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Abstract17

The plant microbiome protects plants from stresses, including pathogen at-18

tacks. However, identifying microbes that provide plant protection remains chal-19

lenging in complex microbial communities. In this study, we analysed samples20

from natural A. thaliana populations, including both plants infected with the21

pathogenic oomycete Albugo laibachii and uninfected plants, over six years. Using22

machine learning classification models, we achieved high accuracy in distinguish-23

ing infected and uninfected plants based on microbiome abundance. We identified24

80 key taxa associated with health and disease. Among the health-associated mi-25

crobes (HCom), we selected bacteria, fungi, and cercozoa that effectively reduced26

pathogen presence in co-inoculation assays. In comparison, disease-associated mi-27

crobes (DCom) were less effective in conferring protection. Our findings highlight28

the complexity of plant-microbe interactions and advance our understanding of29

microbial roles in plant disease ecology. By integrating ecological insights with30

machine learning, we take a significant step towards designing robust microbial31

consortia that enhance plant resilience against pathogens.32

Keywords: Microbe-microbe interaction, infected and uninfected leaves, ma-33

chine learning, plant pathogen, natural probiotic34
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Introduction35

Similar to higher organisms such as humans, plant tissues are colonized by a wide36

range of microbes known as microbiota or microbiome. The microbiome associated37

with the plant leaves, i.e., the phyllosphere, is thought to play an important role in38

the physiology, fitness, and defense mechanism of the host against various biotic and39

abiotic perturbations [1]. Leaves are inhabited mainly by commensal species but can40

also harbor pathogenic bacteria, fungi, and oomycetes, which can significantly harm41

natural plants and crops [2], thereby causing annual crop yield losses and reducing food42

availability. Climate change is accelerating the spread of pathogens, thereby affecting43

forest health globally [3, 4]. Therefore, it is crucial to develop strategies that protect44

from pathogens in a changing environment.45

46

Biological control is an effective and environmentally friendly alternative to pesticides47

for combating microbial plant diseases [5]. For example, Trichoderma, an opportunistic48

fungal genus, is widely used as a biological control agent against phytopathogens and49

is studied for its role in helping plants manage biotic and abiotic stresses [6]. However,50

identifying and experimentally validating biocontrol microbes through traditional meth-51

ods can be slow and challenging [7]. Another approach to biocontrol involves identifying52

healthy microbiomes. While healthy plant communities are characterized by diverse and53

balanced microorganisms, as seen in comparisons between healthy and diseased plants54

[8]. However, it remains unclear what defines a healthy or beneficial microbiome. One55

promising solution to this challenge is the use of machine learning. Machine learning56

techniques have been used in microbiome research to accomplish various tasks, such as57

predicting host or environmental phenotypes and categorizing microbial properties, in-58

cluding monitoring changes in microbiome composition [9]. Machine learning classifiers59

were used to identify soil microbial patterns predicting the presence of Fusarium oxyspo-60

rum, the pathogen causing Fusarium wilt disease under field conditions [10]. Similarly,61

the random forest method accurately predicted productivity based on microbiome com-62

position at the order level. Significant differences in crop yield were associated with63

bulk soil microbiome composition, with many taxa contributing to nitrogen utilization64

[11]. Machine learning was used to identify bacterial strains important in reducing leaf65

infection with the pathogenic bacterium Pseudomonas syringae DC3000 [12]. However,66

few studies have investigated the different taxonomic groups of bacteria and eukaryotes67

in the microbiota of natural plants attacked by obligate biotrophic pathogens.68

69

The obligate biotrophic oomycete Albugo laibachii is a common pathogen of the Bras-70

sicaceae family and the causal agent of the white rust disease [13]. This pathogen was71

identified as a potential core and hub microbe in the leaf microbiome of A. thaliana72

since it showed persistence over several years and high interconnection in the microbial73

interaction network [14, 15]. Albugo infection was also shown to affect both epiphytic74

and endophytic bacterial colonization by reducing alpha diversity and secretion of an-75

timicrobial peptides [15, 16]. However, it is not clear how the microbiome of the leaf76

differs in plants infected or not with Albugo, and which microbial strains have the po-77

tential to promote or reduce infection with Albugo.78

79

In this study, we analysed the microbiome of Arabidopsis thaliana over a period of80
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six years as collected and described by Mahmoudi et al. [17]. High-throughput se-81

quencing analysis revealed differences in the microbiota composition associated with82

Albugo-infected and uninfected plants across host genotypes and sampling sites. Using83

statistical and machine learning classification algorithms, we identified candidate mi-84

crobes predictive of infected and uninfected states. Candidate microbes were shown to85

be distributed in different clusters in microbial interaction networks, highlighting their86

importance in the community’s stability. Co-inoculation assays in A. thaliana confirmed87

the potential of the health-associated microbial communities (HCom) to reduce Albugo88

infection. In comparison, disease-associated microbial communities (DCom) exhibited a89

range of functions, from minimal effects to partial pathogen suppression, likely through90

niche competition. These findings highlight the functional redundancy of microbial91

communities from different phylogenetic groups in manipulating plant health outcomes92

and demonstrate the power of machine learning in informing biocontrol strategies.93

94

95

Results96

Comparison of phyllosphere microbiome in natural A. thaliana97

populations: uninfected vs. infected with the obligate biotrophic98

oomycete pathogen Albugo99

To investigate the diversity and compositional dynamics of the phyllosphere micro-100

biome in the presence of the obligate biotrophic oomycete pathogen Albugo, we used101

a microbiome dataset described in Mahmoudi et al. [17]. In their study, A. thaliana102

samples were collected from six sites near Tübingen (southern Germany) with stable A.103

thaliana populations, with sampling repeated over six consecutive years (2014-2019).104

Genomic DNA was extracted from epiphytic and endophytic microbial communities,105

followed by amplicon sequencing for bacterial 16S rRNA, fungal ITS2, and eukaryotic106

18S rRNA. For the 18S eukaryotic data, fungal microbes were excluded, resulting in the107

nonfungal eukaryotes (NFEuk) dataset [17]. Here, we used the endophytic microbiomes108

for further analysis. Since Albugo was the major pathogen associated with A. thaliana109

at the time of sampling, the samples were categorized as infected or uninfected based110

on the presence or absence of white rust on the leaves (Fig. 1A).111

A diversity analysis was conducted to compare the leaf-associated microbial commu-112

nities between infected and uninfected plants. Alpha diversity (within-sample diversity,113

measured by Shannon’s index) demonstrated that, on average, infected plants exhibited114

a 1.1-fold and 2.8-fold reduction in bacterial and NFEuk community diversity, respec-115

tively, in comparison to uninfected plants (Tukey’s HSD test, P < 0.05). However, no116

significant differences were observed in fungal communities (Fig. 1B). A permutational117

multivariate analysis of variance (PERMANOVA) demonstrated that the ’infection sta-118

tus’ of the plants explained 1.8% of the variation in bacteria, 0.5% in fungi, and 12.8%119

in nonfungal eukaryotes. These variations were further visualized using non-metric120

multidimensional scaling (NMDS), which revealed that the infected plants were most121

clearly separated from the uninfected groups in the NFEuk communities, followed by122

bacteria and less so in the fungal communities (Fig. 1C).123
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Differences between infected and uninfected communities were found to be associ-124

ated with the enrichment of major microbial orders over sampling years (Wilcoxon test,125

P < 0.05) (Fig. 1D, see also Fig. S1). Among bacteria, Sphingomonadales, which has126

been demonstrated to be beneficial for plant health and productivity, [18] was 1.3 times127

more abundant in uninfected plants, whereas Pseudomonadales was 1.5 times more128

abundant in infected samples, based on a comparison of mean relative abundances.129

Among the fungal orders, only the Basidiomycete yeast Cystofilobasidiales exhibited130

a slightly higher significant abundance in infected plants (1.02 times more). Among131

nonfungal eukaryotic orders, as expected, the order Albuginales (including Albugo)132

showed a 6.7 times increase in infected plants. Interestingly, the most abundant orders133

of green algae (Watanabeales, Xanthophyceae and Chlamydomonadales) were 5.9-14.5134

times more abundance in uninfected plants, similar to Cercozoa (Glissomonadida and135

Cryomonadida), with 3.0 and 7.6 times higher abundance in uninfected plants, respec-136

tively.137
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Figure 1. Diversity and composition of leaf microbial communities in Al-139

bugo-infected and uninfected plants. (A) The number of annually sampled plants140

per group (97 infected and 254 uninfected). (B) Alpha diversity is measured by Shan-141

non’s H index and represents the within-sample diversity of infected and uninfected142
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samples in bacteria, fungi, and nonfungal eukaryotic communities. Box plots display143

individual samples as dots. Different letters indicate statistically significant differences144

between groups (Tukey HSD’s test, P < 0.05). (C) Separation of infected (purple) and145

uninfected (green) samples using non-metric multidimensional scaling analysis (NMDS)146

based on Bray-Curtis dissimilarities. Each dot represents a single sample. (D) His-147

tograms show the relative abundance of bacteria, fungi, and nonfungal eukaryotic com-148

munities at the order level, categorized by plant infection status (infected/uninfected)149

over six years. Taxa with significant differences between infection stages are indicated150

in bold (see Fig. S1).151

152

Genotype variation in infected and uninfected A. thaliana cor-153

relates with microbiome diversity154

To investigate whether leaf microbiome infection varies by host genotype, we used the155

whole genome sequencing data that was conducted to identify genotype clusters based156

on single nucleotide polymorphisms (SNPs) analysis [17]. Among the five identified157

clusters, three (clusters 1, 2, and 4) contain samples susceptible to Albugo infection.158

Clusters (2 and 4) exhibited significantly lower alpha diversity in NFEuk communities159

of infected plants as compared to uninfected clusters (Dunn test, P < 0.05) (Fig. 2A). A160

similar pattern was observed in the variability within clusters (i.e., how far each sample161

was from the group’s central point or centroid). Specifically, the clusters that were162

susceptible to infection showed less variability in this distance, meaning the samples in163

these groups were more similar to each other (Dunn test, P < 0.05) (Fig. 2B). However,164

no significant differences were found in fungal communities. Microbiome compositional165

variation, visualized using NMDS, showed that samples from cluster 4 more clearly166

separated the infected plants, while cluster 5 distinguished uninfected samples in the167

NFEuk community (Fig. 2C, PERMANOVA, P < 0.05). These patterns were less168

pronounced in bacterial communities (explaining 10.9% of the variation vs. 22.2%169

variation in NFEuk community) and were not significant in fungal communities (Fig.170

2C).171

Interestingly, the susceptible clusters were distributed across different sampling sites,172

suggesting that, in addition to host genotypes, other abiotic factors might contribute173

to plant susceptibility to infection. Notably, genotype cluster 5, which contained only174

uninfected plants, was exclusively found at the ERG site (Table. S1). Patterns related175

to sampling sites were observed: two sites (K69 and PFN) had no infected plants, while176

four sites (EY, WH, JUG, and ERG) contained both infected and uninfected plants177

(Fig. S2). Site EY exhibited lower alpha diversity in bacterial communities of infected178

plants compared to uninfected plants in the same group, while in NFEuk communities,179

three sites (EY, WH, and JUG) showed lower alpha diversity in infected plants (Dunn180

test, P < 0.05) (Fig. S2A). Regarding community variability, only site ERG showed181

reduced variability in infected plants within bacterial communities. In contrast, in182

NFEuk communities, the variability of infected plants was consistently lower than that183

of uninfected plants across all sites (Dunn test, P < 0.05) (Fig. S2B). The combination184

of infection status and sampling site explained 8.4%, 7.8% and 21.2% of the variation185

in microbial communities for bacteria, fungi and NFEuk, respectively (Fig. S2C).186
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Figure 2. Diversity and separation of leaf microbial communities of in-188

fected and uninfected plants among plant genotypes. (A) Alpha diversity,189

measured by Shannon’s H index, represents the within-sample diversity in microbial190

communities across infected and uninfected samples of different genotype clusters. (B)191

Within-cluster variability, quantified as the distance of individual samples from the192

centroid of their respective genotype cluster, illustrates the variation among microbial193

communities within each cluster. Different letters indicate statistically significant differ-194

ences between groups (Dunn test, P < 0.05). (C) Non-metric multidimensional scaling195

(NMDS) plots, based on Bray-Curtis dissimilarities, display the separation between196

infected and uninfected samples across genotype clusters. Explained variance (R² val-197

ues) from PERMANOVA models (Bray-Curtis dissimilarities), illustrating the impact198

of genotype clusters and infection status on the structure of leaf microbial communities.199

200

Identification of a microbial signature for predicting infected201

and uninfected leaves using machine learning models202

We hypothesized that the plant microbiome is composed of distinct health-associated203

microbial communities (HCom) in uninfected plants and disease-associated microbial204

communities (DCom) in infected plants. These distinct microbial communities can serve205

as robust indicators of infection, enabling accurate discrimination between infected206
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and uninfected samples. To investigate this hypothesis, we used machine learning207

classification models, including random forest (RF), support vector machine (SVM),208

and logistic regression (LR), which are well-known for their interpretability and multi-209

layer perceptron (MLP) (Fig. 3A). The training phase used 70% of the sample set,210

consisting of 169 uninfected and 66 infected samples with 2,543 operational taxonomic211

units (OTUs). The remaining 30% (73 uninfected and 29 infected samples) served as212

the test set to assess predictive performance. Four different evaluation metrics were213

employed, resulting in accuracies ranging from 75% to 86% (Fig. 3C). The SVM and214

LR models achieved the highest accuracy of 85% and 86% respectively, with an area215

under the curve (AUC) of 93% and 94%, outperforming the MLP and RF (Fig. 3B216

and 3C). We then analysed the predictive role of each microbe by calculating and217

comparing the feature importance of all the OTUs in the trained classification models218

(SVM, RF, and LR) (Fig. 3A). Comparison of the three models revealed that they219

shared 2,253 OTUs, indicating consistent microbial signatures associated with both220

groups (infected/uninfected) that contributed significantly to the classification process221

(Fig. S3A). Using recursive feature elimination with cross-validation, we identified the222

most crucial OTUs for classification, referring to them as HCom and DCom. The223

results showed that RF had the highest accuracy, achieving 91% accuracy (Fig. S3B)224

with 40 selected OTUs (Fig. 4A). The LR model reached 87% accuracy with 4 selected225

characteristics (Fig. 4B). In contrast, the SVM reached 86% accuracy with 53 selected226

OTUs (Fig. 4C). It is interesting to note that four OTUs were shared by all three227

models that originated from LR, and 13 OTUs were shared by SVM and RF (Fig. 4228

and Fig. S3C).229
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Figure 3. Classification of plant infection status and feature selection by231

machine learning classifiers. (A) Workflow illustrating the methodology employed232
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to distinguish infected samples from uninfected ones using machine learning models.233

The objective was to classify leaves uninfected and infected based on the observed234

symptoms of Albugo infection, utilizing the relative abundance OTU table of bacteria,235

fungi, and nonfungal eukaryotes. Four machine learning classifiers, namely support236

vector machine (SVM), random forest (RF), logistic regression (LR), and multilayer237

perceptron (MLP), were trained on 70% of the samples. The trained models were238

evaluated using the remaining 30% of the dataset. Feature importance (to select key239

important OTUs for classification) was extracted from the trained models and using240

the recursive feature elimination method (Figure. 4). (B) Receiver operating charac-241

teristic (ROC) curves. The area under the curve (AUC) values indicate the ability of242

each classifier to distinguish between infected and uninfected samples, with higher AUC243

values indicating better performance. (C) Additional performance metrics (accuracy,244

f-measure, precision, and recall) for each classifier on the test set.245

246

247

Additionally, we hypothesized that HCom microbes can reduce the pathogenicity of248

Albugo, in contrast to DCom microbes. To test this hypothesis, we selected four can-249

didate microbes from bacterial, fungal, and non-fungal eukaryotic groups within each250

category (HCom and DCom) (Fig. 4, microbes in bold). The SVM and LR models251

provide both positive and negative coefficients to determine microbial importance in252

classifying infected versus uninfected leaves. We assigned scores based on these coeffi-253

cients, with negative scores indicating HCom OTUs as indicators of the uninfected class254

and positive scores representing DCom OTUs as indicators of the infected class (see Fig.255

4B and 4C). However, the RF model only provides positive scores, necessitating further256

examination of the relationship between the selected OTUs and their respective classes257

(Fig. 4A). Other selection criteria included diverse representations of bacteria and eu-258

karyotes, as well as laboratory availability. Among the HCom bacterial candidates,259

Methylobacterium OTU3 (Methylobacterium goesingense) and Sphingomonas OTU15260

(Sphingomonas melonis) were selected, while Cystofilobasidium OTU126 (Cystofiloba-261

sidium macerans) and Rhogostoma OTU3 (Rhogostoma epiphylla) were selected for262

fungi and nonfungal eukaryotes, respectively. The Dcom candidates included Duganella263

OTU4 (Duganella zoogloeoides) and Pseudomonas OTU6 (Pseudomonas viridiflava)264

from the bacterial group, Plectosphaerella OTU16 (Plectosphaerella niemeijerarum) as265

fungal representative, and Albugo OTU5 (Albugo), representing nonfungal eukaryotes266

(Fig. 4A-C).267
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Figure 4. Selected HCom and DCom microbes as indicators of uninfected269

and infected samples. (A) Histogram showing the 40 OTUs selected by recursive270

feature elimination with k-fold cross-validation using random forest (RF). The x-axis271
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indicates the importance of each OTU for classification (values are normalized between272

0 and 1). (B) The 4 OTUs selected by recursive feature elimination with k-fold cross-273

validation using logistic regression (LR). (C) Normalized coefficient values of the 53274

OTUs selected by recursive feature elimination with k-fold cross-validation using sup-275

port vector machine (SVM). Negative values (B and C) indicate OTUs with high scores276

in discriminating uninfected leaves (HCom), while positive values indicate high scores277

in discriminating infected samples (DCom). (D) Bar plots illustrating the aggregated278

relative abundances of OTUs in infected and uninfected samples. The microbes high-279

lighted in bold (left) were selected for further experimental analysis.280

281

Infection reduces microbial network complexity and increases282

compartmentalization in community structure283

Microbial networks are valuable for identifying potential interactions among microor-284

ganisms within a given community. This is achieved by correlating the abundances of285

different species. Therefore, we investigated the microbial networks in both infected286

and uninfected samples. The network resulting from the uninfected samples showed 1.9287

times greater number of nodes (OTUs) and 3.3 times more edges (connections between288

OTUs) when compared to the one generated from the infected samples (2,024 nodes289

and 73,511 edges vs. 1058 nodes and 22,089 edges, respectively) (Fig. 5A vs. Fig.290

5B). Notably, the topological characteristics of the uninfected network showed higher291

degree (more connections between microbes) and closeness centrality (microbes more292

closely connected to others) values (P < 0.001) (Fig. 5C and 5D). To assess the ef-293

fect of infection on the microbial communities’ compartmentalization, we compared the294

modularity of the constructed networks, a feature representing the degree of functional295

division and ecological niches within the microbial community [19]. The results showed296

that both networks contained a comparable number of modules, with the uninfected297

network having ten modules and the infected network having nine modules. However,298

the modularity value of the network derived from infected samples (0.31) was slightly299

higher than that of the network derived from uninfected samples (0.24) (Fig. 5B and300

5A), which indicates that infected generated network is more segmented, suggesting a301

stronger tendency to division of microbial communities into distinct functional groups302

or ecological niches. Notably, all the modules contained OTUs from different taxonomic303

categories of bacteria, fungi, and nonfungal eukaryotes (Fig. 5E and 5F). We examined304

the microbial interactions of HCom and DCom OTUs in both uninfected and infected305

networks. Results showed that these OTUs displayed distinct connectivity patterns. In306

the network generated from uninfected samples, the OTUs formed 72 OTUs with 493307

edges (Fig. S4A). In contrast, these OTUs exhibited fewer connections in the infected308

network, resulting in 64 nodes with 193 edges (Fig. S4B). Moreover, those OTUs are309

more sparsely distributed across different modules in the infected generated network310

compared to the uninfected network (Fig. S4D vs. Fig. S4C). The changes in connec-311

tivity patterns, particularly among the OTUs in the infected network, further highlight312

the reduced complexity and increased structural division in networks generated from313

infected samples.314
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Figure 5. Changes in microbial co-abundance networks of infected and316

uninfected plants. Co-abundance networks for both uninfected (A) and infected317

(B) samples, where nodes (circles) represent OTUs and edges (the connection between318

OTUs) indicate correlations between these OTUs. Nodes are color-coded by micro-319

bial taxa and grouped based on modularity clustering. Box plots show features per320

node, i.e., degree (C) and closeness centralities (D) in infected and uninfected net-321

works. Significance values indicate differences between groups based on the Wilcoxon322

test (****P ≤ 0.0001). Histograms illustrate the distribution of OTUs within modules323

for the network of uninfected (E) and infected (F) samples, respectively. These his-324

tograms are further color-coded to distinguish microbial taxa, with green representing325

bacteria, orange representing fungi, and blue representing NFEuk.326

327

HCom confer protection against Albugo infection to varying328

degrees329

To investigate the protective effects of the selected microbes (Fig. 4) against the in-330

fection caused by Albugo, first, a mixture of Albugo and each of the four microbes331

from HCom was sprayed onto Arabidopsis leaves (Fig. 6A). The level of protection332

was determined by measuring the percentage of infected leaves (Fig. 6B). All four333

candidates significantly decreased the infection caused by Albugo (Dunn test, P <334

0.05). Cystofilobasidium exhibited the most pronounced effect, reducing Albugo levels335

by an average of 73%. Sphingomonas caused a 66% reduction, followed by Rhogostoma336
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and Methylobacterium, which resulted in 53% and 40% decreases in Albugo infection,337

respectively (Fig. 6B). These observations were further confirmed by quantitative poly-338

merase chain reaction (qPCR) analysis, which demonstrated that samples exposed to339

the uninfected-associated microbes exhibited substantially lower amounts of Albugo as340

compared to control samples (Dunn test, P < 0.05), with the average biomass of Albugo341

ranging from 72% to 90% (Fig. 6C). These results demonstrate that all the selected342

candidates associated with uninfected plants, namely, Cystofilobasidium, Methylobac-343

terium, Rhogostoma, and Sphingomonas, significantly decreased the infection levels of344

Albugo. The Methylobacterium-treated plants exhibited the highest plant biomass, with345

an average of 0.96 (g), compared to other treatments(Tukey’s HSD test, P < 0.05) (Fig.346

S5). Microscopy analysis revealed that Rhogostoma attached to the Albugo spores and347

feeds on free-living microbes in the environment (Fig. S6 and supplementary videos 1348

and 2). These findings highlight the potential of HCom microbes in protecting against349

Albugo infection, with varying levels of effectiveness across different microbial taxa.350

351

We then investigated the effect of DCom microbes on the pathogenicity of the Albugo.352

The in-planta infection assay demonstrated that Plectosphaerella had no significant353

effect on the infection level of Albugo (Dunn test, P > 0.05). However, Pseudomonas354

and Duganella caused a decrease in infection of 36% and 20%, respectively (Dunn test,355

P < 0.05) (Fig. 6B). Likewise, qPCR outcomes supported the observed phenotype: the356

biomass of Albugo in the control group exhibited no significant changes in comparison357

with Plectosphaerella (Dunn test, P < 0.05), whereas Pseudomonas and Duganella358

caused a 72% and 58% reduction in Albugo biomass, respectively (Fig. 6C). The find-359

ings reveal that while some DCom microbes are effective in reducing Albugo infection360

levels, their protective effects are less significant compared to those of HCom microbes.361

To evaluate the specific effects of each microbe on plant health independently,362

we performed spray experiments on gnotobiotic plants, isolating the impact of in-363

dividual microbes without the influence of other microbial interactions (Fig. S7).364

Three distinct phenotypes were observed. Plants colonized with the DCom bacteria365

Duganella and Pseudomonas exhibited high mortality rates, with 10.0% and 11.3%366

survival, respectively, within three weeks post-colonization. As expected, the filamen-367

tous pathogenic Plectospherella and Albugo caused characteristic infection symptoms,368

namely, brownish leaves and roots and white rust disease, respectively. Forty-nine per-369

cent of the plants treated with HCom Cystophilobasidium survived three weeks post-370

colonization. The healthiest plants were those colonized by the remaining HCom mi-371

crobes—Sphingomonas,Methylobacterium, and Rhogostoma-with over 88% of the plants372

showing no discernible negative consequences. Overall, these results indicate that most373

HCom microbes lead to healthier plants than DCom microbes, underscoring the im-374

portance of specific microbial candidates in enhancing plant vitality and resistance to375

pathogen Albugo.376
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Figure 6. Effects of HCom and DCom on infection caused by Albugo.378

(A) Three to four weeks old Arabidopsis plants were co-inoculated with Albugo and379

each of the indicator microbes (HCom and DCom microbes) as identified in Figure 4.380

Symptoms were recorded 2 weeks after infection. (B) Box plots showing the percent-381

age of leaves infected with Albugo in the presence of HCom (green) and DCom strains382

(purple). (C) Relative quantification of Albugo biomass in response to each indicator383

microbe was conducted through qPCR targeting the Albugo EF1-α gene and normal-384

izing to the A. thaliana EF1-α gene. The relative biomass was then calculated via the385

ddcq method. Statistically significant differences between the groups were evaluated386

using the Dunn test, with different letters indicating significant differences (P < 0.05).387

Discussion388

In this study, we identify microbial signatures that distinguish between infected and un-389

infected plants and explore their potential for developing effective probiotics to promote390

plant health. The management of plant health through natural probiotics has gained391

significant ecological and economic interest. Various microbes and synthetic microbial392

communities have been found to increase plant resistance to pathogens under laboratory393

conditions [12, 20]. Pathogens are known to impact the phyllosphere microbiome to es-394

tablish their niche [21]. Recent studies show that pathogens, including Verticillium and395

Albugo, release effector proteins to manipulate the microbial landscape, affecting micro-396

biome composition and function [16, 22, 23]. However, there is a gap in understanding397
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these interactions under natural field conditions, where pathogens face a complex and398

heterogeneous host microbiome and abiotic stressors [17, 24]. Our study addresses this399

by investigating microbial communities associated with A. thaliana under natural field400

conditions over six years, focusing on changes in the presence or absence of Albugo401

infection.402

Agler et al. [15] reported that the diversity of bacterial communities was lower403

in Albugo-infected plants. Extending this observation, our analysis of six-year time404

series data, along with 18S eukaryotic data, revealed that not only bacterial and fungal405

diversity affected by infection, but there was an even more pronounced loss of diversity406

within 18S nonfungal eukaryotic groups (Fig. 1). This loss was observed in 3 out of 5407

host genotypes that showed susceptibility to infection, leading to up to a 22% variation408

in the microbiome composition (Fig. 2). We attribute this reduction in diversity to a409

significant increase in the pathogen population, which can disrupt the balance of the410

established microbial community [10, 25]. In the case of Albugo infection, this imbalance411

may result from the pathogen’s efficient suppression of host defenses, allowing non-412

host pathogens to proliferate [26], or from the release of microbial-modulating effector413

proteins [16]. Both mechanisms likely contribute to the establishment and maintenance414

of the pathogen’s niche within the host.415

To identify signatures, the pathogen Albugo imposes on the A. thaliana microbiome,416

we used machine learning prediction models to identify non-linear relationships and417

manage the complexity of the high-dimensional data [27]. Therefore, we conducted a418

systematic analysis of variations between uninfected and infected plant statuses, achiev-419

ing highly accurate classifications up to 91% (Fig. 3 and Fig. S3). These findings420

suggest the presence of predictive microbial signatures in these groups. Using the fea-421

ture selection technique, we pinpointed 3.1% of OTUs, including bacteria, fungi, and422

nonfungal eukaryotes, as key discriminators between infected and uninfected plants,423

corresponding to HCom and DCom microbes (Fig. 4 and Fig. S3). These results424

highlight that, despite the vast microbial diversity, only a small subset is significantly425

associated with plant health outcomes. Interestingly, we found that HCom and DCom426

microbes are distributed across various network modules (Fig. S4). Modularity in mi-427

crobial interaction networks can indicate diverse habitats, varying selective pressures,428

and phylogenetic clustering of related species [28], highlighting the crucial role of these429

microbes in the functionality of different community modules within the overall micro-430

bial community.431

Building on these findings, we aimed to test whether microbial isolates matching the432

taxa identified by our machine learning prediction models could promote health or dis-433

ease status in field conditions. Here, we could show that the predicted HCom and DCom434

microbiome comprises distinct phylogenetic groups of bacteria, fungi, and nonfungal435

eukaryotes (Fig. 4). Interestingly, some taxa were represented in both infected and un-436

infected samples. These included known pathogens like the fungal Ascomycetes genus437

Alternaria, saprophytic fungi such as the Basidiomycete yeast genera Dioszegia and438

Cystofilobasidium and the Ascomycetes order Heliotales. In addition, the bacterial gen-439

era Pseudomonas and Sphingomonas were also present in both groups. Pseudomonas440

is particularly notable for its ambivalent behavior, with a broad range of sublineages441

that can be either pathogenic or protective [29], either through microbe-microbe inter-442

actions or host interactions ([30]. This diversity was reflected in our dataset, where443

Pseudomonas OTU5 and OTU6 were predicted to be associated with infected sam-444
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ples, while Pseudomonas OTU110 was associated with health. A similar diversity has445

been reported for Sphingomonas [31], which, similar to Pseudomonas, can protect A.446

thaliana from pathogenic bacteria [32].447

Given their relevance to A. thaliana health, we selected Pseudomonas and Sphin-448

gomonas isolates for testing. Our tests confirmed that the Pseudomonas isolate was449

pathogenic, while the Sphingomonas isolate did not harm the plant when colonizing450

the host alone (Fig. S7). From our HCom microbes, Methylobacterium and Sphin-451

gomonas showed further robust suppressive effects (Fig. 6). This is consistent with452

previous observations that Sphingomonas is able to suppress Pseudomonas syringae453

disease symptoms [32]. Further to the genera of Spnignomonas and Pseudomonas,454

members of the Methylobacterium genus and the family Oxalobacteriaceae are highly455

adapted to live on plants with high abundance and diversity [33, 34]. While Methy-456

lobacterium was predicted to be HCom in our analyses, the Oxalobacteriaceae genus457

Duganella was strongly associated with Albugo infection. Our experiment validated458

that the Duganella isolate exhibited pathogenic behavior (Fig. S7).459

Among the HCom selected microbes, the basidiomycete yeast Cystofilobasidium ex-460

hibited the strongest protective effects (Fig. 6). Cystofilobasidium is particularly note-461

worthy, as several basidiomycete yeasts have been empirically identified as biocontrol462

agents against postharvest diseases in various fruits. This includes our computationally463

identified yeasts Vishniacozyma [35] and Leucosporidium [36], as well as our experimen-464

tally validated yeast, Cystofilobasidium [37]. Beyond yeast, another crucial group influ-465

encing plant health is the Cercozoa, which plays a significant role in shaping bacterial466

and fungal communities through selective predation [38, 39]. Our study demonstrates467

that the HCom Rhogostoma can suppress infection. As primary microbial predators,468

Rhogostoma directly targets bacterial and fungal pathogens, exerting a consumptive ef-469

fect on various pathogenic strains [40, 41]. The reduction in infection levels may occur470

through direct consumption of Albugo zoospores or by preying on bacterial and fun-471

gal species that facilitate Albugo infection. Additionally, Rhogostoma may indirectly472

contribute to plant health by promoting beneficial microbes and enhancing interac-473

tive activities, such as biofilm formation, as has been recently shown for the protist474

Cercomonas lenta in the rhizosphere [42].475

In summary, our findings support the concept of functional similarity [43], where476

diverse microbial taxa, including bacteria, fungi, and nonfungal eukaryotes, share over-477

lapping ecological roles that contribute to plant health. This concept suggests that478

while different microbial species can perform similar functions, their effectiveness may479

vary depending on environmental conditions. Therefore, if abiotic factors (e.g., radia-480

tion and humidity) become unfavorable for one group, others can compensate, ensuring481

continued protection against pathogens [17]. Leveraging functional similarity presents482

promising opportunities for biocontrol methods to reduce pathogen pressure across483

diverse environmental conditions. As climate change increases the frequency of envi-484

ronmental fluctuations, leading to greater stress on plants, enhancing environmental485

resilience through the use of robust probiotics will be essential for future food security.486
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Method487

Diversity analysis488

The OTU tables for bacteria, fungi, and nonfungal eukaryotes, along with the corre-489

sponding genotype clusters for each sample, were obtained from the study by Mah-490

moudi et al. [17]. The OTU tables were modified by excluding epiphytic samples and491

those with fewer than 50 reads. Subsequently, OTU abundance tables were utilized to492

compute Shannon’s H diversity index using the ’estimate-richness’ function in the Phy-493

loseq R package [44] for estimating alpha-diversity. To assess between-sample diversity,494

relative abundance OTU tables were computed and transformed using log10 (x + 1)495

before calculating Bray-Curtis dissimilarities, which were then employed for nonmetric496

multidimensional scaling ordination (NMDS) using the ’ordinate’ function in Phyloseq497

[44] R package. Three PERMANOVA analysis on Bray-Curtis dissimilarities were con-498

ducted to identify the primary factors (’infection stages’, ’combined infection stages and499

genotype’ and ’combined infection stages and sampling sites’) influencing the leaf micro-500

biome’s structure, utilizing the ’adonis2’ function in the Vegan package [45] with 10,000501

permutations (P < 0.05). A beta-dispersion analysis on Bray-Curtis dissimilarities was502

conducted to compare sample-to-sample variation within each group (genotype clusters503

and sampling sites) (multivariate homogeneity of group dispersion analysis, “betadis-504

per”; Vegan package). The means were compared using the nonparametric multivariate505

test for multiple groups (’dunnTest’ function in the FSA package [46], with Benjamini-506

Hochberg adjusted P-values < 0.05), and the nonparametric ranked test for two groups507

(’wilcox.test’ function in the stats package [47], P < 0.05). All analyses were conducted508

in R (version 4.1.2) [48].509

Machine learning analysis510

The OTU tables of bacteria, fungi, and nonfungal eukaryotes were converted into rel-511

ative abundance tables and merged into a single table. The OTU tables were further512

filtered to retain only those OTUs present in at least five samples (2543 OTUs and513

337 samples). A processed dataset was created using two binary labels, ’infected’ and514

’uninfected,’ corresponding to the phenotype of the collected plants. Plants were la-515

beled ’infected’ if white rust disease caused by Albugo was observed and ’uninfected’ if it516

was not. The scikit-learn package in the Python programming environment was used to517

train and validate machine learning classifiers [49]. First, samples were divided into two518

parts: training (70%) and testing (30%) (train test split function, test size=0.3, shuf-519

fle=True). Subsequently, machine learning models were trained. The trained models520

included Support Vector Machine (svm.SVC function, kernel=’linear’), Random For-521

est (RandomForestClassifier function, n estimators=1000, min samples split=2), multi-522

layer perceptron (MLPClassifier function, solver=’adam’, alpha=1e-5, random state=1,523

learning rate=”adaptive”, max iter=500, hidden layer sizes=(100,100,100)), and Lo-524

gistic Regression (LogisticRegression function, default parameters). The labels of the525

test sets were predicted (model.predict function). The prediction results were compared526

with the actual labels of the samples to calculate the models’ performance in terms527

of accuracy (accuracy score function), f-measure (f1 score function, average=’macro’),528

precision (precision score, average=’macro’), and recall (recall score function). The529
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area under the curve (AUC) was calculated using false positive and true positive rates530

(roc curve function) and plotted using the matplotlib package. The importance of each531

OTU in the trained models was obtained using model.coef (for Support Vector Machine532

and Logistic Regression) and model.feature importances (for Random Forest). Recur-533

sive feature elimination was used to identify the most important OTUs (HCom and534

DCom) for classifying groups (RFECV function, step=1, cv=total number of samples,535

shuffle=True, scoring=’accuracy’, min features to select=1).536

Microbial network analysis and properties537

To construct microbial correlation networks, samples of infected and uninfected plants538

were separated, and the OTU tables encompassing bacteria, fungi, and nonfungal eu-539

karyotes were merged to conduct a comprehensive examination of microbial interac-540

tions. The OTU tables were then filtered to retain only OTUs present in at least541

five samples, resulting in 2,543 OTUs across 242 samples for uninfected plants and542

1,058 OTUs across 95 samples for infected plants. These filtered OTU tables were543

used to calculate correlations using the SparCC algorithm[50], which uses Aitchison’s544

log-ratio analysis and is specifically designed to handle compositional data with high545

sparsity. The SparCC correlation scores were computed on the FastSpar platform [51]546

with default parameters. Pseudo P-values were generated through 1000 bootstraps547

to assess statistical significance. For further analysis, only correlations meeting the548

criteria of P<0.01 were included. Modularity analysis was performed using Python’s549

networkx package (version 3.1) [52]. Community detection was applied using the Lou-550

vain Community Detection Algorithm (community.community louvain.best partition551

function)) [53] the modularity score was calculated on detected modules (and com-552

munity.community louvain.modularity functions). We used Cytoscape (version 3.7.1)553

[54] to visualize and analyze the microbial interaction networks.554

Infections of A. thaliana leaves and quantification of Albugo555

biomass by qPCR556

Overnight liquid cultures of bacteria and yeast were diluted in the fresh medium until557

they reached an OD600 of 0.2. The resulting cultures were then centrifuged at 1200 g558

for 5 minutes, and the resulting pellets were resuspended in MgCl2. A spore and cell559

concentration of 25 × 104 spores/mL or cells/ml was prepared for Plectospherella and560

Rhogostoma. A spore solution of Albugo was prepared by collecting Albugo laibachii561

Nc14, which had previously been cultured on A. thaliana Ws-0. Water was added to562

the leaves, and the samples were kept on ice for 1 hour before filtering. The num-563

ber of cells (Rhogostoma) or spores (Plectospherella and Albugo) was measured by564

taking 50 µL of the solution, placing it on a hemocytometer, and examining it un-565

der an epifluorescence Axiophot microscope. Approximately 4-5 mL of each sample566

were carefully combined with 5-6 mL of Albugo solution (25 × 104 spores/mL) and567

evenly applied to 4-5 weeks old A. thaliana seedlings (Ws-0 accessions) using airbrush568

guns. Following two weeks, leaf disease symptoms were assessed, differentiating be-569

tween infected and uninfected leaves, and quantified as a percentage, and plants’ fresh570

weights were measured. The leaves were then stored at -80°C. DNA extraction was571
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performed using FastDNATM Spin Kit for Soil (MP Bio) as described in the manu-572

facturer’s protocol. For qPCR, a mixture was prepared consisting of 7.5 µL of SYBR573

Green supermix, 5 µL of DNA (approximately 50 ng), 1.9 µL of NFW, and 0.3 µL of574

forward and reverse primers (10 µM each), resulting in a total reaction volume of 15575

µL. The sample measurements were triplicated using a Bio-Rad CFX Connect real-time576

PCR detection system. The quantification of Albugo DNA relative to the plant DNA577

was determined using the following oligonucleotide sequences: A. thaliana EF1-α: 5’-578

AAGGAGGCTGCTGAGATGAA-3’, 5’-TGGTGGTCTCGAACTTCCAG-3’; Albugo579

EF1-α: 5’-GTGTTCTGCACATCCACACC-3’, 5’-GACCTTGACGGATGAAAGGA-580

3’. Cq values obtained during the amplification of oomycete DNA were subtracted581

from DNA amplicons of A. thaliana (called ddCq). Then, the relative biomass of582

Albugo for each group was determined using the formula 2−ddCq. These results were583

further normalized by comparing the Albugo biomass in each experiment (x) to the con-584

trol. Specifically, we calculated the ratio of the ddCq for any treatment in experiment585

x to the average ddCq of the Albugo control in the same experiment (experiment x).586

Infections of A. thaliana leaves with individual strains in sterile587

conditions588

Following the protocol of Eitzen et al., [23], sterilized A. thaliana seeds (Ws-0 acces-589

sions) were sown on 1/2 strength Murashige Skoog (MS) medium and incubated for590

3-4 days in a cold room (4C, darkness). The MS plates were then placed in growth591

chambers set to 22°C with a short-day light cycle (8 hours of light) and 33-40% humid-592

ity. The seedlings were grown under these conditions for 4-5 weeks before inoculation.593

Overnight liquid cultures of bacteria and yeast were diluted in the fresh medium until594

they reached an OD600 of 0.2. The resulting cultures were then centrifuged at 1200595

g for 5 minutes, and the resulting pellets were resuspended in MgCl2. A spore con-596

centration of 25 × 104 spores/mL was meticulously prepared for Plectospherella and597

Rhogostoma. Five hundred ul of each culture was evenly sprayed onto 4-5-week-old598

A. thaliana seedlings using airbrush guns. Phenotypes of plants were scored after 2-3599

weeks post-infection.600

Microscopical observations601

A mixture of Albugo spores and Rhogostoma cells, each at a concentration of approxi-602

mately 100,000 cells/ml, was prepared and placed in a plastic petri dish. Observations603

were made under an epifluorescence Axiophot microscope (Zeiss, up to 64x magnifica-604

tion) and/or inverted microscope (Zeiss LSM880) 2 to 8 days post-mix.605

Availability of data and material606

OTU tables and scripts are available here607

https://gitlab.plantmicrobe.de/maryam mahmoudi/HealthMarkers608
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Supplementary figure 1. Changes in highly abundant microbial taxa col-627

onizing A. thaliana ’s in infected and uninfected leaves. Box plots (green =628

uninfected, purple = infected) show the relative abundance of the orders of bacteria,629

fungi and nonfungal eukaryotes in individual samples aggregated by ’infection status’.630

Significance values between groups are based on Wilcoxon’s test: n.s. (P > 0.05), * (P631

≤ 0.05), ** (P ≤ 0.01), *** (P ≤ 0.001), and **** (P ≤ 0.0001).632

633
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Supplementary figure 2. Diversity and variability of leaf microbial com-635

munities of infected and uninfected plants among sampling sites. (A) Alpha636

diversity, measured by Shannon’s H index and representing the within-sample diver-637

sity of infected and uninfected samples among sampling sites in microbial communities.638

(B) Within-site variability (distance to the group centroid). Different letters indicate639

statistically significant differences between groups (Dunn test, P < 0.05). (C) Non-640

metric multidimensional scaling (NMDS) plots, based on Bray-Curtis dissimilarities,641

display the separation between infected and uninfected samples across sampling sites.642

Explained variance (R² values) from PERMANOVA models (Bray-Curtis dissimilari-643

ties), illustrating the impact of sampling sites and infection status on the structure of644

leaf microbial communities.645
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Supplementary Figure 3. Comparing the importance of microbes for647

classifying leaves in uninfected and infected using machine learning models.648

To discriminate infected from uninfected samples based on microbial signatures, four649

classification models were trained (Figure. 3). (A) The Venn diagram represents the650

number of common microbes with absolute scores greater than 0 among different mod-651

els during the training phase. (B) Bar plots represent the accuracy of models trained652

using recursive feature elimination. (C) The Venn diagram represents the number of653

shared microbes with absolute scores higher than 0 after performing recursive feature654

elimination.655
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Supplementary Figure 4. Changes in the co-abundance interactions of658

HCom and DCom OTUs. Interactions between HCom and DCom OTUs in the659

network constructed for uninfected (A) and infected (B) samples. OTUs are clustered660

by module and colored by taxa. Edges are colored according to the correlations: pos-661

itive correlations are colored in orange, and negative correlations are colored in gray.662

Histograms (C and D) show the OTU distribution within modules for the networks of663

uninfected and infected samples, respectively. These histograms are further color-coded664

to distinguish microbial taxa: green represents bacteria, orange represents fungi, and665

blue represents nonfungal eukaryotes.666
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Supplementary Figure 5. Fresh weight of plants inoculated with selected669

strains (see Figure. 6). Box plots showing the weights of leaves infected with Al-670

bugo in the presence of HCom strains (green) and DCom strains (purple). Statistically671

significant differences between the two groups were evaluated using Tukey’s HSD test,672

with different letters indicating significant differences (P < 0.05).673
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675

Supplementary Figure 6. Possible interactions of R. epiphylla with Al-676

bugo. (A) Single cells of Rhogostoma (R) attached to the spore of Albugo (A). (B)677

Albugo’s spores associated with different microbes (Aam). (C) Rhogostoma cells feed-678

ing on other microbes or Albugo’s zoospores via filopodia (f) (See also S. Video1 and679

S. Video2). Measure bar indicates 10 µm.680

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.10.25.620230doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/


681

0

25

50

75

100

W
at

er
M

gc
l2S

ilw
et

Pl
an

tib
ac

te
r

Sp
hin

go
m

on
as

Rh
og

os
to

m
a

M
et

hy
lob

ac
te

riu
m

Al
bu

go
Pl

ec
to

sp
ha

er
ell

a
Cy

sto
filo

ba
sid

ium
Du

ga
ne

lla
Ps

ud
om

on
as

group

H
ea

lth
y 

pl
an

ts
 in

 %

682

Supplementary Figure 7. Effect of different HCom and Dcom microbes683

on WS-0 Arabidopsis plants under gnotobiotic conditions. Each microbe was684

sprayed on 3-4 weeks-old Arabidopsis plants under gnotobiotic conditions. Box plots685

show the percentage of healthy plants three weeks post-inoculation.686

687

Supplementary tables legends688

Table. S1. Detailing number of samples and sampling locations.689

Table. S2. Results of blasting the sequences of key OTUs used in Figure 4690

with NCBI databases.691

Supplementary videos legends692

Supplementary Video S1 and S2. Rhogostoma grazing with their filopodia693

in the solution containing Albugo’s spores.694
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lia A Vorholt. Protective role of the arabidopsis leaf microbiota against a bacterial761

pathogen. Nature microbiology, 6(12):1537–1548, 2021.762

[21] Yong-Guan Zhu, Chao Xiong, Zhong Wei, Qing-Lin Chen, Bin Ma, Shu-Yi-Dan763

Zhou, Jiaqi Tan, Li-Mei Zhang, Hui-Ling Cui, and Gui-Lan Duan. Impacts of764

global change on the phyllosphere microbiome. New Phytologist, 2022.765

[22] Nick C Snelders, Hanna Rovenich, Gabriella C Petti, Mercedes Rocafort,766

Grardy CM van den Berg, Julia A Vorholt, Jeroen R Mesters, Michael F Seidl,767

Reindert Nijland, and Bart PHJ Thomma. Microbiome manipulation by a soil-768

borne fungal plant pathogen using effector proteins. Nature Plants, 6(11):1365–769

1374, 2020.770

[23] Katharina Eitzen, Priyamedha Sengupta, Samuel Kroll, Eric Kemen, and Gunther771

Doehlemann. A fungal member of the arabidopsis thaliana phyllosphere antago-772

nizes albugo laibachii via a gh25 lysozyme. Elife, 10:e65306, 2021.773

[24] Talia L Karasov, Manuela Neumann, Laura Leventhal, Efthymia Symeonidi, Gau-774

tam Shirsekar, Aubrey Hawks, Grey Monroe, Moisés Exposito-Alonso, Joy Bergel-775

son, et al. Continental-scale associations of arabidopsis thaliana phyllosphere mem-776

bers with host genotype and drought. Nature Microbiology, pages 1–11, 2024.777

[25] Wu Xiong, Rong Li, Yi Ren, Chen Liu, Qingyun Zhao, Huasong Wu, Alexandre778

Jousset, and Qirong Shen. Distinct roles for soil fungal and bacterial communities779

associated with the suppression of vanilla fusarium wilt disease. Soil Biology and780

Biochemistry, 107:198–207, 2017.781

[26] Khaoula Belhaj, Liliana M Cano, David C Prince, Ariane Kemen, Kentaro782

Yoshida, Yasin F Dagdas, Graham J Etherington, Henk-jan Schoonbeek, H Pe-783

ter van Esse, Jonathan DG Jones, et al. Arabidopsis late blight: infection of a784

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.10.25.620230doi: bioRxiv preprint 

https://doi.org/10.1093/ismeco/ycae103
https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/


nonhost plant by albugo laibachii enables full colonization by phytophthora infes-785

tans. Cellular Microbiology, 19(1):e12628, 2017.786

[27] Dan Knights, Laura Wegener Parfrey, Jesse Zaneveld, Catherine Lozupone, and787

Rob Knight. Human-associated microbial signatures: examining their predictive788

value. Cell host & microbe, 10(4):292–296, 2011.789

[28] Jens M Olesen, Jordi Bascompte, Yoko L Dupont, and Pedro Jordano. The mod-790

ularity of pollination networks. Proceedings of the National Academy of Sciences,791

104(50):19891–19896, 2007.792

[29] Talia L Karasov, Juliana Almario, Claudia Friedemann, Wei Ding, Michael Giolai,793

Darren Heavens, Sonja Kersten, Derek S Lundberg, Manuela Neumann, Julian794

Regalado, et al. Arabidopsis thaliana and pseudomonas pathogens exhibit stable795

associations over evolutionary timescales. Cell host & microbe, 24(1):168–179,796

2018.797

[30] Or Shalev, Talia L Karasov, Derek S Lundberg, Haim Ashkenazy, Pratchaya798

Pramoj Na Ayutthaya, and Detlef Weigel. Commensal pseudomonas strains fa-799

cilitate protective response against pathogens in the host plant. Nature ecology &800

evolution, 6(4):383–396, 2022.801

[31] Derek S Lundberg, Roger de Pedro Jové, Pratchaya Pramoj Na Ayutthaya,802
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Jacqueline Ramallo, and Julián Rafael Dib. Native killer yeasts as biocontrol826

agents of postharvest fungal diseases in lemons. PloS one, 11(10):e0165590, 2016.827

[37] Jia Liu, Michael Wisniewski, Samir Droby, Silvana Vero, Shiping Tian, and Vera828

Hershkovitz. Glycine betaine improves oxidative stress tolerance and biocontrol829

efficacy of the antagonistic yeast cystofilobasidium infirmominiatum. International830

Journal of Food Microbiology, 146(1):76–83, 2011.831

[38] Kenneth Dumack, Sebastian Flues, Karoline Hermanns, and Michael Bonkowski.832

Rhogostomidae (cercozoa) from soils, roots and plant leaves (arabidopsis thaliana):833

Description of rhogostoma epiphylla sp. nov. and r. cylindrica sp. nov. European834

journal of protistology, 60:76–86, 2017.835

[39] Michael Bonkowski. Protozoa and plant growth: the microbial loop in soil revisited.836

New Phytologist, 162(3):617–631, 2004.837

[40] Kenneth Dumack, Christina Baumann, and Michael Bonkowski. A bowl with838

marbles: revision of the thecate amoeba genus lecythium (chlamydophryidae,839

tectofilosida, cercozoa, rhizaria) including a description of four new species and840

an identification key. Protist, 167(5):440–459, 2016.841

[41] Bao-Anh Thi Nguyen, Kenneth Dumack, Pankaj Trivedi, Zahra Islam, and Hang-842

Wei Hu. Plant associated protists—untapped promising candidates for agrifood843

tools. Environmental Microbiology, 25(2):229–240, 2023.844

[42] Sai Guo, Stefan Geisen, Yani Mo, Xinyue Yan, Ruoling Huang, Hongjun Liu, Zhilei845

Gao, Chengyuan Tao, Xuhui Deng, Wu Xiong, et al. Predatory protists impact846

plant performance by promoting plant growth-promoting rhizobacterial consortia.847

The ISME Journal, page wrae180, 2024.848

[43] Nico Eisenhauer, Jes Hines, Fernando T Maestre, and Matthias C Rillig. Recon-849

sidering functional redundancy in biodiversity research. npj Biodiversity, 2(1):9,850

2023.851

[44] Paul J McMurdie and Susan Holmes. phyloseq: an r package for reproducible852

interactive analysis and graphics of microbiome census data. PloS one, 8(4):e61217,853

2013.854

[45] Jari Oksanen, F Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R855

Minchin, RB O’hara, Gavin L Simpson, Peter Solymos, M Henry H Stevens, Helene856

Wagner, et al. Package ‘vegan’. Community ecology package, version, 2(9):1–295,857

2013.858

[46] Derek Ogle and Maintainer Derek Ogle. Package ‘fsa’. Cran Repos, 1:206, 2017.859

[47] R Core Team, Maintainer R Core Team, MASS Suggests, and S Matrix. Package860

stats. The R Stats Package, 2018.861

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.10.25.620230doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.620230
http://creativecommons.org/licenses/by-nc-nd/4.0/


[48] R R Core Team et al. R: A language and environment for statistical computing.862

2013.863
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