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Abstract

Tumour heterogeneity significantly a↵ects cancer progression and therapeutic
response, yet quantifying it from bulk molecular data remains challenging. Decon-
volution algorithms, which estimate cell-type proportions in bulk samples, o↵er
a potential solution. However, there is no consensus on the optimal algorithm
for transcriptomic or methylomic data. Here, we present an unbiased evaluation
framework for the first comprehensive comparison of deconvolution algorithms
across both omic types, including reference-based and -free approaches. Our
evaluation covers raw performance, stability, and computational e�ciency under
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varying conditions, such as missing or additional cell types and diverse sam-
ple compositions. We apply this framework across multiple benchmark datasets,
including a novel multi-omics dataset generated specifically for this study. To
ensure transparency and re-usability, we have designed a reproducible work-
flow using containerization and publicly available code. Our results highlight
the strengths and limitations of various algorithms, and provides practical guid-
ance for selecting the best method based on data type and analysis context.
This benchmark sets a new standard for evaluating deconvolution methods and
analysing tumour heterogeneity.

Introduction

Bulk transcriptome and methylome are routinely measured in the clinic to diagnose
and classify cancer patients. However, these data are usually analysed in a way that
do not account for intra-tumour heterogeneity, i.e. the fact that a tumour sample is
composed of di↵erent cell types [1]. However, intra-tumour heterogeneity is a critical
parameter as it will have an impact on the tumour evolution and its response to treat-
ment [2, 3]. It is possible to extract this information from bulk data with deconvolution
tools that aim at predicting the proportions of the di↵erent cell types present in the
sample [1, 4]. Deconvolution can also be used to quantify heterogeneity in non-cancer
data, but deconvolving cancer tissues is the most classical use case in the literature.
Still, there is no strong consensus on the best method to use [5, 6]. Secondly, as there
is no multi-omic benchmark to our knowledge, it is not known what is the easiest omic
to analyse with respect to the deconvolution task.

There are two classes of deconvolution algorithms. The supervised (or reference-
based) methods use a matrix of reference profiles to estimate cell-type proportions,
while the unsupervised (or reference-free) methods estimate simultaneously the pro-
portions along with reference molecular profiles of each cell type. In the supervised
class, the quality of the references is key for the deconvolution performance [7, 8]. Crit-
ical points include the fact that the cells in the references should preferably come from
the same tissue context as those to be deconvoluted (in vivo or in vitro), and that it
should contain expected cell types [6, 7, 9]. More precisely, most supervised algorithms
cannot handle missing cell types. One solution implemented by few methods, called
semi-supervised methods, is to allow the prediction of an unknown component [10].
On the other hand, unsupervised methods do not rely on references, avoiding asso-
ciated challenges, while major disadvantages have been the higher complexity of the
problem and the di�culty to identify the cell types retrieved during deconvolution. As
a matter of fact, it has been shown that the components obtained after deconvolution
are likely a linear combination of cell types present in the samples [2, 11].

Single-cell based methods would allow to overcome deconvolution-related issues
by allowing a straightforward quantification of intra-tumour heterogeneity. Nonethe-
less, integrating such technologies into the standard of care for hospital patients is not
yet feasible due to their time-consuming nature and high costs. It was also observed
that single-cell technologies do not capture all cell types with the same probability,
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blurring the estimation of the cellular composition [12]. Conversely, bulk technolo-
gies have been used for a long time at the hospital, and focusing on the analysis of
these data will also allow to leverage the massive amount of data already generated.
Nonetheless, it is possible to take advantage of both single-cell and bulk technologies.
The strategy is to sequence the single cells of few samples to generate reference pro-
files from the same context and use them for supervised deconvolution of the other
samples. We did not include single-cell-based deconvolution methods, while they are
more recent than bulk-based ones, for two main reasons. First, the properties of a
bulk transcriptome di↵er significantly from those of a single-cell transcriptome, owing
to variations in tissue processing and RNA enrichment protocols [13]. As a result,
using single-cell references can be misleading compared to bulk references. Indeed, a
previous benchmark showed that second generation single-cell-based methods did not
outperform state-of-the-art bulk-based tools [14]. Second, there is no single-cell-based
DNAm deconvolution methods. However, second generation single-cell-based methods
are powerful and will probably be one of the lead to improve deconvolution meth-
ods [14, 15]. Another lead is to leverage bulk multi-omic approaches, which is the
motivation of this benchmark.

As of today, there is a humongous amount of deconvolution algorithms available.
Many benchmarks were published to help bioinformaticians choose the best tool as
a function of their data (Table 1). Still, current benchmarks su↵er from several pit-
falls: most of them include less than 10 methods, they do not all confirm rankings on
real-world datasets (termed silver-standard datasets) and none except one provides a
single comprehensive ranking. Only few looked at supervised and unsupervised meth-
ods simultaneously, and all of them studied a single omic: either transcriptomic or
methylation alone. Lastly, there is a high discrepancy between these benchmarks, one
possible reason being the inconsistency of the metrics used to measure performance
[6].

Benchmark ID Modality Methods (#) Class Metrics Gold-standards Silver-standards

[7] RNA 20 Both RMSE, Pearson correlation 3 3
[8] RNA 12 Supervised AE, Pearson correlation 3 3
[16] RNA 3 Supervised RMSE, MAE, MAPE, sMAPE,

Pearson correlation
3 3

[17] RNA 11 Both mAD, Pearson correlation 3 7
[18] RNA 7 Supervised Pearson correlation 3 3

Our framework RNA 16 Both RMSE, MAE, Pearson correlation,
Overall comprehensive score

3 3

[19] DNAm 3 Unsupervised RMSE, MAE, Pearson correlation 3 3
[20] DNAm 4 Supervised RMSE, Pearson correlation 3 3
[21] DNAm 8 Both RMSE, sMAPE, Spearman

correlation
3 7

Our framework DNAm 11 Both RMSE, MAE, Pearson correlation,
Overall comprehensive score

3 3

Table 1 Characteristics of selected benchmark studies. AE: Absolute Error. RMSE: Root Mean
Square Error. MAE: Mean Absolute Error. MAPE: Mean Absolute Percentage Error. sMAPE:
symmetric MAPE. mAD: mean Absolute Deviation.
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In our benchmark, we addressed those pitfalls. We built a robust workflow to sys-
tematically rank and evaluate deconvolution methods. We included 20 algorithms,
supervised or unsupervised, designed for transcriptome or methylome data. We tested
all methods on 3 types of data: in silico simulations, in vitro mixes and in vivo data,
including a new multi-omic dataset. We studied various aspects of a method’s perfor-
mance: (i) raw performance which measures errors in the prediction of the proportions,
(ii) stability, and (iii) execution time . Based on those 3 categories, we provide an over-
all score per method along with intermediate scores, and p-values. We evaluated the
e↵ect of missing or extra cell types in supervised deconvolution, and of data dispersion
and size in unsupervised deconvolution. We also analysed the methods’ performance
in terms of rare cell types detection. We related our ranking with findings from pre-
vious benchmarks. We provide (i) a GitHub repository with all the codes needed to
reproduce the analysis performed in the paper, along with (ii) an Apptainer container
to run all methods included, and (iii) guidelines to choose a deconvolution method
among those included here, as a function of the data to analyse. The repository and
the container have been designed with flexibility in mind, allowing to include new
datasets and methods.

Results

Our benchmark is a combination of two pipelines (Figure 1A). The first pipeline
performs the deconvolution task, the second the ranking task. The ranking pipeline
has been designed to compare extensively deconvolution algorithms.

The deconvolution pipeline is exhaustive, reproducible and

flexible

We simulated 6 datasets (3 multi-omic, 2 RNA, 1 DNAm datasets), termed gold-
standard, based on the bulk molecular profiles of pure cell types (Table 2). Using
simulations allowed us to easily evaluate the performance of deconvolution methods
as the ground truth is readily available from the simulation process. On the contrary,
real datasets’ ground truth is usually not known, or only accessible via proxies such
as FACS or imaging. Another advantage of simulated datasets is the possibility to
test the impact of data characteristics on the quality of the deconvolution. Here, we
tested the e↵ect of the number of samples (n = 30, 120) and of the diversity in sample
composition with three levels of dispersion. Despite those benefits, the drawback of
using simulations is that the results of the benchmark might not comply with real-life
scenarii. Hence, we also analysed real datasets to confront our rankings (Table 2). We
added gold-standard in vitro mixes: 1 multi-omic, 1 DNAm and 1 RNA datasets; as
well as 2 RNA and 2 DNAm silver-standard in vivo datasets. In vitro mixes are real-
life datasets, with the advantage of having the ground truth, but there are only few
such datasets available.

We analysed thirteen gold and silver-standard datasets (Table 2) with twenty
deconvolution methods (see Methods and Supplementary Tables 1, 2) in the decon-
volution task. All methods have been run on a high performance computing cluster,
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using Snakemake [22] and an Apptainer container [23] (see Methods) to enforce repro-
ducibility and re-usability. Thanks to these tools, the deconvolution pipeline is flexible
in order to allow for additional methods and/or datasets. The input of this first pipeline
is a dataset and a method and the output is the estimation of cell type proportions
along with the running time (Figure 1A,B).

We tested several deconvolution methods designed for either of the two omics we
included, namely the methylome and transcriptome, comprising di↵erent algorithmic
designs: Bayesian-, or LS-based (Least Squares) for supervised methods, ICA- or NMF-
based for unsupervised ones. After a thorough review of the literature (Supplementary
Tables 1, 2), we included 12 supervised methods in our deconvolution pipeline (n=7 for
transcriptomic, n=1 for methylation data, n=4 for both omics), and 8 unsupervised
methods (n=2 for transcriptomic, n=3 for methylation data, n=3 for both omics)
(see Methods, paragraphs ”Supervised deconvolution algorithms” and ”Unsupervised
deconvolution algorithms” for an exhaustive list of the algorithms we tested).

The ranking process enables unambiguous comparisons of

algorithms

The ranking pipeline takes as input the estimation of the proportions and the running
time from the deconvolution pipeline. The output of this second pipeline is an over-
all benchmark score associated to p-values for the pairwise comparisons of methods,
along with the intermediate scores (Figure 1A,E). For each prediction, we computed
five performance metrics along with the running time, named primary metrics, and six
additional secondary metrics when replicates were available (Figure 1B and Methods):
error metrics (RMSE, MAE and Pearson correlations) to measure the raw perfor-
mance, standard deviation of those error metrics to measure the stability, and the
running time and its stability. We selected metrics that are routinely used in other
benchmarks (Table 1). Those metrics are aggregated by the pipeline into a single over-
all score (Figure 1C and Methods). We also display intermediate scores in order to
better understand why a method has a good or bad performance (Figure 1D). Finally,
we compute p-values along with the overall score (Figure 1E and Methods).

We designed several ranking processes and tested them according to empirical cri-
teria defined in [24] (Supplementary Figure 1 and Methods). We chose the process
Sconsensus, as it was the most generalizable one, based on the generalisation criterion.
This process averages the output of three other processes Sraw, Srank and Stopsis.
Sraw merges the di↵erent metrics after normalization, Srank merges the ranks com-
puted from each metric, and Stopsis merges the TOPSIS scores [25] (see Methods for
more details). This criterion quantifies the stability of the ranking with respect to the
exclusion of few metrics, which is a desired property. Besides, we observed that the
top methods elected by each process remained the same, which serves as a proof of
the robustness of our ranking processes and their results (Supplementary Figure 2).
The codes to run the ranking process are available and can be modified to add new
metrics or modify the aggregation process (See Methods).
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Figure 1 : Comprehensive benchmark pipeline to evaluate several aspects of a deconvolution method’s performance. (A) 
Deconvolution outputs the predicted proportion matrix which is used to evaluate a method’s raw performance and stability, along 

with its run time. (B) Metrics aggregation procedure, recapitulating a series of judges from different natures across several datasets, 
yielding a single overall score per candidate. (C) Outputs of the 3-steps aggregation procedure. (D) Permutation test to compute p-

values in order to compare two candidates.
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Fig. 1 A comprehensive benchmark pipeline evaluates several aspects of the deconvolution per-
formance. (A) The pipeline is done in 2 steps, a deconvolution step and a ranking step. (B) The
deconvolution step outputs an estimation of the proportions which is used to evaluate a method’s raw
performance and stability, along with its running time. (C) Metrics aggregation procedure, recapit-
ulating a series of metrics from di↵erent natures across several datasets and yielding a single overall
score per method. The di↵erent natures of the metrics imposes to first normalize and transform the
scores such that they all lie between 0 and 1, 1 being the best possible value. (D) Example of an
output from the 3-steps global aggregation procedure with the display of intermediate scores. (E)

Permutation test to compute p-values.

RLR is the best supervised method irrespective of the type of

omic

We first analysed simulated data and applied deconvolution on 3 versions of each
expression/methylation matrix: (i) without feature selection, with feature selection
performed (ii) by selecting the 1,000 most variable features or (iii) by TOAST and
selecting 1,000 features [26]. TOAST works by iteratively doing ICA followed by a
selection of the features di↵erentially expressed across components. For each decon-
volution method, we selected the version of the expression matrix yielding the best
overall benchmark score (Supplementary Figure 3). Overall, the strategy with no fea-
ture selection is the best ranked in 63% (17/27) of the cases, and it is especially true
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for RNA data (11/16). The second best feature selection task is TOAST (7/10). We
observed that increased performance after feature selection is partly due to a sub-
stantially decreased running time, while stability is reduced (Supplementary Figure
4).

Figure 2 presents the result of the benchmark for supervised methods on simu-
lated data, displaying the p-values along with overall and aggregated scores. RLR is
one of the 4 methods that can be used on both omic types and it has been consis-
tently the best method in a significant fashion (Figure 2A,B). RLR is also the method
yielding the less variation in performance from one dataset to another (Supplemen-
tary Figure 5A,C). Those good results can be explained by the fact that the method
is robust to outliers, while other least-squares-based methods have also good scores.
On the contrary, the performance dependency with respect to the dataset increases
with decreasing overall scores, especially for the methylome. For all datasets, RLR
displays the best aggregated scores (Supplementary Figure 6A,C) as well as the best
scores for the raw performance (as shown also in [27] for DNAm and in [7] for RNA)
and the stability categories (Figure 2C,D). Additionally, our results are coherent with
the ranking obtained in [27] where the authors used Spearman correlation.

The performance of unsupervised methods strongly depends

on the dataset

While there is a consensus on the best method for both omics and across datasets in the
supervised setting, it is not the case for unsupervised algorithms. Again, we retained
the feature selection strategy which gave the best overall score for each deconvolution
algorithm (Supplementary Figure 3). For methylation data, ICA has the highest overall
score, and it does significantly better than all other methods (Figure 3A,C), but it
displays contrasted results across datasets: it is the best algorithm for 50% of the
datasets (2/4), and the second best for PaCL2 (Supplementary Figure 6B). On the
contrary, the best methods are debCAM for PaCL1 and MeDeCom for PaCL2, and
the method yielding the most stable results across datasets is EDec (Supplementary
Figure 5B).

For transcriptomic data, the best method is debCAM (Figure 3B,D) as it performs
particularly well in all except the PaCL2 dataset compared to the other methods
(Supplementary Figure 6D). Again, the performance varies a lot from one dataset to
another, except for ICA (Supplementary Figure 5D). We observed that the perfor-
mance of unsupervised deconvolution depends on the dataset in a much stronger way
than for supervised methods (Supplementary Figure 5). All those observations shed
light on the di�culty of reaching a consensus on the best deconvolution tool. Addi-
tionally, supervised methods perform better than unsupervised ones as already shown
in the literature [28, 29].

RNA yields the best performance based on analysis of both

types of omic

Since we have an interest in using multi-omic data, we wanted to determine the easiest
omic to deconvolve (if any), based on the three simulated multi-omic datasets. We
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Fig. 3 Benchmark scores of unsupervised deconvolution methods. Methods have been applied to the
methylation (A,C) or the transcriptome (B,D). (A,B) Statistical significance of the di↵erences in
overall benchmark scores.(C,D) Overall and intermediate scores.

observed that whatever the class of the method, RNA was the omic with the highest
overall benchmark score (Figure 4A). For the supervised class, RLR done on RNA
data is the best option, and the second best choice is to use RLR on DNAm data. The
next best methods are linked to RNA deconvolution. For the 4 methods that can be
applied on both omics, three are optimal when used on RNA data: RLR, InstaPrism
and NNLS. Regarding the unsupervised class, we also observed that the omic yielding
the best performance is RNA analysed with debCAM, though in this class the next
best methods are linked to DNAm analysis: ICA, MeDeCom and NMF. The three
methods with which we can analyse both omics perform best when used on DNAm
except for debCAM, which was designed for RNA analysis initially. Based on the
datasets we analysed and the methods included, we would recommend to use RNA
for cell-type quantification in case of a simple-omic supervised deconvolution. For the
unsupervised deconvolution, the hegemony of the transcriptome is less marked, with
several methylation methods having good results.
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Fig. 4 Comparison of the deconvolution performance for each omic. (A) Overall benchmark score
of all methods included in the benchmark, ranked on the three multi-omic in silico datasets. (B)

Overall benchmark scores of all methods sorted by design (i.e. type of algorithm), with unsupervised
designs labelled in red. LS: Least Squares. CLS: Constrained LS. RPC: Robust Partial Correlation.
SVR: Support Vector Regression. LDA: Latent Dirichlet Allocation.

We wanted to understand whether RNA deconvolution was more e�cient because
of a better algorithmic design or because of the intrinsic nature of the two omics we
analysed. We tested what specific designs were the most competitive in our benchmark.
We summarized in Supplementary Figure 7 the type of model, and whether the sum-
to-one constraint on the proportion matrix was implemented in the form or an equality
or inequality. Since there are too few methods that used an inequality constraint, we
focused on analysing the impact of the type of model. The most popular approaches
are NMF for the unsupervised class and LS for the supervised class (Supplementary
Figure 7). However, the most e�cient ones were the convex analysis and ICA for
unsupervised methods and robust LS for supervised methods (Figure 4B). While it
provides hints for future algorithms to improve the quality of the deconvolution, we
also observed that for a given design applied to both omics, the best benchmark score
is attributed to RNA in 50% of the cases (3/6). In particular, LS-based methods
perform best on RNA data, but NMF-based methods perform best on DNAm data.
To conclude on this, each approach seems to perform best on a specific omic, probably
relating to the property of the data itself.
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Simulation parameters have an impact on the deconvolution

performance

We tested two simulation parameters, namely the number of samples (n = 30, 120)
and the dispersion factor (↵0 = 3, 10, 30), related to the amount of heterogeneity in
the proportions: the higher ↵0, the lower the dispersion (see Methods). We considered
the baseline simulation as the one defined by n = 120,↵0 = 10, and we evaluated
the impact on the overall score of varying the number of samples or the dispersion,
mimicking biological noise, in the unsupervised class of methods.

For the number of samples, we observed that unsupervised methods always perform
worse whenever there are less samples than in the baseline (Figure 5A), especially
for the methylation where score di↵erences are significant for all methods except one.
This trend is expected and has been shown before [19].
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Fig. 5 Impact of simulation parameters. (A) Comparison of overall scores for unsupervised meth-
ods between the baseline simulation (n = 120) and simulations with less samples (n = 30). (B)

Comparison of overall scores for unsupervised methods between the baseline simulation (↵0 = 10)
and simulations with less (↵0 = 30, left panel) or more (↵0 = 3, right panel) dispersion. Methods for
which the di↵erence in scores is significant are flagged with stars indicating the p-value. (C) Over-
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methylation data, the blue single-strand one for transcriptome data.
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Unsupervised methods are also sensitive to the dispersion parameter. Indeed, all
methods performed worse when there was less dispersion (↵0 = 30) than in the base-
line, and it is particularly true for the methylation where the di↵erence in scores is
always significant (Figure 5B). In the ↵0 = 3 situation, many methods perform bet-
ter than the baseline except for ICA, and debCAM for methylation data and CDSeq
for transcriptomic data, although the deterioration of the score was never significant.
This improvement of the performance makes sense as well, as more dispersion means
more information (Supplementary Figure 8): in the extreme situation where the ↵0

factor is very large, this would cause all samples to have the same composition [19].
In the case where one expects its samples to have a similar composition, the results
from our benchmark indicates that deconvolution is less a↵ected with RNA than with
DNAm data.

We evaluated the e↵ect of removing or adding a cell type in the reference pro-
file matrix during supervised deconvolution (see Methods). As expected, the optimal
performance is met when the reference profiles comprise only the cell types present
in the samples (Figure 5C). This is true for all methods and both omics. Moreover,
we observed that in the case of an extra cell type not present in the samples, rank-
ings are conserved compared to having the correct cell types in the reference, except
for FARDEEP which ranks 2 positions higher in transcriptome deconvolution. In the
case of a missing cell type, rankings are modified, although overall scores remain
close. For example, RLR ranks third in methylation deconvolution but its overall score
(OS = 0.557) is close to those of the first and second methods, respectively InstaPrism
(OS = 0.570) and NNLS (OS = 0.569). Methods which are the more robust to an
incorrect reference (defined as a di↵erence of less than 0.1 in OS) are DeconRNASeq
and InstaPrism (for RNA data) in the case of a missing cell type. In the case of an
extra cell type, the most robust ones are DeconRNASeq, InstaPrism, WISP, both
FARDEEP methods, NNLS, SVR (for RNA data) and RLR (for both omics). On the
other hand, methods which are the most sensitive to an incorrect reference (defined
as a di↵erence of more than 0.25 in OS) are the methylation methods CIBERSORT
and epidishCP.

Rare cell types detection strongly depends on the

deconvolution method

Depending on the research question, the main goal could be to estimate rare cell
types. For example, it is important to quantify the immune infiltrate in the tumour
microenvironment where these cells are usually lowly abundant. We defined as rare
cell types in our simulations those with proportions ↵i below 5% (Supplementary
Table 3). It encompassed 4 datasets (3 simple-omic, 1 multi-omic). We investigated
whether our methods were fit to detect rare occurrences based on cell-type Pearson
correlations. Starting with methylation deconvolution, we observed that all methods
were less e�cient to estimate the proportions of rare cell types compared to common
ones except for RLR in the LuCL dataset (Figure 6 upper panel). Apart from this
particular case, there are only few methods for which the detection of rare cell types
is not too degraded as compared to the detection of common cell types (defined by a
di↵erence in mean correlation below 0.2): RLR, NNLS and CIBERSORT which are
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only supervised methods. On the other hand, methods for which the detection of rare
cell types is strongly degraded (defined by a di↵erence in mean correlation above 0.4)
include InstaPrism, epidishCP, ICA, NMF, and debCAM. Interestingly, the ability to
detect rare types does not depend linearly on the overall ranking, nor on the rankings
of each dataset (Supplementary Figure 6), but rather on the class of the method:
supervised methods are more e�cient than unsupervised ones to detect rare types.
Our conclusions hold true when we only compared the e�cacy to detect rare cell types:
RLR, NNLS and CIBERSORT are the best methods independently of their relative
performance on common cell types.
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Fig. 6 Investigation on the e�cacy to detect rare cell type. Cell-type Pearson correlations for rare
and common cell types were computed for each dataset containing rare cell types. Methods are ordered
from top to bottom by their overall benchmark score for each omic type. Unsupervised methods are
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BlCL and BrCL2. For the common types, n=2 for LuCL and n=4 for all other datasets. The yellow
DNA icon stands for methylation data, the blue single-strand one for transcriptome data.

For RNA deconvolution, we also looked into performance degradation for the
detection of rare cell types. With this omic type, the estimation of rare types is not
systematically worse than the estimation of common types (Figure 6 lower panel), with
some rare types being more correctly estimated than common types: e.g. SVR and
PREDE in both cancer datasets. There is also less agreement across datasets than for
the methylation. However, the mean correlation is in most cases smaller for rare types
than for common types (74%, 35/47). For transcriptomic data, and since performances
are better than for DNAm data, we defined reasonable performance degradation as a
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di↵erence in mean correlation below 0.1. With this definition, 2 methods are not too
degraded when detecting rare types: RLR and WISP. Conversely, and defining large
degradation as a di↵erence above 0.4, only CDSeq meets this criterion. On an abso-
lute basis, RLR is the best method across datasets to estimate rare cell types. Finally,
and based on the analysis of the multi-omic dataset PaCL2, we observed that rare cell
types detection is the most competitive on RNA data. This relates to the fact that
the transcriptome is already easier to deconvolve in general, as mentioned earlier.

In vitro and in vivo datasets recapitulate in silico ranking

As mentioned earlier, simulations di↵er from real-life datasets and we need to ensure
that our results are also valid for other data sources. We confronted in Figure 7
rankings obtained using datasets from di↵erent sources: gold-standard in silico and
in vitro datasets, silver-standard in vivo datasets. We computed the ranking for each
source independently of the others, as we do not want to compare the respective
performance between sources but the ranking of the di↵erent methods itself. Of note,
we cannot compute the secondary stability metrics for real datasets since we do not
have replicates, so we have two di↵erent sets of metrics depending on the source (see
Methods and Supplementary Figure 2). We also retained only the methods that ran
on all in vitro and in vivo datasets, otherwise it would have favoured methods that
were running only on few datasets (Supplementary Figure 9). Indeed, some methods
were not able to deconvolve few real datasets, and we penalized it by excluding them
in this comparison. We kept 9 out of the 11 DNAm methods and 12 out of the 16
RNA methods. InstaPrism was excluded in both omics as it requires to define variable
cell types, which we chose to be the cancer cell types; hence it was run only on cancer
datasets (see Methods).

For the supervised methylation methods, RLR remains the best method across
all sources. For the unsupervised case, the best overall method is ICA, as outlined
in the in silico ranking. Furthermore, we observed that the 3 best methods in each
source are in the top 4 of the global ranking. Major di↵erences are the rank change of
RefFreeEWAS (6th in the in silico ranking), MeDeCom (6th in the in vitro ranking)
and NMF (5th in the in vivo ranking).

In the supervised RNA deconvolution, we obtained a coherent ranking. SVR and
CIBERSORT are consistently the worst methods, while RLR, WISP and DeconR-
NASeq are always in the top 4 for each source. In the unsupervised case, we only
retained 2 out of the 5 methods, making it di�cult to challenge any observation.

This confirms the robustness of our ranking method, as well as the hegemony of
some methods over the others, such as RLR in the supervised class.

Our benchmark provides a robust and comprehensive overview

of a method’s performance

Thanks to our ranking process, we could unambiguously compare deconvolution tools.
However, we can also look at intermediate and primary scores in order to better
understand what makes a method e�cient or not (Figure 8A,B,C,D, Supplementary
Figure 10). For example, we observed that RLR performs well for all metrics in all
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Fig. 7 Rankings as a function of omic type, class and data source. Each panel displays the overall
score of the methods in each source and the respective rankings, ’global’ being the ranking as defined
by the mean of the scaled overall scores for each method, for DNAm (A,B) and RNA (C,D) methods,
supervised (A,C) or unsupervised (B,D). The yellow DNA icon stands for methylation data, the blue
single-strand one for transcriptome data. Methods that were excluded from the comparison across
data sources or did not run on all datasets of a given source have no ranking (NA in the corresponding
cell of the ranking tables)

except one in vitro DNAm dataset. We also observed that spiderplots of supervised
methods looked more regular than for unsupervised ones, in terms of metrics and
datasets. All those scores allowed us to come up with guidelines in terms of dataset’s
easiness-of-deconvolution and algorithmic design’s strengths and weaknesses. It could
also help choosing a method as a function of a specific use case. As an illustration, we
compared InstaPrism and CIBERSORT to deconvolve PaCL2. InstaPrism made less
errors (RMSE = 0.045, R2 = 0.93) than CIBERSORT (RMSE = 0.052, R2 = 0.92)
on the whole matrix, and ran 10 times faster, but it failed to correctly estimate rare
proportions compared to CIBERSORT, except for macrophages (Figure 8E,F,G). One
should favour one method over the other as a function of its goal: if the goal is to
predict the abundance of rare cell types and scalability is not an issue, the best tool is
CIBERSORT. On the opposite, if the goal is to make less errors globally, InstaPrism
is more e�cient.
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Fig. 8 Detailed visualisation of methods’ performances. The benchmark allows to display several
visual outputs. (A,B,C,D) Spiderplots of normalised-transformed primary metrics quantifying raw
performance (blue), stability (violet) and scalability (yellow), for all dataset sources and for the two
best methods in each class (supervised (A,C) and unsupervised (B,D)) and omic (methylation
(A,B) and transcriptome (C,D)), as determined by the in silico ranking. (E,F) Predicted propor-
tions as a function of true proportions for one simulation of PaCL2, coloured by cell type. All cell
types are present in (E) and only rare types in (F). (G) Running time for each algorithm. Methods
flagged with the yellow icon are run on the methylation, methods flagged with the blue icon on tran-
scriptome.

Methods

Original PaCL2 and PaMIX datasets generation

This dataset consists of 30 mixtures and 9 pure cell types, constructed to recapit-
ulate the heterogeneity seen in real pancreatic adenocarcinoma. The in vitro mixes17



contained variable proportions of (i) human tumour cells (CAPAN-1 and Mia PaCa-
2), (ii) cancer associated fibroblasts (mix of 2 primary cell lines), (iii) human tumour
derived-endothelial cells (HMEC) and immune cells that were FACS-sorted from
healthy donors (B cells, CD4+ cells, CD8+ cells, neutrophils and M2-macrophages).
All patients gave their written informed consent for the use of their specimen for
research. Cells were mixed and RNA/DNA were simultaneously extracted followed
by RNAseq (RNA-seq poly A) and methylome (MethEPIC 850K). For all sam-
ples, DNA/RNA were extracted using the ALLPrep tissue kit (Qiagen, Venlo, The
Netherlands) following the manufacturer’s instructions.

RNA-seq libraries were prepared using the NEBNext Ultra II Directional RNA
preparation kit, and paired-end 100-bp sequencing was conducted on the NovaSeq
Illumina platform. Gene expression profiles were generated using Fastq files and
aligned using STAR (2.7.1a) on UCSC hg38 genome. Bam files were counted using
featureCounts (v2.0.0) with options -p -s 2 -T 15 -t exon -g gene name.

Gene counts were normalized using standard DESeq2 procedure. DNA methyla-
tion was acquired according to standard Illumina protocol for Infinium Methylation
EPIC BeadChip. The raw DNA methylation intensity data files (IDAT) were processed
with the lumi and methylumi R packages. We performed pre-normalization filter-
ing (removing probes containing SNP, high intensity probes and undetected probes)
and normalization using colour balance adjustment and between-sample normalisa-
tion with the ”quantile” method. The gene expression data and the DNA methylation
data have been deposited on GEO under accession codes GSE281204 and GSE281305.

Data simulation

We simulated expression/methylation bulk data bD and proportion matrices and bA,
based on real reference profile matrices T and a priori knowledge on the proportions
classically found in real samples (Supplementary Table 3). bD is of size f ⇥S, T of size
f ⇥K and bA of size K ⇥ S, with f the number of features, S the number of samples
and K the number of cell types.

We first generated proportions bA based on a Dirichlet distribution and a priori

knowledge on realistic proportions(Supplementary Table 3):

cA,s ⇠ Dir(↵) (1)

with cA,s the vector of proportions of K cell types in the sample s and ↵ = ↵0 ⇥
(↵1, ...,↵K) the shape vector of the K cell types. For each dataset, ↵ has been chosen
proportional to prior knowledge on the cell types mix in real data, multiplied by a
factor ↵0 controlling the dispersion around those typical proportions (Supplementary
Table 3). The dispersion factor mimics biological noise: the higher the factor, the lower
the dispersion around typical proportions.

Proportions bA were then convoluted with reference profiles of pure cell types T to
obtain the expression/methylation matrix bD. Table 2 indicates which references were
chosen to simulate a given dataset. Finally we added a noise ✏ to model technical noise:
a Negative Binomial noise for RNA and a Gaussian noise on M-values for DNAm
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data (see Supplementary Methods for the parameters of the Negative Binomial and
Gaussian distributions) [17, 20, 30].

bD = T ⇥ bA+ ✏ (2)

We generated sets of 10 replicates for each reference matrix T (Table 2).
Removal or addition of a cell type in the reference profile matrix were performed

by modifying T , for the experiments of missing or extra cell types. To have a reference
matrix with a missing cell type, we removed the first column of T 2 Rf⇥K after
ordering the columns alphabetically. For the extra cell type, we generated a fake cell
type based on the real ones. Basically, we selected all immune cell types, computed
the mean profile and added noise (see Supplementary Methods).

Computational deconvolution: formulation of the problem

The reference, proportions and expression/methylation matrices can be connected via
the following equation:

D
f⇥S

= T
f⇥K

⇥ A
K⇥S

(3)

We can add further constraints of non-negativity (NN) and sum-to-one (STO) on
A:

Ak,s 2 [0, 1] (NN)

KX

k=1

Ak,s = 1 (STO)

9
>>=

>>;
8k 2 J1,KK, s 2 J1, SK (4)

Supervised deconvolution algorithms

We used multiple approaches for supervised deconvolution. Several methods are based
on least squares (LS): Robust Linear Regression (RLR) [31], Non-Negative LS (NNLS)
[32], epidishCP [31], Ordinary LS (OLS) [32], WISP [33], DeconRNASeq [34], Elastic
net and FARDEEP [35]. We added an STO constraint on FARDEEP for the method
FARDEEP sto. Other methods are based on a Support Vector Machine: CIBER-
SORT [36] and Support Vector Regression (SVR) [32]. The last method relies on a
Bayesian approach to directly sample the columns Ã,s from the posterior distribu-
tion p(A,s|D,s, T ): InstaPrism [37]. InstaPrism requires to define variable cell types,
which we chose to be the tumour types. Hence, InstaPrism was not run on non-cancer
datasets.

For in silico data, we used the same reference matrix as the one employed for
the simulations. For in vitro data, we used as reference the profiles of the pure cell
types that were mixed. Except for BlMIX, the pure types were profiled at the same
time as the mixes. For in vivo data, BlREAL1 and BlREAL2 were published along
with matching references. We used the reference profiles from BlREAL2 to do super-
vised deconvolution of BlREAL3. For SkREAL, we used signatures accessed with the
function EPIC::TRef (Table 2, column ”Reference”).
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Unsupervised deconvolution algorithms

Unsupervised deconvolution was conducted using two primary approaches. In the first
approach, there is no assumptions about the reference matrix, and both A and T are
estimated simultaneously through Independent Component Analysis (ICA). In the
second approach, A and T are estimated alternatively using LS methods, including
Non-negative Matrix Factorization (NMF), RefFreeEWAS [38], MeDeCom [39], EDec
[40], and PREDE [41]. Other approaches included convex analysis with debCAM [42]
or Latent Dirichlet Allocation (LDA) with CDSeq [43]. Although debCAM was ini-
tially designed for RNA data, we also tested its performance on DNAm data. For
all unsupervised methods, we used the true number of cell types as the number of
unsupervised components in the algorithms.

After estimating Ã, we identified the components by matching them to the cell
types in the ground truth matrix A. Specifically, we aligned rows from Ã to those from
the ground truth A by solving a linear sum assignment problem, using the R package
clue to order rows in a way that maximizes correlations.

Implementation of deconvolution methods: feature selection

and execution of deconvolution algorithms

Feature selections were performed using the TOAST R package. The most variable fea-
tures were identified with the function findRefinx and TOAST discriminating features
with the function csDeconv, using ICA for the ”FUN” argument.

Most algorithms were executed with default parameters (see Supplementary Meth-
ods for more details). The deconvolution analyses were run with a Snakemake workflow
within an Apptainer container on the University of Grenoble computing infrastruc-
ture GRICAD (https://gricad.univ-grenoble-alpes.fr). Each analysis was run on a
single CPU node with 32 cores allocated for parallelized methods. The seed was
fixed for reproducibility. To accelerate computation, deconvolution for methylation
data was limited to the 30,000 most variable features as captured by the function
TOAST::findRefinx.

Performance metrics

We calculated several metrics grouped in three categories, namely:

• Raw performance: RMSE, MAE, Pearson correlation P on the whole predicted
matrix Ã, median across cell types of the Pearson correlations on cell types Pk,
median across samples of the Pearson correlations on samples Ps;

• Stability across replicates: standard deviation of RMSE, MAE and P , median across
replicates of the standard deviation of Pk and Ps;

• Time: Per-sample time of deconvolution, log-transformed, and its standard deviation
across replicates.

Secondary stability metrics are calculated exclusively on replicates. The ranking pro-
cess that includes both primary and secondary metrics is referred to as ’A,’ while the
process based solely on primary metrics is referred to as ’B’ (Supplementary Figure
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2F). When replicates were available, primary metrics were averaged by taking the
median across replicates (see Supplementary Methods).

We normalized the metrics as described in [44]. Let MX be the method ⇥ metric
matrix for a dataset X. Each method is a combination of a feature selection strategy
and a deconvolution algorithm. We first normalized each metric for the dataset X for
all methods such that the di↵erent scores are all between 0 and 1, and transformed
it such that 1 is the best score and 0 the worst (see Supplementary Methods). After
normalization-transformation, Pearson correlation metrics (resp. standard deviation
of Pearson correlations) are merged into a Pearson meta-score (resp. Pearson stability
meta-score) with the arithmetic mean (refer to Supplementary Methods). The output
of this normalization - transformation - merging step is M̄X .

Ranking processes

We designed a consensus ranking processes to aggregate the di↵erent metrics into
an overall score. The global aggregation process takes the method ⇥ metric matrices
for all datasets as input, and outputs a vector of methods’ overall scores S via a
three-steps process. First, metrics are aggregated using the geometric mean for each
method, dataset and category. Second, we compute a weighted geometric mean to
aggregate across categories for a given method and dataset, with weights of 1 for the
raw performance and 0.5 for the scalability and stability. Finally, we aggregate across
datasets via the arithmetic mean for each method (see Supplementary Methods).

We tested three di↵erent inputs for the global aggregation described above (Sup-
plementary Figure 1). (1) For the process of successive aggregations Sraw, the input is
M̄

X . (2) For the process of average ranks Srank, the input is the matrix of ranks RX

computed separately for each metric from M̄
X (Supplementary Methods and Supple-

mentary Figure 1). (3) For the topsis process Stopsis, the input is the matrix of TOPSIS
scores computed from M̄

X . The TOPSIS score T
X
i measures a ratio of the distances

between each method i and archetypes of the best and worst possible methods for
each dataset X (Supplementary Methods and Supplementary Figure 1) [25].

Finally, Sconsensus is the arithmetic mean of the overall scores computed from each
previously described processes Sraw, Srank and Stopsis. We used the process Sconsensus

in all figures.
To test the quality of our ranking process, we quantified on Sraw, Srank, Stopsis

and Sconsensus a series of criteria in order to characterize their behaviour [24]. We
computed the average rank which is the normalized average rank of the winner, the
Condorcet rate which is the rate of ranking the Condorcet winner first when one exists,
and the generalization criterion which quantifies of how much a ranking depends on
the set of metrics used (Supplementary Methods).

Statistical significance of the overall score

We used a permutation test in order to associate p-values to the overall scores. For
each pair of methods i, j, with i having a higher overall score than j, we did a one-sided
test measuring how significant the di↵erence in score was. We randomly shu✏ed their
scores Mi, and Mj, 1,000 times. For each iteration k, we computed the overall scores

21



S
k
i and S

k
j using the process Sconsensus, and the associated test statistic sk = S

k
i �S

k
j .

Finally, we compared the observed test statistic s0 = Si � Sj to the distribution
{sk, k 2 J1, 1000K}.

Code and data availability

The code for the deconvolution pipeline along with the Apptainer container def-
inition file, and the code to reproduce the figures for the ranking pipeline are
available on GitHub (https://github.com/bcm-uga/DeconvBenchmark) and Zenodo
(DOI 10.5281/zenodo.14024479). The deconvolution pipeline can be adapted to add
new methods and datasets. Similarly, the ranking pipeline can be modified. The acces-
sion codes for the datasets used in this study are listed in Table 2 and the directions
on where to retrieve the proportion matrices for the in vitro mixes are given on our
GitHub. The original dataset can be retrieved from GEO under the accession codes
GSE281204 and GSE281305.

Discussion

With this benchmark, we conducted a thorough evaluation of deconvolution algorithms
across multiple omic types, addressing several critical aspects of their performance,
such as robustness, scalability, and precision. The proposed framework evaluated
both supervised and unsupervised approaches using diverse in silico, in vitro and
in vivo benchmark datasets, including an original multi-omics dataset. The analysis
spanned the impact of simulation parameters, the detection of rare cell types, and
the consistency of algorithms ranking across diverse data sources. This comprehensive
evaluation allowed us to tackle some of the major challenges in selecting deconvolution
methods for transcriptomic and methylomic data, while paving the way for the devel-
opment of new multi-omic algorithms, a significant step forward compared to existing
benchmarks.

While our benchmark represents a notable advancement, our approach has certain
limitations. The use of simulated data allowed us to work with large datasets with the
exact ground truth, which is essential for rigorous evaluation. Although we applied
common strategies for simulating technical noise, such as negative binomial noise for
RNA data [17] and Gaussian noise for DNAm data [20, 30], we acknowledge that our
simulations may not fully capture the complexity of real data. For instance, dependen-
cies between genes and CpG probes or interactions between cells are not adequately
modelled. These factors could partially explain the discrepancies in algorithms ranking
across di↵erent datasets. Additionally, the scarcity of real-world datasets with reliable
ground truth, and the uncertainty surrounding their accuracy, may also contribute to
these inconsistencies [6].

Our benchmark allowed us to compare results with those from previous studies,
revealing both similarities and di↵erences. Consistent with our benchmark, [20] and
[21] also observed that RLR was the best method for deconvolution of methylation
data. However, our results diverged from other studies in some respects: for example,
DeconRNASeq performed better in our evaluation than reported by [7] while it is
the opposite for CIBERSORT (ranked last in our benchmark). These discrepancies
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likely stem from di↵erences in the datasets used and the evaluation metrics chosen [6].
Our benchmark includes a larger variety of datasets and applies an overall ranking
that merges multiple performance metrics, providing a more holistic view of algorithm
performance.

The overall benchmark score allowed us to provide a single, interpretable rank-
ing for each method, which simplifies comparison. However, this approach comes with
trade-o↵s. Aggregating multiple metrics into a single score means that nuances from
individual metrics are inevitably lost. To address this, we recommend that users refer
back to the individual metrics in cases where a specific aspect of performance, e.g.
speed or rare cell types detection, predominates. This flexibility allows for a more tai-
lored selection of algorithms based on specific research needs. Additionally, our ranking
method involved several subjective choices, such as selecting and categorizing metrics,
along with weighting, and normalization procedure. While these choices were informed
by existing benchmarks and the literature, they influence the final ranking. We chose
metrics that were classically used in other benchmarks: RMSE and MAE measure
the average error between the prediction and the reality, with RMSE increasing to a
greater degree than MAE in case of a few large di↵erences, and Pearson correlation
measures the linear correlation. Some benchmarks also used Jensen-Shannon diver-
gence [45], Aitchison distance [46] or sMAPE [16, 21]. Therefore, future studies could
explore alternative ranking methodologies or adjust the weights to emphasize specific
performance aspects depending on the analysis context. The flexibility of our bench-
mark ensures that as new methods and metrics emerge, it can be readily adapted to
meet evolving research needs.

Our benchmark provides valuable guidance for researchers looking to select appro-
priate deconvolution methods based on their datasets. Datasets can be described
by several characteristics: number of features, number of cell types, technology, etc
(Supplementary Figure 11). We investigated if some characteristics could be linked
to the easiness-of-deconvolution. We explored the sensitivity of each method to the
datasets and observed that unsupervised methods tend to be more sensitive to the
datasets than supervised ones (Supplementary Figure 12). Although our attempts to
link specific dataset characteristics, such as heterogeneity, to deconvolution di�culty
were inconclusive (Supplementary Figure 13), this remains a promising area for future
research. Expanding the benchmark to include more datasets could help clarify these
relationships.

Beyond its immediate application, our benchmark o↵ers a rigorous framework that
can be used to test and validate new deconvolution methods. Thanks to our strategy
of giving a single rating per method we could unambiguously evaluate 20 algorithms
across classes and omics. One of the key strengths of our benchmark is the inclusion of
a dual-omic evaluation, which o↵ers a unique perspective on how deconvolution meth-
ods perform across both transcriptomic and methylomic data. We have also observed
that a consensus strategy did not outperform the best methods in our evaluation
(Supplementary Figure 14), but this remains an area where future innovations could
have a significant impact. By providing a reproducible and transparent framework, our
benchmark can be reused and extended as new methods are developed, contributing
to the continuous improvement of deconvolution techniques. Indeed, our benchmark
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is well-positioned to accommodate new types of data, such as spatial transcriptomics,
which represent a growing frontier in the analysis of tumour heterogeneity.

Finally, our benchmark serves two key purposes: to evaluate the performance of
existing deconvolution methods across a wide range of conditions; and to provide a
flexible, extensible platform for the integration of future developments in the field. This
evaluation was done on multiple datasets, including an original multi-omics dataset.
By comparing algorithms across transcriptomic and methylomic data, we have laid
the groundwork for the next generation of multi-omic deconvolution tools. Moreover,
the ability to integrate additional datasets and algorithms ensures that this bench-
mark will remain a valuable resource in the future. Looking ahead, we anticipate that
our framework could be extended to include spatial deconvolution methods, further
broadening its applicability and relevance in the study of complex biological systems.
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