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17 Abstract

18 The plant microbiome protects plants from stresses, including pathogen at-
19 tacks. However, identifying microbes that provide plant protection remains chal-
20 lenging in complex microbial communities. In this study, we analysed samples
21 from natural A. thaliana populations, including both plants infected with the
2 pathogenic oomycete Albugo laibachii and uninfected plants, over six years. Using
23 machine learning classification models, we achieved high accuracy in distinguish-
2 ing infected and uninfected plants based on microbiome abundance. We identified
25 80 key taxa associated with health and disease. Among the health-associated mi-
2 crobes (HCom), we selected bacteria, fungi, and cercozoa that effectively reduced
27 pathogen presence in co-inoculation assays. In comparison, disease-associated mi-
28 crobes (DCom) were less effective in conferring protection. Our findings highlight
29 the complexity of plant-microbe interactions and advance our understanding of
30 microbial roles in plant disease ecology. By integrating ecological insights with
31 machine learning, we take a significant step towards designing robust microbial
32 consortia that enhance plant resilience against pathogens.

33 Keywords: Microbe-microbe interaction, infected and uninfected leaves, ma-
34 chine learning, plant pathogen, natural probiotic
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s Introduction

s Similar to higher organisms such as humans, plant tissues are colonized by a wide
;7 range of microbes known as microbiota or microbiome. The microbiome associated
;s with the plant leaves, i.e., the phyllosphere, is thought to play an important role in
3 the physiology, fitness, and defense mechanism of the host against various biotic and
w abiotic perturbations [1]. Leaves are inhabited mainly by commensal species but can
s also harbor pathogenic bacteria, fungi, and oomycetes, which can significantly harm
» natural plants and crops [2], thereby causing annual crop yield losses and reducing food
ss availability. Climate change is accelerating the spread of pathogens, thereby affecting
s forest health globally [3, 4]. Therefore, it is crucial to develop strategies that protect
s from pathogens in a changing environment.

16

s Biological control is an effective and environmentally friendly alternative to pesticides
s for combating microbial plant diseases [5]. For example, Trichoderma, an opportunistic
» fungal genus, is widely used as a biological control agent against phytopathogens and
s is studied for its role in helping plants manage biotic and abiotic stresses [6]. However,
si identifying and experimentally validating biocontrol microbes through traditional meth-
2 ods can be slow and challenging [7]. Another approach to biocontrol involves identifying
53 healthy microbiomes. While healthy plant communities are characterized by diverse and
s« balanced microorganisms, as seen in comparisons between healthy and diseased plants
ss [8]. However, it remains unclear what defines a healthy or beneficial microbiome. One
ss promising solution to this challenge is the use of machine learning. Machine learning
57 techniques have been used in microbiome research to accomplish various tasks, such as
ss  predicting host or environmental phenotypes and categorizing microbial properties, in-
o cluding monitoring changes in microbiome composition [9]. Machine learning classifiers
s were used to identify soil microbial patterns predicting the presence of Fusarium oxyspo-
e rum, the pathogen causing Fusarium wilt disease under field conditions [10]. Similarly,
&2 the random forest method accurately predicted productivity based on microbiome com-
63 position at the order level. Significant differences in crop yield were associated with
&« bulk soil microbiome composition, with many taxa contributing to nitrogen utilization
s [11]. Machine learning was used to identify bacterial strains important in reducing leaf
e infection with the pathogenic bacterium Pseudomonas syringae DC3000 [12]. However,
o7 few studies have investigated the different taxonomic groups of bacteria and eukaryotes
e in the microbiota of natural plants attacked by obligate biotrophic pathogens.

69

7 The obligate biotrophic oomycete Albugo laibachii is a common pathogen of the Bras-
n sicaceae family and the causal agent of the white rust disease [13]. This pathogen was
2 identified as a potential core and hub microbe in the leaf microbiome of A. thaliana
73 since it showed persistence over several years and high interconnection in the microbial
7+ interaction network [14, 15]. Albugo infection was also shown to affect both epiphytic
 and endophytic bacterial colonization by reducing alpha diversity and secretion of an-
76 timicrobial peptides [15, 16]. However, it is not clear how the microbiome of the leaf
77 differs in plants infected or not with Albugo, and which microbial strains have the po-
7 tential to promote or reduce infection with Albugo.

79

g0 In this study, we analysed the microbiome of Arabidopsis thaliana over a period of
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s six years as collected and described by Mahmoudi et al. [17]. High-throughput se-
&2 quencing analysis revealed differences in the microbiota composition associated with
83 Albugo-infected and uninfected plants across host genotypes and sampling sites. Using
s statistical and machine learning classification algorithms, we identified candidate mi-
s crobes predictive of infected and uninfected states. Candidate microbes were shown to
s be distributed in different clusters in microbial interaction networks, highlighting their
s importance in the community’s stability. Co-inoculation assays in A. thaliana confirmed
s the potential of the health-associated microbial communities (HCom) to reduce Albugo
s infection. In comparison, disease-associated microbial communities (DCom) exhibited a
o range of functions, from minimal effects to partial pathogen suppression, likely through
o1 niche competition. These findings highlight the functional redundancy of microbial
o2 communities from different phylogenetic groups in manipulating plant health outcomes
o3 and demonstrate the power of machine learning in informing biocontrol strategies.

94

95

»« Results

» Comparison of phyllosphere microbiome in natural A. thaliana
» populations: uninfected vs. infected with the obligate biotrophic
» oomycete pathogen Albugo

w0 To investigate the diversity and compositional dynamics of the phyllosphere micro-
11 biome in the presence of the obligate biotrophic oomycete pathogen Albugo, we used
102 a microbiome dataset described in Mahmoudi et al. [17]. In their study, A. thaliana
103 samples were collected from six sites near Tiibingen (southern Germany) with stable A.
e thaliana populations, with sampling repeated over six consecutive years (2014-2019).
s Genomic DNA was extracted from epiphytic and endophytic microbial communities,
s followed by amplicon sequencing for bacterial 16S rRNA, fungal ITS2, and eukaryotic
w7 185 rRNA. For the 18S eukaryotic data, fungal microbes were excluded, resulting in the
s nonfungal eukaryotes (NFEuk) dataset [17]. Here, we used the endophytic microbiomes
wo for further analysis. Since Albugo was the major pathogen associated with A. thaliana
no at the time of sampling, the samples were categorized as infected or uninfected based
uion the presence or absence of white rust on the leaves (Fig. 1A).

112 A diversity analysis was conducted to compare the leaf-associated microbial commu-
us  nities between infected and uninfected plants. Alpha diversity (within-sample diversity,
use  measured by Shannon’s index) demonstrated that, on average, infected plants exhibited
us  a 1.1-fold and 2.8-fold reduction in bacterial and NFEuk community diversity, respec-
us tively, in comparison to uninfected plants (Tukey’s HSD test, P < 0.05). However, no
ur  significant differences were observed in fungal communities (Fig. 1B). A permutational
us multivariate analysis of variance (PERMANOVA) demonstrated that the 'infection sta-
1o tus’ of the plants explained 1.8% of the variation in bacteria, 0.5% in fungi, and 12.8%
1o in nonfungal eukaryotes. These variations were further visualized using non-metric
21 multidimensional scaling (NMDS), which revealed that the infected plants were most
122 clearly separated from the uninfected groups in the NFEuk communities, followed by
123 bacteria and less so in the fungal communities (Fig. 1C).


https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.25.620230; this version posted October 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

124

125

126

127

128

129

131

132

133

134

135

136

137

138

139

140

141

142

available under aCC-BY-NC-ND 4.0 International license.

Differences between infected and uninfected communities were found to be associ-
ated with the enrichment of major microbial orders over sampling years (Wilcoxon test,
P < 0.05) (Fig. 1D, see also Fig. S1). Among bacteria, Sphingomonadales, which has
been demonstrated to be beneficial for plant health and productivity, [18] was 1.3 times
more abundant in uninfected plants, whereas Pseudomonadales was 1.5 times more
abundant in infected samples, based on a comparison of mean relative abundances.
Among the fungal orders, only the Basidiomycete yeast Cystofilobasidiales exhibited
a slightly higher significant abundance in infected plants (1.02 times more). Among
nonfungal eukaryotic orders, as expected, the order Albuginales (including Albugo)
showed a 6.7 times increase in infected plants. Interestingly, the most abundant orders
of green algae (Watanabeales, Xanthophyceae and Chlamydomonadales) were 5.9-14.5
times more abundance in uninfected plants, similar to Cercozoa (Glissomonadida and
Cryomonadida), with 3.0 and 7.6 times higher abundance in uninfected plants, respec-

tively.
A
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Figure 1. Diversity and composition of leaf microbial communities in Al-
bugo-infected and uninfected plants. (A) The number of annually sampled plants
per group (97 infected and 254 uninfected). (B) Alpha diversity is measured by Shan-
non’s H index and represents the within-sample diversity of infected and uninfected
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13 samples in bacteria, fungi, and nonfungal eukaryotic communities. Box plots display
s individual samples as dots. Different letters indicate statistically significant differences
s between groups (Tukey HSD’s test, P < 0.05). (C) Separation of infected (purple) and
us uninfected (green) samples using non-metric multidimensional scaling analysis (NMDS)
7 based on Bray-Curtis dissimilarities. Each dot represents a single sample. (D) His-
us tograms show the relative abundance of bacteria, fungi, and nonfungal eukaryotic com-
1o munities at the order level, categorized by plant infection status (infected/uninfected)
150 over six years. Taxa with significant differences between infection stages are indicated
151 in bold (see Fig. S1).

152

55 (Genotype variation in infected and uninfected A. thaliana cor-
s« relates with microbiome diversity

155 To investigate whether leaf microbiome infection varies by host genotype, we used the
155 whole genome sequencing data that was conducted to identify genotype clusters based
157 on single nucleotide polymorphisms (SNPs) analysis [17]. Among the five identified
153 clusters, three (clusters 1, 2, and 4) contain samples susceptible to Albugo infection.
150 Clusters (2 and 4) exhibited significantly lower alpha diversity in NFEuk communities
o of infected plants as compared to uninfected clusters (Dunn test, P < 0.05) (Fig. 2A). A
161 similar pattern was observed in the variability within clusters (i.e., how far each sample
12 was from the group’s central point or centroid). Specifically, the clusters that were
163 susceptible to infection showed less variability in this distance, meaning the samples in
¢ these groups were more similar to each other (Dunn test, P < 0.05) (Fig. 2B). However,
s no significant differences were found in fungal communities. Microbiome compositional
166 variation, visualized using NMDS, showed that samples from cluster 4 more clearly
17 separated the infected plants, while cluster 5 distinguished uninfected samples in the
s NFEuk community (Fig. 2C, PERMANOVA, P < 0.05). These patterns were less
10 pronounced in bacterial communities (explaining 10.9% of the variation vs. 22.2%
wo variation in NFEuk community) and were not significant in fungal communities (Fig.
171 2C>

172 Interestingly, the susceptible clusters were distributed across different sampling sites,
173 suggesting that, in addition to host genotypes, other abiotic factors might contribute
74 to plant susceptibility to infection. Notably, genotype cluster 5, which contained only
s uninfected plants, was exclusively found at the ERG site (Table. S1). Patterns related
s to sampling sites were observed: two sites (K69 and PFN) had no infected plants, while
7 four sites (EY, WH, JUG, and ERG) contained both infected and uninfected plants
s (Fig. S2). Site EY exhibited lower alpha diversity in bacterial communities of infected
179 plants compared to uninfected plants in the same group, while in NFEuk communities,
o three sites (EY, WH, and JUG) showed lower alpha diversity in infected plants (Dunn
e test, P < 0.05) (Fig. S2A). Regarding community variability, only site ERG showed
1.2 reduced variability in infected plants within bacterial communities. In contrast, in
183 NFEuk communities, the variability of infected plants was consistently lower than that
e of uninfected plants across all sites (Dunn test, P < 0.05) (Fig. S2B). The combination
185 of infection status and sampling site explained 8.4%, 7.8% and 21.2% of the variation
185 in microbial communities for bacteria, fungi and NFEuk, respectively (Fig. S2C).
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187
188 Figure 2. Diversity and separation of leaf microbial communities of in-

1 fected and uninfected plants among plant genotypes. (A) Alpha diversity,
10 measured by Shannon’s H index, represents the within-sample diversity in microbial
01 communities across infected and uninfected samples of different genotype clusters. (B)
12 Within-cluster variability, quantified as the distance of individual samples from the
13 centroid of their respective genotype cluster, illustrates the variation among microbial
e communities within each cluster. Different letters indicate statistically significant differ-
s ences between groups (Dunn test, P < 0.05). (C) Non-metric multidimensional scaling
ws (NMDS) plots, based on Bray-Curtis dissimilarities, display the separation between
107 infected and uninfected samples across genotype clusters. Explained variance (R? val-
s ues) from PERMANOVA models (Bray-Curtis dissimilarities), illustrating the impact
109 of genotype clusters and infection status on the structure of leaf microbial communities.

.n Identification of a microbial signature for predicting infected
x» and uninfected leaves using machine learning models

203 We hypothesized that the plant microbiome is composed of distinct health-associated
200 microbial communities (HCom) in uninfected plants and disease-associated microbial
205 communities (DCom) in infected plants. These distinct microbial communities can serve
206 as robust indicators of infection, enabling accurate discrimination between infected


https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.25.620230; this version posted October 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

27 and uninfected samples. To investigate this hypothesis, we used machine learning
208 classification models, including random forest (RF), support vector machine (SVM),
200 and logistic regression (LR), which are well-known for their interpretability and multi-
20 layer perceptron (MLP) (Fig. 3A). The training phase used 70% of the sample set,
o consisting of 169 uninfected and 66 infected samples with 2,543 operational taxonomic
22 units (OTUs). The remaining 30% (73 uninfected and 29 infected samples) served as
a3 the test set to assess predictive performance. Four different evaluation metrics were
24 employed, resulting in accuracies ranging from 75% to 86% (Fig. 3C). The SVM and
a5 LR models achieved the highest accuracy of 85% and 86% respectively, with an area
zs under the curve (AUC) of 93% and 94%, outperforming the MLP and RF (Fig. 3B
2z and 3C). We then analysed the predictive role of each microbe by calculating and
218 comparing the feature importance of all the OTUs in the trained classification models
20 (SVM, RF, and LR) (Fig. 3A). Comparison of the three models revealed that they
20 shared 2,253 OTUs, indicating consistent microbial signatures associated with both
21 groups (infected /uninfected) that contributed significantly to the classification process
22 (Fig. S3A). Using recursive feature elimination with cross-validation, we identified the
23 most crucial OTUs for classification, referring to them as HCom and DCom. The
24 results showed that RF had the highest accuracy, achieving 91% accuracy (Fig. S3B)
2s  with 40 selected OTUs (Fig. 4A). The LR model reached 87% accuracy with 4 selected
26 characteristics (Fig. 4B). In contrast, the SVM reached 86% accuracy with 53 selected
2z OTUs (Fig. 4C). It is interesting to note that four OTUs were shared by all three
»s models that originated from LR, and 13 OTUs were shared by SVM and RF (Fig. 4
2o and Fig. S3C)

A Experimental setup

Relative abundances OTU table

oTU, oTU, OTUjs03 Label
s1 0.1 0.2 5 0 ) ..
o Training ml models Select key
2 s 03 0.5 - 0.043 @ |Training data (LR, SVM, MLP, RF) OTUs
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S 3 098
3 [}
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230
231 Figure 3. Classification of plant infection status and feature selection by

22 machine learning classifiers. (A) Workflow illustrating the methodology employed
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233 to distinguish infected samples from uninfected ones using machine learning models.
2 The objective was to classify leaves uninfected and infected based on the observed
235 symptoms of Albugo infection, utilizing the relative abundance OTU table of bacteria,
236 fungi, and nonfungal eukaryotes. Four machine learning classifiers, namely support
27 vector machine (SVM), random forest (RF), logistic regression (LR), and multilayer
28 perceptron (MLP), were trained on 70% of the samples. The trained models were
20 evaluated using the remaining 30% of the dataset. Feature importance (to select key
20 important OTUs for classification) was extracted from the trained models and using
21 the recursive feature elimination method (Figure. 4). (B) Receiver operating charac-
22 teristic (ROC) curves. The area under the curve (AUC) values indicate the ability of
23 each classifier to distinguish between infected and uninfected samples, with higher AUC
24 values indicating better performance. (C) Additional performance metrics (accuracy,
25 f-measure, precision, and recall) for each classifier on the test set.

246

247

2s  Additionally, we hypothesized that HCom microbes can reduce the pathogenicity of
ao  Albugo, in contrast to DCom microbes. To test this hypothesis, we selected four can-
»0 didate microbes from bacterial, fungal, and non-fungal eukaryotic groups within each
51 category (HCom and DCom) (Fig. 4, microbes in bold). The SVM and LR models
s> provide both positive and negative coefficients to determine microbial importance in
3 classifying infected versus uninfected leaves. We assigned scores based on these coeffi-
s cients, with negative scores indicating HCom OTUs as indicators of the uninfected class
255 and positive scores representing DCom OTUs as indicators of the infected class (see Fig.
6 4B and 4C). However, the RF model only provides positive scores, necessitating further
7 examination of the relationship between the selected OTUs and their respective classes
s (Fig. 4A). Other selection criteria included diverse representations of bacteria and eu-
0  karyotes, as well as laboratory availability. Among the HCom bacterial candidates,
20 Methylobacterium OTU3 (Methylobacterium goesingense) and Sphingomonas OTU15
261 (Sphingomonas melonis) were selected, while Cystofilobasidium OTU126 (Cystofiloba-
22 sidium macerans) and Rhogostoma OTU3 (Rhogostoma epiphylla) were selected for
»3  fungi and nonfungal eukaryotes, respectively. The Dcom candidates included Duganella
2¢ OTU4 (Duganella zoogloeoides) and Pseudomonas OTUG6 (Pseudomonas viridiflava)
265 from the bacterial group, Plectosphaerella OTU16 (Plectosphaerella niemeijerarum) as
26 fungal representative, and Albugo OTU5 (Albugo), representing nonfungal eukaryotes
267 (Fig. 4A—C)
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o2 indicates the importance of each OTU for classification (values are normalized between
o3 0 and 1). (B) The 4 OTUs selected by recursive feature elimination with k-fold cross-
e validation using logistic regression (LR). (C) Normalized coefficient values of the 53
a5 OTUs selected by recursive feature elimination with k-fold cross-validation using sup-
2. port vector machine (SVM). Negative values (B and C) indicate OTUs with high scores
o7 in discriminating uninfected leaves (HCom), while positive values indicate high scores
s in discriminating infected samples (DCom). (D) Bar plots illustrating the aggregated
a9 relative abundances of OTUs in infected and uninfected samples. The microbes high-
20 lighted in bold (left) were selected for further experimental analysis.

281

x Infection reduces microbial network complexity and increases
» compartmentalization in community structure

s Microbial networks are valuable for identifying potential interactions among microor-
25 ganisms within a given community. This is achieved by correlating the abundances of
s different species. Therefore, we investigated the microbial networks in both infected
7 and uninfected samples. The network resulting from the uninfected samples showed 1.9
28 times greater number of nodes (OTUs) and 3.3 times more edges (connections between
20 OTUs) when compared to the one generated from the infected samples (2,024 nodes
200 and 73,511 edges vs. 1058 nodes and 22,089 edges, respectively) (Fig. 5A vs. Fig.
21 5B). Notably, the topological characteristics of the uninfected network showed higher
22 degree (more connections between microbes) and closeness centrality (microbes more
203 closely connected to others) values (P < 0.001) (Fig. 5C and 5D). To assess the ef-
20 fect of infection on the microbial communities’ compartmentalization, we compared the
205 modularity of the constructed networks, a feature representing the degree of functional
26 division and ecological niches within the microbial community [19]. The results showed
207 that both networks contained a comparable number of modules, with the uninfected
28 network having ten modules and the infected network having nine modules. However,
200 the modularity value of the network derived from infected samples (0.31) was slightly
30 higher than that of the network derived from uninfected samples (0.24) (Fig. 5B and
;0 HA), which indicates that infected generated network is more segmented, suggesting a
;2 stronger tendency to division of microbial communities into distinct functional groups
303 or ecological niches. Notably, all the modules contained OTUs from different taxonomic
304 categories of bacteria, fungi, and nonfungal eukaryotes (Fig. 5E and 5F). We examined
305 the microbial interactions of HCom and DCom OTUs in both uninfected and infected
w6 networks. Results showed that these OTUs displayed distinct connectivity patterns. In
s7 the network generated from uninfected samples, the OTUs formed 72 OTUs with 493
28 edges (Fig. S4A). In contrast, these OTUs exhibited fewer connections in the infected
30 network, resulting in 64 nodes with 193 edges (Fig. S4B). Moreover, those OTUs are
s more sparsely distributed across different modules in the infected generated network
su  compared to the uninfected network (Fig. S4D vs. Fig. S4C). The changes in connec-
siz tivity patterns, particularly among the OTUs in the infected network, further highlight
a3 the reduced complexity and increased structural division in networks generated from
sie  infected samples.
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315
316 Figure 5. Changes in microbial co-abundance networks of infected and

sz uninfected plants. Co-abundance networks for both uninfected (A) and infected
as (B) samples, where nodes (circles) represent OTUs and edges (the connection between
a0 OTUs) indicate correlations between these OTUs. Nodes are color-coded by micro-
»0 bial taxa and grouped based on modularity clustering. Box plots show features per
s node, i.e., degree (C) and closeness centralities (D) in infected and uninfected net-
sz works. Significance values indicate differences between groups based on the Wilcoxon
2 test (FFFEP < 0.0001). Histograms illustrate the distribution of OTUs within modules
2¢ for the network of uninfected (E) and infected (F) samples, respectively. These his-
»s tograms are further color-coded to distinguish microbial taxa, with green representing
16 bacteria, orange representing fungi, and blue representing NFEuk.

327

» HCom confer protection against Albugo infection to varying
» degrees

;0 To investigate the protective effects of the selected microbes (Fig. 4) against the in-
s fection caused by Albugo, first, a mixture of Albugo and each of the four microbes
s from HCom was sprayed onto Arabidopsis leaves (Fig. 6A). The level of protection
13 was determined by measuring the percentage of infected leaves (Fig. 6B). All four
s candidates significantly decreased the infection caused by Albugo (Dunn test, P <
15 0.05). Cystofilobasidium exhibited the most pronounced effect, reducing Albugo levels
136 by an average of 73%. Sphingomonas caused a 66% reduction, followed by Rhogostoma
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s and Methylobacterium, which resulted in 53% and 40% decreases in Albugo infection,
s respectively (Fig. 6B). These observations were further confirmed by quantitative poly-
10 merase chain reaction (QPCR) analysis, which demonstrated that samples exposed to
a0 the uninfected-associated microbes exhibited substantially lower amounts of Albugo as
s compared to control samples (Dunn test, P < 0.05), with the average biomass of Albugo
s ranging from 72% to 90% (Fig. 6C). These results demonstrate that all the selected
a3 candidates associated with uninfected plants, namely, Cystofilobasidium, Methylobac-
sa terium, Rhogostoma, and Sphingomonas, significantly decreased the infection levels of
us  Albugo. The Methylobacterium-treated plants exhibited the highest plant biomass, with
us an average of 0.96 (g), compared to other treatments(Tukey’s HSD test, P < 0.05) (Fig.
s S5). Microscopy analysis revealed that Rhogostoma attached to the Albugo spores and
s feeds on free-living microbes in the environment (Fig. S6 and supplementary videos 1
s and 2). These findings highlight the potential of HCom microbes in protecting against
w0 Albugo infection, with varying levels of effectiveness across different microbial taxa.

351

2 We then investigated the effect of DCom microbes on the pathogenicity of the Albugo.
i3 'The in-planta infection assay demonstrated that Plectosphaerella had no significant
1s¢  effect on the infection level of Albugo (Dunn test, P > 0.05). However, Pseudomonas
35 and Duganella caused a decrease in infection of 36% and 20%, respectively (Dunn test,
6 P < 0.05) (Fig. 6B). Likewise, qPCR outcomes supported the observed phenotype: the
37 biomass of Albugo in the control group exhibited no significant changes in comparison
s with Plectosphaerella (Dunn test, P < 0.05), whereas Pseudomonas and Duganella
10 caused a 72% and 58% reduction in Albugo biomass, respectively (Fig. 6C). The find-
w0 ings reveal that while some DCom microbes are effective in reducing Albugo infection
1 levels, their protective effects are less significant compared to those of HCom microbes.
362 To evaluate the specific effects of each microbe on plant health independently,
3 we performed spray experiments on gnotobiotic plants, isolating the impact of in-
s« dividual microbes without the influence of other microbial interactions (Fig. S7).
s Lhree distinct phenotypes were observed. Plants colonized with the DCom bacteria
6 Duganella and Pseudomonas exhibited high mortality rates, with 10.0% and 11.3%
7 survival, respectively, within three weeks post-colonization. As expected, the filamen-
w8 tous pathogenic Plectospherella and Albugo caused characteristic infection symptoms,
0 namely, brownish leaves and roots and white rust disease, respectively. Forty-nine per-
s cent of the plants treated with HCom Cystophilobasidium survived three weeks post-
sn colonization. The healthiest plants were those colonized by the remaining HCom mi-
sz crobes—Sphingomonas, Methylobacterium, and Rhogostoma-with over 88% of the plants
s13 - showing no discernible negative consequences. Overall, these results indicate that most
sa. HCom microbes lead to healthier plants than DCom microbes, underscoring the im-
a5 portance of specific microbial candidates in enhancing plant vitality and resistance to
srs  pathogen Albugo.

12


https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.25.620230; this version posted October 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

available under aCC-BY-NC-ND 4.0 International license.

[0
A - @o
Albugo + a candidate
||
A

Status of the candidates

& DCom
4 B HCom
2 weeks
B post infection C
100 25
R e be be ac ac ad ad d d ad ab abe be abe be c
c e
275 i 201 —
> i |
© el - ' —
8 2 - - T - . i -
B 5ol L T Lo s
5] REN (0 . v o) o
e | i . B S - PNE . _
225 - 05 T oo
L I EE _mEg
0 . - - 0.0 - - _
D \ N\ CIEER\S > S L QY > 2 . S .
0 o@ 0 (o o o0 g R L RS R I gt gt
e \CJQK\ RS *\o@o ?\‘\ogo ‘i\(\go (\\ova (NG \099‘\6 o e@o W ie Qvog WS \.\\ovfa
O Q 3O O Q% \) X0
Q¢ \m\ S o o S
A. laibachii + A. laibachii +

Figure 6. Effects of HCom and DCom on infection caused by Albugo.
(A) Three to four weeks old Arabidopsis plants were co-inoculated with Albugo and
each of the indicator microbes (HCom and DCom microbes) as identified in Figure 4.
Symptoms were recorded 2 weeks after infection. (B) Box plots showing the percent-
age of leaves infected with Albugo in the presence of HCom (green) and DCom strains
(purple). (C) Relative quantification of Albugo biomass in response to each indicator
microbe was conducted through qPCR targeting the Albugo EF1-a gene and normal-
izing to the A. thaliana EF1-a gene. The relative biomass was then calculated via the
ddcq method. Statistically significant differences between the groups were evaluated
using the Dunn test, with different letters indicating significant differences (P < 0.05).

Discussion

In this study, we identify microbial signatures that distinguish between infected and un-
infected plants and explore their potential for developing effective probiotics to promote
plant health. The management of plant health through natural probiotics has gained
significant ecological and economic interest. Various microbes and synthetic microbial
communities have been found to increase plant resistance to pathogens under laboratory
conditions [12, 20]. Pathogens are known to impact the phyllosphere microbiome to es-
tablish their niche [21]. Recent studies show that pathogens, including Verticillium and
Albugo, release effector proteins to manipulate the microbial landscape, affecting micro-
biome composition and function [16, 22, 23]. However, there is a gap in understanding
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s these interactions under natural field conditions, where pathogens face a complex and
10 heterogeneous host microbiome and abiotic stressors [17, 24]. Our study addresses this
w0 by investigating microbial communities associated with A. thaliana under natural field
w1 conditions over six years, focusing on changes in the presence or absence of Albugo
w2 infection.

403 Agler et al. [15] reported that the diversity of bacterial communities was lower
ws in Albugo-infected plants. Extending this observation, our analysis of six-year time
ws series data, along with 18S eukaryotic data, revealed that not only bacterial and fungal
ws diversity affected by infection, but there was an even more pronounced loss of diversity
w7 within 18S nonfungal eukaryotic groups (Fig. 1). This loss was observed in 3 out of 5
ws host genotypes that showed susceptibility to infection, leading to up to a 22% variation
w0 in the microbiome composition (Fig. 2). We attribute this reduction in diversity to a
a0 significant increase in the pathogen population, which can disrupt the balance of the
a1 established microbial community [10, 25]. In the case of Albugo infection, this imbalance
a2 may result from the pathogen’s efficient suppression of host defenses, allowing non-
a3 host pathogens to proliferate [26], or from the release of microbial-modulating effector
s proteins [16]. Both mechanisms likely contribute to the establishment and maintenance
ns of the pathogen’s niche within the host.

a16 To identify signatures, the pathogen Albugo imposes on the A. thaliana microbiome,
a7 we used machine learning prediction models to identify non-linear relationships and
as manage the complexity of the high-dimensional data [27]. Therefore, we conducted a
so  systematic analysis of variations between uninfected and infected plant statuses, achiev-
20 ing highly accurate classifications up to 91% (Fig. 3 and Fig. S3). These findings
i1 suggest the presence of predictive microbial signatures in these groups. Using the fea-
w22 ture selection technique, we pinpointed 3.1% of OTUs, including bacteria, fungi, and
23 nonfungal eukaryotes, as key discriminators between infected and uninfected plants,
2e  corresponding to HCom and DCom microbes (Fig. 4 and Fig. S3). These results
w5 highlight that, despite the vast microbial diversity, only a small subset is significantly
26 associated with plant health outcomes. Interestingly, we found that HCom and DCom
27 microbes are distributed across various network modules (Fig. S4). Modularity in mi-
w8 crobial interaction networks can indicate diverse habitats, varying selective pressures,
»9o and phylogenetic clustering of related species [28], highlighting the crucial role of these
10 microbes in the functionality of different community modules within the overall micro-
a1 bial community.

132 Building on these findings, we aimed to test whether microbial isolates matching the
133 taxa identified by our machine learning prediction models could promote health or dis-
sa  ease status in field conditions. Here, we could show that the predicted HCom and DCom
135 microbiome comprises distinct phylogenetic groups of bacteria, fungi, and nonfungal
s eukaryotes (Fig. 4). Interestingly, some taxa were represented in both infected and un-
s infected samples. These included known pathogens like the fungal Ascomycetes genus
w8 Alternaria, saprophytic fungi such as the Basidiomycete yeast genera Dioszegia and
1o Cystofilobasidium and the Ascomycetes order Heliotales. In addition, the bacterial gen-
uo era Pseudomonas and Sphingomonas were also present in both groups. Pseudomonas
s is particularly notable for its ambivalent behavior, with a broad range of sublineages
a2 that can be either pathogenic or protective [29], either through microbe-microbe inter-
a3 actions or host interactions ([30]. This diversity was reflected in our dataset, where
ss  Pseudomonas OTUS and OTUG6 were predicted to be associated with infected sam-
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ws  ples, while Pseudomonas OTU110 was associated with health. A similar diversity has
15 been reported for Sphingomonas [31], which, similar to Pseudomonas, can protect A.
a7 thaliana from pathogenic bacteria [32].

aa8 Given their relevance to A. thaliana health, we selected Pseudomonas and Sphin-
uo  gomonas isolates for testing. Our tests confirmed that the Pseudomonas isolate was
o pathogenic, while the Sphingomonas isolate did not harm the plant when colonizing
ss1 the host alone (Fig. S7). From our HCom microbes, Methylobacterium and Sphin-
12 gomonas showed further robust suppressive effects (Fig. 6). This is consistent with
53 previous observations that Sphingomonas is able to suppress Pseudomonas syringae
e disease symptoms [32]. Further to the genera of Spnignomonas and Pseudomonas,
5 members of the Methylobacterium genus and the family Ozalobacteriaceae are highly
is6  adapted to live on plants with high abundance and diversity [33, 34]. While Methy-
s lobacterium was predicted to be HCom in our analyses, the Ozxalobacteriaceae genus
s Duganella was strongly associated with Albugo infection. Our experiment validated
0 that the Duganella isolate exhibited pathogenic behavior (Fig. S7).

460 Among the HCom selected microbes, the basidiomycete yeast Cystofilobasidium ex-
w1 hibited the strongest protective effects (Fig. 6). Cystofilobasidium is particularly note-
w2 worthy, as several basidiomycete yeasts have been empirically identified as biocontrol
13 agents against postharvest diseases in various fruits. This includes our computationally
we identified yeasts Vishniacozyma [35] and Leucosporidium [36], as well as our experimen-
ws tally validated yeast, Cystofilobasidium [37]. Beyond yeast, another crucial group influ-
w6 encing plant health is the Cercozoa, which plays a significant role in shaping bacterial
w7 and fungal communities through selective predation [38, 39]. Our study demonstrates
ws that the HCom Rhogostoma can suppress infection. As primary microbial predators,
w0 Rhogostoma directly targets bacterial and fungal pathogens, exerting a consumptive ef-
w0 fect on various pathogenic strains [40, 41]. The reduction in infection levels may occur
s through direct consumption of Albugo zoospores or by preying on bacterial and fun-
a2 gal species that facilitate Albugo infection. Additionally, Rhogostoma may indirectly
a3 contribute to plant health by promoting beneficial microbes and enhancing interac-
sa tive activities, such as biofilm formation, as has been recently shown for the protist
ws  Cercomonas lenta in the rhizosphere [42].

476 In summary, our findings support the concept of functional similarity [43], where
sr diverse microbial taxa, including bacteria, fungi, and nonfungal eukaryotes, share over-
ars lapping ecological roles that contribute to plant health. This concept suggests that
a9 while different microbial species can perform similar functions, their effectiveness may
s0 vary depending on environmental conditions. Therefore, if abiotic factors (e.g., radia-
s tion and humidity) become unfavorable for one group, others can compensate, ensuring
w2 continued protection against pathogens [17]. Leveraging functional similarity presents
13 promising opportunities for biocontrol methods to reduce pathogen pressure across
s diverse environmental conditions. As climate change increases the frequency of envi-
w5 ronmental fluctuations, leading to greater stress on plants, enhancing environmental
s resilience through the use of robust probiotics will be essential for future food security.
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« Method

w Diversity analysis

0 The OTU tables for bacteria, fungi, and nonfungal eukaryotes, along with the corre-
w0 sponding genotype clusters for each sample, were obtained from the study by Mah-
w1 moudi et al. [17]. The OTU tables were modified by excluding epiphytic samples and
w2 those with fewer than 50 reads. Subsequently, OTU abundance tables were utilized to
w03 compute Shannon’s H diversity index using the ’estimate-richness’ function in the Phy-
we loseq R package [44] for estimating alpha-diversity. To assess between-sample diversity,
ws relative abundance OTU tables were computed and transformed using logl0 (x + 1)
w6 before calculating Bray-Curtis dissimilarities, which were then employed for nonmetric
w7 multidimensional scaling ordination (NMDS) using the ’ordinate’ function in Phyloseq
ws [44] R package. Three PERMANOVA analysis on Bray-Curtis dissimilarities were con-
w0 ducted to identify the primary factors ("infection stages’, ’combined infection stages and
s0 genotype’ and 'combined infection stages and sampling sites’) influencing the leaf micro-
s biome’s structure, utilizing the ’adonis2’ function in the Vegan package [45] with 10,000
sz permutations (P < 0.05). A beta-dispersion analysis on Bray-Curtis dissimilarities was
s03 conducted to compare sample-to-sample variation within each group (genotype clusters
s« and sampling sites) (multivariate homogeneity of group dispersion analysis, “betadis-
ss per”; Vegan package). The means were compared using the nonparametric multivariate
s test for multiple groups ("dunnTest’ function in the FSA package [46], with Benjamini-
sov  Hochberg adjusted P-values < 0.05), and the nonparametric ranked test for two groups
ss  ('wilcox.test’ function in the stats package [47], P < 0.05). All analyses were conducted
s0 in R (version 4.1.2) [48].

s0 Machine learning analysis

su The OTU tables of bacteria, fungi, and nonfungal eukaryotes were converted into rel-
sz ative abundance tables and merged into a single table. The OTU tables were further
si3 filtered to retain only those OTUs present in at least five samples (2543 OTUs and
sie 337 samples). A processed dataset was created using two binary labels, ’infected’ and
si5 uninfected,” corresponding to the phenotype of the collected plants. Plants were la-
si6  beled ’infected’ if white rust disease caused by Albugo was observed and 'uninfected’ if it
si7- 'was not. The scikit-learn package in the Python programming environment was used to
sis train and validate machine learning classifiers [49]. First, samples were divided into two
s parts: training (70%) and testing (30%) (train_test_split function, test_size=0.3, shuf-
s0 fle=True). Subsequently, machine learning models were trained. The trained models
sz included Support Vector Machine (svim.SVC function, kernel=’linear’), Random For-
s2 est (RandomForestClassifier function, n_estimators=1000, min_samples_split=2), multi-
s23 layer perceptron (MLPClassifier function, solver="adam’, alpha=1e-5, random _state=1,
s2¢ learning_rate="adaptive”, max_iter=500, hidden_layer_sizes=(100,100,100)), and Lo-
s gistic Regression (LogisticRegression function, default parameters). The labels of the
s26  test sets were predicted (model.predict function). The prediction results were compared
so7 with the actual labels of the samples to calculate the models’ performance in terms
s of accuracy (accuracy_score function), f-measure (fl_score function, average="macro’),
s20 precision (precision_score, average="macro’), and recall (recall_score function). The

16


https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.25.620230; this version posted October 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s area under the curve (AUC) was calculated using false positive and true positive rates
su  (roc_curve function) and plotted using the matplotlib package. The importance of each
52 OTU in the trained models was obtained using model.coef_ (for Support Vector Machine
s33  and Logistic Regression) and model.feature_importances_ (for Random Forest). Recur-
s sive feature elimination was used to identify the most important OTUs (HCom and
s DCom) for classifying groups (RFECV function, step=1, cv=total number of samples,
s3  shuffle=True, scoring="accuracy’, min_features_to_select=1).

s Mlicrobial network analysis and properties

s 10 construct microbial correlation networks, samples of infected and uninfected plants
s  were separated, and the OTU tables encompassing bacteria, fungi, and nonfungal eu-
ss0  karyotes were merged to conduct a comprehensive examination of microbial interac-
sa tions. The OTU tables were then filtered to retain only OTUs present in at least
s.2 five samples, resulting in 2,543 OTUs across 242 samples for uninfected plants and
si3 1,058 OTUs across 95 samples for infected plants. These filtered OTU tables were
se¢ used to calculate correlations using the SparCC algorithm[50], which uses Aitchison’s
sis  log-ratio analysis and is specifically designed to handle compositional data with high
s6  sparsity. The SparCC correlation scores were computed on the FastSpar platform [51]
se7 - with default parameters. Pseudo P-values were generated through 1000 bootstraps
sis 1O assess statistical significance. For further analysis, only correlations meeting the
sa0  criteria of P<0.01 were included. Modularity analysis was performed using Python’s
ss0 networkx package (version 3.1) [52]. Community detection was applied using the Lou-
ss1 vain Community Detection Algorithm (community.community_louvain.best_partition
2 function)) [53] the modularity score was calculated on detected modules (and com-
53 munity.community_louvain.modularity functions). We used Cytoscape (version 3.7.1)
ss¢  [h4] to visualize and analyze the microbial interaction networks.

s Infections of A. thaliana leaves and quantification of Albugo
s biomass by qPCR

ss7 - Overnight liquid cultures of bacteria and yeast were diluted in the fresh medium until
sss they reached an ODggo of 0.2. The resulting cultures were then centrifuged at 1200 g
ss9 for 5 minutes, and the resulting pellets were resuspended in MgCl,. A spore and cell
se0 concentration of 25 x 10* spores/mL or cells/ml was prepared for Plectospherella and
so1  Rhogostoma. A spore solution of Albugo was prepared by collecting Albugo laibachii
ss2  Ncl4, which had previously been cultured on A. thaliana Ws-0. Water was added to
s6s  the leaves, and the samples were kept on ice for 1 hour before filtering. The num-
se«  ber of cells (Rhogostoma) or spores (Plectospherella and Albugo) was measured by
ses  taking 50 pL of the solution, placing it on a hemocytometer, and examining it un-
sss der an epifluorescence Axiophot microscope. Approximately 4-5 mL of each sample
sy were carefully combined with 5-6 mL of Albugo solution (25 x 10* spores/mL) and
s evenly applied to 4-5 weeks old A. thaliana seedlings (Ws-0 accessions) using airbrush
se0 guns. Following two weeks, leaf disease symptoms were assessed, differentiating be-
s tween infected and uninfected leaves, and quantified as a percentage, and plants’ fresh
sn weights were measured. The leaves were then stored at -80°C. DNA extraction was
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s2 performed using FastDNATM Spin Kit for Soil (MP Bio) as described in the manu-
si3 facturer’s protocol. For qPCR, a mixture was prepared consisting of 7.5 pL. of SYBR
s Green supermix, 5 ul. of DNA (approximately 50 ng), 1.9 pL. of NFW, and 0.3 pL of
sis forward and reverse primers (10 pM each), resulting in a total reaction volume of 15
s 11L. The sample measurements were triplicated using a Bio-Rad CFX Connect real-time
sz PCR detection system. The quantification of Albugo DNA relative to the plant DNA
ss was determined using the following oligonucleotide sequences: A. thaliana EF1-a: 5'-
sv. AAGGAGGCTGCTGAGATGAA-3’, 5-TGGTGGTCTCGAACTTCCAG-3’; Albugo
ss0 EF1-a: 5-GTGTTCTGCACATCCACACC-3’, 5-GACCTTGACGGATGAAAGGA-
ss1 3. Cq values obtained during the amplification of oomycete DNA were subtracted
s2 from DNA amplicons of A. thaliana (called ddCq). Then, the relative biomass of
s Albugo for each group was determined using the formula 2794€4 These results were
se¢  further normalized by comparing the Albugo biomass in each experiment (x) to the con-
ses  trol. Specifically, we calculated the ratio of the ddCq for any treatment in experiment
.6 X to the average ddCq of the Albugo control in the same experiment (experiment x).

s Infections of A. thaliana leaves with individual strains in sterile
s conditions

s90 Following the protocol of Eitzen et al., [23], sterilized A. thaliana seeds (Ws-0 acces-
s0 sions) were sown on 1/2 strength Murashige Skoog (MS) medium and incubated for
s 3-4 days in a cold room (4C, darkness). The MS plates were then placed in growth
so chambers set to 22°C with a short-day light cycle (8 hours of light) and 33-40% humid-
so3  ity. The seedlings were grown under these conditions for 4-5 weeks before inoculation.
se - Overnight liquid cultures of bacteria and yeast were diluted in the fresh medium until
sos  they reached an ODgyy of 0.2. The resulting cultures were then centrifuged at 1200
so6 ¢ for b minutes, and the resulting pellets were resuspended in MgCl,. A spore con-
so7 centration of 25 x 10% spores/mL was meticulously prepared for Plectospherella and
ss  Rhogostoma. Five hundred ul of each culture was evenly sprayed onto 4-5-week-old
so  A. thaliana seedlings using airbrush guns. Phenotypes of plants were scored after 2-3
s0 weeks post-infection.

«: Microscopical observations

sz A mixture of Albugo spores and Rhogostoma cells, each at a concentration of approxi-
s03 mately 100,000 cells/ml, was prepared and placed in a plastic petri dish. Observations
s« were made under an epifluorescence Axiophot microscope (Zeiss, up to 64x magnifica-
e0s tion) and/or inverted microscope (Zeiss LSM880) 2 to 8 days post-mix.

« Availability of data and material

s OTU tables and scripts are available here
608 https://gitlab.plantmicrobe.de/maryam _mahmoudi/HealthMarkers

18


https://gitlab.plantmicrobe.de/maryam_mahmoudi/HealthMarkers
https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.25.620230; this version posted October 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

«» Competing interests

610 None to declare

« Author Contributions

s MM, KN, and EK devised the study. MM and LMT performed the experiments. MM,
s13 JA and YH interpreted the data. MM wrote the scripts and visualized the data. MM,
sia JA, YH, KN and EK contributed to writing and preparing the manuscript. All authors
s read and approved the final manuscript.

a Acknowledgements

sz We thank Dr. Libera Lo Presti for the critical reading of the manuscript. We further
s1s  thank the de.NBI Cloud Storage and bwForCluster BinAC Tiibingen provide resources
10 for storing and analyzing the data.

620 Fllnding

ez This project has been funded by the European Research Council (ERC) under the
2 DeCoCt research program (grant agreement: ERC-2018-COG 820124), the Deutsche
3 Forschungsgemeinschaft under Germany’s excellence strategy-EXC 2124-390838134,
s and the SPP 2125 DECRyPT program from the DFG.

= Supplementary figures

Bacteria 16S rRNA Fungi ITS2

ns ns ns ns ns ns  ** ns ns

~
o
S
~
o
S

o
Y
a
o©
3
a

0
Infection
0

50 B Infected
B Uninfected

Aggregated relative abundance
o
3N
o

Aggregated relative abundance
o
o
o

Aggregated relative abundanct

o o

o nN

S o
(SR~ ==

-

o

1]

L]

!

s

o

L]

1

1

!

626

627 Supplementary figure 1. Changes in highly abundant microbial taxa col-
s onizing A. thaliana’s in infected and uninfected leaves. Box plots (green =
20 uninfected, purple = infected) show the relative abundance of the orders of bacteria,
s fungi and nonfungal eukaryotes in individual samples aggregated by ’infection status’.
en  Significance values between groups are based on Wilcoxon’s test: n.s. (P > 0.05), * (P
e < 0.05), ** (P < 0.01), ** (P < 0.001), and **** (P < 0.0001).

633

19


https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.25.620230; this version posted October 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

NFEuk

a ab de cde d de
;

A Bacteria

c ab ab a abcabc bc c abc abc

bce ab abc

a
T
.
i
n

Py

4

Shannon index

Community diversity
within sample
2

ot — ol # il
OAL ORI O o A o> A
FeSFELLCSS 3 TE«
B
z‘ a abc a abc ¢ ab bc abc abc abc n.s. o a a a a a a b b b b
F— o
= o T o - 2
.‘gm.'go O:.; e R
S 05~ : i R olF L T oo o
c s =N T . N .
>% §° phy L- Il OI.I.'?TT
> C © e = 4
== % =} © l e 3 T .U
SE ¢ [S) © - a7 o T
2850 Vo p : L
£ B S A - 0 -
E © ? i w0l L HE 0! " 82| Infection status
8 S = L E Pr e . B3 Infected
- - o - =8 Uninfected
: S : R
S ORISR OALL
FUSIELLYSY
c
]
=
© Infection status
s < Infected
Q ©® Uninfected
® N &
."? % % Sites
c ERG
£ [¢] EY
£ WH
S JUG
o <] K69
<] PFN
634
635 Supplementary figure 2. Diversity and variability of leaf microbial com-

s munities of infected and uninfected plants among sampling sites. (A) Alpha
637 diversity, measured by Shannon’s H index and representing the within-sample diver-
ss  sity of infected and uninfected samples among sampling sites in microbial communities.
s (B) Within-site variability (distance to the group centroid). Different letters indicate
o0 statistically significant differences between groups (Dunn test, P < 0.05). (C) Non-
s metric multidimensional scaling (NMDS) plots, based on Bray-Curtis dissimilarities,
sz display the separation between infected and uninfected samples across sampling sites.
s Explained variance (R? values) from PERMANOVA models (Bray-Curtis dissimilari-
sas ties), illustrating the impact of sampling sites and infection status on the structure of
ess leaf microbial communities.
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647 Supplementary Figure 3. Comparing the importance of microbes for

ss classifying leaves in uninfected and infected using machine learning models.
s To discriminate infected from uninfected samples based on microbial signatures, four
es0 classification models were trained (Figure. 3). (A) The Venn diagram represents the
51 number of common microbes with absolute scores greater than 0 among different mod-
s> els during the training phase. (B) Bar plots represent the accuracy of models trained
653 using recursive feature elimination. (C) The Venn diagram represents the number of
s« shared microbes with absolute scores higher than 0 after performing recursive feature
65 elimination.
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6 Supplementary Figure 4. Changes in the co-abundance interactions of
0 HCom and DCom OTUs. Interactions between HCom and DCom OTUs in the
0 network constructed for uninfected (A) and infected (B) samples. OTUs are clustered
s1 by module and colored by taxa. Edges are colored according to the correlations: pos-
s2 itive correlations are colored in orange, and negative correlations are colored in gray.
s Histograms (C and D) show the OTU distribution within modules for the networks of
s uninfected and infected samples, respectively. These histograms are further color-coded
s to distinguish microbial taxa: green represents bacteria, orange represents fungi, and
s blue represents nonfungal eukaryotes.
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668

669 Supplementary Figure 5. Fresh weight of plants inoculated with selected
o0 strains (see Figure. 6). Box plots showing the weights of leaves infected with Al-
e bugo in the presence of HCom strains (green) and DCom strains (purple). Statistically
o2 significant differences between the two groups were evaluated using Tukey’s HSD test,
s with different letters indicating significant differences (P < 0.05).
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676 Supplementary Figure 6. Possible interactions of R. epiphylla with Al-
a7 bugo. (A) Single cells of Rhogostoma (R) attached to the spore of Albugo (A). (B)
es  Albugo’s spores associated with different microbes (Aam). (C) Rhogostoma cells feed-
oo ing on other microbes or Albugo’s zoospores via filopodia (f) (See also S. Videol and
0 S. Video2). Measure bar indicates 10 pm.
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683 Supplementary Figure 7. Effect of different HCom and Dcom microbes
s on WS-0 Arabidopsis plants under gnotobiotic conditions. Each microbe was
s sprayed on 3-4 weeks-old Arabidopsis plants under gnotobiotic conditions. Box plots
sss show the percentage of healthy plants three weeks post-inoculation.
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= Supplementary tables legends

o Table. S1. Detailing number of samples and sampling locations.
s Table. S2. Results of blasting the sequences of key OTUs used in Figure 4
s1 with NCBI databases.

« Supplementary videos legends

o3 Supplementary Video S1 and S2. Rhogostoma grazing with their filopodia
s« 1n the solution containing Albugo’s spores.
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