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Abstract. This paper proposes a vision-based control scheme for safe
robot navigation in crowded environments. Unlike traditional methods
relying on LiDAR or laser rangefinders, our approach leverages an RGB-
D camera to capture rich visual information about the surroundings, al-
lowing for a more comprehensive understanding of the scene. We address
the challenge of predicting human motion in dynamic environments by
combining a vision-based human detection module with a crowd predic-
tion module. This allows the robot to anticipate potential collisions and
generate safe motions. Additionally, we introduce an adaptive camera
control strategy to enhance human detection performance by following
their movement within the field of view of the camera. The proposed con-
trol scheme utilizes Control Barrier Functions (CBFs) to enforce safety
constraints. By incorporating information about both robot-human rel-
ative position and velocity, CBFs ensure collision avoidance even in dy-
namic scenarios. The effectiveness of the method is evaluated by com-
paring the performance of different human detection algorithms, and by
demonstrating the benefits of the adaptive camera control strategy and
the overall safety achieved through the proposed vision-based control
scheme.

1 Introduction

Nowadays, the growing demand for automation in service applications — such as
healthcare, logistics and hospitality — has placed mobile robots at the forefront
of research effort, due to their practically unlimited workspace and their ability
to navigate in dynamic and densely populated environments. In these scenarios,
ensuring safety of both the robot and the surrounding agents (e.g., humans) is
the major challenge to face.

The fulfillment of this requirement primarily depends on the ability of the
robot to gather real-time information about its surroundings, for instance, us-
ing onboard exteroceptive sensors. A 2D laser rangefinder is employed in [1] to
acquire information about the surrounding positions of the agents, while [2] re-
lies on LiDAR to perform obstacle detection. Despite offering precise distance
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Fig. 1. Snapshot of the robot moving among humans in our simulation environment.

measurements, they lack visual context and require clustering algorithms to re-
construct actual objects from the generated point cloud. To tackle these issues,
vision-based frameworks have emerged as a promising solution for enabling safe
navigation. This development is also motivated by the availability of powerful ob-
ject detection systems that allow real-time image processing, providing rich and
detailed information about the surrounding environment. Among vision-based
sensors, RGB-D cameras enable accurate object recognition and 3D reconstruc-
tion leveraging color and depth information [3], [4].

In addition to the adopted perception methodologies, a key aspect in en-
hancing safety in dynamic scenarios is the ability to predict the future motion
of agents in the environment to anticipate potential collisions. Indeed, collision
avoidance constraints formalized relying solely on distance-based information,
as seen in [5] and [6], may not be sufficient for ensuring safety in dynamic envi-
ronments. To tackle this issue, [7] proposes a Reinforcement Learning approach
to learn socially cooperative policies. However, while significantly improving the
ability of the robot to anticipate human movements, such data-driven models
often require a training phase and suffer from limited generalization power. Re-
cently, Control Barrier Functions (CBFs) [8] have been successfully exploited to
enforce safety, as they allow for the formulation of collision avoidance constraints
that also account for the robot-obstacle relative velocity, as demonstrated in [9].

In this work we present a vision-based pipeline for safely controlling a robot
moving in a crowd. We test how the performance of the method is affected by
the detection algorithm by comparing two state-of-the-art implementations, and
we devise an adaptive camera control strategy to enhance the detection perfor-
mance by following the movement of the humans, demonstrating its effectiveness.
Finally, the motion of the humans at risk of collision is estimated and fed to a
QP controller achieving obstacle avoidance through CBF constraints.
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Fig. 2. Block diagram of the proposed framework.

2 Problem Formulation

A wheeled mobile robot equipped with an RGB-D camera is assigned the task of
navigating an environment populated by a crowd of humans. In order to achieve
this goal while ensuring safety, the robot must reconstruct the positions of the
humans and generate a motion free of collisions.

More specifically, safe navigation of a robot moving in a crowd can be for-
mulated as the problem of generating commands such that:

i. the resulting motion is feasible with respect to the robot kinematics and the
input constraints (such as wheel velocity limits);

ii. the robot avoids collisions with humans at all times while it is moving;
iii. the robot executes the desired task (set-point regulation or trajectory track-

ing) with minimal violation.

To meet the aforementioned requirements, the system needs to be able to de-
tect the humans in its surroundings and accurately estimate their position and
velocity in real time. It is reasonable to assume that only a subset of the hu-
mans moving in the environment poses a challenge to the robot’s safe naviga-
tion. Therefore, a priority mechanism needs to be introduced to select which
humans estimate should be computed at any given time. Additionally, since hu-
man movement is estimated using the vision sensor, it is important to address
the limitations on the Field of View (FOV) of the camera and take steps to
improve the reliability of the detection. This can be achieved, for example, by
using the pan-tilt action of the camera to keep the closest humans in the FOV
of the robot.

3 Proposed Method

We introduce a vision-based framework for safe robot navigation in a crowd. Our
proposed method is able to generate motions to solve the problem described in
Sect. 2, and is composed of three components: a vision-based human detection
module, a crowd prediction module and a motion generation module, as depicted
in Fig. 2.
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We discuss the application to a differential-drive robot, which is kinematically
equivalent to a unicycle, although the method can be easily extended to other
mobile robots. Let pr = (x, y) be the Cartesian position and θ its orientation,
so that q = (x, y, θ) ∈ SE(2) describes the configuration of the robot. Then,
having as inputs u = (v, ω) the driving and steering velocity respectively, the
kinematic model of the robot is

q̇ =

v cos θ
v sin θ
ω

 .

The robot commands are computed by the motion generation module. Here, the
action of a nominal controller is filtered by a safety layer which uses the latest
estimate of the human position and velocity to guarantee that the resulting
motion is collision-free.

The human detection and crowd prediction modules are responsible for es-
timating the position and velocity of each human in the FOV from the image
provided by the RGB-D camera. This process can be divided into two steps: (i)
detect all humans within the FOV of the camera and reconstruct their position,
(ii) use a human prediction module capable of generating position and velocity
estimates for all the humans at risk of collision.

3.1 Vision-based human detection

In our framework, human detection is performed by either using classical com-
puter vision algorithms based on Histogram of Gradients (HoG) features [10], or
by using YOLO-v8 [11], a deep neural network architecture for real-time object
detection. The first algorithm works by extracting features of humans using Ad-
aBoost, identifying the appropriate blocks of the image containing the humans
from a predefined set of possible blocks. The second algorithm is a neural network
trained on COCO [12] for detection, and ImageNet [13] for classification.

The detection algorithm is provided with the camera feed S, and it returns a
list of bounding boxes, each one containing a detected human. The center of each
bounding box himg

i is then used to determine the Cartesian position hi ∈ R2 of
each human, which can be derived through the pinhole camera model [14] using
the following:

hi = Πxy

(
Rcd(h

img
i )K−1himg

i + pc

)
,

where Rc and pc are, respectively, the orientation and position of the camera
in the world frame, Πxy is a function extracting the x and y components of the
argument, K is the camera matrix, defined as

K =

fx 0 cx
0 fy cy
0 0 1

 ,

with (fx, fy) focal lengths and (cx, cy) principal point offset, and d(·) is a function
mapping a point in the image plane to a distance (whose value is retrieved in
practice using the depth sensor).
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Fig. 3. Top-view representation of the range adaptation strategy. Red arrows indicate
the humans selected as the most dangerous.

In the following, we will denote as H the set of all detected humans, which
is defined as

H = {h1, . . . ,hN} ,

with N total number of detections.

Camera position control To further improve the detection performance, the
camera, which is assumed to be mounted on a pan-tilt platform, can be moved
to point toward humans that are identified as dangerous. We define a conic
region on the ground attached to the base frame of the robot and select as most
dangerous the closest human in the region (cfr. Fig. 3). The gaze of the camera
will, hence, be oriented to keep the closest human in the center of the image
plane. The size of the cone is determined by an angle ϕ.

Our camera control strategy is adaptive, as the angle ϕ is computed online,
starting from a predefined value, to trade off between following the closest human
and keeping the direction of motion within the FOV of the camera. When many
humans are present in the scene, the cone is progressively tightened depending
on the number of detected humans to isolate those that are more dangerous since
they are in front of the robot. Otherwise, when just one human is detected, the
range is widened to allow for more humans to be considered dangerous, which
makes it possible to also take into account humans that are approaching from
the sides and might therefore become dangerous.

3.2 Crowd prediction via KFs

Once the set of positions of the humans H is reconstructed from the camera, it is
fed to a crowd prediction module based on Kalman Filters (KFs), which has the
objective of estimating the current position and velocity of the humans closest to
the robot. We closely follow the approach described in [1], in which the M closest
measurement from H are processed. The parameter M determines the size of the
pool of KFs considered in the module and can be tuned accordingly to the size
of the crowd and of the computational resources. First, we perform a closest-
distance data association between past estimates and current measurements,
then we feed the measurements to the associated KFs which, using a double
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integrator prediction model, estimate the current position and velocity of the
humans, denoted as ĥi and v̂i respectively, which are collected in a set

P =
{
ĥ1, v̂1 . . . , ĥM , v̂M

}
,

and fed to the controller to perform obstacle avoidance.
Each KF regulates its operation through a Finite State Machine (FSM),

which consists of four states: Idle, Start, Active and Hold. In the following, we
briefly describe the states of each FSM. For a detailed explanation, we invite the
reader to refer to [1].

– Idle. The KF is inactive. As soon as a new measurements is received, the
FSM state becomes Start.

– Start. If a new measurement is available, the KF initializes the state estimate,
and the FSM state becomes Active. The FSM state becomes Idle if there is
no new measurement.

– Active. The state estimates are updated using new measurements as long as
they are available. Whenever this is not true, the FSM state becomes Hold.

– Hold. The KF remains in this state for a limited time, updating the estimates
with the last available measurement. If a new measurement is found, the FSM
state becomes Active. If the time runs out, the FSM state becomes Idle and
the estimate is discarded.

3.3 Safe motion generation via CBF-QP

The robot is commanded using velocity inputs obtained from the solution of
a Quadratic Program (QP), which employs the well-established framework of
Control Barrier Functions (CBF), designed to minimally modify the action of
a nominal controller to guarantee safety [15]. Such nominal controller can be
designed separately to achieve the desired task in the absence of humans, and
can therefore employ any classic control law. Alternatively, it would be possible
to include in the QP also the generation of a command to perform the main task
by employing the CLF-CBF-QP framework [8].

Considering a simple reactive QP controller, as opposed to a predictive con-
troller as in [1], makes the computational requirements of the proposed method
particularly modest, freeing up resources and lowering the bar for implementa-
tion on real robots.

In our setting, we impose M CBF constraints designed to avoid collision with
the currently estimated humans, whose position and velocity are reconstructed
by the crowd prediction module, while guaranteeing a distance not lower than
a predetermined safe distance at all times. Let ξi = (q, ĥi) be the combined
configuration of the robot and the i-th human in P. We determine that a state
is safe if the distance between the human and the robot is larger than a safety
distance ρ > 0 computed considering the dimension of the robot bounding circle
plus a safety margin. Accordingly, we can define the safe set as

Ci =
{
ξi ∈ SE(2)× R2 : g(ξi) ≥ 0

}
,
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where
g(ξi) = ∥pr − ĥi∥ − ρ,

which is a valid CBF. The set Ci can then be made forward invariant if the
constraint

ġ(ξi, v̂i,u) ≥ −αg(ξi) (1)

is satisfied for some α > 0. Note how the velocity v̂i of the human appears in
the CBF constraint, which explains our need for its estimate.

When multiple humans are to be avoided, the robot has to remain in the in-
tersection of the safe sets Ci for each robot-human pair. In this case, we guarantee
safety by enforcing CBF constraints (1) for every pair.

Two different nominal controllers generating command uff to fulfill the main
task are considered: a posture regulation controller based on polar coordinates
and a trajectory tracking controller based on input-output feedback linearization
[16]. At each instant, uff is modified to guarantee safety by solving the CBF-QP
problem:

min
u∈[umin,umax]

||u− uff||2

subject to ġ(ξi, v̂i,u) ≥ −αg(ξi) for i = 1, . . . ,M
(2)

Consistently with the output of the crowd prediction module, if one of the KFs is
in an idle state, the corresponding CBF constraint is deactivated. If no humans
state are being estimated, the solution of QP (2) results in a minimal modifica-
tion of the nominal action to satisfy input constraints. In case a human is moving
towards the robot at high speed, such that the collision avoidance constraint can-
not be satisfied given the velocity limitations of the robot, an emergency brake
command is triggered to minimize the risk of an actual collision. Once the QP
finds a new solution the motion is restarted.

4 Simulations

The performance of the method has been evaluated in simulation comparing
three different scenarios using TIAGo robot. All simulations have been conducted
in Gazebo on an Intel Core i9-9900K CPU at 3.60 GHz.

The robot base is commanded with driving and steering velocities, which are
limited by the low-level controller on the robot. CBF-QP is always solved within
1 millisecond, making it possible to run the framework in real-time. The control
architecture runs at 50 Hz, with the KFs always utilizing the latest available
measurement computed by the human detection module, running at 30 Hz. The
number of KFs is set to M = 3, the camera FOV mounted on the robot is 63◦,
the predefined value of the angle defining the cone is ϕ = 60◦, the parameter of
the CBF condition is α = 0.5, the safety distance for the CBF is ρ = 1.3 meters.
In the current implementation, the pan-tilt action is achieved by pointing the
camera at the current location of the most dangerous human through a specific
function implemented on our robotic system, however, it would also be possible
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Fig. 4. Snapshots of TIAGo moving in a crowd of 5 humans, including the camera
image showing the human detection at work.

Fig. 5. Snapshots of TIAGo moving in a crowd of 10 humans, including the camera
image showing the human detection at work.

to follow standard visual servoing techniques such as the one described in [17].
Note that the humans considered in the scene are not robot-friendly, in the sense
that they are not aware of the presence of the robot. Moreover, their motion is
assumed to be omni-directional.

Figures 4 and 5 show the robot safely moving in a crowd, detecting humans
and avoiding them. We invite the reader to watch the accompanying video3,
which shows different simulations of the robot moving in a crowd using the pos-
ture regulation controller, as well as additional simulations where the trajectory
tracking controller is used.

Table 1 evaluates the framework when using the posture regulation controller,
comparing its behavior in two different environments (the first one populated
by 5 humans, the second one populated by 10 humans) using different human
detection algorithms, and optionally considering the adaptive camera control
strategy described in the previous section. The success rate of simulations that
are concluded without any collision occurring is averaged over 10 simulations
for each scenario. The results clearly show that the HoG detector is not able
to provide a sufficient detection accuracy. We have indeed observed that, in our
conditions, the range in which a human is detected is rather limited and that
detection often fails when humans are only partially observed or are viewed
from the side. When the camera control is deactivated, it becomes essential to
increase the persistency of the human estimate in the crowd prediction module
to mitigate the effect of the frequent loss of detection. Still, only in the simplest
5 human scenario, there have been a few instances in which the robot is able

3 https://youtu.be/-NBDeRpRQ9w

https://youtu.be/-NBDeRpRQ9w
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Detection Camera control
Success rate

5 humans 10 humans

HoG
Yes 30% 0%
No 0% 0%

YOLO-v8
Yes 90% 90%
No 40% 30%

Table 1. Performance evaluation of the proposed framework over two different scenar-
ios (5 and 10 humans), with two detection algorithms, with and without the inclusion
of our camera control strategy.

Fig. 6. Motion executed by the robot when tracking a circle, using HoG to detect
humans on the left, YOLO-v8 on the center, and the ground truth on the right.

to safely reach the goal, with a 30% success rate. On the other hand, YOLO-v8
has proven to be much more successful at detecting humans over an extended
distance range and also when only partially observed. Nevertheless, the success
rate becomes acceptable only when the camera control strategy is introduced,
likely due to the limited FOV of the on-board camera, which severely limits the
detection ability when humans are close to the side of the robot.

Concerning the trajectory tracking task, we report in Fig. 6 the results ob-
tained with a circular trajectory in an environment populated by 3 humans. In
this case, the robot is not able to avoid the first human when using the HoG
detector. On the other hand, it is possible to appreciate how the tracking of the
desired trajectory is close to the ground truth case (i.e., when the positions of
all humans are known a priori) when detecting humans using YOLO-v8, further
demonstrating its high level of accuracy.

We have compared our method based on CBF-QP for collision avoidance
with a QP which considers a purely distance-based constraint, finding out that
the latter has a lower success rate. This result is consistent with the one obtained
in [1], proving once again that the CBF are able to anticipate the activation of
the constraint.
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5 Conclusions

In this work, we demonstrated the performance of our vision-based pipeline for
safely navigating a robot through a human crowd. Results show the importance
of exploiting the pan-tilt action of the camera to maximize the detection relia-
bility and thus safety. Future work will entail

– the experimental validation of the method,
– the further development of the perception module by fusing camera and

rangefinder measurements,
– the introduction of fixed non-human obstacles in a more realistic scenario,
– the study of different human motion prediction strategies suitable for pre-

dictive controllers.
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