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Abstract. An atomic autoencoder is a neural network architecture that
decomposes an image as a sum of low dimensional atoms. While it is ef-
ficient for image datasets which are well represented by this summation
model, it is more limited for the representation of more generic images.
In this article, we propose a new atomic model, the max-sparsity model
to better represent images. We study some theoretical properties of this
model and implement the corresponding atomic autoencoder. We show
experimentally that it leads to a sparse decomposition of input images
with interpretable low-level visual features. With this new architecture,
we solve a super resolution inverse problem via a projected gradient
descent that uses the trained network as a projection operator. The
resulting estimation shows improved robustness compared to previous
architectures.

Keywords: Atomic autoencoders · Sparse models · Image super-resolution

1 Introduction

An autoencoder is a neural network that approximates the identity function
on a given dataset. By reducing the size of hidden layers, autoencoders produce
low dimensional latent representations of elements of the dataset, an important
property in the context of image processing. Formally, an autoencoder is the
composition f = fD ◦ fE : Rn → Rn of an encoder fE : Rn → Rd that projects
inputs onto the latent space with a decoder fD : Rd → Rn that recovers them
from their latent representations. To train an autoencoder on a dataset X, we
minimize the loss function L defined by:

LX(f) = LX(fD ◦ fE) :=
∑
x∈X

∥fD ◦ fE(x)− x∥22. (1)

The benefits of accessing an explicit latent space are multiple. Autoencoders
can generate new elements of the induced low dimensional space by decoding
new latent vectors. If enough structure of the latent space is guaranteed, it
allows to manipulate, edit or interpolate input images efficiently. In addition,
autoencoders enable, by providing a low dimensional prior, the solving of ill-
posed imaging problems such as super-resolution or deconvolution problems.
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However, training autoencoders with the sole constraint that it needs to recover
the input can lead to a latent set of image representations with little structure,
due to its non-convexity. This heavily limits the effectiveness of autoencoders for
these tasks.

Adding more structure to the latent space has been an important subject of
research in the field of generative models. In particular, atomic autoencoders,
proposed in [10], are custom autoencoders designed to decompose images into
sparse representations, i.e. a sum of atoms from a given continuous dictio-
nary. Given an image x, an atomic autoencoder encodes x into a latent vector
fE(x) = θ ∈ Rkd0 . The latent vector θ is divided into k atomic latent codes
θi ∈ Rd0 such that θ = (θi)

k
i=1 that are merged with a decoder having the form

fD(θ) =
∑k

i=1 g(θi), where g is the atomic decoder modelling the continuous dic-
tionary. It was shown in [10] that these atoms represent decorrelated low-level
features of images. This property of neural networks is called atomic disentangle-
ment of the latent space (not to be confused with the classical disentanglement
notion that aims to represent high level interpretable features). However, on
some image datasets, while giving promising decomposition of shapes, atomic
autoencoders show some limits for providing a precise representation of images.
One observation is that the sum of localized atoms fail to represent accurately
typical image sets. Indeed, instead of being sums of objects, natural images can
be seen as a set of objects occluding one another, which was e.g. statistically
described by the dead leaves model [5].
Contribution In this paper, we propose an improvement of atomic autoen-
coders for image processing through a new sparsity model that models images
as the maximum pixel wise of atoms in a given dictionary. This way of merging
atoms aims to better represent natural images where objects may occlude one
another. The resulting atomic autoencoder encodes the input image into a latent
vector divided into blocks that are decoded separately to elementary images – or
atoms. We obtain the output by computing the maximum pixel wise over these
atoms instead of summing them.

In Section 2, we define the max-sparsity model and describe some of its
structural properties in relation to a classical sparsity model. We show in par-
ticular that it may be included within a classical sparsity model under certain
assumptions, which indicates greater structure induced by this model.

In Section 2.3, we propose a modification of the atomic autoencoder from
[10] (SUM-AAE) to perform the maximum pixel wise operation (MAX-AAE)
over the obtained atoms instead of summing them. We compare the two atomic
autoencoders and the decomposition they achieve over two different datasets:
Section 3.1 shows experimentally that SUM-AAE and MAX-AAE achieve similar
reconstruction performances. However, our proposed architecture MAX-AAE
achieves a decomposition with sharper and more disjoint atoms compared to
SUM-AAE. Section 3.2 shows that the decomposition achieved by MAX-AAE
yields sparser representations of the considered images.

In Section 4, we use atomic autoencoders to solve a super resolution inverse
problem. In this setting, they are used as a projection step for the Projected
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Gradient Descent algorithm (PGD). This is motivated by the fact that these
networks, when trained properly, project the input onto a low dimensional space
of features captured during training. Experiments in section 4 prove that even
if they are more constrained, using MAX-AAE in the PGD can recover original
images as good as when we use a simple autoencoder instead and with improved
performances compared to SUM-AAE.
Related work Atomic autoencoders [10] are closely related to dictionary learn-
ing. Given a dictionary D and a weight vector w (often considered sparse), an
image x is modelled as x = Dw. This provides a prior in optimization prob-
lems that forces the recovered solution to have a desired structure (see [9] for
an overview). To estimate the underlying dictionary D of a dataset, many algo-
rithms have been proposed using for instance Non Negative Matrix factorization
(NMF) [8], Singular Value Decomposition – as k-SVD [1] or even deep neural
networks for continuous versions [14, 7]. However each of them supposes a linear
relation between the learned dictionary and the original images.

Other natural images models have been explored and do not directly rely on
a linear dictionary. The dead leaves model [5] supposes that each image consists
of the superposition of several independent and different objects that partly
occlude one another. It is built over a random process that generates objects to
recover the final image. However, it does not provide a fixed dictionary that can
be used to solve optimization problems. The idea of using a maximum element-
wise function with atomic autoencoders is directly inspired by the dead leaves
model, with the goal of modelling the superposition of objects through obtaining
a dictionary.

By decomposing images into atoms, low level features are obtained. Plethora
of works aim to discover underlying features of images. This operation is re-
ferred as disentanglement. Previous autoencoders architectures have been built
to disentangle latent variables by modifying the loss to decorrelate them [4].
Non deterministic approaches were proposed: β-VAE [6] generalizes variational
autoencoders with a weighted Kullback-Leibler loss. It achieves a better disen-
tanglement at the expense of the reconstruction quality. Apart from autoen-
coders, Generative Adversarial Networks (GANs) have proven to be efficient in
providing disentangled latent variables [3]. In this work, we specifically focus on
deterministic latent representations (i.e. with an explicit encoder).

In terms of applications, generative models are mainly used to generate new
data, but they are also useful in solving inverse problems. [12] gives an overview
of several techniques with some associated theoretical results. To solve the under-
lying optimization problem, it is possible, in particular, to use generative neural
networks in a projected gradient descent. The generative function projects inputs
onto the natural images set at each iteration. For example, a basic autoencoder
is used in [11] whereas [13] uses GANs to perform this projection.

2 The max-sparsity model

In the classical dictionary approach, an image x is modelled as a sum of
elementary images within a dictionary D weighted by a weight matrix w ie. x =
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Dw. Instead, we propose to consider each image as the superposition of different
independent objects that occlude one another. To model such occlusions with
a dictionary approach, we propose to perform a maximum pixel wise operation
over the weighted elements of D to form the output. We call this model a max-
sparsity model as opposed to the classical sum-sparsity models.

We define in this section the max-sparsity model and overview some of its
properties in relation to the sum-sparsity model.

2.1 Definition

We denote by D a finite or infinite dictionary of vectors in Rn. In the finite
case, we can write D = {ai ∈ Rn, i ≤ #D}. We call ai,j the j-th coordinate of
the i-th atom in D and xi the i-th component of vector x ∈ Rn.

We define a generalized sparsity model Σ as

Σ = {x = σ(λ1a1, . . . , λkak), ai ∈ D, λi ∈ R} (2)

where σ is an arbitrary aggregation function : Rn×k −→ Rn and k is the sparsity
of the image in D. Through this generalized sparsity model we define:

■ the classical sparsity model Σk [9] (which we call sum-sparsity model) when
the aggregation function σ is a sum, i.e.:

Σk :=

{
x =

k∑
i=1

λiai, ai ∈ D, λi ∈ R

}
; (3)

■ the max-sparsity model Σmax
k when the aggregation function σ(·) = maxel(·)

is the maximum element wise operation, i.e.:

Σmax
k := {x = maxel(λ1a1, . . . , λkak), ai ∈ D, λi ∈ R} ; (4)

where v = maxel(u1, . . . , uk) is defined by (vj)j≤n = (max(u1,j , . . . , uk,j))j≤n.

As the representation is generally supposed to be sparse, we suppose that k < n.
While we focus on the structural properties of the max-sparsity model in the
following, this general formulation opens the broader question of the choice of
aggregation function for a given dataset.

2.2 Properties of Σmax
k

In inverse problems, the model structure is crucial to provide guarantees. For
example, positively homogeneous or homogeneous models have different recovery
guarantees [15].

Definition 1 (Homogeneity). A set Σ is positively homogeneous (called a
cone) if for all λ ∈ R+ and x ∈ Σ, λx ∈ Σ. The set Σmax

k is homogeneous (
called a union of subspaces) if for all λ ∈ R and x ∈ Σ, λx ∈ Σ.
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Proposition 1. The max-sparsity model set Σmax
k is a cone. The set Σmax

k is
not a homogeneous model in general.

This shows that Σmax
k is not a union of linear subspaces. Thus, it has in gen-

eral less structure than the sum-sparsity model. However, with more constraints
on the atoms, it is included in the sum-sparsity model.

Proposition 2. If the dictionary D verifies the two following assumptions:

1. for all i ̸= j, supp(ai) ∩ supp(aj) = ∅
2. for all i and j ≤ n, k ≤ n ai,j · ai,k ≥ 0

then Σmax
k ⊊ Σk. In general, Σmax

k ̸⊂ Σk.

For example, if D is a subset of the canonical basis of Rn then Σmax
k ⊊ Σk.

However, it is not ensured that for every dictionary D the inclusion is still valid.
Given an underdetermined linear measurement operator A, the problem of

recovering x ∈ Σ from Ax has a unique solution if and only if ker(A)∩(Σ−Σ) =
0 where Σ −Σ is the set {z ∈ Rn : ∃ x, y ∈ Σ, z = x− y} [16].

If Σmax
k ⊂ Σk, then, if a matrix A verifies the property ker(A) ∩ (Σk −

Σk) = {0}, then ker(A) ∩ (Σmax
k −Σmax

k ) = {0}. This shows that, when atoms
have separated supports, the recovery of elements of Σk implies the recovery
of elements of Σmax

k , but the converse is not generally true. Hence, for a fixed
dictionary, recovering Σmax

k is “easier” than recovering Σk. Given this conclusion,
we compare the recovery of images by atomic autoencoders that enforce them to
be in Σk and in Σmax

k in Section 4. We will indeed observe that max-sparse atomic
autoencoders provide better solutions to the image super-resolution problem.

2.3 Atomic autoencoders with max-sparsity model (MAX-AAE)

In [10], the sum-sparsity model is used to build the atomic autoencoder f =

fD ◦ fE such that: θ = fE(x) and x̃ = fD(θ) =
∑k

i=1 g(θi), where fE and g
(defining fD) are implemented with deep Leaky ReLU networks – Figure 1. In
this work, we propose to modify the decoder fD to define a max-sparsity model.

Definition 2 (Max-sparsity atomic autoencoder). A max-sparsity atomic
autoencoder is a function f = fD ◦ fE that is the composition of an encoder
fE : Rn → Rkd0 and a decoder fD : Rd → Rn defined by

fD(θ) = maxel(g(θ1), . . . , g(θk)) (5)

where g : Rd0 → Rn is the function decoding a single atomic latent code – see
Figure 1.

Note that using a maximum pixel wise operation adds a non-linearity to the
decoder acting as a ReLU function because max(a, b) = ReLU(a− b) + b.

By constraining the decoder, the autoencoder output is falling in a poten-
tially smaller space. This is related to the sparsity of the decomposition obtained
by an atomic autoencoder. To assess this sparsity in the context of atomic au-
toencoders, we define the notion of activated atoms:
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...
...

Latent code

(a) SUM-AAE

...
...

Latent code

(b) MAX-AAE

Fig. 1: Architecture of sum-sparsity and max-sparsity atomic autoencoders.

Definition 3 (Activated atoms). Given an image x ∈ Rn and a vector θ ∈
Rkd such that fD(θ) = x, an atom ai = fD(θi) is activated with respect to a
threshold s if ∥ai∥2

∥x∥2
≥ s

We will observe in Section 3.1 that max-sparsity atomic autoencoders (MAX-
AAE) yield sparser representations than sum-sparsity atomic autoencoders (SUM-
AAE) thus giving an interpretation of the improved performance of MAX-AAE
in the context of inverse imaging problem.

3 Application to image decomposition

We compare the sum-sparsity atomic autoencoder (SUM-AAE) and the max-
sparsity atomic autoencoder (MAX-AAE), defined in 2.3. We train both of them
on two different datasets MNIST and Fashion-MNIST of size 30000. They have
the same architecture: an encoder with two convolutional layers followed by two
fully connected layers and a latent code composed of 20 blocks of size 10. Each
block is decoded via the same decoder. It consists of four fully connected layers
and three convolutional layers yielding 20 images (atoms) before applying the
aggregation function. SUM-AAE sums the atoms whereas MAX-AAE applies
the maximum pixel wise operation. We use Leaky ReLU as an activation func-
tion for all hidden layers. As a baseline, we train a simple autoencoder (AE) with
a latent space of size 200 and having roughly the same number of parameters.
Every comparison in this paper is achieved over subsets of size 600 of MNIST
and Fashion MNIST test sets. We compare the recovered images through Peak
signal-to-noise ratio (PSNR) metric. Furthermore, we assess the sparsity of au-
toencoded images through the mean number of activated atoms per image (de-
fined in 3). The chosen threshold is 0.05. The code to reproduce experiments is
available in [2].

3.1 Image decomposition with max-sparsity atomic autoencoder

We train two atomic autoencoders SUM-AAE and MAX-AAE over MNIST,
a 28x28 digit images dataset and Fashion MNIST a 28x28 clothe images dataset.
We keep the same structure for both of them but increased the number of filters
and the size of the layers for Fashion MNIST.
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Figure 2 compares the autoencoding of some images from the 2 datasets
and their associated PSNRs. Table 1 gives the average PSNR over the test sets.
According to these figures, MAX-AAE performs better than SUM-AAE and AE
over MNIST. For Fashion MNIST, textured images are slightly degraded with
MAX-AAE. However, we will observe in the context of image super-resolution
that this slight degradation is a positive feature as MAX-AAE provides a better
prior for image reconstruction and limits hallucinations (compared to AE AND
SUM-AAE).

Fig. 2: Reconstruction of digits (MNIST) and clothes (Fashion MNIST) images
through the autoencoders AE, SUM-AAE and MAX-AAE. The performances are
similar for MNIST. For Fashion MNIST, MAX-AAE show a slight degradation
for textured images.

Table 1: Average PSNR of the autoencoded images. We compare the autoen-
coders MAX-AAE, SUM-AAE and AE over two test sets of size 600.

MNIST Fashion MNIST
AE 26.72± 2.66 dB 25.46± 3.76 dB

SUM-AAE 27.35± 2.34 dB 25.28± 3.57 dB
MAX-AAE 28.42± 2.74 dB 24.25± 3.27 dB

Figures 3 shows the decompositions performed by SUM-AAE and MAX-
AAE over MNIST and FashionMNIST. In both cases, MAX-AAE provides a
decomposition with sharp distinct atoms whereas in SUM-AAE many atoms are
blurry and scattered despite the mean PSNR of MAX-AAE being lower. We also
observe that the support of atoms in the decomposition are mostly separated in
MAX-AAE, indicating an inclusion in a sum-sparsity model (see Proposition 2).

In addition to these improved decompositions, the latent representations pro-
vided by MAX-AAE are sparser. We represent in Figure 4 the histogram of the
number of activated atoms for a test set of size 600. To complement it, we show
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MNIST: Input (a) SUM-AAE (b) MAX-AAE

Fashion MNIST:
Input (c) SUM-AAE (d) MAX-AAE

Fig. 3: Decomposition of an input from MNIST and Fashion MNIST through the
two atomic autoencoders. SUM-AAE decomposes into scattered, blurry atoms
while MAX-AAE produces sharp, disjoint atoms with a sparser decomposition.

the average evolution of the norm of each atoms after ordering them in decreas-
ing order. It shows that MAX-AAE activates less atoms than SUM-AAE as its
related histogram is shifted to the left. The norm of the atoms decreases to 0 from
the 16-th block for MAX-AAE when none of them is zero in SUM-AAE despite
the faster decrease. Consequently, MAX-AAE produces a sparser representation.
It must be noted that the training is performed without any regularization of
the latent set in the loss. Hence, we blindly estimate the intrinsic dimensions of
these two datasets with the atomic autoencoder architecture.

3.2 Atomic disentanglement of latent variables

As defined in [10], an atomic autoencoder achieves atomic disentanglement
if it decomposes the input into atoms, each of them associated to a low-level
feature. Modifying a latent block must act over the sole feature it represents.
It is shown in [10] that SUM-AAE provides atomic disentanglement of its vari-
ables through two examples: MNIST Dataset and off-the-grid spikes. We focus
here on Fashion MNIST. We show experimentally that even though it is a more
complex dataset with more shape diversity, MAX-AAE achieves an atomic dis-
entanglement of its latent set. Figure 3 shows that MAX-AAE produces sharp
atoms. In particular, for Fashion MNIST, it is possible to assign each block to
a particular low level feature. The shoe for instance has precise activated blocks
that represent specific parts of the shoe. In Figure 3, we see that the lower part
of the sole of the shoe is represented by the first block e.g. the first image in
MAX-AAE decomposition.
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(a) SUM-AAE for MNIST (b) MAX-AAE for MNIST

(c) SUM-AAE for Fashion
MNIST

(d) MAX-AAE for Fashion
MNIST

Fig. 4: Histogram of activated atoms for 600 images of the test set (right y-axis)
and the average norm of each atom in descending order (left y-axis). For MAX-
AAE, the histogram is shifted to the left which shows that on average less atoms
are activated and the norm of the atoms shatters to 0 earlier than SUM-AAE.

A way of showing atomic disentanglement is to modify values from the latent
vector and see how it influences the output image. To do so, after choosing a
dimension in a block, we compute the two extreme values along this dimension
over all the test set. We, then, interpolate with a constant step between these two
values. In other words, for a dataset X, if θ ∈ Rkd, n ∈ N, i ∈ J0, nK, p ∈ J1, kK
and q ∈ J1, dK, we modify θ and decode via fD as follows:

x̂i = fD(θi) = fD(θ1,1 . . . | . . . θip,q . . . | . . . θk,d), where θip,q = θmin
p,q +i

θmax
p,q − θmin

p,q

n
(6)

θmax
p,q = max

θ∈fE(X)
θp,q and θmin

p,q = min
θ∈fE(X)

θp,q, and x̂i is the i-th output.

Fig. 5: Modification of the first variable from the first block of the latent vector
associated to the shoe through MAX-AAE.This experiment shows an interpola-
tion between a flat sole and a heel while leaving the other features unchanged.
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Figure 5 shows that, by modifying one unique value of a dimension in a given
block, only one feature in the image space is modified. In this specific example,
from the first image (associated to the minimum value of dimension 0 from block
0) to the last image (associated to the maximum value) the only modified feature
is the orientation lower part of the sole.

4 Application to image super resolution

Image super-resolution consists in estimating a high resolution image from
a low resolution image. To solve this ill-posed problem, a low-dimensional prior
is necessary. In this Section, we study the performance of our new MAX-AAE
architecture in this context. We define

y = Ax̂, (7)

where y ∈ Rm is the measurement vector representing a subsampled image,
x̂ ∈ Rn the original high resolution image. The linear operator A ∈ Rm×n

represents a low pass filtering followed by a subsampling, i.e. A = SF where S
is the sub sampling matrix (by a factor 2 in the experiments). The matrix F
models the convolution by a Gaussian blur.

Given a prior low dimensional model Σ on x, we want to solve:

x∗ = argmin
x∈Σ

∥Ax− y∥22. (8)

Here, Σ is induced by a trained autoencoder f and is, then, non-convex. Many
methods can be used to solve this problem. To compare the different autoen-
coders capacities, we chose the projected gradient descent (PGD) described by
the following iterations, given an initialization x0:

xk+1 = PΣ(xk − γAT (Axk − y)) (9)

where γ is the step size and the projection step is performed with the trained
autoencoder (i.e. PΣ = f , see e.g. [11]). For general low-dimensional models,
it has been shown that this algorithm linearly converges to fixed points of the
projection under a restricted isometry property of A and a restricted Lipschitz
property of the projection [17].

We compare the results of Projected Gradient Descent with projection per-
formed using the three autoencoders from the previous section over the two
different datasets. We call PGD-AE, PGD-SUM-AAE and PGD-MAX-AAE the
three variations of PGD. Table 2 compares them quantitatively over 600 im-
ages from the considered test set. On both MNIST and Fashion MNIST, we
observe that PGD-MAX-AAE significantly outperforms PGD-SUM-AAE, and
has comparable performance to PGD-AE.

Visually, we see crucial differences between the reconstructions of PGD-
MAX-AAE and PGD-AE (Figure 6). While on simple data like MNIST, the
visual results are similar, on more complex examples, there are a significant dif-
ferences. For example in Figure 6, on the shirt – fifth column, the reconstruction
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Table 2: PSNR of estimation. Even MAX-AAE is more constrained, PGD-MAX-
AAE gives equal results than the classical PGD-AE. It also outperforms PGD-
SUM-AAE.

MNIST Fashion MNIST
PGD-AE 26.90± 2.63 dB 21.95± 2.92 dB

PGD-SUM-AAE 25.25± 2.22 dB 20.91± 2.58 dB
PGD-MAX-AAE 27.02± 2.72 dB 22.01± 3.45 dB

is very different, with texture artefacts being hallucinated by both PGD-AE and
PGD-SUM-AAE. We attribute this to the sparser representation induced by
the max-sparsity model 3.1, which supports this model as a good image model.
Note that for both MAX-AAE and SUM-AAE we can access the decomposition
of the recovered image as in Figure 3, i.e. an “explanation” of the estimation is
provided.

Fig. 6: Recovery of MNIST and Fashion MNIST images through PGD with dif-
ferent projection steps. Visually, the different PGD perform equally on MNIST.
For Fashion MNIST, PGD-MAX-AAE is more robust as it creates less artifacts.

5 Conclusion

We have introduced a new atomic autoencoder based on a max-sparsity
model. This autoencoder provides sparser and sharper atomic decompositions
of the input. It also achieves an atomic disentanglement of its latent space.

We observed that using this new low dimensional representation for the super-
resolution inverse problem provides robust reconstruction of images compared
to the classical autoencoder and the original proposition of atomic autoencoder.

Many future directions arise from these results. On the theoretical side, it is
still an open question to give a mathematical proof of the atomic disentanglement
achieved by atomic autoencoders. In terms of further applications, the next step
for atomic autoencoders is to be extended to photorealistic textured images.
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Proofs

Proof (of Proposition 1). Suppose x ∈ Σmax
k and µ ∈ R+. By definition of Σmax

k

(eq. (2)), we have x = σ(λ1a1, . . . , λkak). Let 1 ≤ j0 ≤ n. We have xj0 =
max(λ1a1,j0 , . . . , λkak,j0) and there is 1 ≤ i0 ≤ k such that xj0 = λi0ai0,j0 ≥
λiai,j0 for all 1 ≤ i ≤ n.

This implies µλi0ai0,j0 ≥ µλiai,j0 because µ ≥ 0. We conclude by

µxj0 = µmax(λ1a0,j0 , . . . λkak,j0)

= µλi0ai0,j0 = max(µλ1a0,j0 , . . . µλnan,j0)
(10)

and µx = σ(µλ1a1, . . . , µλkak) ∈ Σmax
k .

Now consider a dictionary D = (ai)i≤k where

a1 =


1

a1,2
...

a1,n

 ; ai =


0
ai,2
...

ai,n


for all i > 1.

Let x = σ(a1, . . . , ak), then x1 = max(a1,1, . . . , ak,1) = max(1, 0, . . . , 0) = 1.
On the other hand, if −x ∈ Σmax

k , then by definition of Σmax
k (eq. (2)) there

exists (λ1 . . . λk) ∈ Rk such that −x = σ(λ1a1, . . . , λkak).
Therefore, we have −x1 = max(λ1, 0, . . . , 0) = −1. First, 0 = max(λ1, 0, . . . , 0) =

−1 is impossible. Then λ1 = max(λ1, 0, . . . , 0) = −1 which is impossible because
max(λ1, 0, . . .) ≥ 0. The two assertions are both impossible.

⊓⊔

Proof (of Proposition 2). Suppose x ∈ Σmax
k , then by definition of Σmax

k (equa-
tion (4)) x = σ(λ1a1, . . . , λkak). We want to show that we can find (µ1, . . . , µk) ∈
Rk, such that x =

∑k
i=1 µiai.

The assumption (1) gives that for all i ̸= j, supp(ai) ∩ supp(aj) = ∅. Then,
for a given coordinate r, there is k0 such that xr = max(λ1a1,r, . . . , λkak,r) =
max(λk0

ak0,r, 0).

■ If max(λk0
ak0,r, 0) = 0, for all r̃ ∈ supp(ak0

), we have λk0
ak0,r̃ = 0 (with

assumption (2)). Then we set µk0
= 0.

■ If λk0ak0,r = λk0ak0,r, or all r̃ ∈ supp(ak0), we have λk0ak0,r̃ = λk0ak0,r̃

(with assumption (2)). Then we set µk0 = λk0 .

If both cases, there is µk0 such that xr∈sup(ak0
) = µk0ak0 and

x =

k∑
i

xr∈sup(ai) =

k∑
i

µiai ∈ Σk. (11)

⊓⊔
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