more detail.

Implementation details. We implemented PEAR, the competitors and the black box classifiers using Python
(>= 3.7) and PyTorch (Paszke et al., 2019). For reproducibility purposes, the code and the pre-trained models
are freely available online4. We used the original code for both FARE5 and CSCF6, with minimal modifications
to make them compatible with our experimental setting. For FACE, we used the implementation available in
the CARLA library (Pawelczyk et al., 2021). As for the baselines, we adapted MCTS and the RL agent from
the FARE repository. All the experiments were run on a virtual machine running CentOS 7.6.18 with 165
cores, and 25 GiB of RAM. The full set of hyperparameter configurations is available in the code.

State space and Action space. Given the raw datasets, we one-hot encoded categorical features and
we performed min-max normalization for the continuous features using scikit-learn (Pedregosa et al.,
2011). We also manually performed additional standard data engineering tasks, such as removing entries
with null values or checking for potential outliers. After the data cleaning and preprocessing steps, we kept
the following features for each dataset:

• Adult: age, capital_gain, capital_loss, hours_per_week (continuous) workclass, education, mar-
ital_status, occupation, relationship, race, sex, native_country (categorical). We considered the
features age, relationship, race, sex, and native_country to be unactionable.

• GiveMeSomeCredit: RevolvingUtilizationOfUnsecuredLines, age, NumberOfTime30-
59DaysPastDueNotWorse, DebtRatio, MonthlyIncome, NumberOfOpenCreditLinesAnd-
Loans, NumberOfTimes90DaysLate, NumberRealEstateLoansOrLines,NumberOfTime60-
89DaysPastDueNotWorse, NumberOfDependents (continuous). We considered the features
age and NumberOfDependents to be unactionable.

These features represent the state s ∈ S of a user. Table 3 reports the action space A used by W-FARE and the
baselines for each of the experimental datasets. For Adult, we adopted the same action set used by De Toni
et al. (2023), while for GiveMeSomeCredit we devised the functions ourselves. Please note that the actions
a ∈ A operate directly in the original feature space, without encoding or rescaling, to ensure the interventions
are understandable by humans. The features assigned as non-actionable do not have any action available.
We refer the reader to the code implementation for additional details.

Cost Correlation Structure. Following the previous literature, (Karimi et al., 2021; De Toni et al., 2023;
Naumann & Ntoutsi, 2021), we manually designed the directed acyclic graph for both experiments. Fig. 4
shows the resulting graphs. During the graph corruption experiments, we incrementally remove a subset of
edges taken uniformly at random.

A.1 Monte Carlo Tree Search (MCTS)

MCTS (Kocsis & Szepesvári, 2006; Coulom, 2007) is an efficient tree-based heuristic search procedure that
can solve difficult tasks where computing directly the exact solution is intractable (Silver et al., 2016). MCTS
builds a tree representing all possible moves and outcomes. Each tree node represents a state s(i) and each
edge represents performing an action a ∈ A. In each iteration, MCTS builds this tree following four main steps:
selection, expansion, simulation, and backpropagation. The selection step takes a state s(t) and selects the
next action a(t+1), based on some strategy such as UCB1 (Kocsis & Szepesvári, 2006). In our experiments,
MCTS uses the P-UCT (Rosin, 2011; Silver et al., 2016) criterion, defined as:

a(t+1) = argmax
a′∈A

E[r|s(t), a′] + U(s(t), a′) + L(s(t), a′) (12)

4https://github.com/unitn-sml/pear-personalized-algorithmic-recourse
5https://github.com/unitn-sml/syn-interventions-algorithmic-recourse
6https://github.com/ppnaumann/CSCF

18

https://github.com/unitn-sml/pear-personalized-algorithmic-recourse
https://github.com/unitn-sml/syn-interventions-algorithmic-recourse
https://github.com/ppnaumann/CSCF

Published in Transactions on Machine Learning Research (01/2024)

Table 3: Action set A for Adult and GiveMeSomeCredit datasets used by W-FARE and the baselines. We
report the functions, their arguments and which feature each of them modifies. For Adult, we adopted the
same action set as De Toni et al. (2023), but we added two additional functions, CHANGE_CAP_LOSS
and CHANGE_CAP_GAIN to increase the available interventions. We manually crafted the action space
for GiveMeSomeCredit. In the case of continuous features, we constructed the argument sets by picking
evenly spaced numbers from an interval since MCTS cannot handle continuous search spaces. We report the
intervals from which we selected the argument values. For categorical features, we simply report the full set
of options available.

Adult

Feature Function (f) Argument Type Argument (x)
workclass CHANGE_WORKCLASS Categorical Never-worked, Without-pay, Self-emp-not-inc,

Self-emp-inc, Private, Local-gov, State-gov,
Federal-gov

education CHANGE_EDUCATION Categorical Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th,
11th, 12th, HS-grad, Some-college, Bachelors,
Masters, Doctorate, Assoc-acdm, Assoc-voc,
Prof-school

occupation CHANGE_OCCUPATION Categorical Tech-support, Craft-repair, Other-service,
Sales, Exec-managerial, Prof-specialty,
Handlers-cleaners, Machine-op-inspct, Adm-
clerical, Farming-fishing, Transport-moving,
Priv-house-serv, Protective-serv, Armed-
Forces

capital_gain CHANGE_CAP_GAIN Integer [−5000,−1] ∪ [1, 5000]
capital_loss CHANGE_CAP_LOSS Integer [−5000,−1] ∪ [1, 5000]
hours_per_week CHANGE_HOURS Integer [−25,−1] ∪ [1, 25]

GiveMeSomeCredit

Feature Function (f) Argument Type Argument (x)
RevolvingUtilizationOfUnsecuredLines BALANCE Real [−1,−0.01] ∪ [0.01, 1]
NumberOfTime30-59DaysPastDueNotWorse PAST_DUE_30 Integer [−25,−1]
DebtRatio DEBT_RATIO Real [−1,−0.01] ∪ [0.01, 1]
MonthlyIncome INCOME Integer [−10000,−1] ∪ [1, 10000]
NumberOfOpenCreditLinesAndLoans OPEN_LOANS Integer [−25,−1]
NumberOfTimes90DaysLate PAST_DUE_90 Integer [−25,−1]
NumberRealEstateLoansOrLines OPEN_REAL_ESTATE Integer [−25,−1]
NumberOfTime60-89DaysPastDueNotWorse PAST_DUE_60 Integer [−25,−1]

19

Published in Transactions on Machine Learning Research (01/2024)

(a) Adult (b) GiveMeSomeCredit

Figure 4: Directed Acyclic Graphs used for the Cost Correlation Structures. Each node corresponds
to a specific user feature. The complete mapping between node acronyms and features can be found in the
experimental configuration files.

Here, E[r|st, a′] is the expected reward of taking action a′ in state st. The reward r is γ(|I|) if we achieve
recourse and −1 otherwise. |I| is the length of the intervention while γ ∈ (0, 1] is a discount factor. L(s(t), a′)
is a penalty is equal to cact_cost exp(−C(a′, s(t) | w)). U(s(t), a′) trades off exploration and exploitation, and
it is defined as

U(s(t), a) = cpuct · P (a | s(t))
√

Ns(t)

1 + Ns(t+1)
(13)

where P (a | s(t)) is the prior probability of choosing such action, Ns(t) is the visit count of node s(t), and
Ns(t+1) is the visit count of the child node being evaluated. In our experiments, the prior P (a | s(t)) is a
uniform distribution over the actions.

The expansion step adds new child nodes to the current node based on the available actions. The simulation
step then carries out a playout, selecting moves randomly until a terminal state is reached. The value of
the outcome of this terminal state is then backpropagated up the tree (backpropagation step), incrementing
the visit Ns(i) and reward counts of nodes along the path that was traversed to reach the outcome. We
use the reward counts to compute E[r|s(t), a′]. The number of simulations is a hyperparameter. Once the
simulations are done, we start over from the selection step. MCTS keeps expanding and selecting nodes until
we reach recourse, or a user-defined maximum intervention length. Once MCTS ends, we return the successful
intervention to the user. An intervention here is a path from the root node (s(0)) to a terminal node (s(T)).

Hyperparameters. In our experiments, we set the number of simulations to 15 and 10 for Adult and
GiveMeSomeCredit, respectively. We also set the maximum intervention length to 6 and 8, for Adult and
GiveMeSomeCredit, respectively. The value cact_cost and cpuct are also hyperparameters. We set them to 1
and 0.5 respectively, for both experiments.

A.2 Recourse Policy (RL)

RL is a simple agent which learns a recourse policy. Following the architecture described in De Toni et al.
(2023), it has four different components: an encoder genc, an LSTM controller fc, a function network gf , an
argument network gx and a value network gV . genc produces a latent representation of the current state s(t)

which is sent to the controller fc. Given the hidden states ht coming from fc, the function and argument
network generates the policies πf and πx which we use to get the tuple (f, x)(t+1) which corresponds to the
next action a. We use the value network gV to approximate the value function V (s(t), a).

Training the agent. We train RL such to minimize the following loss function

ℓ =
∑

batch

(V − r2)− πtrue
f

T log(πf)− πtrue
x

T log(πx) (14)

20

Published in Transactions on Machine Learning Research (01/2024)

where we assume to have access to the ground truth policies πtrue
f and πtrue

x either by having a previous
dataset of recourse options, by optimizing over an MDP following (Verma et al., 2022), or by discovering such
traces by direct search. In our paper, we follow the last approach by using MCTS as the search component. At
inference time, we run the agent until we either find recourse, reach the maximum intervention length, or call
an illegal action (e.g., an action whose precondition is not satisfied).

Hyperparameters. As in De Toni et al. (2023), genc, gf and gx are all MLPs and we manually defined
their structure for each experimental setting (e.g., number of layers, dimensions, etc.). We do the same for
the controller fc. We optimize Eq. (14) via Adam and we set the learning rate to 0.001 for Adult, and 0.003
for GiveMeSomeCredit.

A.3 (Explainable) eFficient counterfActual REcourse (FARE and EFARE)

FARE (De Toni et al., 2023) is a model-agnostic method which exploits the synergy between a learned
(RL) policy and a discrete search procedure (MCTS) to discover recourse options efficiently. At training
time, differently from MCTS and RL, we do not use a uniform prior, but we leverage the agent instead
P (a | s(t)) = πf (s(t)) · πx(s(t)). Similarly to Silver et al. (2016), we foster additional exploration by replacing
P (a | s(t)) with a linear combination, ϵP P (a | s(t)) + (1− ϵP)ηP where ηP ∼ Dir(αd). We manually set the
parameters αd and ϵP for each setting.

EFARE is a deterministic model which provides sequential counterfactuals together with explanations. Given
a trained FARE model, a sample of successful interventions for the training set users is extracted. These
interventions are merged to form a graph, where each node represents an action a, and each arch represents
which actions (f, x) can be taken from the said node. Then, for each node, a small decision tree is trained to
indicate, given a user state s(t), which is the next recommended action. Given this trained automaton, we
can traverse the graph using the decision trees to transition between nodes. Moreover, the decision trees can
give us Boolean explanations for each transition.

Hyperparameters. FARE shares the same hyperparameters of MCTS and RL. During training, we set the
number of simulations to 15 and 10, for Adult and GiveMeSomeCredit, respectively. The noise fraction is
instead set to ϵP = 0.3 for both, with ηp = 0.3. At inference time, we add no noise (ϵP = 0) and the number
of simulations is fixed at 5. Lastly, for each dataset, we train a corresponding EFARE version by sampling 300
interventions from the training set using FARE.

A.4 Consequence-aware Sequential Counterfactuals (CSCF)

CSCF (Naumann & Ntoutsi, 2021) is a model-agnostic evolutionary algorithm which can generate sequential
recourse plans by taking into consideration feature relationships. CSCF uses the Biased Random-Key Genetic
Algorithm (BRKGA) (Gonçalves & Resende, 2011) together with non-dominated sorting (NDS) (Srinivas &
Deb, 1994) to perform multi-objective optimization. BRKGA optimizes over the solution genotype (real-values
vectors G ∈ [0, 1]) and evaluates its phenotype instead (sequences of actions a ∈ A). Thus, they propose also
a decoder to deterministically derive a single phenotype from a genotype.

At each iteration, CSCF evaluates the decoded solutions phenotypes by computing their fitness. We use the
same fitness function as proposed in the original paper. Then, following NDS, a new population is formed
by genetic mating and biased crossover between the elites (feasible and valid solutions in the Pareto front)
and non-elites. The loop then continues until we reach a termination condition (e.g., we reach the maximum
number of generations). From the last population set, we pick the lowest cost valid intervention with ties
broken uniformly at random.

Hyperparameters. In our experiments, we mainly used the default hyperparameters provided by the
authors (Naumann & Ntoutsi, 2021). We set the population size, p = 50, and the maximum number of
generations, n = 25, for both Adult and GiveMeSomeCredit, to keep the computation time manageable.
Higher values might improve the performances, but it would make CSCF unusable in an online setting (e.g.,
web interface provided by the bank).

21

Published in Transactions on Machine Learning Research (01/2024)

A.5 Feasible and Actionable Counterfactual Explanations (FACE)

FACE (Poyiadzi et al., 2020) is a model-agnostic method which can find actionable counterfactual examples
respecting the underlying data distribution. The main idea is to propose recourse options based on the
shortest path between the current state of the user and a state reaching recourse. FACE proposes different
density-weighted metrics to find these "feasible paths". FACE starts by building a graph over the training set
data points. Then, the user can specify certain properties (e.g., prediction threshold, custom weight function,
etc.), which restrict the graph by removing edges pointing to unfeasible counterfactuals. FACE then uses the
Shortest Path First Algorithm (Dijkstra’s algorithm) over all the instances matching the requirements in the
graph.

We use FACE based on the proposed k-NN construction algorithm. Since FACE provides counterfactual examples
and not sequences, we then return the lowest-cost counterfactual by applying all the changes sequentially.
The action order is randomly chosen.

Hyperparameters. CARLA’s implementation of FACE requires computing an adjacency matrix given the
instances in the training set. The procedure is quite expensive since it requires O(n2) memory, where n is
the number of instances. Thus, at inference time, we sample only a fraction of the original dataset. In both
Adult and GiveMeCredit, we pick only 10% of the total instances. We set the number of neighbours, k, to
50 and the distance threshold to ϵ = 1.0 for both datasets.

B Weighted-FARE (W-FARE)

FARE is user-agnostic since it is trained by assuming a shared w for all instances. Moreover, its reward
function optimizes only for the length of the intervention, without explicating the cost C(I | w). In our
experiments, we train FARE with EP (w)[w]. Thus, we push FARE to learn a general policy which works best in
the average case, rather than for a specific user. To overcome this limitation, W-FARE proposes a new reward
function which optimizes for the optimal intervention and tailors its answers to a given set of preferences w.
The new reward is computed as

r =
{

γ|I|+C(I|w) · σ
(

C(IEP (w)[w] | w)− C(I | w)
)

h(s(0)) ̸= h(I(s(0)))
−1 otherwise

(15)

where σ(x) = 1
1+exp(−xη) and η = 0.01 and γ = 0.97. The first term γ|I|+C(I|w) optimizes for short and

cheap interventions, while the second term σ(C(IEP (w)[w] | w) − C(I | w)) encourages W-FARE to provide
personalized recourse options, by generating sequences which have lower costs than the intervention found
by assuming the expected value EP (w)[w]. We also set the L(s(t), a′) term of the MCTS’s P-UCT criterion to
cact_cost · γ|I|+C(I|w) · σ(C(IEP (w)[w] | w)− C(I | w)) to help the model converge.

In both RL and FARE, the user preferences are not visible in the state s. Given a user state s(t), W-FARE adds
the cost of every valid action a ∈ A as an additional feature. Since an action a = (f, x) is a combination
of a function f and an argument x, we combine actions relating to the same function into a single feature,
averaging their cost over the set of argument values. This simplification allows adding | F | additional features
to the user state, where F is the set of all possible functions. More formally, the user’s state s′ becomes

s′ = s ◦
{

1
|Xf |

∑
x∈Xf

C((f, x), s | w)
}

f∈F
(16)

where Xf is the set of all the possible arguments for function f . We also considered adding directly the
weights w, but we discovered that such representation makes it harder to learn an optimal policy. Ultimately,
we train W-FARE by assigning to each user in the training set a dummy weight vector sampled from the prior
w ∼ P (w).

C Evaluating PEAR on shallow classifiers

We evaluated the performances of PEAR also by using non-neural machine learning models. Namely, we
trained a logistic regression and a tree-based classifier. We performed hyperparameter optimization using grid

22

Published in Transactions on Machine Learning Research (01/2024)

Table 4: Performance of all competitors averaged over 10 runs. A ‘-’ indicates that the method did not
find any successful intervention for any user. PEARNL and PEARL indicate PEAR associated with the noiseless
and logistic response model, respectively. Please note that while some competitors can sometimes achieve a
slightly lower cost compared to PEAR, they suffer from much worse validity.

Logistic Regression

Adult GiveMeSomeCreditUsers Corruption Validity Cost Length Validity Cost Length
FARE 0.97 ± 0.16 266.48 ± 166.07 3.44 ± 0.87 0.89 ± 0.18 156.40 ± 88.92 3.15 ± 0.92
EFARE 0.79 ± 0.35 296.51 ± 182.87 3.59 ± 0.98 0.72 ± 0.34 161.22 ± 90.93 3.18 ± 0.95

RL 0.78 ± 0.37 268.07 ± 170.85 3.43 ± 0.94 0.15 ± 0.36 58.43 ± 8.93 2.00 ± 0.00
CSCF 0.73 ± 0.26 167.41 ± 94.55 2.81 ± 0.44 0.61 ± 0.39 109.48 ± 113.21 2.54 ± 1.04
MCTS 0.45 ± 0.44 435.23 ± 206.31 4.55 ± 1.17 0.72 ± 0.41 214.38 ± 109.90 4.02 ± 1.22
FACE 0.21 ± 0.20 419.92 ± 97.07 3.92 ± 0.45 0.37 ± 0.36 319.30 ± 48.95 5.79 ± 0.49

PEARNL (ours) 0.99 ± 0.09 146.28 ± 64.08 2.96 ± 0.31 0.95 ± 0.07 90.07 ± 22.64 2.50 ± 0.25

All

PEARL (ours) 0.99 ± 0.09 154.29 ± 66.55 2.98 ± 0.38 0.95 ± 0.08 90.88 ± 28.86 2.49 ± 0.28
FARE 0.90 ± 0.28 471.54 ± 167.12 4.83 ± 0.97 0.46 ± 0.32 332.35 ± 81.30 5.02 ± 0.75
EFARE 0.59 ± 0.45 484.60 ± 171.43 4.84 ± 0.96 0.25 ± 0.36 346.12 ± 92.08 5.16 ± 0.82

RL 0.56 ± 0.47 466.73 ± 175.00 4.74 ± 1.04 0.00 ± 0.05 83.53 ± 0.00 2.00 ± 0.00
CSCF 0.22 ± 0.34 395.89 ± 124.63 4.20 ± 0.67 0.12 ± 0.30 190.70 ± 110.23 3.40 ± 0.94
MCTS 0.20 ± 0.38 583.91 ± 119.72 5.56 ± 0.59 0.40 ± 0.43 348.86 ± 94.76 5.36 ± 0.94
FACE 0.02 ± 0.10 598.63 ± 11.96 4.88 ± 0.15 0.29 ± 0.36 448.70 ± 39.45 6.96 ± 0.49

PEARNL (ours) 0.95 ± 0.16 320.97 ± 89.93 4.23 ± 0.36 0.73 ± 0.16 259.74 ± 45.29 4.28 ± 0.46

Hard

PEARL (ours) 0.96 ± 0.15 329.40 ± 93.83 4.27 ± 0.42 0.74 ± 0.17 261.38 ± 45.67 4.28 ± 0.47

Decision Tree

Adult GiveMeSomeCreditUsers Corruption Validity Cost Length Validity Cost Length
FARE 0.94 ± 0.15 142.19 ± 80.14 2.33 ± 0.39 0.67 ± 0.40 129.17 ± 148.29 2.70 ± 1.18
EFARE 0.71 ± 0.22 261.22 ± 188.57 3.18 ± 0.98 0.81 ± 0.31 213.55 ± 105.56 3.93 ± 1.09

RL 0.70 ± 0.31 288.06 ± 198.03 3.37 ± 1.13 0.64 ± 0.39 235.94 ± 109.32 4.14 ± 1.16
CSCF 0.55 ± 0.31 294.45 ± 200.01 3.43 ± 1.07 0.07 ± 0.25 96.50 ± 105.43 2.65 ± 0.81
MCTS 0.47 ± 0.46 452.30 ± 225.37 4.50 ± 1.31 0.73 ± 0.42 229.19 ± 122.03 4.13 ± 1.32
FACE 0.23 ± 0.25 450.83 ± 112.93 4.05 ± 0.57 0.59 ± 0.39 328.81 ± 55.37 5.72 ± 0.58

PEARNL (ours) 0.88 ± 0.14 169.03 ± 64.91 2.64 ± 0.36 0.95 ± 0.11 113.21 ± 29.33 2.70 ± 0.28

All

PEARL (ours) 0.88 ± 0.13 168.41 ± 57.40 2.65 ± 0.38 0.95 ± 0.11 113.47 ± 31.94 2.69 ± 0.31
FARE 0.92 ± 0.14 117.19 ± 54.11 2.32 ± 0.34 0.44 ± 0.43 171.40 ± 153.66 3.09 ± 1.27
EFARE 0.80 ± 0.18 226.16 ± 191.83 3.12 ± 1.05 0.56 ± 0.39 270.40 ± 126.42 4.44 ± 1.16

RL 0.76 ± 0.24 233.65 ± 197.26 3.19 ± 1.06 0.35 ± 0.41 318.28 ± 132.66 4.81 ± 1.13
CSCF 0.62 ± 0.29 229.10 ± 198.01 3.07 ± 1.04 0.02 ± 0.15 129.69 ± 23.40 2.68 ± 0.45
MCTS 0.44 ± 0.46 424.77 ± 228.23 4.52 ± 1.31 0.57 ± 0.45 300.49 ± 134.82 4.77 ± 1.27
FACE 0.08 ± 0.20 463.89 ± 86.34 4.36 ± 0.51 0.49 ± 0.41 457.94 ± 57.34 6.65 ± 0.58

PEARNL (ours) 0.84 ± 0.12 123.20 ± 44.21 2.50 ± 0.30 0.83 ± 0.21 174.23 ± 41.69 3.44 ± 0.40

Hard

PEARL (ours) 0.84 ± 0.12 124.37 ± 50.78 2.50 ± 0.33 0.84 ± 0.20 175.30 ± 42.79 3.47 ± 0.44

23

Published in Transactions on Machine Learning Research (01/2024)

Figure 5: The W-EFARE method. Given (s′, w), we traverse the graph (green path) using the decision tree
(orange components) to choose the next action (f, x)(t) from the available transitions. When we reach the
STOP node, we return the found intervention I∗. On the right, we have a generated intervention achieving
recourse for the GiveMeSomeCredit dataset. On the top-right, we have the Boolean rule extracted from the
decision tree motivating the first recommended action ReduceOpenCreditLines. As we can see, W-EFARE
can generate rules that also depend on the cost function C, achieving the desired user awareness.

search e.g., the splitting criterion (decision tree) and strength for the regularizer (logistic model). We then
replicated the experiments described in Section 5 following the same protocol. In the case of the decision
tree, the score of the classifier h(x) is represented by the fraction of the examples of the same class in a leaf.
Table 4 shows the evaluation results. PEAR tends to outperform the competitors in terms of cost and validity
in 6 out of 6 (GiveMeSomeCredit) and 4 out of 6 (Adult) experiments. The only exception is decision trees
on Adult, where PEAR is the runner-up behind CSCF, and still outperforms all other competitors.

D Explaining Recommended Interventions with XPEAR

PEAR asks the users to choose the best option from a small set of interventions. The task of picking the
best intervention requires cognitive effort since the user must understand all the recommended sequences of
actions. This can be problematic if the user does not comprehend the reason behind the recommendations,
undermining the quality of the feedback they provide and their overall trust in the system. To overcome this
problem, we additionally developed a variant of PEAR that can complement interventions with action-specific
explanations.

As detailed in Appendix A.3, EFARE (De Toni et al., 2023) is a deterministic user-agnostic model for generating
recourse by providing Boolean explanations for each action in the intervention. The procedure can be adapted
to account for user-specific costs. The resulting model, which we call W-EFARE, is a user-aware version of
EFARE that can provide personalized explanations complementing the interventions. Fig. 5 shows a graphical
illustration of how W-EFARE works in practice. We use this method to develop XPEAR, an explainable version
of PEAR, which uses W-EFARE to generate both interventions and explanations which can be shown to the user
in the choice set O.

Table 5 shows the evaluation results for XPEAR. We compare it against PEAR, FARE and EFARE since they share
similar characteristics and assumptions. For the Adult dataset, XPEAR provides cheaper recourse options than
the competitors (FARE and EFARE) by keeping a comparable or better validity. The behaviour is consistent for
both All and Hard users. For the GiveMeSomeCredit dataset, XPEAR generates sequences with a better or
similar validity and cost than the competitors, although the effect is diminished. In both datasets, XPEAR has
higher validity than its deterministic counterpart EFARE. Overall, PEAR maintains the upper hand. However,
it is worth noticing that XPEAR provides additional feedback to the users, which might be a valuable addition
during the elicitation process.

24

Published in Transactions on Machine Learning Research (01/2024)

Table 5: Performance of XPEAR averaged over 10 runs. XPEARNL and XPEARL indicate XPEAR associated with
the noiseless and logistic response model, respectively. The best results are boldfaced.

Adult GiveMeSomeCredit
Users Corruption Validity Cost Length Validity Cost Length

FARE 0.90 ± 0.27 285.63 ± 195.68 3.45 ± 1.19 0.86 ± 0.23 161.77 ± 107.42 3.27 ± 1.13
EFARE 0.76 ± 0.39 306.11 ± 199.02 3.54 ± 1.25 0.67 ± 0.38 155.92 ± 109.19 3.18 ± 1.18

PEARNL 1.00 ± 0.03 142.23 ± 61.75 2.84 ± 0.59 0.89 ± 0.00 96.04 ± 31.96 2.79 ± 0.42
PEARL 1.00 ± 0.04 146.54 ± 63.09 2.84 ± 0.56 0.89 ± 0.00 100.19 ± 29.53 2.85 ± 0.48

XPEARNL 0.97 ± 0.13 181.28 ± 96.83 2.97 ± 0.73 0.83 ± 0.18 125.00 ± 44.88 2.84 ± 0.40

All

XPEARL 0.97 ± 0.13 203.08 ± 112.29 2.99 ± 0.78 0.85 ± 0.19 128.01 ± 50.77 2.84 ± 0.46

FARE 0.71 ± 0.44 438.97 ± 188.50 4.54 ± 1.21 0.47 ± 0.37 319.46 ± 96.36 4.97 ± 0.70
EFARE 0.55 ± 0.48 454.05 ± 202.76 4.52 ± 1.25 0.22 ± 0.36 371.58 ± 82.18 5.31 ± 0.71

PEARNL 0.99 ± 0.08 296.37 ± 43.84 3.35 ± 0.55 0.58 ± 0.04 251.60 ± 51.16 4.59 ± 0.40
PEARL 0.99 ± 0.09 301.13 ± 52.61 3.34 ± 0.58 0.58 ± 0.02 262.23 ± 45.36 4.64 ± 0.36

XPEARNL 0.97 ± 0.13 326.68 ± 98.44 3.46 ± 0.66 0.44 ± 0.30 300.97 ± 62.14 4.81 ± 0.50

Hard

XPEARL 0.97 ± 0.13 334.58 ± 96.28 3.46 ± 0.66 0.45 ± 0.31 313.95 ± 66.94 4.88 ± 0.56

E Further evaluations of PEAR

We now present some graphs showing the relationship between the cost and length of the interventions (Fig. 6)
and between the black box model score and the validity/interventions length (Fig. 7).

In Fig. 6, we can see that the length of an intervention can be a bad proxy for the intervention’s difficulty.
Namely, there are long interventions which still retain a small cost or effort for the user. Thus, we need to
optimize for both the length and cost of interventions simultaneously. This notion is reflected in the reward
function of W-FARE as we mentioned in Appendix B.

In Fig. 7, we see how the black box prediction score is a good metric to understand how hard it is for a user
to obtain recourse. Namely, we suggest longer interventions for users obtaining a low score with respect to
the others. Moreover, all the methods tend to fail to provide recourse to users with low scores. Interestingly,
methods which learn a recourse policy rather than performing direct optimization (e.g., PEAR and FARE) are
more capable of providing recourse generalizing over the low-score users.

25

Published in Transactions on Machine Learning Research (01/2024)

(a) PEARNL and PEARL.

(b) All the methods.

Figure 6: Cost vs Intervention Length. (Top) In the Adult dataset, PEAR generates interventions whose
costs do not depend on their length (for both All and Hard users). The relationship is more pronounced on
the GiveMeSomeCredit dataset, but longer interventions (e.g., |I| = 5) still present high variability in the
costs. These results hint at the fact that length alone can be a bad proxy to measure the "effort" of a user.
(Bottom) We plot the same results for all the methods. The relationship between cost and length is well
represented here, and it aligns with the previous findings.

26

Published in Transactions on Machine Learning Research (01/2024)

(a) Model Score vs Length.

(b) Model Score vs Validity.

Figure 7: Model Score vs Length (Top). In the Adult dataset there is a clear correlation between the
score and the length of the interventions. Lower scores indicate harder individuals who need longer sequences
to obtain recourse. In the GiveMeSomeCredit case, we can still see the trend, even if FACE and MCTS seem
to be less susceptible. Model Score vs Length (Validity) (bottom). In the Adult experiment, all the
models have low validity only in the lower-scoring users. In the GiveMeSomeCredit experiments, PEAR and
FARE are the only two methods which have low validity only for the Hard users, while the others tend to fail
more often, irrespectively of the classifier score.

27

	Introduction
	Problem Statement
	Related work
	Personalized Algorithmic Recourse with PEAR
	The PEAR Algorithm
	Generating Personalized Interventions with W-FARE
	Computing Informative Choice Sets
	Benefits and limitations

	Experiments
	Broader Impact
	Conclusion
	Competitors and Experimental Settings
	Monte Carlo Tree Search (MCTS)
	Recourse Policy (RL)
	(Explainable) eFficient counterfActual REcourse (FARE and EFARE)
	Consequence-aware Sequential Counterfactuals (CSCF)
	Feasible and Actionable Counterfactual Explanations (FACE)

	Weighted-FARE (W-FARE)
	Evaluating PEAR on shallow classifiers
	Explaining Recommended Interventions with XPEAR
	Further evaluations of PEAR

