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In the study of crystal nucleation via computer simulations, hard spheres are arguably the most extensively
explored model system. Nonetheless, even in this simple model system, the complex thermodynamics of
crystal nuclei can sometimes give rise to counterintuitive results, such as the recent observation that the
pressure inside a critical nucleus is lower than that of the surrounding fluid, seemingly clashing with the
strictly positive Young–Laplace pressure we would expect in liquid droplets. Here, we re-derive many of the
founding equations associated with crystal nucleation, and use the hard-sphere model to demonstrate how
they give rise to this negative pressure difference. We exploit the fact that, in the canonical ensemble, a
nucleus can be in a (meta)stable equilibrium with the fluid, and measure the surface stress for both flat and
curved interfaces. Additionally, we explain the effect of defects on the chemical potential inside the crystal
nucleus. Lastly, we present a simple, fitted thermodynamic model to capture the properties of the nucleus,
including the work required to form critical nuclei.

I. INTRODUCTION

Hard spheres play a central role in our understand-
ing of phase behavior, having been the focus of stud-
ies ranging from phase boundaries1–3, to defects4–7, to
glasses8–11, to crystal nucleation12–15. In particular, the
nucleation behavior of hard spheres has drawn significant
attention (see, e.g., Refs. 16–21) due to the alarming
mismatch between computationally predicted nucleation
rates and experimental observations12,22. While various
solutions have been proposed to address this discrepancy
(see, e.g., Refs. 22–26), none have been decisively proven.
Over the last few years, a number of simulation stud-

ies have taken a new route to access properties associ-
ated with crystal nucleation (see, e.g., Refs. 27–32). In-
stead of focusing on the nucleation process, they have
focused on equilibrium crystal nuclei in (meta)stable co-
existence with their surrounding fluid. Specifically, in
the canonical ensemble, spherical crystal nuclei are sta-
ble for a range of system sizes and densities. By focus-
ing on equilibrium nuclei, equilibrium statistical physics
is guaranteed to hold, facilitating careful studies of the
equilibrium structure and thermodynamic properties of
crystal nuclei. A recent intriguing observation from one
of these studies32 on pseudo-hard spheres showed that,
counter-intuitively, the pressure inside the crystal nucleus
was lower than in the surrounding fluid. This clashes
with our usual expectation of a Young–Laplace pressure

a)Electronic mail: m.e.dejager@uu.nl

which raises the pressure inside a liquid droplet with re-
spect to the surrounding medium. Pseudo-hard spheres
are not the only case where such an atypical pressure dif-
ference was seen, it was also seen in, e.g., hard spheres
with short range-attractions33 and binary hard-sphere
mixtures34, and good theoretical foundations exist for
explaining it34,35. In particular, Mullins derived expres-
sions for the pressure inside a crystal nucleus that is
strained by its contact with the surrounding fluid35. Ad-
ditionally, Montero de Hijes et al. derived a variation of
the Young–Laplace equation linking the (positive) inter-
facial free energy to the difference in pressure between
the fluid and an equilibrium bulk crystal at the same
chemical potential32.

In this paper, we re-derive many of the founding equa-
tions associated with crystal nucleation34,35, and apply
them to one of the most fundamental model systems:
monodisperse hard spheres. This paper is organized as
follows: in section II we explore the pressure inside the
crystal nucleus and show the link between the pictures
of Mullins35 and Montero de Hijes et al.32, in section III
we measure the surface stress for both flat and curved in-
terfaces, in section IV we discuss the chemical potential
inside the crystal phase, in section V we propose a fitted
thermodynamic model for the properties of the spherical
fluid–crystal interface, and in section VI we determine
the work required to form critical nuclei.
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II. PRESSURE INSIDE A CRYSTAL NUCLEUS

An intriguing observation made in several recent
papers32,36 is that for pseudo-hard spheres, the pressure
inside the crystal nucleus is found to be lower than that of
the surrounding fluid. At first glance this contradicts our
intuitive understanding of the pressure difference arising
from the Young–Laplace equation which governs the be-
havior of a liquid droplet in a gas. For such a droplet,
the internal pressure is always higher than the external
one with the difference proportional to the interfacial free
energy. In the case of a crystal surrounded by a fluid,
however, the situation is more complex: the surface free
energy is not only dependent on the amount of surface,
but also on the lattice spacing of the crystal. As such,
the unexpectedly lower pressure of the crystal of pseudo-
hard spheres can be attributed to the properties of the
crystal–fluid interface.
In this section, we first revisit the theory of spheri-

cal crystal nuclei34,35, and then measure the pressure in-
side and outside of a spherical nucleus of perfectly hard
spheres. Throughout this work, we focus on large nuclei
for which the surface area is small relative to the volume.
In such cases, the bulk of the nucleus can be treated as a
homogeneous phase and any interfacial fluctuations can
be absorbed into the surface free energy.

A. Theory

1. Imposing thermodynamic equilibrium

Let us start by briefly revisiting the theory of fluid–
crystal phase coexistence34,35. Consider the case of a
crystal nucleus inside a parent fluid phase. We are inter-
ested in the case where the nucleus is in equilibrium with
the fluid, which can be either a stable, metastable, or
unstable equilibrium depending on the conditions of the
system. In the canonical ensemble, it is possible for a nu-
cleus to be in a (meta)stable equilibrium with the fluid,
a feature which we will exploit in our simulations later in
this work. In the grand-canonical and isobaric-isothermal
(Gibbs) ensembles, the same configuration would corre-
spond to a critical nucleus, i.e. a saddle-point in the
free-energy landscape15,37. The grand-canonical ensem-
ble is more convenient for the theoretical treatment of
systems with interfaces, and hence we will use it for the
following derivation. In the Supplementary Material we
include the same derivation in the canonical ensemble.
For simplicity, we consider a spherical crystal nucleus,

see Fig. 1. In practice, the location of an interface be-
tween two coexisting phases is not unambiguously de-
fined. Nonetheless, following Gibbs38, it is common to
define a dividing surface between the two phases, which
has zero thickness but may have a number of particles as-
sociated with it. Using this interface, the volume of the
system V can be divided perfectly into the fluid volume
and the crystal volume (V = VF + VX). For a spherical

R

v

FIG. 1. Schematic representation of a spherical crystal nu-
cleus inside a parent fluid phase. Here, R indicates the radius
of the dividing surface and v indicates the unit cell volume
of the crystal. Notice that the nucleus is depicted with a va-
cancy.

nucleus, the crystal volume is given by VX = 4πR3/3,
with R the radius of the nucleus for a given choice of
dividing surface. The total number of particles is then
given by

N = NF +NX +NS = ρFVF + ρXVX +NS , (1)

with ρF (X) the number density of the fluid (crystal) phase
far from the interface. Note that, depending on the choice
of dividing surface, the number of interfacial particles NS

can be positive, negative, or zero. The choice of dividing
surface that corresponds to NS = 0 is called the equimo-
lar surface.
In the grand-canonical ensemble, the total grand po-

tential Ωtot of this system is given by

Ωtot(µ, V, T ;VX , v) = ΩF (µ, VF , T ) + ΩX(µ, VX , T, v)

+ΩS(µ,R, T, v). (2)

Importantly, our grand potential Ωtot depends on five
variables. The first three are the thermodynamic vari-
ables defining the state of the system, namely the chem-
ical potential µ, volume V , and temperature T , which
define the state point at which we examine our system.
They can be regarded as external variables. Note that
by necessity, T and µ are homogeneous throughout the
system. The last two parameters determining Ωtot are in-
ternal variables of the system, namely the nucleus volume
VX and the crystal unit cell volume v, which are not fixed
externally. The presence of the variable v accounts for
the possibility of configurations where the crystal phase
is strained (i.e. compressed or stretched) with respect
to the equilibrium lattice spacing of a bulk crystal at
chemical potential µ. For simplicity, here we assume the
crystal to have cubic symmetry and only consider strains
that isotropically compress or decompress the crystal,
such that the unit cell retains its cubic shape. Note that
crystals with equal v but different chemical potential µ
in practice correspond to crystals with the same lattice
spacing, but different concentrations of vacancies and in-
terstitials. We will return to this topic in Section IV.
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Since we do not consider any variation in temperature
throughout this paper, we omit the T dependence in all
following equations.
For the critical nucleus, the fact that we are at a saddle

point in the free-energy landscape implies that the free-
energy landscape is locally flat with respect to the two
internal degrees of freedom. Specifically,(

∂Ωtot

∂VX

)
µ,V,v

= 0, (3)(
∂Ωtot

∂v

)
µ,V,VX

= 0, (4)

where the subscripts denote variables kept fixed during
the derivation. Notice that both these derivatives implic-
itly result in a change in the number of lattice sites M ,
as v = VX/M .
In practice, it is helpful to define the interfacial free

energy γ via

ΩS(µ,R, v) = γ(µ,R, v)A, (5)

with A = 4πR2 the surface area of the crystal nucleus.
The constraints from Eqs. 3 and 4 result in

PF + ωX +
2γ

R
+

(
∂γ

∂R

)
µ,v

= 0, (6)

ωX + PX − 3v

R

(
∂γ

∂v

)
µ,R

= 0. (7)

Here PF and PX are, respectively, the pressures of the
fluid and crystal phases far from the interface, and ωX =
ΩX/VX represents the cost of increasing the size of the
crystal nucleus while keeping the lattice spacing fixed.
We will discuss the distinction between PX and ωX in
detail in the next subsection. Subtracting these two equa-
tions yields

PX − PF =
2γ

R
+

(
∂γ

∂R

)
µ,v

+
3v

R

(
∂γ

∂v

)
µ,R

, (8)

=
2f

R
+

(
∂γ

∂R

)
µ,v

, (9)

where we have used the spherically averaged surface
stress f defined as

f ≡ γ +
3v

2

(
∂γ

∂v

)
µ,R

. (10)

Note that for a specific crystal facet, the surface stress is
a tensor fij given by the Shuttleworth equation39,40:

fij = γδij +
∂γ

∂ϵij
, (11)

where ϵij the strain tensor associated with tangential de-
formations of the interface. Since we have assumed here
that the interfacial free energy of our spherical nucleus

can be described by an averaged γ, the surface stress
similarly reduces to a single scalar quantity.
Importantly, the pressure difference cannot depend on

the choice of dividing surface, so we are free to choose
any dividing surface. A common and convenient choice
is the so-called surface of tension which satisfies:(

∂γ

∂R

)
µ,v

∣∣∣∣∣
R=R∗

= 0, (12)

where the asterisk indicates variables evaluated under the
condition that R is chosen as the surface of tension. This
results in the pressure difference

PX − PF =
2γ∗

R∗ +
3v

R∗

(
∂γ∗

∂v

)
µ,R

=
2f∗

R∗ . (13)

This equation tells us that the pressure inside the crys-
tal nucleus is determined by the surface stress associated
with the interface between the two phases. The two terms
in the surface stress f arise from the two effects that com-
pressing the crystal nucleus has on the total surface free
energy ΩS . First, similar to the gas–liquid case, com-
pressing the nucleus results in a smaller surface area, re-
ducing the interfacial free energy. Second, compressing a
crystal nucleus changes its lattice spacing, which in turn
may affect the interfacial free energy γ. Note that the lat-
ter effect can in principle be positive or negative. For the
simpler gas–liquid case, the latter term—and the deriva-
tive (∂γ∗/∂v)µ,R in particular—is always zero because
the density of the liquid droplet cannot change when µ
is kept fixed. Consequently the standard Young–Laplace
equation is recovered: Pliquid − Pgas = 2γ∗/R∗.

2. Grand potential density ωX versus the pressure PX for
a crystal

An important factor in the distinction between a fluid
and a crystal is the relationship between the pressure
and the grand potential density. For a fluid, in the grand-
canonical ensemble, we can write the grand potential sim-
ply as ΩF (µ, VF ), and the pressure can be obtained by
taking the partial derivative with respect to VF , while
keeping µ constant:

PF = −
(
∂ΩF

∂VF

)
µ

. (14)

Moreover, for any sufficiently large homogeneous sys-
tem, we know that the grand potential is extensive mean-
ing that we can write

ΩF (µ, VF ) = VFωF (µ), (15)

where we have introduced the grand potential density ωF

of the fluid. Combining Eqs. 14 and 15, we trivially find:

ΩF = −PFVF . (16)
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For a crystal, which can be under strain, the situa-
tion becomes more complicated. In the case where the
only allowed strain is isotropic (as we assume in this pa-
per), the grand potential of the crystal can be written
as ΩX(µ, VX , v), and is hence dependent on the unit cell
volume v = VX/M , with M the number of lattice sites.
Along the same lines as for the fluid, we again can write
the pressure as

PX = −
(
∂ΩX

∂VX

)
µ,M

. (17)

Note that here we additionally keep the number of lattice
sites M fixed. This is the pressure one would measure
in standard equation-of-state calculations via computer
simulations of bulk crystals.
Interestingly, for the crystal, there is another derivative

we could take which looks very strongly related. In par-
ticular, we could take the derivative of ΩX with respect
to the volume while keeping the lattice spacing fixed:
(∂ΩX/∂VX)µ,v. Note that while this change may look
very small, the physics of this variation is quite different
from the one in Eq. 17. In particular, while previously
we were deforming the crystal during our compression
or extension of the system, we now are simply changing
the amount of crystal in our system, scaling the number
of lattice sites, volume, and particles all proportionally
to each other. For this transformation, we once again
recover extensivity for a large enough system. In other
words:

ΩX(µ, VX , v) = VXωX(µ, v). (18)

From this we obtain:(
∂ΩX

∂VX

)
µ,v

= ωX(µ, v). (19)

However, given the differences between the derivatives
in Eqs. 17 and 19, this means that ΩX ̸= −PXVX in
general.
To see the relationship between PX and ωX , we simply

use the chain rule:

PX = −
(
∂ΩX

∂VX

)
µ,M

(20)

= −
(
∂ΩX

∂VX

)
µ,v

−
(
∂ΩX

∂v

)
µ,VX

(
∂v

∂VX

)
µ,M

(21)

= −ωX(µ, v)−
(
∂ΩX

∂v

)
µ,VX

1

M
. (22)

In the special case of an equilibrium crystal, where the
lattice spacing v has been optimized to correspond to
the minimum in the free energy ΩX , the last term in this
expression vanishes. Hence, P eq

X = −ωX , and we once
again recover ΩX = −P eq

X VX .
However, if the crystal is under any strain, then by def-

inition the derivative in the second term in Eq. 22 will

be non-zero, and hence ωX ̸= −PX (and ΩX ̸= −PXVX)
in general. Since our nucleus is under strain due to the
presence of an interface, ωX cannot be trivially identi-
fied with the mechanical pressure in the interior of the
nucleus. Instead, it is a grand potential density, which
we can regard as a perturbation of the grand potential
of an unstrained crystal at the same chemical potential.
To this end, we make the approximation that the crystal
phase inside the nucleus is not strongly distorted with
respect to its equilibrium lattice spacing veq(µ), and ex-
pand around equilibrium leading to:

ωX(µ, v) = ωX(µ, veq) +

(
∂ωX

∂v

)
µ

∣∣∣∣∣
v=veq

(v − veq)

+O((v − veq)2) (23)

= −P eq
X (µ) +O((v − veq)2). (24)

Here, we have used the fact that in equilibrium, the grand
potential is minimized with respect to v, and equal to
ΩX = −P eq

X (µ)VX . In other words, to linear order in the
strain on the crystal, ωX is given by (minus) the pres-
sure of the unstrained equilibrium crystal at the chemi-
cal potential of the fluid. This quantity P eq

X corresponds
exactly to what is referred to as the thermodynamical
pressure in Ref. 32. Note, however, that P eq

X is not a
quantity that can be directly measured.
Combining Eq. 24 with Eqs. 6 and 7, we get the

relation

P eq
X (µ)− PF =

2γ

R
+

(
∂γ

∂R

)
µ,v

. (25)

Note that at the surface of tension, the last term in Eq.
25 can again be eliminated:

P eq
X (µ)− PF =

2γ∗

R∗ . (26)

This recovers the Young–Laplace-like equation presented
in Ref. 32, where the authors used a framework which
uses as reference for the crystal phase inside the nucleus
a bulk equilibrium crystal phase with the same chemi-
cal potential as the fluid. In contrast, in this work we
consider the actual crystal phase inside the nucleus.
In the remainder of this section, we examine the pres-

sure difference directly in simulations of equilibrium crys-
tal nuclei of hard spheres.

B. Methods

In order to examine stable configurations containing a
spherical nucleus, we simulate our systems in the NV T
ensemble. In this ensemble, the free-energy landscape
can exhibit a local minimum corresponding to a spher-
ical nucleus, as sketched in Fig. 2b. This free-energy
minimum corresponds (via a Legendre transform) to a
saddle point (i.e. a critical nucleus) in the free-energy
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FIG. 2. a) Snapshot of nucleus A after the overlaps are removed. Particles classified as crystal are depicted in red, whereas
particles classified as fluid are depicted in blue and at a quarter of their actual size to make the crystal nucleus visible. b)
Sketch of the Helmholtz free energy of the NV T ensemble and the Gibbs free energy of the NPT ensemble as a function of
nucleus size. Note that the stable nucleus in the NV T ensemble corresponds to a critical nucleus in the NPT ensemble. For the
µV T ensemble, the free-energy difference is the same as in the NPT ensemble (not shown). c) Nucleus size during an EDMD
simulation in the NV T ensemble of nucleus A at three different global densities. d) Nucleus size during 30 MC simulations
in the NPT ensemble, all started from an equilibrated configuration of nucleus A (ρglobalσ

3 = 0.9691, βPglobalσ
3 = 12.5945).

Note that, in terms of long-time diffusion time of the fluid particles, the NV T EDMD simulations of c) ran approximately 50
times longer than the NPT MC simulations of d).

landscape in both the NPT and µV T ensembles29,41–43

and is the saddle point discussed in the Theory sec-
tion above. We use event-driven molecular dynamics
(EDMD) simulations44,45 to simulate systems of perfectly
hard spheres with diameter σ and mass m. We do not
make use of a thermostat, and hence the total energy of
the system (which consists only of the kinetic energy) is
fixed. This in turn also fixes the temperature T . The

time unit of our simulations is given by τ =
√
βmσ2,

where β = 1/kBT , with kB the Boltzmann constant.

As initial configurations for our system, we use two dif-
ferent approaches. First, we use configurations from the
study in Refs. 31 and 32. These are equilibrated nuclei
of pseudo-hard spheres (PHS), i.e. spheres interacting
via a nearly-hard pair potential46. Specifically, we make
use of the configurations labeled IV and V in Refs. 31
and 32, which we here label A and B, respectively. We
turn these configurations into pure hard-sphere configu-
rations by replacing the particles with hard spheres with
a diameter slightly smaller than σ, such that there are no
overlaps, and then rapidly growing these particles back
to the full diameter σ using the implementation of the
Lubachevsky-Stillinger approach47 of Ref. 45. Note that
these growth simulations are extremely short (taking less
than 0.05τ), such that the particles do not rearrange sig-
nificantly and the overall size of the nucleus does not
change significantly during this step. As a second source
of initial configurations we generate new coexisting states
by initializing systems of different numbers of particles N
and volumes V in a fully crystalline state, surrounded by
a thin layer of empty space on all sides. After equili-
bration, this results in a spherical nucleus whose size is

determined by the initial N and V . Overall, this results
in a set of initial configurations (labeled C throughout
this paper) with sizes spanning from N = 2 ·104 to 3 ·105
particles, and with nuclei typically covering on the order
of 15% of the box volume.
In the EDMD simulations, the global pressure48 can

be easily calculated from the momentum transfer during
collisions49, i.e.

βPkl/ρ = 1 +

∑
collisions Π

kl
ij

N∆t
, (27)

where Pkl indicates the kl-component of the pressure ten-
sor, ρ = N/V is the number density,

∑
collisions indicates

the sum over all collisions during a time interval ∆t, and
Πkl

ij indicates kl-component of the momentum transfer
during a collision between particles i and j. For monodis-
perse hard spheres, Πkl

ij = −mvkijr
l
ij . Here rlij indicates

the l-th component of the center-to-center distance vector
rij = rj − ri at collision, and vkij indicates the k-th com-
ponent of vij = vj−vi, with vi(j) the velocity of particle
i (j) before collision. Note that in (hydrostatic) equilib-
rium the pressure tensor will average to Pij = P δij , with
P the total pressure and δij the Kronecker delta. Con-
sequently, P is obtained by taking one-third of the trace
of the pressure tensor.
In addition to the global pressure, we are also inter-

ested in measuring the pressure profile as a function of
the radial distance to the center of the nucleus. To this
end, we divide the system into spherical shells around
the center-of-mass of the nucleus, and keep track of the
momentum transfer inside each shell, as well as the local
density. For the radial profile of the total pressure, one
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can make the reasonable approximation that, for each
collision, half of the momentum transfer is added to the
shell in which ri lies and half to the shell in which rj
lies. This approximation, however, is not valid for the
components of the momentum transfer normal and tan-
gential to the crystal–fluid interface (we have need for
them in Section III). Hence, to obtain the total, nor-
mal, and tangential pressure profiles, we instead use the
method described in Refs. 50 and 51. In order to ex-
plain this method, consider a collision between particles
i and j and define the straight path from ri to rj as
ℓ(λ) = ri + λrij with 0 ≤ λ ≤ 1. The method then as-
signs a fraction of the momentum transferred during this
collision to each of the shells traversed by ℓ based on the
part of ℓ inside the shell. We indicate the part of ℓ inside
a certain shell by ℓa ≡ ℓ(λa) and ℓb ≡ ℓ(λb), which both
mark either an intersection with the shell boundary or a
terminal point of ℓ in the shell (i.e. λa = 0 or λb = 1).
The total, normal, and tangential contributions of the
momentum transfer of the collision to that shell are then
given by

[Πij ]
b
a = −(vij · rij)

αb − αa

3|rij |2
, (28)[

Π⊥
ij

]b
a
= −(vij · rij)

αb − αa

|rij |2
− [Gij ]

b
a , (29)[

Π
∥
ij

]b
a
=

1

2
[Gij ]

b
a , (30)

where

[Gij ]
b
a =

−(vij · rij)|ω|
|rij |2

[
arctan

αb

|ω|
− arctan

αa

|ω|

]
+

−(vij × rij) · ω
|rij |2

ln
|ℓb|
|ℓa|

. (31)

Here, we introduced the variables ω = rij×ri and α(λ) =
ri ·ℓ(λ), and we defined αa ≡ α(λa) and αb ≡ α(λb). The
list of values for αa(b) and |ℓa(b)| for each collision is easy
to compute (see Ref. 50). Note that the normal and
tangential pressure profiles can also be obtained in the
post analysis from the radial profile of the total pressure,
see Supplementary Material.
In order to keep track of the size and center of mass

of the nucleus during our simulations, we classify each
particle in the system as either fluid or crystal using the
6-fold Ten Wolde bonds52

d6(i, j) =

∑
m q6m(i)q†6m(j)√

(
∑

m |q6m(i)|2) (
∑

m |q6m(j)|2)
, (32)

where † indicates the complex conjugate,
∑

m indicates
the sum over m ∈ [−6, 6], and q6m are Steinhardt’s 6-fold
bond-orientational order parameters53. Particle i is clas-
sified as crystal if it has 9 or more neighboring particles
j with which it has a crystal-like bond, i.e. d6(i, j) > 0.7.
The neighbors of particle i are defined as all particles j
with |rij | < 1.45σ, which, for all systems studied, roughly
corresponds to the first minimum of the radial distribu-
tion function.
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FIG. 3. a) The radial density profile for nucleus A (closed
markers) and nucleus B (open markers) for a few different
global densities. For clarity, all profiles are displayed with a
bin width of 0.8σ and the dashed lines are guides to the eye.
b) The radial pressure profile for nucleus A at ρglobalσ

3 =
0.9691. The dashed lines indicate the average pressures in
the “bulk” crystal and fluid phases.

C. Results

We begin our investigation by equilibrating the initial
configurations of nuclei. A sample initial configuration
is shown in Fig. 2a. The nuclei were equilibrated for
5·104τ . As the coexistence region of pseudo-hard spheres
is slightly different than that of hard spheres54, simulat-
ing the nuclei from sets A and B at their original global
density resulted in a noticeable increase of the nucleus
size, with nucleus B even becoming system spanning. To
address this, we equilibrate these nuclei for a small range
of global densities, slightly lower than that of the original
pseudo-hard-sphere configurations. Figure 2c shows the
size of the crystal nucleus during this equilibration run
for nucleus A at three different global densities. One can
see that the nuclei equilibrate quickly.
To confirm that the equilibrated nuclei, which are sta-

ble in the NV T ensemble, are critical nuclei in the NPT
ensemble (see Fig. 2b), we take a few configurations and
start 30 Monte Carlo (MC) simulations in the NPT en-
semble from each configuration55. For the pressure in
these MC simulations, we use the average global pres-
sure measured during the EDMD simulation. To make
the sampling in the MC simulations more efficient we im-
plemented Almarza’s algorithm for the volume changes56.
We indeed observe that each nucleus melts or grows with
a roughly 50/50 probability, see Fig. 2d.
Next, switching back to the canonical ensemble, we

measure the radial density and pressure profiles around
the center of the nucleus. For this we take the equi-
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FIG. 4. Different thermodynamic properties of the crystal
nucleus and surrounding fluid for all investigated nuclei, all
as a function of the density of the fluid phase. a) The density
inside the crystal nucleus. b) The measured pressures (closed,
colored markers), as well as the pressures obtained from the
equation of states evaluated at the measured densities (black,
open markers). c) The pressure difference between the crystal
nucleus and the surrounding fluid. d) The equimolar radius
Re of the nucleus.

librated configurations of the EDMD simulations, and
start new EDMD simulations of 104τ in total. Since the
center of mass of the nucleus slowly drifts during the sim-
ulation, we update it each 0.5τ . During this update we
also measure the number of particles in each spherical
shell around the center of mass. We use a bin width of
0.1σ for the spherical shells. In Fig. 3, we show a se-
lection of the resulting density profiles, as well as a typ-
ical pressure profile. From the density profiles, one can
clearly see that the nucleus grows with increasing global
density, as was predicted for PHS in Ref. 36. Further-
more, looking at the pressure profile, we see that the pres-
sure both inside and outside of the nucleus reach a well-
defined value far away from the interface. For the fluid,
this pressure corresponds to the average global pressure
of the entire system, which is due to the mechanical equi-
librium condition32. Importantly, we find a lower pres-
sure inside the crystal nucleus than in the surrounding

fluid, consistent with what was observed in Ref. 32 for
pseudo-hard spheres.

From the plateau values of the density and pressure
profiles, we directly obtain the densities and pressures
of both phases. In Fig. 4a we plot the crystal den-
sity as a function of the density of the fluid phase.
Note that the density of both the fluid and the crys-
tal (Fig. 4a) are always significantly above the freez-
ing and melting densities, i.e. ρcoexF σ3 = 0.93918(1) and
ρcoexX σ3 = 1.0375(3)55,57,58. This is consistent with the
idea that these nuclei are critical, which can only occur
in supersaturated fluids.

In Figs. 4b-c, we explore the pressure difference be-
tween the two phases, and indeed find that for the wide
range of nucleus sizes studied, the pressure inside the nu-
cleus is always lower than that of the fluid. The absolute
pressure difference |PX − PF | gradually decreases with
decreasing ρF , consistent with the requirement that it
vanishes at the freezing density, where the two phases
should have equal pressures. To double-check our pres-
sure measurements, we additionally plot in Fig. 4b the
pressures as obtained from the hard-sphere equations of
state of both phases59,60, evaluated at the measured den-
sities (black open symbols), and find excellent agreement,
similar to what was seen for PHS32. Finally, in Fig. 4d we
show the equimolar radius Re of the nucleus, calculated
using Eq. 1 (with NS = 0). Clearly we obtain nuclei
spanning a wide range of sizes. Note, however, that all
of these simulations are still at relatively low supersatu-
ration. In fact, although the range of fluid pressures ob-
tained here (12.0 < βPFσ

3 < 12.9) is certainly above the
coexistence pressure βPcoexσ

3 = 11.5646(5)58, it is much
below the pressures where spontaneous nucleation can be
feasibly studied using brute-force simulations (typically
above pressures βPFσ

3 ≳ 1514,26,61). The smaller nuclei
at higher supersaturation are harder to stabilize in unbi-
ased NV T simulations. The free-energy well associated
with these nuclei becomes less deep for smaller system
sizes, making them more susceptible to escape via ther-
mal fluctuations. As a result, small nuclei either melt or
grow out, spanning the box.

We note that all nuclei investigated are nuclei of the
face-centered cubic (FCC) crystal. In the Supplementary
Material, we show that the thermodynamic properties of
nuclei of the hexagonal close-packed (HCP) crystal agree
with those of FCC nuclei.

From Eq. 13, we see that the lower pressure inside the
crystal phase should be linked to a negative surface stress
f∗ of the interface between the fluid and the crystal. In
particular, the negative pressure differences and nucleus
radii shown in Fig. 4c and 4d correspond to a surface
stress of approximately f∗ ≃ −0.7kBT/σ

2 (assuming for
the moment that the equimolar radius Re ≃ R∗). In
the next section, we examine the surface stress of hard
spheres in more detail.
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III. SURFACE STRESS OF A SPHERICAL NUCLEUS

In this section, we examine the surface stresses associ-
ated with a fluid–crystal interface in hard spheres in more
detail. We begin by revisiting the theory associated with
the surface stress for flat crystal–fluid interfaces, and then
extend this to spherical nuclei. Using our measurements
of the pressure profiles described in the previous section,
we then determine the surface stress for a spherical nu-
cleus of hard spheres as a function of the metastable fluid
density.

A. Theory

As a starting point, we consider a fluid–crystal coexis-
tence with a flat interface (i.e. in a slab geometry), in the
grand-canonical ensemble. Specifically, we consider a pe-
riodic simulation box elongated along the z-axis contain-
ing two interfaces perpendicular to the long axis of the
box. Note that for a monodisperse system in the grand-
canonical ensemble, such a configuration is metastable
and corresponds to a saddle point in the free energy.
In this geometry, the lattice spacing of the crystal is

imposed by the periodicity of the system along the x
and y axes of the box. Specifically, the lattice spacing
ax(y) = Lx(y)/Mx(y), where Mx(y) is the number of lat-
tice sites along the x(y)-direction, which we will keep
fixed in this entire derivation. Along the longer z-axis,
both the crystal lattice spacing and the number of crys-
talline layers can fluctuate. For such a system, the grand
potential can be written as

Ωtot(µ, V, Lx, Ly, Lz;VX , az) = ΩF (µ, VF )

+ΩX(µ, VX , az, Lx, Ly)

+2γ(µ, ax, ay)A. (33)

Here, ai is the lattice spacing of the crystal in the i-
direction, A is the surface area of one of the interfaces,
and the factor 2 arises from the presence of two inter-
faces. Note that for flat interfaces, the interfacial free
energy and surface stress are independent of the choice
of dividing surface.
Minimization of Ωtot with respect to VX and az gives(

∂Ωtot

∂VX

)
az

= P zz
F + ωX = 0, (34)(

∂Ωtot

∂az

)
VX

= −P zz
X − ωX = 0, (35)

which leads to

P zz
F = P zz

X . (36)

Here, P zz denotes the zz-component of the pressure ten-
sor P ij of a given phase, which can be anisotropic for
a crystal under strain or a system containing an inter-
face. Additionally, we note the pressure tensor inside the

fluid phase is necessarily isotropic (P zz
F = PF ), and that

under equilibrium coexistence conditions, the pressure
tensor inside the crystal phase must also be isotropic:
P xx
X = P yy

X = P zz
X = PX = PF (see e.g. Ref. 58). Hence,

the only anisotropic contribution to the global pressure
tensor of a system under equilibrium coexistence condi-
tions comes from the interface.
We can now consider how the free energy changes upon

applying an infinitesimal elongation of the system along
the x-axis, i.e. tangential to the interface. From the
definition of the pressure tensor, we can write(

∂Ωtot

∂Lx

)
µ,V,Ly,Lz

= −PxxLyLz. (37)

Using Eq. 33, we can also decompose this free-energy
change into contributions arising from the fluid, crystal,
and interface. For elongation along the x-axis, we obtain(

∂Ωtot

∂Lx

)
µ,V,Ly,Lz

= −VF

V
PFLyLz −

VX

V
PXLyLz

+2γLy + 2
∂γ

∂Lx
A

= −PFLyLz + 2Ly

(
γ +

∂γ

∂ϵxx

)
= −PzzLyLz + 2Lyfxx, (38)

where ϵxx is the applied strain on the interface along the
x-direction, and we used the Shuttleworth equation (Eq.
11) in the last step. Combining Eqs. 37 and 38, we
obtain:

fxx =
1

2
Lz(Pzz − Pxx). (39)

The analogous expression for fyy can be derived in the
same way. This provides us with a method to directly de-
termine the surface stress for a flat interface from direct
coexistence simulations. Note that f can be seen as a
tensor of elastic constants for the crystal–fluid interface,
and obeys the same symmetry considerations as the elas-
tic tensor of a two-dimensional solid. Hence, when the
crystal plane facing the fluid has square or hexagonal
symmetry, we expect that fxx = fyy.
It is important to note that, similar to the interfa-

cial free energy, the surface stress is expected to depend
on which crystal plane faces the fluid. In the case of a
spherical nucleus, the relevant values of γ and f corre-
spond to their spherically averaged values, taken over the
entire nucleus surface. In principle, one could estimate
the surface stress of a spherical nucleus by measuring it
for a number of different crystal planes and taking an
average (as has been done for γ, see e.g. Refs. 62 and
63). However, a more direct measure could be obtained
by instead extending the approach for flat interfaces to
spherical nuclei. To this end, we consider a system con-
taining a spherical nucleus in the grand-canonical ensem-
ble, and measure the normal and tangential components
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of the pressure as a function of the radial distance from
the center of the nucleus.
We would now like to deform the interface in a way

that stretches its surface area uniformly, while keeping
the spherical geometry and the radius of curvature of the
surface fixed. This is not physically possible in a spherical
nucleus, but we can imagine performing this deformation
only locally, on a narrow cone-shaped subvolume of the
system, with its tip located at the center of the nucleus,
and extending radially outward into the fluid phase up
to a maximum distance Rmax (see e.g. Ref. 64). We
now consider changing the volume of this cone by mod-
ifying only its opening angle θ, and examine the effect
on the grand potential. Looking at this deformation in
spherical coordinates, this moves the boundaries of the
cone-shaped region outward in the direction tangential
to the interface. The change in free energy due to this
deformation can be written in terms of the total pressure
exerted on the sides of the conical volume:

∂Ωtot

∂θ
= −2π sin θ

∫ Rmax

0

drr2P∥(r), (40)

where P∥(r) is the tangential pressure profile as a func-
tion of the distance to the center of the nucleus. This
can be measured directly in simulations similar to how
we measured the total pressure profile50,51, see Section
II B for the details.
Alternatively, by splitting the free energy up into con-

tributions from the fluid, crystal, and interface, we can
write the same derivative as

∂Ωtot

∂θ
=

(
∂ΩF

∂θ

)
+

(
∂ΩX

∂θ

)
+

(
∂γA

∂θ

)
(41)

=
2π sin θ

3

(
−PF (R

3
max −R3)− PXR3 + 3fR2

)
.

(42)

Combining the two expressions, we can measure f by
calculating:

f =

∫ Rmax

0

dr
r2

R2

[
Pstep(r)− P∥(r)

]
, (43)

where Pstep(r) is a step function based on our choice for
the radius of the dividing surface R (Pstep(r < R) = PX ,
Pstep(r > R) = PF ).

B. Results

We first measure the surface stress for planar fluid–
crystal interfaces using direct-coexistence simulations.
To set up an equilibrium coexistence between a fluid and
an unstrained crystal, we follow the approach of Ref. 58.
We perform EDMD simulations of hard spheres in an
elongated simulation box, where the initial configuration
is mostly filled with a perfect FCC crystal at a chosen
initial density ρinit. The global density of the simulation
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FIG. 5. a) Radial profile of the total pressure, normal pres-
sure, and tangential pressure for one of the largest nuclei in-
vestigated (ρFσ

3 = 0.94824). Note that P = (P⊥ + 2P∥)/3.
The dashed lines indicate the average pressures in the “bulk”
crystal and fluid phases. b) Surface stress as a function of
the density of the fluid phase for all investigated nuclei.

box ρ < ρinit is set by introducing a slab of empty space
in the simulation box, oriented parallel to the long axis
of the box. We fix this overall density to be inside the
fluid–crystal coexistence region (ρσ3 = 0.99), such that
during equilibration the crystal slab partially melts, re-
sulting in a system where the fluid and crystal phases
coexist with each filling roughly half of the simulation
box. The crystal is oriented such that either the (100)
plane or the (111) plane faces the fluid, with the config-
urations containing N = 14850 and N = 16133 particles,
respectively. In this geometry, the lattice spacing nor-
mal to the interface can relax and adapt to the pressure,
while the lattice spacing in the two tangential directions
is fixed by the periodic boundary conditions, and hence
by ρinit. After equilibration, we measure the pressure
tensor.
To find equilibrium coexistence conditions, we then

look for the initial density at which the crystal phase
is unstrained. This happens when the pressure in the z-
direction coincides with that of a bulk unstrained crystal
at the same density ρinit

58. For the coexistence satisfy-
ing this criterion, we obtain f using Eq. 39, making use
of the fact that for both the (100) and the (111) plane
fxx = fyy:

f =
1

2
Lz

(
Pzz −

Pxx + Pyy

2

)
. (44)

Note that for a planar interface, the interfacial free en-
ergy and surface stress are independent of the choice
of dividing surface. We obtain f = −1.0(1)kBT/σ

2

for the (111) plane and f = −0.24(4)kBT/σ
2 for the
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(100) plane. Given that the results are quite sensitive
to the accurate determination of the equilibrium coexis-
tence conditions, these values are in good agreement with
the ones reported by Davidchack and Laird in Ref. 65,
i.e. −0.71(13)kBT/σ

2 for (111) and −0.17(6)kBT/σ
2 for

(100). The negative values of f confirm that it is indeed
reasonable to expect that the spherically averaged f for a
spherical nucleus is negative as well, explaining the sign
of the pressure difference between the inside and outside
of the nucleus in the previous section.
To obtain a more direct estimate, we also measure

the spherically averaged surface stress using the simu-
lations of spherical nuclei discussed in the previous sec-
tions. Specifically, we measure the radial profiles of the
normal and tangential pressures for each nucleus. A typi-
cal example of these pressure profiles is shown in Fig. 5a.
Then, using Eq. 43 with the equimolar radius R = Re as
our dividing surface, we calculate f in for each nucleus.
Note that Re has the advantage that it can be directly
determined from the densities of the fluid phase, solid
phase, and global system, which are all known quantities
in each simulation. In Fig. 5b we plot the behavior of f
as a function of the density of the fluid phase. Within our
error bars, the surface stress is approximately constant,
around βfσ2 ≃ −0.7. This is in good agreement with our
estimate for f∗ based on the pressure difference in Sec-
tion II. Note that the fluctuations in P∥ shown in Fig. 5a
complicate the accurate determination of f . Moreover,
it should be kept in mind that our measurement of f re-
lies on the approximation that the interface is perfectly
spherical and stationary during our simulations. Fluc-
tuations in the nucleus shape will affect both the local
curvature and the position of the interface, which might
introduce systematic errors in the determination of f for
finite-sized clusters. Hence, the results in Fig. 5b should
be considered an estimate rather than an exact determi-
nation.
Note that, naively, one could also have obtained an ap-

proximation for f by treating the normal and tangential
pressure profiles as if they belonged to a planar inter-
face, ignoring the effects of curvature. In this planar
approximation, f could be obtained by integrating over
the difference between the normal and tangential pres-
sure profiles along the interface65. This approximation
results in values for f that differ at most ±0.03kBT/σ

2

with the values obtained via Eq. 43 for the nuclei inves-
tigated.

IV. CHEMICAL POTENTIAL OF THE CRYSTAL
PHASE AND THE INTERFACIAL FREE ENERGY

The systems that we explore in this paper are in equi-
librium. Hence, the chemical potential must be the same
(homogeneous) throughout the entire simulation box.
The chemical potential of the fluid is easy to determine
from its density profile: far away from the interface, the
fluid must simply be a bulk fluid and its chemical poten-
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FIG. 6. Chemical potential difference between a bulk equilib-
rium crystal at the same density as that of the crystal nucleus
and the chemical potential of the fluid for all investigated nu-
clei.

tial can be determined from the equation of state. For the
crystal phase, an additional complication arises. Because
the crystal is a solid, deforming it at its boundaries inher-
ently affects the lattice spacing deep inside the crystal.
In comparison to the fluid, the lattice spacing provides an
additional degree of freedom that can be tuned indepen-
dently from the chemical potential. This was included in
Eq. 2 by the additional dependence of ΩX on the unit cell
size v66. The actual lattice spacing of the crystal nucleus
is then set by a competition between the crystal phase
and the interface. The crystal phase inside the nucleus
favors a lattice spacing as close as possible to the bulk
equilibrium value at chemical potential µ. On the other
hand, because the surface stress is negative, the interfa-
cial free energy can be reduced by increasing the lattice
spacing, favoring larger lattice spacings. This effect is
particularly strong for small nuclei, where the surface-to-
volume ratio of the nucleus is high. As a result of this
strain, the crystal phase we observe in our simulations
does not correspond to a bulk equilibrium crystal phase
at the same density. Instead, it is a crystal under strain
due to the presence of the spherical interface. This crys-
tal necessarily has the same chemical potential as the
surrounding fluid, but is stretched out by this strain, re-
sulting in a lower density than a bulk crystal would have
at the same chemical potential.

A natural question is then: how does this strained crys-
tal differ from an equilibrium crystal at the same density?
In Fig. 6, we plot the difference between the chemical
potential of the fluid µ and that of an (unstrained) equi-
librium bulk crystal with the same density as the one
we measure inside the crystal nucleus (µeq

X (ρX)), as a
function of the fluid density. We clearly find a negative
apparent chemical potential difference, consistent with
the idea that the surface stress causes the crystal density
to be “too low” for its chemical potential. This demon-
strates that the crystal phase inside the nucleus must dif-
fer from an (unstrained) equilibrium crystal phase at the
same density. Leaving aside the possibility of anisotropic
deformations of shape of the unit cell, the most obvious
possible solution to this apparent paradox is the existence
of defects.
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FIG. 7. a) Helmholtz free energy of a hard-sphere crystal at
the melting density as a function of the vacancy concentra-
tion. b) The chemical potential of the crystal at the melt-
ing density as a function of the vacancy concentration. The
dashed line indicates the equilibrium chemical potential at
this density.

The primary effect of changing the chemical potential
of a crystal while keeping its lattice parameters fixed is
a change in the concentration of point defects inside the
crystal. In the case of monodisperse hard spheres, the
dominant point defects are vacancies, which in an equi-
librium near the melting point occur in a concentration
of approximately 10−4 defects per lattice site4,6,67. In
the following, we explore how such vacancies affect the
chemical potential of the crystal nucleus.

A. Theory and Results

Consider a crystal nucleus with fixed volume VX and
number of lattice sites M , while the number of particles
NX can be varied by exchanging particles with the sur-
rounding fluid phase. The crystal nucleus can then tune
its chemical potential by changing the defect concentra-
tion. Since for hard spheres, vacancies are much more
frequent than interstitials, we only consider the possi-
bility of vacancies. Assuming non-interacting vacancies,
which is reasonable at low vacancy concentrations, the
Helmholtz free energy of the crystal nucleus is given by55

FX(M,VX ;NX) =F df
X (M,VX) + (M −NX)fvac

+ Fconf(M,NX),
(45)

where the first term, F df
X , is the free energy of a defect-

free crystal, the second term is the free-energy cost asso-
ciated with creating M −NX vacancies at specific lattice
sites, and the last term is the configurational free energy
given by

Fconf(M,NX) = M [xvac log xvac

+(1− xvac) log(1− xvac)] ,
(46)

with xvac = (M − NX)/M the vacancy concentration.
Using that xvac = 1.10(2)·10−4 is the equilibrium concen-
tration of vacancies in a hard-sphere crystal at melting67,
we obtain fvac = − log xvac − µeq

X (ρX) = −6.956kBT .
Combining this with the known free-energy behavior of a
defect-free hard-sphere crystal, we plot in Fig. 7a the free
energy of a crystal as a function of defect concentration
at a fixed density equal to the melting density. Clearly,
for the hard-sphere crystal the defects have a negligible
effect on the free energy, hence

FX(ρX , xvac = 0) ≃ FX(ρX , xeq
vac), (47)

where FX = FX/NX , and xeq
vac is the equilibrium defect

concentration. Moreover, as the pressure is the derivative
of the free-energy with respect to the volume, it must
be similarly unaffected by defects: PX(ρX , xvac = 0) ≃
PX(ρX , xeq

vac). In Section II, we indeed observed that
the pressure inside the crystal nucleus agrees well with
the pressure obtained from the bulk equation of state
evaluated at the density of the crystal nucleus.

In contrast, the chemical potential of the crystal, which
is given by

µX =

(
∂FX

∂NX

)
M,VX

= −fvac − log xvac + log(1− xvac),

(48)
is greatly affected by the presence of defects. In Fig. 7b,
we plot µX as a function of xvac. If we compare this
to the chemical potential differences observed in Fig. 6
(which are on the order of 0.2kBT ), we see that only tiny
changes in defect concentration are required to change
the chemical potential of the crystal to match that of the
fluid. In practice, such small variations of the already
very low defect concentration would be essentially im-
possible to measure in our simulations. Hence, although
a shift in chemical potential on the order of 0.2kBT might
seem significant, in practice its effects can be readily ac-
counted for by nearly imperceptible changes to the defect
concentration.

When looking at Fig. 7b, it might seem puzzling at
first glance that the chemical potential diverges in the
limit of zero defects. This might appear to conflict with
our usual treatment of free energies of defect-free crys-
tals, where we typically calculate the “defect-free” chem-
ical potential via the relation µdf

X = FX + PX/ρX . This
is the chemical potential associated with a system where
the only way particles can be added or removed is by si-
multaneously adding or removing a lattice site from the
system. When vacancies are allowed, the system can also
change the number of particles by creating or annihilat-
ing a defect. In this picture, putting a defect-free crystal
in contact with a particle reservoir would indeed always
lead to a flow of particles out of the system, reflecting the
diverging chemical potential68. Importantly, the chemi-
cal potential at the equilibrium vacancy concentration is
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FIG. 8. Interfacial free energy as a function of the density of
the fluid phase for all investigated nuclei.

essentially identical to µdf , as

µeq
X (ρX) = FX(ρX ;xeq

vac) +
PX(ρX ;xeq

vac)

ρX
(49)

≃ FX(ρX ;xvac = 0) +
PX(ρX ;xvac = 0)

ρX
(50)

= µdf
X (ρX). (51)

Hence, we are justified in using the “defect-free” chemical
potential instead of the equilibrium one for the purpose
of e.g. determining phase boundaries.
We can relate the results in Fig. 6 on the behavior

of µeq
X (ρX) − µ to the properties of the interface by us-

ing again the knowledge that the Helmholtz free energy
and pressure of the crystal are only weakly affected by
vacancies. Specifically, using Eq. 49, we can write

µeq
X (ρX)− µ ≃ FX(ρX ;xeq

vac) +
PX(ρX ;xeq

vac)

ρX
− µ

=
ΩX

NX
+

PX

ρX
=

ωX + PX

ρX

=
2v

R
(f − γ), (52)

where in the last step we have used that for small defect
concentrations v = 1/ρX , as well as Eqs. 7 and 10. Given
that we already know f for our system, this provides us
with a way of calculating γ. Specifically,

γ ≃ f − R

2v
(µeq

X (ρX)− µ). (53)

To see how γ depends on the supersaturation of the
system, in Fig. 8 we plot γ as a function of the density
of the fluid. Despite the considerable scatter among data
points, in general, we observe a very weak increase in γ
with increasing fluid density (and thus decreasing nucleus
size). We note, however, that this determination of γ
relies on our earlier determination of f , which is likely to
introduce some inaccuracy as discussed in Section III.

V. THERMODYNAMIC MODEL OF THE SPHERICAL
CRYSTAL–FLUID INTERFACE

The wealth of data we have available here on large
equilibrated crystal nuclei allows us to take a closer look

at the behavior of γ both at coexistence and as a function
of the supersaturation. In this section we attempt to
use this wealth of data to determine γ as a function of
the chemical potential µ, the equimolar radius Re of the
cluster and the lattice spacing v in the crystal.

A. Theory and Results

As shown in Section II (Eqs. 2 and 5), the thermo-
dynamics of a system containing a critical nucleus are
completely described by the thermodynamics of the bulk
fluid (ΩF (µ, VF )), the bulk crystal (ΩX(µ, VX , v)), and
the interface (γ(µ, v,R)). In other words, if we have
expressions for all three of these free energies, we can
predict all thermodynamic properties of a system con-
taining a critical nucleus. In particular, Eqs. 6 and 7
can be solved to obtain e.g. the equimolar radius and
the crystal pressure, for any choice of the fluid chemical
potential µ.
For the hard-sphere system, we have excellent knowl-

edge of the thermodynamics of the fluid via its equilib-
rium equation of state. As a result, we can readily eval-
uate ΩF and its derivatives at any state point. Here,
we use the KLM equation of state of Ref. 59 for the
hard-sphere fluid.
For the crystal phase, the thermodynamics are more

complex. Although we have excellent knowledge of the
equation of state and free energy of a defect-free crystal,
we need to account for the effect of defects on ΩX as well.
We can address this by making the well-established as-
sumption that the density, pressure and Helmholtz free
energy F are essentially unaffected by defects in the crys-
tal (see Sec. IV). In this approximation, we can write:

ρX ≃ 1/v, (54)

PX ≃ P df
X (ρX), (55)

ωX =
ΩX

VX
≃

(
F df
X (ρX)− µN

) ρX
N

, (56)

where the superscript df refers to the properties of a bulk
defect-free crystal. Here, we use Speedy’s equation of
state for the hard-sphere crystal60 and use the excess
Helmholtz free energy from Ref. 57 as a reference point
for obtaining F df

X (ρX).
For the interface, we do not have a well-established

functional form for γ(µ, v,R). However, the wealth of
simulation data we have available on large equilibrated
crystal nuclei allows us to fit an approximate function
to γ. To this end, we make the following ansatz, based
on a second-order Taylor expansion around the infinite-
nucleus coexistence value γ0:

βγ(µ, v,Re)σ
2 = βγ0σ

2 + cv
v − vcoex

σ3

+cvv

(
v − vcoex

σ3

)2

+ cR
σ

Re
, (57)
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where γ0 and the constants c are unknown fit parameters.
Note that the use of the equimolar surface ensures that
the terms in the expansion scaling with |µ− µcoex| must
vanish to ensure(

∂γ

∂µ

)
v,R

= −NS

A
= 0. (58)

Given a trial set of fit parameters, this ansatz allows
us, for any fluid chemical potential µ, to determine the
equimolar radius Re and the pressure difference between
the fluid and crystal ∆P , using Eqs. 6 and 7. We can
compare these values to our measured equimolar radii
and pressure differences from Section II to optimize our
trial fit parameters. To this end, we use a least-squares
optimization, minimizing the relative squared prediction
error in Re and ∆P , summed over all investigated nu-
clei. Our resulting set of parameters results in the follow-
ing fit: γ0 = 0.5496kBT/σ

2, cv = −0.857, cvv = 3.078,
cR = 0.992. Note that the value we obtain for γ0 is in rea-
sonable agreement with past estimates of the spherically
averaged interfacial free energy62,63,69–72, which range
from 0.56kBT/σ

2 to 0.66kBT/σ
2.

Based on the fitted functional form of γ, together with
the thermodynamics of the bulk fluid and crystal, we can
then predict all other thermodynamic aspects of the nu-
cleus. In Fig. 9, we plot the equimolar radius, crystal
density, pressure difference, interfacial free energy, and
surface stress as a function of the fluid density, and com-
pare the results to our simulation data. We find good
agreement in all cases.
Note that we have tried several functional forms for

Eq. 57, by including higher-order terms in the Taylor
expansion. However, these did not lead to large changes
in our predictions. Hence, we here keep the lowest-order
expansion that leads to a good fit of all of our simula-
tion data. Note that since this is an expansion in the
limit of large nucleus sizes, our expression for γ is likely
not accurate for significantly smaller nuclei (i.e. higher
supersaturations) than the ones we used in our fitting
procedure. Nonetheless, our expression should provide a
convenient description of the interfacial thermodynamics
of sufficiently large nuclei.

VI. CLASSICAL NUCLEATION THEORY AND
FREE-ENERGY BARRIERS

A crucial quantity in the study of nucleation processes
is the height of the nucleation barrier, also known as the
nucleation work. This quantity represents the free-energy
cost of creating a critical nucleus out of the supersatu-
rated fluid. In this section, we first show that the familiar
expressions for the nucleation work from classical nucle-
ation theory still apply when taking into account strains
on the crystal up to linear order35. We then use sim-
ulations and the nucleation theorem29,73–75 to calculate
the nucleation work for critical nuclei at a range of su-
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FIG. 9. Different thermodynamic properties as a function of
the density of the fluid for all investigated nuclei. In a) the
equimolar radius, b) the density of the crystal nucleus, c) the
pressure difference between the crystal nucleus and surround-
ing fluid, d) the chemical potential difference between a bulk
equilibrium crystal at the same density as that of the crystal
nucleus and the chemical potential of the fluid, e) the inter-
facial free energy, and f) the surface stress. The data points
are the same results as in Figs. 4, 5b, 6, and 8, but the figures
now also include the result from the theoretical model with
the fitted functional form of γ (dashed lines). The black dots
indicate the values at the freezing density, i.e. in the limit of
an infinite nucleus.

persaturations, and finally use this data to improve the
thermodynamical model from Section V.
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A. Theory

The work required to create a crystal nucleus is given
by the difference between a system containing the nu-
cleus and system of pure fluid. In the grand-canonical
ensemble, the nucleation work can be written as

∆Ω = Ωtot(µ, V ;VX , v)− ΩF (µ, V ) (59)

= ΩF (µ, VF ) + ΩX(µ, VX , v)

+γ(µ,R, v)A− ΩF (µ, V )

= −PFVF + ωXVX + γA+ PFV

= γA+ (ωX + PF )VX . (60)

To connect to classical nucleation theory (CNT), we make
the reasonable approximation that the crystal phase in-
side the nucleus is not strongly distorted with respect to
its equilibrium lattice spacing veq(µ). Within this ap-
proximation, ωX is given by (minus) the pressure of the
bulk crystal at the chemical potential of the fluid, i.e.
ωX(µ, v) = −P eq

X (µ), as shown in Eq. 24. Using this, we
can rewrite Eq. 60 as one of the familiar CNT expressions

∆Ω ≃ γA−∆P (µ)VX , (61)

where ∆P (µ) is the pressure difference between the two
phases at equal chemical potential.
If we additionally assume that the crystal density ρX is

approximately constant in the pressure regime containing
PF , PX , and P eq

X (µ), we can write:

µX(PF ) ≃ µX(P eq
X (µ))− ∂µX

∂P

∣∣∣∣
PX

(P eq
X (µ)− PF )

= µ− 1

ρX
(P eq

X (µ)− PF ). (62)

Hence, we can substitute ∆P in Eq. 61 and obtain an-
other familiar expression from CNT:

∆Ω ≃ γA−∆µ(PF )NX , (63)

where ∆µ(PF ) is the chemical potential difference be-
tween the two phases at the fluid pressure.
If we now consider the derivative of the nucleation work

with respect to µ, then:(
∂∆Ω

∂µ

)
V

=

(
∂∆Ωtot

∂µ

)
V,VX ,v

−
(
∂ΩF

∂µ

)
V

= −N + ρFV ≡ −∆N, (64)

where in the first line we have used that the derivative
of the grand potential with respect to v and VX vanishes
at the saddle point. The quantity ∆N = N −ρFV is the
excess number of particles in the system with a nucleus,
in comparison to a pure fluid system under the same con-
ditions. Equation 64 is sometimes called the nucleation
theorem29,73–75. By integrating it, we can calculate the
work required to create a critical nucleus:

∆Ω(µ) = ∆Ω(µref) +

∫ µ

µref

dµ′∆N(µ′), (65)

provided we know ∆N(µ) as well as the nucleation work
∆Ω(µref) at a reference chemical potential µref .
Often with nucleation studies one works in the isobaric-

isothermal (Gibbs) ensemble. In that case the Gibbs free-
energy difference between the nucleating system and a
pure metastable fluid is given by a Legendre transform
of ∆Ω:76

∆G = Gtot(N,P ;VX , v)−GF (N,P ) (66)

= Ωtot(µ, V ;VX , v) +Nµ+ PV

−ΩF (µ, VF )−Nµ− PVF (67)

= Ωtot(µ, V ;VX , v) + PV

−ΩF (µ, V )− ΩF (µ, VF − V )− PVF (68)

= Ωtot(µ, V ;VX , v)− ΩF (µ, V )

+PV + PVF − PV − PVF (69)

= ∆Ω. (70)

Here, the pressure and chemical potential both corre-
spond to those of the parent fluid phase, and we used the
fact that for the pure fluid phase ΩF = −PV . Hence,
the nucleation work is the same in the grand-canonical
and isobaric-isothermal ensembles.

B. Methods

One way of obtaining ∆Ω (or equivalently ∆G) is to
directly use Eq. 60, using our knowledge of the thermo-
dynamics of the two phases and the fitted γ from Sec-
tion V to evaluate it numerically. As an extra check,
we can also obtain ∆Ω via Eq. 65, where we take
the reference point for the integration from past mea-
surements of the nucleation work via umbrella sampling
simulations14. To do this, however, we require knowl-
edge of ∆N(µ) over a large range of chemical potentials,
spanning from the relatively low supersaturations where
umbrella sampling data is available (βµ ≃ 19.6) to the
regime where we performed our simulations of stable nu-
clei (βµ ≲ 17.6). Filling in the gap between these limits
requires additional simulations at intermediate supersat-
urations, where keeping a finite nucleus stable for long
periods of time is not feasible.
To address this issue, we perform umbrella simulations

using a hybrid simulation approach: we perform short
simulation trajectories in the canonical ensemble using
our EDMD code, and either accept or reject the trajec-
tory based on a biasing potential Ubias, given by:

Ubias = κ (n− ntarget)
2
, (71)

where κ is a spring constant, n is the size of the nucleus
based on bond-orientational order parameters (see Sec-
tion II B), and ntarget is the target nucleus size. Each
simulation is initialized containing a spherical nucleus of
approximately the target size, and after equilibration we
measure the average size ⟨n⟩ reached by the system, as
well as the global pressure. Our goal is not to sample the
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entire nucleation barrier, but rather to find, for a given
system size, the global density ρ where a nucleus of size
ntarget is stable without biasing. Hence, for a series of
system sizes and choices of ntarget, we perform a series of
simulations with different global densities, and locate the
global density where ⟨n⟩ = ntarget. Under this condition,
the biasing potential is not exerting any effective force
on the system, indicating that the nucleus would be at a
saddle point in the free-energy landscape without the bi-
asing potential, and is therefore either a stable or critical
nucleus. In other words, the system is either at the max-
imum or minimum of the top plot in Fig. 2a. Note that
this approach is similar in spirit to the interface pinning
approach for flat interfaces77. The global pressure at this
density then corresponds to the pressure of a fluid which
can coexist with a nucleus of size ntarget.
We consider system sizes between N = 2916 and

32000, with ntarget for each system size corresponding
to αN , with α ∈ {0.04, 0.06, 0.08, 0.15}. As a spring con-
stant, we use βκ = 105/N . For each system size and
ntarget, we perform simulations for a range of densities
ρ, and measure both ntarget and P . After discarding
simulations where the nucleus melted or percolated the
simulation box, we fit ⟨n⟩ as a function of ρ, and find the
density ρunbiased where it equals ntarget. The associated
pressure P unbiased at this density is obtained by fitting
P (ρ) and evaluating it at ρunbiased. From P unbiased and
the fluid equation of state, we can then directly calculate
∆N :

∆N = N − ρF (P )V, (72)

where ρF (P ) is simply the inverse of the equilibrium fluid
equation of state. Additionally, from the equilibrium
fluid equation of state we also know the corresponding
chemical potential µ, this giving us a set of points trac-
ing out the desired function ∆N(µ).

C. Results

As a first step towards obtaining the nucleation work,
we measure ∆N(µ) in both our biased simulations and
from our previous nuclei. In Fig. 10, we show the results
for both simulations. All the data from different system
sizes and target nucleus sizes collapse onto a single line,
as expected. This allows us to fit ∆N using

log∆N =

8∑
i=0

ci
(µ− µcoex)i

, (73)

where the constants ci are the fit parameters. We then
integrate the fit to obtain the nucleation work (Eq. 65),
which is shown in Fig. 10b as a blue solid line. The
resulting nucleation barriers match closely those pre-
dicted for almost-hard spheres modeled via the Weeks-
Chandler-Andersen potential29. It is also possible to pre-
dict the nucleation work from the functional model for γ

a)
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Biased

16 17 18 19 20 21
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Integration ΔN
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0.945 0.950 0.955 0.960
0
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1000

1500

2000

ρFσ
3

β
Δ
Ω

●
● ●

1.00 1.02
0

30
60

FIG. 10. a) Excess number of particles as a function of the
chemical potential. Blue dots are the results of the unbiased
simulations (of nuclei C) of Section II. Red squares are data
from the biased simulations. The black line is a fit (Eq. 73)
to all data. b) Nucleation work as a function of the density
of the fluid. The blue solid line indicates the result from Eq.
65 and the dashed lines indicate the result from Eq. 60 using
the fitted functional form of γ. The black dashed line uses
the original fitted γ (as in Fig. 9), whereas the red longer-
dashed line uses a γ fitted with an additional loss term for
∆Ω. The inset shows the nucleation work (obtained via um-
brella sampling) for hard spheres at higher supersaturations
reported by Filion et al. in Ref. 14 (black points). The blue
line shows the results from Eq. 65, using the black point at
ρFσ

3 = 0.9952 as reference point.

predicted in Section V, and Eq. 60. The result is also
shown in Fig. 10b as the black dashed line. While the
prediction shows the correct trend, the nucleation work
predicted via this fit is approximately 40kBT off from the
one obtained via integration.
Given the excellent agreement with the thermody-

namic parameters in Fig. 9, it is natural to wonder if
the data we had contained sufficient information to fully
determine not only γ, but also its functional dependence
on R and v. To test this, we refit all of our data, but
now also including the new information on ∆Ω. Specif-
ically, we used a least squares optimization minimizing
the relatively squared prediction error in Re, ∆P , and
∆Ω. The resulting γ parameters are γ0 = 0.5645kBT/σ

2,
cv = −0.880, cvv = 2.190, and cR = 0.511. The
slightly higher value of γ0 is again consistent with past
measurements62,63,69–72 of this quantity (0.56kBT/σ

2 to
0.66kBT/σ

2). The new fit is also shown in Fig. 10b as
the red longer-dashed line. Clearly this new fit is able to
capture the behavior of ∆Ω excellently. Interestingly, as
we show in the Supplementary Material, the fit comes at
no noticeable cost when it comes to fitting Re and ∆P ,
indicating that our previous fit was indeed underdeter-
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mined.

VII. CONCLUSIONS

In conclusion, we have extensively explored the ther-
modynamics of hard-sphere spherical crystal nuclei, both
from a theoretical and simulation perspective. We exam-
ined the cause of the observed negative pressure differ-
ence between the inside and outside of the crystal nu-
cleus, predicted the surface stress and interfacial free en-
ergy for spherical nuclei as a function of radius, examined
the role of defects and chemical potential in the thermo-
dynamics of the nuclei, and presented a simple thermo-
dynamic model to capture the properties of the nucleus.
We hope that our extensive study of hard-sphere critical
nuclei will act as a foundation for future explorations into
nucleation.

VIII. SUPPLEMENTARY MATERIAL

In the Supplementary Material we provide the deriva-
tion of Sec. II in the canonical ensemble, show how one
can obtain the normal and tangential pressure profiles
from the profile of total pressure, give some results on
nuclei of HCP crystal, and compare the two fitted mod-
els for the interfacial free energy γ.
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