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Abstract. We consider the graph-theoretic problem of removing (few) nodes from a directed
acyclic graph in order to reduce its depth. While this problem is intractable in the general case,
we provide a variety of algorithms in the case where the graph is that of a circuit of fan-in (at
most) two, and explore applications of these algorithms to secure multiparty computation with
low communication. Over the past few years, a paradigm for low-communication secure multi-
party computation has found success based on decomposing a circuit into low-depth “chunks”.
This approach was however previously limited to circuits with a “layered” structure. Our graph-
theoretic approach extends this paradigm to all circuits. In particular, we obtain the following
contributions:

– Fractionally linear-communication MPC in the correlated randomness model.
We provide an N -party protocol for computing an n-input, m-output F -arithmetic circuit
with s internal gates (over any basis of binary gates) with communication complexity
( 2
3
s+n+m) ·N · log |F |, which can be improved to ((1+ ϵ) · 2

5
s+n+m) ·N · log |F | (at the

cost of increasing the computational overhead from a small constant factor to a large one).
Previously, comparable protocols either used more than s ·N · log |F | bits of communication,
required super-polynomial computation, were restricted to layered circuits, or tolerated a
sub-optimal corruption threshold.

– Sublinear-Communication MPC. Assuming the existence of N -party Homomorphic
Secret Sharing for logarithmic depth circuits (respectively doubly logarithmic depth cir-
cuits), we show there exists sublinear-communication secure N -party computation for all
log1+o(1)-depth (resp. (log log)1+o(1)-depth) circuits. Previously, this result was limited to
(O(log))-depth (resp. (O(log log))-depth) circuits, or to circuits with a specific structure
(e.g. layered).

– The
(
N
1

)
-OT complexity of MPC. We introduce the “

(
N
1

)
-OT complexity of MPC ” of

a function f , denoted CN (f), as the number of oracle calls required to securely compute
f in the

(
N
1

)
-OT hybrid model. We establish the following upper bound: for every N ≥ 2,

CN (f) ≤ (1 + g(N)) · 2|f |
5

, where g(N) is an explicit vanishing function.

We also obtain additional contributions to reducing the amount of bootstrapping for fully
homomorphic encryption, and to other types of sublinear-communication MPC protocols such
as those based on correlated symmetric private information retrieval.

⋆ Most of this work was done while P. Meyer was a PhD student jointly at Reichman University, Herzliya,
ISRAEL and Université Paris Cité, CNRS, IRIF, Paris, FRANCE.
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1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW87] enables mutually distrusting parties to
jointly compute a function on their private inputs, while revealing nothing beyond the function’s
output. The seminal protocols of the 1980s [Yao86,GMW87,BGW88,CCD88] all require an amount
of communication which scales linearly with the computational complexity of the function: given a
fan-in two circuit representation of the function, the parties are required to communicate for every
(non-linear) gate of the circuit. In this paper, we propose to achieve MPC with less communica-
tion than the circuit-size by limiting interaction to only a few key gates, which we identify using a
graph-theoretic algorithm. Specifically, the goal is to find a small set of nodes in the underlying graph
whose removal yields a low-depth directed acyclic graph (DAG). The idea is to reduce the secure
computation of an arbitrary circuit to that of a circuit of logarithmic, doubly-logarithmic, or even
constant depth for which, generally speaking, there are known protocols using circuit-independent
communication.

This problem is motivated by the fact that, aside from protocols based on fully homomorphic
encryption, all known ways to achieve sublinear-communication secure computation are restricted
to low-depth circuits, and can only currently be extended to deeper circuit if they have a specific
“layered” structure (meaning the circuits’ gates are partitioned into ordered layers, and each wire
only connects one layer to the next).



1.1 Background

This paper proposes to solve the cryptographic problem of securely computing any circuit with low
communication by reducing it to a graph-theoretic problem. We recall in section 1.1.1 what is known
about low-communication secure “general-purpose” computation (including protocols restricted to
layered circuits or low-depth circuits, but excluding special-purpose protocols such as Private Infor-
mation Retrieval), and in section 1.1.2 the literature on the graph-theoretic problem to which we
reduce the secure computation task.

1.1.1 Sublinear-communication secure multiparty computation. We start by surveying
sublinear-communication secure computation protocols, but restrict ourselves to those using a polyno-
mial amount of computation3 and tolerating the optimal number of corruptions. Because the amount
of computation typically grows exponentially (or even doubly exponentially) with the depth of the
computation, most of these protocols only support computation up to a certain depth. Throughout
this section, s denotes the size of the circuit, d denotes its depth, N denotes the number of parties,
and F denotes the field over which the circuit’s arithmetic is performed.

In the correlated randomness model, d = log log s. Ishai, Kushilevitz, Meldgaard, Orlandi, and
Paskin-Cherniavsky [IKM+13] showed how to securely compute any function with a polynomial-size
look-up table using circuit-independent communication (only proportional to input and output size).
Couteau [Cou19] extended this approach to any log log-depth (boolean or arithmetic) circuit. In turn,
this yields a protocol for securely computing any size-s layered circuit using O(s/ log log s ·N · log |F |)
bits of communication.

From fully homomorphic encryption (FHE), any d. Gentry [Gen09] provided the first con-
struction of fully homomorphic encryption from ideal lattices. This powerful primitive, which was
later instantiated under a standard variant of the learning with errors assumption (LWE) [BV11,
BGV12], allows for a computation to be performed on encrypted data. FHE was later shown to
yield asymptotically optimal-communication secure multiparty computation (in the computational
setting) [DFH12,AJL+12].

From homomorphic secret sharing (HSS), d = O(log s). Boyle, Gilboa, and Ishai [BGI16a]
built two-party homomorphic secret-sharing (HSS) for branching programs from the decisional Diffie-
Hellman assumption (DDH). This yields two-party protocols for securely computing O(log s)-depth
circuits using circuit-independent communication, or arbitrarily deep layered boolean circuits with
communication O(s/ log s · N · log |F |). This template for HSS for branching programs was later
instantiated under the decision composite residuosity assumption (DCR) [FGJS17, OSY21, RS21],
learning with errors (LWE) with a polynomial noise-to-modulus ratio [BKS19], and assumptions
based on class groups of imaginary quadratic fields [ADOS22]. We note that some of the above HSS
schemes [BGI16a, FGJS17, BKS19] have a noticeable error in correctness, but this has no bearing
on the application to low-communication two-party computation. The DDH-based approach only
supports boolean circuits, while the LWE- and DCR-based approaches work in any field.4

From homomorphic secret sharing (HSS), d = log log s − log log log s. There exists HSS
supporting circuits of depth (log log s−log log log s):5 in the two-party setting from the quasi-polynomial
learning parity with noise assumption (LPN) [CM21], in the four-party setting assuming DCR and
constant-depth pseudorandom generators (PRG) [COS+22, BCM23], and in the general multiparty

3 If we lift this restriction, Beaver, Feigenbaum, Kilian, and Rogoway [BFKR91] showed that any function
from {0, 1}n to {0, 1} can be securely computed in the presence of up to t corruptions by N = O(t ·n/ logn)
computationally unbounded parties (which the protocol indeed requires to use an exponential amount of
computation) using poly(n+N) communication. In addition, the protocol of [IKM+13], which we state as
a result for securely computing functions with a polynomial-size look-up table, can be applied to general
functions if the parties are computationally unbounded (and have access to a doubly exponential amount
of correlated randomness).

4 These HSS schemes support bounded-integer computation, which translates to low-communication secure
computation over arbitrary fields using hybrid encryption.

5 Note that this class is somewhat related to logarithmic-depth branching programs.
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setting assuming sparse LPN [DIJL23]. In turn, this yields 2-, 4-, or N -party computation of (log log s−
log log log s)-depth circuits with circuit-independent communication, or that of arbitrarily deep lay-
ered circuits with communication O(s/ log log s ·N · log |F |). All these approaches support arbitrary
fields F . The scheme based on super-polynomial LPN [CM21] is a “single-circuit” scheme (it re-
quires the circuit’s topology to be known at input-sharing time) and the scheme based on sparse
LPN [DIJL23] has a noticeable error in correctness, but here again these limitations have no bearing
on the application to low-communication secure multiparty computation.

Other approaches, d = log log s−log log log s. Boyle, Couteau, and Meyer [BCM22] introduced
correlated symmetric private information retrieval (correlated SPIR), and instantiated it under LPN
plus any of the following assumptions: DDH, the quadratic residuosity assumption (QR), DCR, or
poly-modulus LWE. This primitive yields secure two-party computation of doubly logarithmic-depth6

boolean circuits using O(n+m+
√
s · poly(λ) · (n+m)2/3) bits of communication, as well as secure

two-party computation of synchronous7 boolean circuits using communication O(s/ log log s+ d1/3 ·
s2(1+ϵ)/3) (which is O(s/ log log s) provided d = o(s1−ϵ/poly(λ)), which is to say the circuit is not
too “tall and skinny”). Boyle, Couteau, and Meyer [BCM23] later provided a framework, based on
2- or 4-party HSS and correlated SPIR, to extended these protocols to the 3- or 5-party settings.
Finally, Abram, Roy, and Scholl [ARS24] extended this approach to the general multiparty setting by
instead only relying on a form of two-party HSS with succinct share size, and instantiated it under a
DDH-like assumption in class groups, DCR, or LWE with a super-polynomial noise-to-modulus ratio:
for general layered boolean circuits with communication O(s/ log log s ·N), or even O(s/ log s ·N) if
the layered boolean circuit is wide enough. All these approaches are restricted to the boolean setting.

1.1.2 DAG depth-reduction. The problem of reducing a DAG’s depth by removing nodes can
be expressed as a hitting set problem: given a directed graph G = (V,E), we are looking for a set
of vertices which “hits” (i.e. contains a vertex from) each k-path in G. Ultimately, we will present a
family of secure computation protocols whose communication complexity scales with the size of such
a hitting set in a well-chosen graph, closely related to a circuit representation of the function to be
securely computed. Towards upper bounding the communication complexity of securely computing
any circuit, we are interested in upper bounding the size of the smallest k-path hitting set for very
n-vertex DAG of in-degree at most two.

For every k ≥ 2, the optimisation version of the directed k-path hitting set problem was shown
to be NP-complete for general DAGs by Paindavoine and Vialla [PV16]. For k = 1, the problem
coincides with the vertex cover problem8 which was shown to be NP-complete in general DAGs by
Naumann [Nau09].

The analogue problem on undirected graphs (which is also NP-complete in its optimisation version)
has been studied by Brešar, Kardoš, Katrenič, and Semanišin [BKKS11] and by Jianhua [Tu22]. Since
every directed k-path in a DAG corresponds to a k-path in the DAG’s underlying (undirected) graph,
establishing an upper bound in the undirected case (i.e. establishing an upper bound on the smallest
k-path hitting set of the worst 2-degenerate graph on n vertices) also applies to the directed case. For
k = 3, which in the undirected setting corresponds to a bound on the dissociation number, applying
the result of Brešar, Kardoš, Katrenič, and Semanišin [BKKS11, Corollary 10] yields a bound9 of
2n/3. For all k ≥ 2, [BKKS11, Theorem 4] yields a bound9 of ( 35 + 2

5k ) · n.
Finally, we mention that this problem is related to the bootstrap(ping) problem [LP13, PV16,

BLMZ17]. Most constructions of fully homomorphic encryption are based on LWE and follow the same
blueprint. Each ciphertext is associated with some noise, which grows at each homomorphic operation.
Typically, the noise grows additively for linear gates and multiplicatively for non-linear gates. Once
the noise reaches a certain limit, decryption is no longer possible (at least not without significant
6 The complexity we provide here is for when the depth is at most (log log s)/4, not (log log s− log log log s);

this is done in order to simplify the expression and absorb some negligible terms.
7 A synchronous circuit is a layered circuit whose input gates are all in the first layer.
8 We note there is some inconsistency in the literature in how the vertex cover problem is extended to directed

graphs.
9 To obtain these bounds, observe that the undirected underlying graphs of fan-in two DAGs have average

degree no more than 4. We do not formally state these results (which are direct corollaries of [BKKS11])
in the body however, as we provide improved bounds in Section 4.2.
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error in correctness). The key technique to manage this noise growth, due to Gentry [Gen09], is
called “bootstrapping”. By using an encryption of the secret key (which requires circular-security)
one can homomorphically run the decryption procedure on the noisy ciphertext in order to produce
a fresh ciphertext, encrypting the same value under the same key, but with a reset noise level. This
bootstrapping operation is computationally heavy however, which motivates the question to try and
reduce the number of times it is required for computing an arbitrary circuit. The bootstrap problem,
formalised by Benhamouda, Lepoint, Mathieu, and Zhou [BLMZ17], asks to minimise the number of
bootstraps required to compute a circuit. Consider a DAG whose vertices all have in-degree exactly
0 or 2 and are coloured in one of three colours: nodes of in-degree 0 are white (corresponding to
inputs to the computation), and the other nodes are either blue (corresponding to additions) or red
(corresponding to multiplications). In graph theory terms, the bootstrap problem for maximum noise
level L asks to find a small set of marked vertices such that every path containing L + 1 red nodes
must also contain at least one marked vertex. In other words, the bootstrap problem asks to reduce
the multiplicative depth of a circuit by removing a few nodes.

1.2 Overview of our Results

We present a framework for achieving low-communication MPC for all circuits, sometimes allowing
for a restriction on the depth, but never relying on a specific circuit topology (such as layered circuits).
The secure computation protocol is based on the following pebbling game on the circuit’s underlying
DAG:

1. A node u may be pebbled if it is a source node, or if every length-k directed path (the length is
counted in vertices) ending in u contains a node which has already been pebbled.

2. Eventually, every node corresponding to an output gate must be pebbled (this includes every
sink).

At a high level, the protocol has the parties compute some “masked version” (secret shares or cipher-
texts) of the value of each pebbled gate. The parties start with the inputs, then iteratively compute
shares of the value of each pebbled gate using the fact that each one can be computed as a depth-k
circuit of already computed masked values. Finally, the parties “open up” the masked output values.
Typically, the communication required to generate the masked inputs should scale only with the in-
put size, the cost of computing the intermediary masked values should scale only with the number
of pebbled gates, and the cost of opening the masked outputs should scale only with the output size.
Instantiating this framework requires two key ingredients:

1. An algorithm to find a good pebbling of the circuit’s underlying DAG.
2. A low-communication protocol to compute a masked version of the output of a depth-k circuit,

given masked version of the inputs.

Solving the pebbling game. Our approach is to consider the circuit’s underlying DAG, remove
the input and output nodes, and then identify a directed k-path hitting set of the resulting DAG.
Removing all these nodes yields a DAG of depth k − 1.

Main Theorem 1 (Depth-reduction algorithms for fan-in two circuits). Let G be an in-degree two,
depth-d DAG on n vertices. Then

hk(G) ≤



⌊2n/3⌋ if k = 2 (1a)
2n

5
·
(
1 +

3/2

k

)
for any 1 ≤ k < d (1b)

O
(
n ·

(
1− log k

log d

))
for any 1 ≤ k < d (1c)

where hk(G) is the size of the smallest k-path hitting set of G. Furthermore this bound is constructive.
Note that the last expression is particularly interesting in the k = d1−o(1) regime, as it yields a hitting
set of size o(n).

5



Main Corollary 1 (Circuit depth-reduction from k-path hitting set). Let R be a finite ring. Let C
be a fan-in two, depth-d, n-input, m-output circuit with s gates10. Let (k,M) be any of the following
combinations of parameters:

M = m+ ⌊2(s−m)/3⌋ and k = 2

M = m+ 2(s−m)
5 ·

(
1 + 3/2

k

)
and 1 ≤ k < d

M = m+O
(
(s−m) ·

(
1− log k

log d

))
and 1 ≤ k < d

There exists a sequence of M fan-in two, depth-k, single-output circuits C1, . . . , CM such that:

∀x⃗ ∈ Rn, C(x⃗) = CM

(
x⃗, (Cj(x⃗, (Ci(x⃗, . . . ))i<j)))j<M

)
.

(Or in algorithmic form, if

1. y1 ← C1(x⃗)

2. For i = 1 . . .M , yi ← Ci(x⃗, (y1, . . . , yi−1))

then C(x⃗) = CM (x⃗, (yi)
M
i=1).)

Instantiating the framework. We demonstrate the usefulness of main theorem 1 by showing how
each of the three expressions has applications to low-communication secure multiparty computation:
the parameters of eq. (1a) are useful to obtain fractionally linear-communication MPC in the corre-
lated randomness model, those of eq. (1b) are best suited for 1-out-of-22

k

OT-complexity of 2PC, and
finally the parameters of eq. (1c) are best applied to sublinear-communication secure computation
low-depth circuits.

Corollary 1 (MPC protocols through the depth-reduction lens).

1. Information-theoretic MPC in the correlated randomness model. Let C be an n-input,
m-output, F -arithmetic circuit with s non-output computation gates (over any basis of binary
gates). There exists an N -party protocol for perfectly securely computing C in the correlated
randomness model in the presence of a semi-honest adversary corrupting up to N − 1 parties.
The protocol uses the following resources (in bits):
– Total communication: (

2

3
s+ n+m

)
·N · log |F |

– Correlated randomness per party: O(s+ n) · log |F | bits of function-dependent correlated ran-
domness per party (or alternatively BO(1) · log |F | bits of function-independent correlated ran-
domness, where B is some a priori bound on s+ n+m),

– Local computation per party: O(s ·N · log2 |F |) .

2. Sublinear-communication MPC from homomorphic secret-sharing. Assuming the ex-
istence of N -party homomorphic secret-sharing supporting logarithmic depth (respectively doubly
logarithmic depth circuits) F -arithmetic fan-in two circuits, there exists sublinear-communication
secure N -party computation for all log1+o(1)-depth (resp. (log log)1+o(1)-depth) circuits.

3. The 1-out-of-M-OT complexity of 2PC. Let f : {0, 1}n → {0, 1} be a function which can
be computed by a boolean circuit with s computation gates (over any basis of binary gates). For
every M ≥ 2, there exists a two-party protocol for computing C with passive security in the 1-out-
of-M -OT hybrid model; this protocol makes 2

5

(
1 + 3/2

⌈log logM⌉+1

)
· s calls to the oblivious transfer

functionality.
10 In order to simplify the expressions of M , we assume none of the input gates are also outputs.
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We note that the protocols of Corollary 1 can be extended to the malicious setting. The results
for sublinear-communication from HSS also apply to correlated SPIR: Assuming the existence of
correlated SPIR, there exists a sublinear-communication secure two-party protocol for (log log)1+o(1)-
depth circuits. Finally our depth-reduction algorithms (notably those in the parameter range of
eq. (1b)) provide upper bounds on the number of bootstraps required to achieve fully homomorphic
encryption while tolerating a small constant maximum noise level: Given an FHE scheme tolerating
a maximum noise level of L, only 2

5s · (1+
1.5
L+1 ) bootstraps are required to homomorphically evaluate

a size-s circuit (over an arbitrary basis of binary gates).

Concrete efficiency. We conclude this section by comparing our fractionally linear-communication
protocol to the previously best known linear-communication protocols in the correlated randomness
model, in the two-party setting. The comparison is summarized in Table 1. When compared with the
“Tiny Tables” protocol of Damgaard, Nielsen, Nielsen, and Ranelluci [DNNR17], we save a factor 1.5
in communication at the cost of a factor 4 in computation. The savings in communication can be
asymptotically increased to a factor 2.5, but only by losing a very large factor in computation.

Previous Works

“GMW with OT correlations” “Tiny Tables”
[GMW87,Bea92] [DNNR17]

Communication s× + n+m s+ n+m

Correlated Randomness 4s× + n 3s+ n

Function-Independent CR? Yes No

Computation sO(1) sO(1)

This Work

Colouring-based FVS-based (Any k ≥ 2)

Communication 2
3
s+ n+m 2

5
(1 + 3/2

k
) · s+ n+m

Correlated Randomness 10s+ n † 22
k

· s+ n †

Function-Independent CR? No † No †

Computation sO(1) O(22
k

) · sO(1)

† The correlated randomness can be made function-independent at the cost of increasing it
to B2k bits, where B is some a priori bound on n+m+ s.

Table 1: Resources in field elements per party for computing a fan-in two arithmetic circuit with n
inputs, m outputs, and s computation gates (s× of which are multiplicative, and s−s× linear), in the
two-party setting. In the last column, k is not necessarily a constant. Note that the GMW protocol
coincides with an extension of our protocol to k = 1 (up to free addition), as a “1-path hitting set” is
the set of all vertices.

1.3 Technical overview

We refer to Section 2 for definitions of the graph-theoretical notions discussed here. We consider three
families of depth-reduction algorithms in this paper. Recall our goal is to constructively give an upper
bound for hk(G) where the DAG G has n nodes and is of in-degree-2.

Colouring-based depth-reduction. Observe that 2-paths are exactly (directed) edges, so the hit-
ting set we are looking for is exactly a vertex cover. A DAG of in-degree two is 3-colourable, and
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furthermore a 3-colouring can be found in polynomial time by the following greedy algorithm: colour
all sources with the same colour, then iteratively colour nodes in topological order with any of the
three colours not already used by its parents. Since each node has at most two parents, the algorithm
never gets “stuck” and only ever needs three colours.

Consider the 3-partition of the nodes obtained by this colouring. The union of the two smallest
partition must have size at most ⌊2n/3⌋ (or they would not be the smallest), and they must be a
vertex cover of the graph (or there would be an edge whose two endpoints are of the third colour,
which would violate the proper 3-colouring property).

FVS-based depth-reduction. Our second family of depth-reduction algorithms is based on the
following approach:

1. First, remove vertices from the in-degree-2 DAG so the resulting graph lies in some graph class
G.

2. Then, use a special-purpose depth-reduction algorithm for class G.

Specifically, we consider the class G of all directed forests. This is motivated by the fact that directed
trees (which in particular can be seen as layered graphs) admit very efficient depth-reduction algo-
rithms. More specifically, we can reduce the depth of a directed forest to k − 1 while removing only
a 1-in-k fraction of its vertices. Indeed, while the forest still has depth at least k we can iteratively
remove the (k−1)th ancestor u of the deepest leaf v . Whenever we remove a node in this fashion, we
are guaranteed we will never need to remove any of the k− 1 nodes of the path from u (excluded) to
v (included). We say these k− 1 nodes have been “saved by u ”. Because each node can be saved by
at most one node’s removal, when the algorithm terminates we are guaranteed to have removed only a
1-in-k fraction of the nodes (if we removed ℓ nodes, then we saved ℓ ·(k−1); because ℓ+ℓ ·(k−1) ≤ n,
necessarily ℓ ≤ ⌊n/k⌋).

The first step is handled by identifying a feedback vertex set (FVS) of the in-degree-2 DAG’s
underlying undirected graph. Fortunately, while the problem of finding a small FVS is NP-complete
in general graphs, it is known that every 2-degenerate graph (that is, one whose edges can be oriented
as an in-degree-2 DAG) admits an FVS of size ⌊2n/5⌋ [BDBS14].

By combining these two steps, every n-vertex, in-degree-2 DAG has a k-path hitting set of size
⌊2n/5⌋+ ⌊n−⌊2n/5⌋

k ⌋ (which is at most 2n
5 · (1 +

3/2
k )).

Valiant’s [Val77] edge-partitioning-based depth-reduction. The third algorithm is one pro-
posed by Valiant [Val77], and which we simply apply to secure multiparty computation11. For com-
pleteness, we provide here a sketch of how this algorithm works. This DAG depth-reduction algorithm
is based on deleting edges. In an in-degree-2 DAG however, the number of edges is within a factor 2
of the number of vertices, so the problem is essentially the same as the variant we consider. Valiant’s
algorithm starts by partitioning the vertices in d layers, according to their depth in the DAG. Note
that because we do not assume the DAG itself has a layered structure, the edges are allowed to join
any pair of layers. The edges are partitioned as X1 ⊔ · · · ⊔Xlog d as follows: an edge connecting two
vertices in layers L1 and L2 is placed in partition Xi where i is the most significant bit in which the
binary representations of L1 and L2 differ. We provide a visual representation of this partition in
Figure 1: any edge “crossing the blue line” is in X1; any edge not in X1 but “crossing a red line” is in
X2; any edge not in X1∪X2 but “crossing a green line” is in X3. The key observation is that whenever
we iteratively remove one of the partitions, the depth of the DAG is reduced by a factor 2. Removing
the log(d/k) smallest partitions (whose union has size at most (log(d/k)) · #edges

log d ) therefore yields
a depth-k DAG. It follows that every in-degree-2, n-vertex DAG of depth d admits a (k + 1)-path
hitting set of size O(n · (1− log k

log d )).

11 We note that Valiant’s algorithm was previously applied in essentially the same way to other—yet
incomparable—notions of depth-reduction and pebbling games, in the study of memory-hard functions
[AB16,ABH17].
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Fig. 1: Visual representation of the edge partitioning mechanism in Valiant’s [Val77] depth-reduction
algorithm.

2 Preliminaries

2.1 Cryptographic Notions

Definition 1 (Homomorphic Secret Sharing). An N -party Homomorphic Secret-Sharing (HSS)
scheme (with additive reconstruction) for a class F of functions over a finite field F is a pair of
algorithms HSS = (HSS.Share,HSS.Eval) with the following syntax and properties:

– Share(1λ, x): On input 1λ (the security parameter) and x ∈ F n(λ) (the input), the sharing algo-
rithm Share outputs N input shares (x(1), . . . , x(N)).

– Eval(i, f, x(i)): On input i ∈ [N ] (the party index), f ∈ F (the function to be homomorphically
evaluated, implicitly assumed to specify input and output lengths n,m), and x(i) (the ith input
share), the evaluation algorithm Eval outputs the ith output share y(i) ∈ Fm.

– Correctness: For any 1λ, input x ∈ F n(λ), and any function f ∈ F ,

Pr

[
y(1) + · · ·+ y(N) = f(x) :

(x(1), . . . , x(N))
$← HSS.Share(1λ, x)

y(i)
$← HSS.Eval(i, f, x(i)), i = 1 . . . N

]
= 1 .

– Security: For every set of corrupted parties D ⊊ [N ], we consider the following game:
1. The adversary A sends inputs (x0, x1) with |x0| = |x1|.
2. The challenger picks b

$← {0, 1} and (x(1), · · · , x(N))
$← HSS.Share(1λ, xb).

3. The adversary outputs a guess b′ ← A((x(i))i∈D).

We let Adv(1λ,A,D) denote the advantage |1/2 − Pr[b = b′]| of A. The scheme is secure if for
any D ⊊ [N ] and any PPT adversary A, Adv(1λ,A,D) is negligible.

2.2 Graph-Theoretic Notions

In this paper, we consider only simple graphs, both directed and undirected. For a graph G we let
V (G) and E(G) be the sets of vertices and edges of G, respectively. For a subset U ⊆ V (G), we use
G[U ] to denote the subgraph of G induced by U , i.e. the graph (U,E(G) ∩ U2) . We sometimes use
the acronym DAG as shorthand for “directed acyclic graph” and di-graph or digraph as shorthand for
“directed graph”. In a DAG, the nodes of in-degree 0 are called sources and the nodes of out-degree
0 are called sinks. Borrowing from circuit terminology, we allow a subset of a DAG’s nodes to be
identified as output nodes: this can be an arbitrary subset, provided that it contain all sinks and no
sources.

(Directed) paths. A (directed path) in a (directed) graph is a non-repeating sequence of vertices
such that each pair of consecutive vertices form an (arc) edge of the graph. The length of a (directed)
path is the number of vertices12 in this sequence. The depth of a directed acyclic graph is the length
of the longest path in it.
12 Beware that the literature is inconsistent on whether the length of a path should be counted in vertices or

edges.
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Feedback Vertex Set. A feedback vertex set (FVS) of an undirected graph G with vertex set V is a
set S ⊆ V of its vertices such that the graph G[V \S] is a forest. The FVS decision problem asks, on
input an undirected graph G and a positive integer k, whether G admits an FVS of size at most k.

Vertex Colouring. A (proper) vertex colouring of graph G = (V,E) is a function π : V → N which
assigns different values (called colours) to neighbouring vertices. A k-vertex-colouring (or simply a
k-colouring) is a vertex colouring which uses at most k colours.

Independent set. An independent set is a set of vertices in a graph such that no pair of them are
adjacent to each other.

Graph Degeneracy. The degeneracy [LW70] (a.k.a. the coloring number -1 [EH66]) of a graph G
is the least integer k ≥ 0 such that every induced subgraph of G contains a vertex with at most k
neighbours. If a graph has degeneracy at most d, we say it is d-degenerate. A graph is d-degenerate if
and only if it admits a d-elimination ordering [LW70], i.e. an ordering of the vertices in which each
vertex appears after at most d of its neighbours. A graph is d-degenerate if and only if the edges of
G can be oriented to form a directed acyclic graph with in-degree at most d [CE91].

elimination ordering

Fig. 2: The nodes of a 2-degenerate graph can be ordered in such a way that each node is preceded
(in the ordering) by at most 2 of its neighbours.

3 Depth-Reduction Pebbling Game

The goal of this section is to show how solving the graph-theoretic problem of reducing an in-degree-2
DAG’s depth by removing (few) nodes leads to low-communication MPC protocols.

In Section 3.1 we state the graph theoretic problem of DAG depth reduction. In Section 3.2 we
introduce a “pebbling game” for the gates of a (boolean or arithmetic) circuit, and show it can be
solved using DAG depth-reduction. In Section 3.3 we explain how many existing low-communication
MPC protocols implicitly rely on finding a good pebbling of the circuit to be securely computed.

3.1 The depth-reduction problem for directed acyclic graphs

Definition 2 (DAG Depth-Reduction).

– DAG Depth-Reducibility. Let k, ℓ ∈ N⋆. We say a directed acyclic graph G = (V,E) is (k, ℓ)-
depth-reducible if there exists a subset S ⊆ V of size at most ℓ such that G[V ∖S] has depth at
most k ( i.e. the longest directed path in G[V ∖S] contains at most k vertices).

– The DAG Depth-Reduction Problem. Given a directed acyclic graph G = (V,E), the (k, ℓ)-
depth-reduction problem (denoted (k, ℓ)-DR) asks to find a subset S ⊆ V of size at most ℓ such
that G[V ∖S] has depth at most k ( i.e. the longest directed path in G[V ∖S] contains at most k
vertices), or output ⊥ if no such subset exists.

Remark 1 (Equivalent Problems to DAG Depth-Reduction). The following holds:

1. The (k, ℓ)-DR problem is that of finding a hitting set of size at most ℓ for all directed (k+1)-paths
in G.

2. The (1, ℓ)-DR problem is that of finding a vertex cover of size at most ℓ.

We bring the reader’s attention to the fact that removing a k-path hitting set from a DAG yields a
DAG of depth at most k − 1.
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3.2 A depth-reduction pebbling abstraction

We outline below a convenient intermediate abstraction to interface between the depth-reduction
problem over digraphs and the execution of a secure multiparty computation protocol. We model
the distributed computation of a function f , given by a boolean circuit C, as the Depth-Reduction
pebbling game. In this pebbling game the parties can place a pebble on a node s of the underlying
graph G of the circuit if the following condition is met: either the node is an input node, or all directed
path of length k + 1 in G ending at s already contain a pebbled node. Formally,

Definition 3 (DR pebbling game). Given a digraph G = (V,E) and a depth parameter k, a
depth-reduction (DR) pebbling game PG is a list of subsets S ⊂ V of the nodes of G. A DR pebbling
game PG = (S1, · · · , S|PG|) is valid if after executing the commands PebbleGates(Si) sequentially for
i = 1 to |PG|, defined in Figure 3,

– no command returns an invalid flag,
– the termination condition is met ( i.e. all output nodes are pebbled).

The cost cost(PG) of a valid DR pebbling game PG is defined as the total number of pebbles placed
throughout the game,

cost(PG) =
∑
S∈PG

|S|

and its length length(PG) = |PG| is the length of the list ( i.e. the number of subsets).

The rules of the DR pebbling game are formally described on Figure 3.

DR pebbling rules

Parameters. The game is parameterised by a directed acyclic graph G = (V,E) with in-degree
2, and a depth parameter k.

Initialisation. At the start of the game, a pebble is placed on all input nodes.

Moves. The player can execute the following command:

▷ PebbleGates(S): given a set S ⊂ V of gates,
– for every s ∈ S, check that every path in G of length k+1 ending at s contains a pebbled

node. If not, return the flag invalid.
– Place a pebble on all nodes in S.

Termination. The game terminates once all output nodes have been pebbled.

Fig. 3: The moves and termination condition of a depth-reduction pebbling game.

Then, we have the following straightforward lemma that relates the cost of a pebbling game to the
k-depth-reducibility of G:

Lemma 1. Let G = (V,E) be a digraph with m output nodes13; we denote Vsources and Voutputs the
sets of sources and outputs of G, respectively. Let G′ := G[V \ (Vsources⊔Voutputs)]. If G′ is (k, ℓ)-depth-
reducible, then there is a valid DR pebbling PG of G with depth parameter k, cost cost(PG) ≤ ℓ+m,
and whose length |PG| is the largest number of pebbles on a path from a source to a sink in G.

Proof. The proof follows from a straightforward greedy procedure. Because G′ is (k, ℓ)-depth re-
ducible, there exists a size-ℓ subset V ′ of the nodes of G′ whose removal yields a depth-k DAG.
Initially, all sources in G are pebbled. At each round, identify the largest set S ⊆ V ′ ∪ Voutputs of un-
pebbled nodes such that PebbleGates(S) does not return invalid (i.e., the set of all nodes s ∈ V ′ such
that every path in G of length k+1 ending at s contains a pebbled node), and pebble this set. Iterate
until all nodes in Voutputs have been pebbled. It follows from the definition of (k, ℓ)-depth-reducibility
terminates with all the sinks coloured. Indeed, assume toward contradiction that a node s ∈ Voutputs

13 We refer to Section 2.2 for what we mean by “output nodes of a DAG”.
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was not pebbled by this procedure. Then there must be an ancestor a of s (at distance at most k of
s) which was not pebbled by this procedure (otherwise, s would have been pebbled). Repeating this
argument from the node a, we arrive after at most depth(G) steps at an input node, which is pebbled
by assumption, reaching a contradiction. Furthermore, all nodes pebbled in this process are nodes
from V ′ ∪ Voutputs, hence cost(PG) ≤ |V ′ ∪ Voutputs| ≤ ℓ+m. This concludes the proof.

3.2.1 Example: a DR pebbling of layered graphs. We say that an in-degree-2 directed acyclic
graph is layered [GJ11] if its nodes can be divided into layers, such that any edge only connects
adjacent layers. Let G = (V,E) be a layered in-degree-2 directed acyclic graph with |V | = s nodes,
and let k be an arbitrary parameter. Let n be the number of sources and m be the number of sinks
in G. Let d be the depth of G.

Claim. There exists a valid DR pebbling PG of G with |PG| ≤ ⌈d/(k+1)⌉+1 and cost(PG) ≤ m+⌈s/k⌉.

Equivalently, the proof below shows that layered graphs of size s with m outputs are (k−1,m+⌈s/k⌉)-
depth reducible for any k.

Proof. First, observe that d is necessarily equal to the number of layers in G. Second, divide G into
⌈d/k⌉ chunks of k consecutive layers (written from top to bottom). Let i ∈ [1, k] be an index such
that the total number of nodes in the i-th layers of all chunks is at most ⌈s/k⌉ (such an index i exists
by the pigeonhole principle).
The pebbling strategy proceed in ⌈d/k⌉+ 1 rounds: in the j-th round, place pebbles on all nodes in
the i-th layer of the j-th chunk, as well as on all unpebbled sinks above the i-th layer of the j-th
chunk. Observe that when j = 1, all nodes in the i-th layer of the first chunk, and all sinks above this
layer, have depth at most i ≤ k, hence every path of length k ending at a node of the i-layer must
contain an source (and length-k paths can only exist when i = k), which is pebbled.
When j > 1, all k-ancestors of the i-th layer of the j-th chunk are on the i-th layer of the (j − 1)-th
chunk (because the graph is layered), hence they have been pebbled at the round j− 1. Furthermore,
each path of length k ending on an unpebbled sink above the j-th chunk contains a node on the i-th
layer of the ℓ-th chunk, for some ℓ < j, which was pebbled in one of the previous rounds.
Eventually, in the (⌈d/k⌉ + 1)’s round (the last round), it only remains to place a pebble on the
remaining unpebbled sinks (if any) situated after the i-th layer of the last chunk, and all length-k
path ending in these nodes contain a pebbled node from the i-layer of the last chunk. Therefore, all
moves are valid, and all sinks are pebbled at the end of the DR pebbling game. In total, the game
places pebbles on the i-th layer of each chunk (at most ⌈s/k⌉ pebbles in total) plus a pebble on each
sink (at most m additional pebbled), hence cost(PG) ≤ m+ ⌈s/k⌉. This concludes the proof.

3.3 Recasting MPC protocols through the lens of DR pebblings

The DR pebbling game abstraction allows to recast several existing low-communication MPC protocols
in a unified way which isolates their cryptographic component from the graph algorithm that they
implicitly rely on to traverse the circuit of the function. The literature contains several protocols
which require less communication than the size of the circuit, for a suitable class of “well-structured”
circuits. For example, [BGI16a, Def 4.6] introduces the notion of circuits over branching programs,
while [Cou19,CM21] use layered circuits, and [BCM22,BCM23] use synchronous circuits.
All these protocols (and others) evaluate the circuit by distributively and iteratively computing
the values carried on a subset of intermediate nodes in a hidden fashion (the values are either
shared [BGI16a,Cou19], masked [BCM22], or encrypted [Gen09,BV11,BGV12]. Computing the cost
of these protocols (in terms of communication, computation, and storage overhead) can be abstracted
out as follows:

– the cryptographic mechanism introduced in the protocol induces a (storage, communication, and
computation) cost for each intermediate node whose value is (securely) computed, and

– the final cost of running the protocol is derived by summing the costs of computing the interme-
diate nodes, where the nodes are selected using a suitable valid DR pebbling of the graph of the
circuit.
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Cast in this language, there is nothing mysterious in the restriction to circuit classes such as layered or
synchronous circuit: it simply comes from the fact that these are classes of circuits whose underlying
graph G is (k, ℓ)-depth-reducible with non-trivial parameters (k, ℓ), which in turns implies by Lemma 1
the existence of a good DR pebbling game on G; see also Section 3.2.1 for an explicit description of an
efficient pebbling strategy for layered graph. It also follows immediately that all of these results can
be extended to larger classes of circuits provided that we can find sufficiently non-trivial DR pebbling
games for their underlying family of graphs.
For the sake of concreteness, and to facilitate the statements of the corollaries which we obtain in this
paper, we work out explicitly the abstraction on a few illustrative examples below. We stress that we
do not prove new results on secure computation in what follows: rather, for a list of existing protocols
that were originally described over a restricted class of circuits, we observe that the protocols work
identically over general circuits but that their efficiency depends on the existence of an efficient DR
pebbling. Our lemmas and corollaries simply reformulate the existing results in this setting.

3.3.1 Information-theoretic secure computation in the correlated randomness model.
In [Cou19], Couteau introduced the first information-theoretic secure computation protocol in the
correlated randomness model which achieves sublinear communication complexity O(s/ log log s) for
all layered circuits of size s, using a polynomial amount of computation and correlated randomness.
For simplicity, we focus here on the case of secure computation of boolean circuits with semi-honest
security, but the result of [Cou19] extends to arithmetic circuit and to the malicious setting.
On Figure 4, we recall the protocol Πcorr of [Cou19]. Rather than focusing on layered circuits, we
describe the protocol for an arbitrary circuit C given a suitable pebbling of the underlying graph of
C. Let C be a circuit, and let PG be a valid DR pebbling of the graph G of C with depth parameter
k(|C|) = log log |C|.

Protocol Πcorr

Parameters. Let C be a boolean circuit whose underlying digraph is G = (V,E). Let k(|C|) =
log log |C| be a depth parameter, and let PG be a valid DR pebbling of G. The protocol involves
N parties (P1, · · · , PN ).

Correlated randomness. The trusted dealer proceeds as follows:

– For each node v ∈ V which is not an output node, the trusted dealer samples a random
mask rv

$← F2. For each output node v ∈ V , the trusted dealer sets rv ← 0. For all nodes
v ∈ V , the dealer samples N random shares (r

(i)
v )i≤N of rv.

– For each set S ∈ PG, for each s ∈ S, let Vs ⊂ V denote a set containing one pebbled
node from each length-k path ending at s (Vs exists because PG is a valid pebbling). Let
fs : {0, 1}|Vs| 7→ {0, 1} denote the function which computes the value carried by the node
s in C from the values carried on all nodes v ∈ Vs. Let Ms denote the truth-table of the
function x 7→ fs(x⊕ (rv)v∈V s). The dealer samples N random shares (M

(i)
s )i≤N of Ms.

– The dealer sends (r
(i)
v )v∈V and (M

(i)
s )s∈S for all sets S ∈ PG to each party Pi. The dealer

also sends rv for each output node v to all parties.

Protocol. We assume w.l.o.g that the parties hold shares of all inputs.

– For each input node s and each input shares (x(1), · · · , x(N)) of an input value x on the node
s, each party Pi sends x(i)⊕r

(i)
s . All parties reconstruct x⊕rs =

⊕
i(x

(i)⊕r
(i)
s ). Throughout

the protocol the parties will maintain the following invariant: each time they pebble a node
v, they will reconstruct zv = uv ⊕ rv, where uv is the value carried on this node.

– For each set S ∈ PG, for each s ∈ S, the parties retrieve the masked values zv for each
v ∈ Vs, which they computed previously. Each party Pi broadcasts M (i)

s [(zv)v∈V s]⊕ r
(i)
s and

all parties reconstruct
⊕

i(M
(i)
s [(zv)v∈V s]⊕ r

(i)
s ) = Ms[(zv)v∈V s]⊕ rs = fs((uv)v∈Vs

)⊕ rs =
us ⊕ rs = zs.

– Once zv has been computed for all output nodes v, all parties output the zv’s. Note that
zv = uv + rv where uv is the value carried on the node, and rv = 0 for all output nodes.
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Fig. 4: An information-theoretic secure computation protocol in the correlated randomness model

Lemma 2. Let C be an n-input boolean circuit with m output gates, and let PG be a valid DR pebbling
of its graph G = (V,E). Then the protocol Πcorr of Figure 4 is an information-theoretically secure
N -party protocol for computing C in the correlated randomness model. Furthermore, the protocol Πcorr

has the following efficiency properties:

– Correlated randomness: each party receives at most |V |+ cost(PG) ·22k bits of correlated random-
ness from the trusted dealer.

– Communication: the total communication of the protocol is upper bounded by N · (n+ cost(PG)).
– Computation: each party performs at most O(cost(PG) · (22k +N)) boolean operations.

Lemma 2 is a reformulation of [Cou19, Theorem 1] in the setting of general circuits with a DR pebbling
game, and the proof of Lemma 2 is a direct adaptation of the analysis in [Cou19]. Due to the choice of
k = log log(s), note that the amount of correlated randomness and computation remain polynomial.
Furthermore, whenever cost(PG)≪ s, the total communication of the protocol is ≪ N · (n+ s), i.e.,
below the “circuit-size barrier”. Plugging the efficient valid DR pebbling of layered graphs described
in Section 3.2.1 (whose cost is at most m+ ⌈s/ log log(s)⌉) recovers the exact statement of Theorem 1
in [Cou19] for layered boolean circuits.

3.3.2 Secure computation from homomorphic secret sharing. We recall below another
approach for sublinear secure computation, which was originally introduced in [BGI16b]. This protocol
established HSS as the first known alternative to FHE to obtain sublinear secure computation for an
expressive class of circuits. On Figure 5, we recall a simplified variant of the protocol of [BGI16b] for
arbitrary circuits with a valid DR pebbling given a statistically correct HSS scheme for the class NC1,
and discuss extensions that rely on weaker forms of HSS afterwards. Let C be a circuit, and let PG
be a valid DR pebbling of the graph G of C with depth parameter k(|C|) = log |C|.

Protocol Πhss

Parameters. Let C be a boolean circuit whose underlying digraph is G = (V,E). Let k(|C|) =
log |C| be a depth parameter, and let PG be a valid DR pebbling of G. Let σ : V 7→ {0, 1} be a
function which, on input v ∈ V , returns 0 if v is an output node, and 1 otherwise. The protocol
involves 2 parties (P0, P1). Let HSS = (HSS.Share,HSS.Eval) be an HSS scheme for the class
of functions NC1, and let {FK}K∈{0,1}λ be a PRF family in NC1. Let ΠShare denote a secure
2-party protocol which, on input Kb ∈ {0, 1}λ from each party Pb, computes (K

(0)
b ,K

(1)
b )

$←
HSS.Share(1λ,Kb) for b = 0, 1, and outputs (K

(0)
0 ,K

(0)
1 ) to P0 and (K

(1)
0 ,K

(1)
1 ) to P1.

Initialisation. We assume w.l.o.g. that the two parties hold additive shares of all inputs.

– Each party Pb samples Kb
$← {0, 1}λ.

– For b = 0, 1, the two parties run ΠShare on inputs (K0,K1). Each party Pb gets (K
(b)
0 ,K

(b)
1 ).

– For each input node v ∈ V and each input shares (x(0), x(1)) of an input value x on the
node v, each party Pb broadcasts vb ← FKb

(v)⊕ x(b). All parties reconstruct v⋆ = v0⊕ v1 =
x⊕ (FK0(v)⊕ FK1(v)) (it helps to view the value v⋆ as the pebble on v).

Protocol. Let us denote PG = (S1, · · · , S|PG|). For i = 1 to |PG|,

– For each s ∈ Si, let Vs ⊂ V denote a set containing one pebbled node in Si−1 from each
length-k path ending at s (Vs exists because PG is a valid pebbling). Let fs : {0, 1}|Vs| 7→
{0, 1} denote the function which computes the value carried during the computation (in
the circuit C) by the node s from the values carried on all nodes v ∈ Vs. Let us denote
(v1, · · · , v|Vs|) the elements of Vs. For j = 1 to |Vs|, the parties retrieve the values v⋆j com-
puted in the previous round. Let v⋆ ← (v⋆1 , · · · , v⋆|Vs|) Then, the parties define the following
function gs:

gs :

{
{0, 1}|Vs| 7→ {0, 1}
(K0,K1) → fs(v

⋆ ⊕ (FK0
(vj)⊕ FK1

(vj))j≤|Vs|)⊕ σ(s) · (FK0
(s)⊕ FK1

(s))
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Note that gs ∈ NC1 (because the circuit of fs is a log-depth circuit and the PRF is in NC1).
Furthermore, by construction, gs(K0,K1) = y ⊕ (FK0

(s) ⊕ FK1
(s)) if s is not an output

node, where y is the value carried by s during the computation, and gs(K0,K1) = y if s is
an output node.

– For each s ∈ Si, each party Pb computes and sends sb ← HSS.Eval(b, gs, (K
(b)
0 ,K

(b)
1 )). Both

parties reconstruct s⋆ ← s0 ⊕ s1.

Output. For each output node v ∈ V , the parties output v⋆.

Fig. 5: A two-party protocol for C with semi-honest security

Lemma 3. Let C be a boolean circuit with n input gates and m output gates, and let PG be a valid
DR pebbling of its graph G = (V,E). Then the protocol Πhss of Figure 5 is a secure 2-party protocol in
the honest-but-curious setting for computing C. Furthermore, the total communication of the protocol
Πhss is upper bounded by 2 · (n+ cost(PG)) + poly(λ).

Lemma 3 follows directly from the same analysis as HSS-based secure computation protocols from
previous works [BGI16b]. Above, the poly(λ) term refers to the fixed communication cost (independent
of n,m, and the circuit size) of the secure 2-party protocol for distributively running HSS.Share
on a pair of λ-bit inputs. Plugging the efficient valid DR pebbling of layered graphs described in
Section 3.2.1 (whose cost is at most m+ ⌈s/ log(s)⌉) recovers the result of previous works from HSS
for NC1 together with PRFs in NC1.

Extension 1: Las Vegas HSS. We note that the construction of Lemma 3 is simplified com-
pared to the original construction of [BGI16b] since it assumes a statistically correct HSS scheme for
NC1. While such schemes were later constructed from assumptions such as DCR [OSY21] or class
groups [ADOS22], they were not known (without using indistinguishability obfuscation of FHE-style
primitives) at the time of [BGI16b]. Instead, [BGI16b] relied on a DDH-based construction of Las
Vegas HSS, which satisfies a weaker correctness property. A similar, slightly more complex construc-
tion works nonetheless given Las Vegas HSS, by letting the functions gs encode their output with a
suitable low-complexity error correcting code. Combining the efficient valid DR pebbling of layered
graphs from Section 3.2.1 with this variant recovers the result of [BGI16b].

Extension 2: single-function HSS. Another extension replaces the HSS by single-function HSS, a
weaker notion where HSS.Share must specify in advance the circuit to be computed on the shares. One
can also modify the previous construction to work with single-function HSS, by initially distributing
HSS·Share(1λ,Kb, (gs)s∈S) for all sets S ∈ PG (viewing (gs)s∈S as a single function that takes as input
(K0,K1) and outputs (gs(K0,K1))s∈S). This increases the total communication to 2 ·(n+cost(PG))+
|PG| · poly(λ), which is still sublinear for layered circuits which are not too “tall-and-skinny” (since
there, |PG| = O(d/k) where d is the circuit depth).
Combining the efficient valid DR pebbling of layered graphs from Section 3.2.1 with this variant,
and setting k ← log log s, almost recovers the result of [CM21] which achieves sublinear 2-party
computation from the super-polynomial hardness of LPN, by building single-function HSS for loglog-
depth circuits from superpoly-LPN. A minor distinction is that our construction would require a PRF
computable in depth loglog. At a high level, the PRF is used in our construction to turn a (possibly
non-compact) HSS into a compact HSS (whose share size on input x is |x|+ poly(λ)) using a hybrid
encryption technique. Instead, the work of [CM21] avoids this additional assumption by directly
building a compact single-function HSS from the super-polynomial hardness of LPN. Summing up:

Corollary 2. Let C be a boolean circuit with m output gates, and let PG be a valid DR pebbling of
its graph G = (V,E) of depth k. Then:

– if k = log |C| and assuming the hardness of either DCR or DDH, there exists a secure 2-party
protocol for C with communication 2 · (n+ cost(PG)) + poly(λ), and

– i k = log log |C| and assuming the super-polynomial hardness of LPN (semi-honest setting) or
additionally the existence of collision-resistant hash functions (malicious setting), there exists a
secure 2-party protocol for C with communication 2 · (n+ cost(PG)) + |PG| · poly(λ)
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In the corollary above, the statement about security in the malicious setting comes from the exis-
tence of a communication-preserving semi-honest to malicious compiler given succinct zero-knowledge
arguments (via the GMW compiler [GMW86]), which exists assuming collision-resistant hash func-
tions [Kil92]. The latter is implied by either DDH or DCR, but not by the flavour of LPN used
in [CM21] (though strong forms of LPN imply CRHF [YZW+19]).

3.3.3 Further protocols that fit the abstraction. We now list other secure computation pro-
tocols whose recasting as protocols computing a circuit through a DR pebbling of its graph captures
adequately some of their efficiency properties.

2-party computation from correlated symmetric PIR. The work of [BCM22] achieves sublinear
secure computation using a strong form of private information retrieval, called correlated symmetric
PIR. In a similar fashion as for the protocols of the previous sections, the protocol of [BCM22]
can be described for all circuits given a suitable DR pebbling of their graph with depth parameter
k = c · log log |C| for an appropriate constant c. The dependency in the parameters of the DR pebbling
is slightly more complex, but still translates to a protocol with sublinear communication whenever
cost(PG) = o(|C|) and the circuit is not too “small and skinny” (which translates to |PG| being
significantly smaller than cost(PG)). The lemma below is the generalization of Corollary 18 in [BCM22]
to arbitrary circuits C:

Lemma 4. Let C be a circuit with n inputs, m outputs, and let PG be a valid DR pebbling of the
graph G of C with depth parameter k. Assuming the existence of correlated SPIR, there exists a secure
2-party protocol for C with communication complexity

O

(
n+m+ |PG|1/3 ·

(
2k+2k · cost(PG)

)2/3

· poly(λ) + cost(PG)

)
.

Correlated SPIR can be constructed assuming the LPN assumption (with polynomial hardness) and
either of QR, DDH, DCR, or LWE [BCM22,BCM23]. This implies secure 2-party computation with
the communication complexity outlined above under these combinations of assumptions.

Sublinear multiparty computation. The recent work of [BCM23] introduced an approach for
sublinear secure computation which, at a high level, combines correlated SPIR with N -party homo-
morphic secret sharing to achieve sublinear MPC for N + 1 parties. Combining this with existing
constructions of 2-party and 4-party HSS, they obtain constructions of sublinear 3-party and 5-party
secure computation protocols for layered circuits. Another recent protocol that fits our abstraction is
given in the work of [DIJL23], which introduced an N -party homomorphic secret sharing scheme (with
imperfect correctness) for any polynomial N and all log log-depth circuits, and derived a sublinear
N -party secure computation protocol for all layered graphs. We briefly note that all these approaches
also fit our framework, and their protocols can be seen to work identically over any circuit C with a
suitable DR pebbling.

FHE-based secure computation with reduced bootstrapping. Until now, we outlined proto-
cols whose communication complexity depends on finding a suitable DR pebbling of the graph of
the circuit. We now show that this abstraction is also useful beyond this setting. It is well known
that fully homomorphic encryption (FHE) [Gen09] implies secure computation of arbitrary function
with communication independent of the circuit size. However, evaluating arbitrary circuits involves
bootstrapping, which is typically quite expensive.
The work of [BLMZ17] initiated the study of the number of bootstrapping operations required to
homomorphically evaluate a circuit. In their abstraction, each FHE ciphertext is associated to a noise
level, represented as an integer. Evaluating any non-linear gate increase the noise level by 1. When
some pre-specified maximum noise level is reach, an expensive bootstrapping must be performed.
While one could set the maximum noise level to be above the circuit size to avoid bootstrapping
altogether, allowing higher noise levels typically results in much larger ciphertexts and much less
efficient homomorphic operations. This suggests the following question studied in [BLMZ17]:

Given a maximum noise level k and a circuit C, how many bootstrappings are required to
homomorphically compute C?
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Concretely, the model is as follows: fix a maximum noise level k. All inputs are encrypted with respect
to a noise level 0. At each gate, the output of the gate becomes encrypted with respect to a noise level
equal to the maximum noise levels of its inputs (for linear gates) or the maximum noise level of its
inputs plus 1 (non-linear gates). If the noise level of an input to a gate is equal to k, a bootstrapping
operation must be performed, which resets the noise level to 0.
Let C be a circuit with n inputs, m outputs, and let PG be a valid DR pebbling of the graph G
of C with depth parameter k. The following follows almost immediately from the definition of DR
pebblings:

Lemma 5. The circuit C can be homomorphically evaluated with FHE ciphertexts of maximum noise
level k using at most cost(PG) bootstrapping operations.

Proof. The proof is straightforward: the homomorphic evaluation runs a bootstrapping evaluation at
each gate where a pebble is placed during the game. Because all path of length k ending in a pebbled
gate are guaranteed to contain a pebbled node already (which implies that the ciphertext encrypting
the output of the node has noise level 0 because a bootstrapping was performed), the noise level of
the ciphertexts encrypting the inputs to the gate is at most k.

Remark 2. The size cost(PG) of a DR pebbling of the underlying digraph of the circuit C yields an
upper bound on the number of bootstrapping operations required to homomorphically evaluate a
circuit. We note that, since this measure depends solely of the graph of the circuit, it is agnostic
of the type of gates. On the downside, this means that it does not take advantage of the fact that
addition gates are typically “for free” in FHE schemes. On the positive sides, it yields an upper bound
that holds for homomorphic evaluation of boolean circuits over an arbitrary boolean basis.

We note that our result is not directly comparable to the result of [BLMZ17]: their work showed that
closely approximating the minimal number of bootstrapping is NP-hard, and provided a polytime
k-approximation of the best solution. However, their result does not provide any bound on the size of
the best possible solution. In contrast, we provide an upper bound on the number of bootstrapping
required for any boolean circuit, as a function of its DR pebbling complexity. Looking ahead, combined
with the non-trivial DR pebbling algorithms which we introduce in the next section, this will yield
algorithms to homomorphically evaluate low-depth circuits with a sublinear number of bootstrapping
operations, and algorithms to homomorphically evaluate any circuit using bootstrapping for a constant
fraction of all gates.

The complexity of OT-based secure computation. An 1-out-of-n oblivious transfer (OT) is
a protocol that allows a sender holding inputs (s1, · · · , sn) to reveal si to a receiver with input
i ∈ {1, · · · , n} without learning i, and without revealing any sj for j ̸= i to the receiver. The seminal
GMW protocol [GMW87] showed that any circuit can be securely evaluated (in the 2-party setting)
using a 1-out-of-4 oblivious transfer protocol. Informally, the 1-out-of-4 OT is used to let one party
obliviously retrieve its share from the truth table (of size 4) of a binary gate (scrambled with the
masks held by the other party). This approach generalizes immediately to securely computing circuits
with k-ary gates using 1-out-of-2k oblivious transfer. This suggests the following natural question:
given a circuit C and a 1-out-of-n oblivious transfer protocol, how many invocations of the OT are
necessary to securely evaluate C?
For n = 2, the OT complexity of secure computation was previously studied in [BIKK14]. In this
section, we observe that for general values of n, the protocols of [GMW87, DNNR17] immediately
yield an information-theoretic protocol given access to 1-out-of-n OT functionality for circuits with
n-ary gates. Now, given an efficient DR pebbling with depth parameter k of the graph of a circuit C,
observe that the value of each pebbled node v can be computed as a function of the value of at most
2k pebbled ancestors of v (since all path of length k ending in v must contain a pebbled node, and
there are at most 2k such paths). In turn, this implies that the computation of v from its pebbled
ancestors can be viewed as a 2k-ary gate which, using [GMW87,DNNR17], can be evaluated with one
call to a 1-out-of-22

k

OT functionality. Summarising, we have the following lemma:

Lemma 6. Let C be a circuit with n inputs, m outputs, and let PG be a valid DR pebbling of the
graph G of C with depth parameter k. There exists an information-theoretic secure 2-party protocol

for C in the
(
22

k

1

)
-OT-hybrid model which makes at most m+ cost(PG) to the OT functionality, and

requires no further communication.
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4 Depth-Reduction Algorithms for Fan-in Two Circuits

In this section, we present depth-reduction algorithms for (the underlying DAG of) fan-in 2 circuits.

In Section 4.1, we provide a conservative depth-reduction algorithm for any fan-in two circuit
which removes only a sublinear number of nodes. However, because the reduction in depth is only
sub-polynomial, we can only reach (doubly) logarithmic depth if the starting circuit is already shallow.

In Section 4.2 we provide extreme depth-reduction algorithms, reducing any in-degree-2 circuit’s
depth to a constant, while removing a constant fraction of the vertices.

In Section 4.3 we exclude the existence of a “best of both worlds” result, by establishing there are
high-depth circuits whose depth cannot be reduced polynomially without removing a linear number
of nodes.

In Section 4.4 we list the implications for secure multiparty computation.

4.1 Depth-Reduction of Low-Depth Circuits

Valiant [Val77, Theorem 5.1] (recalled in this section as Theorem 1) established that the depth of
any circuit can be reduced sub-polynomially (i.e. the depth goes from d to d1−o(1), thereby saving
the sub-polynomial factor do(1)) by the removal of only a sublinear number of vertices.

Theorem 1 (Subpolynomial depth-reduction for all circuits, Immediate Corollary of
[Val77, Theorem 5.1]). Let G be an in-degree-2, depth-d, n-vertex DAG. For every k ≤ d, there
exists a subset of O(n · (1− log k

log d )) vertices whose removal yields a depth-k DAG.

Proof. [Val77, Theorem 5.1] states that the smallest in-degree-2, depth-d DAG whose depth cannot
be reduced to k by removing ℓ edges has order at least (ℓ · log d)/(log(d/k)). It follows that every
in-degree-2, depth-d DAG on n vertices can have its depth reduced to k by removing ℓ edges if the
following inequality holds: n ≤ (ℓ · log d)/(log(d/k)). By setting ℓ ← n · (1 − log k

log d ) and noting that
removing a giving set of k edges can also be done by removing k nodes, we get the desired result.

To better understand the trade-off between depth-reduction and number of nodes removed in The-
orem 1, it may be instructive to introduce the variable change κ ← log(d/k) and observe that the
theorem can be restated as:

Let G be an in-degree-2, depth-d, n-vertex DAG. For every κ ≤ log d, there exists a subset of
O(n · κ/ log d) vertices whose removal yields a depth-(d/2κ) DAG.

It should now be apparent that if we are only willing to remove o(n) nodes, then we need to set
κ = o(log d), which means that the depth of the DAG will only be reduced to d1−o(1). If this quantity
is to be logarithmic or even doubly logarithmic in n (as is required for some applications of Section 3.3),
the result can only be applied to circuits which are already low-depth. We state the result for low-
depth circuits in Corollary 3.

Corollary 3 (Depth-reduction of low-depth circuits, Adapted from [Val77, Corol-
lary 5.3]). Let G be an in-degree-2, n-vertex DAG of depth log1+o(1) n (resp. (log log n)1+o(1)). There
exists a subset of o(n) vertices whose removal yields a DAG of depth O(log n) (resp. O(log log n)).

4.2 Depth-Reduction of General Circuits

In this section we show how removing a constant fraction of the vertices can reduce the depth of an
in-degree-2 DAG all the way down to a constant.
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4.2.1 Reduction to depth k = 1 based on 3-colouring. Our first solution removes a fraction
2/3 of the vertices in order to reduce the depth to 1.

Theorem 2 (Colouring-based depth reduction). Any in-degree-in 2, n-vertex DAG admits a
subset of ⌊ 2n3 ⌋ vertices whose removal yields a depth-1 DAG ( i.e. an independent set).

Proof. An independent set in a DAG is the same thing as an independent set of the underlying
(undirected) graph. Recall that the underlying graph of an in-degree-in 2 DAG is 2-degenerate. A
2-degenerate graph is 3-colourable [Mat68,LW70] and furthermore a 3-colouring can be found greedily
in polynomial time: colour vertices following a 2-elimination ordering, always assigning the smallest
available colour (by definition of a 2-elimination ordering, whenever we colour a vertex, at most two
of its neighbours have already been assigned a colour, so the greedy algorithm will never be stuck and
will never need to use more than three colours). The vertices are now partitioned into three colours,
and removing the two smallest partitions (this union has size at most ⌊2n/3⌋) yields an independent
set.

Note that Theorem 2 is tight in the sense that there exist n-vertex in-degree-2 DAGs whose indepen-
dence number (i.e. the size of its maximum independent set) is n− ⌊2n/3⌋.

4.2.2 Reduction to depth k ≥ 1 based on Feedback Vertex Set. We now present an
alternative solution, which removes a smaller fraction than 2/3 of the vertices, but at the cost of
reducing the depth to “only” a constant, not one. The algorithm first removes a feedback vertex set,
and then proceeds to remove vertices from the resulting forest.

Depth-reduction of forests. The first observation is that forests can be reduced to depth k by removing
a fraction 1/(k + 1) of its vertices.

Algorithm Depth-Reduction for Forests

On input a directed forest G = (V,E) and an integer k, DRforest(·, ·) does the following:

1. Let D be the depth of G.
2. If D ≤ k return ∅.
3. Else:

(a) Let u0 be a depth-D vertex, and for i ∈ [k] let ui be its ancestor at depth D − i .
(b) Return {uk} ∪ DRforest(k, V \ {ui}i∈[0,k]).

Fig. 6: Algorithm which, on input an n-vertex directed forest and an integer k, produces a set of at
most ⌊ n

k+1⌋ vertices whose removal yields a DAG of depth at most k.

Lemma 7 (Depth-reduction algorithm for directed forests). Let k ∈ N⋆. Every n-vertex
directed forest admits a set of ⌊ n

k+1⌋ vertices whose removal yields a depth-k DAG. Furthermore the
(deterministic) algorithm of Figure 6 finds such a set in polynomial time.

Proof. The fact that DRforest runs in polynomial-time follows from inspection. Let us show by induction
on n ∈ N⋆ that for every n-vertex directed forest G = (V,E) and every integer k ≥ 1, DRforest(G, k)
outputs a set S ⊆ V of size at most ⌊ n

k+1⌋ such that G[V \ S] has depth at most k.

– Initialisation: Let k ≥ 1. Any graph G with a single vertex has depth 1,therefore DRforest(G, k)
therefore returns ∅, and the claim is true.

– Induction Step: Let n ∈ N⋆, and assume the induction hypothesis is true from ranks 1 to n. Let
G = (V,E) be an (n+1)-vertex forest and let k ∈ N⋆. If G has depth at most k, then the claim is
trivially true. If G has depth more than k, then in particular n ≥ k+1. Furthermore, by induction
hypothesis DRforest(G, k) outputs a set of size at most 1 + ⌊n−(k+1)

k+1 ⌋ = ⌊ n
k+1⌋.

Note that the algorithm of Figure 6 is optimal in the sense that for n-vertex directed paths, the
smallest set whose removal yields a graph of depth at most k has size ⌊ n

k+1⌋.

19



From forest depth-reduction to circuit depth-reduction. The second observation is that finding an FVS
reduces the depth-reduction problem from in-degree-2 DAGs to directed forests.

Lemma 8 (FVS-based depth reduction). Let G be an n-vertex DAG, and denote G′ the under-
lying (undirected) graph of G. If G′ has a feedback vertex set of size f , then G admits a set of ⌊n−f

k+1 ⌋
vertices whose removal yields a depth-k DAG.

Proof. By definition of a feedback vertex set, removing a size-f FVS from G′ yields an (n− f)-vertex
forest. Evidently, removing the same size-f vertex set from G yields an (n− f)-vertex directed forest.
The desired result follows from applying Lemma 7: removing an additional ⌊n−f

k+1 ⌋ vertices from G
yields a graph of depth at most k.

Lemma 9 (A feedback vertex set for all 2-degenerate graphs, [BDBS14, Theorems 2,3]).
Every 2-degenerate (undirected) graph on n vertices admits a feedback vertex set of size at most
⌊2n/5⌋, and furthermore such an FVS can be found in polynomial time.

Note that Lemma 9 is tight in the sense that there exist n-vertex graphs whose smallest feedback
vertex set has size ⌊2n/5⌋ [BDBS14, Theorem 4].

Wrapping-up. We are now ready to conclude by combining lemmata 8 and 9.

Theorem 3 (FVS-based depth reduction). Let k ≥ 1. Any in-degree-2, n-vertex DAG admits
a subset of 2n

5 · (1 +
3/2
k+1 ) vertices whose removal yields a depth-k di-graph.

Proof. Let G be an in-degree-2, n-vertex DAG. The underlying (undirected) graph of G is 2-
degenerate, therefore by combining lemmata 8 and 9, G admits a subset of ⌊ 2n5 ⌋ + ⌊

n−⌊2n/5⌋
k+1 ⌋

vertices whose removal yields a depth-k graph. Since ( 2n5 · (1 + 3/2
k+1 )) − (⌊ 2n5 ⌋ + ⌊

n−⌊2n/5⌋
k+1 ⌋) ≥

( 2n5 · (1 + 3/2
k+1 )) − (⌊ 2n5 ⌋ +

n−⌊2n/5⌋
k+1 ) = ( 2n5 − ⌊

2n
5 ⌋) ·

k
k+1 ≥ 0, the simplified expression stated in

the theorem is also correct.

4.3 Lower Bounds on Depth-Reduction

The depth-reduction algorithm of Section 4.1 is better in the sense it removes only a sublinear number
of nodes, while those of Section 4.2 are better in the sense they drastically reduce the depth of the
circuit. One may wonder if it is possible to improve on this result, and reduce the depth of any circuit
polynomially (i.e. from d to dϵ for some constant 0 ≤ ϵ < 1) while still only removing a sublinear
number of vertices. Unfortunately, Schnitger [Sch83, Theorem A] showed that the sub-polynomial
limitation on depth-reduction was inherent by producing family of constant fan-in circuits whose
depth cannot be reduced polynomially without removing a linear fraction of vertices. Alwen, Blocki,
and Pietrzak [ABP17] later introduced a technique to reduce a circuit family’s fan-in from δ to 2
while preserving its depth-robustness up to a factor δ. We state the combined result in Theorem 4.

Theorem 4 (Polynomial depth-reduction requires removing a linear number of vertices
in some graphs, Combination of [Sch83, Theorem A] and [ABP17, Lemma 1]). For each
ϵ (0 ≤ ϵ < 1), there is a family of in-degree-2 DAGs (Gn,ϵ)n∈N⋆ such that Gn,ϵ has O(n) vertices, but
Ω(n) vertices have to be removed to reduce its depth to (n/ log n)ϵ.

Proof. Let ϵ ∈ [0, 1). By [Sch83, Theorem A], there is a family of constant in-degree DAGs (G̃n,ϵ)n∈N⋆

such that G̃n,ϵ has n vertices, but Ω(n) vertices have to be removed to reduce its depth to (n/ log n)ϵ.
Let δ be the in-degree of (G̃n,ϵ)n∈N⋆ . Applying [ABP17, Lemma 1] (with γ = 1) yields the desired
result.

4.4 Applications to Cryptography

We conclude by combining the results of Section 3.3, which re-casts cryptographic results in the lens
of our pebbling game, and the depth-reduction algorithms of Sections 4.1 and 4.2.
By combining Lemma 2 and theorem 2 we obtain Corollary 4.
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Corollary 4 (Fractionally linear-communication MPC in the correlated randomness
model, Concrete Result). Let C be an n-input, m-output, depth-d, F -arithmetic circuit with
s non-output computation gates. There exists a passive, perfectly secure N -party protocol for securely
computing C in the correlated randomness model, using the following resources (in bits):

– Correlated randomness per party: ((11 + 2/3) · s+ n+ 16 ·m) ·N · log |F |
– Total communication: ( 23s+ n+m) ·N · log |F |
– Local computation per party: O(( 2s3 +m) · (N + log |F |))

If instead we combine Lemma 2 and theorem 3 we obtain Corollary 5.

Corollary 5 (Fractionally linear-communication MPC in the correlated randomness
model, Asymptotic Result). Let C be an n-input, m-output, depth-d, F -arithmetic circuit with s
non-output computation gates. For every ϵ ≥ 3

2 log log s , there exists a passive, perfectly secure N -party
protocol for securely computing C in the correlated randomness model, using the following resources
(in bits):

– Correlated randomness per party: n+ 2
√
8
1/ϵ

(s+m)N · log |F |
– Total communication: ((1 + ϵ) 25s+ n+m) ·N · log |F |
– Local computation per party: O(2

√
8
1/ϵ

((1 + ϵ) 25s+m) · (N + log2 |F |))

By combining Lemma 3 and theorem 1 we get Corollary 6. To clarify, the quantification in Corol-
lary 6 is as follows: for every infinite family of circuits (Cλ)λ∈N of size s = s(λ) such that there
exists a vanishing function α(·) ∈ o(1) such that the depth of Cλ is at most log1+α(s(λ))(s(λ))
(resp. [log log(s(λ))]1+α(s(λ))), there exists a protocol for securely computing Cλ assuming HSS sup-
port logarithmic (resp. doubly logarithmic) depth homomorphic evaluations.

Corollary 6 (Sub-polynomially deeper HSS-based sublinear-communication secure com-
putation). Assuming the existence of N -party homomorphic secret-sharing supporting logarithmic
depth (respectively doubly logarithmic depth circuits) F -arithmetic fan-in two circuits, there exists
sublinear-communication secure N -party computation for all log1+o(1)-depth (resp. (log log)1+o(1)-
depth) circuits.

By combining Lemma 5 and theorem 1 we obtain Corollary 7, establishing an upper bound on the
number of bootstraps required in FHE, given a maximum noise level.

Corollary 7 (FHE-based secure computation with reduced bootstrapping, informal).
Given an FHE scheme tolerating a maximum noise level of L, only 2

5s · (1 + 1.5
L+1 ) bootstraps are

required to homomorphically evaluate a size-s circuit (over an arbitrary basis of binary gates).

Corollary 8 (Upper bounds on the 1-out-of-M OT-complexity of secure multiparty com-
putation). Let f : {0, 1}n → {0, 1} be a boolean function. For every M ≥ 2, there is a two-party
protocol for passively securely computing f (we assume the parties initially hold shares of the inputs,
but this captures the case where each input is held by one of the parties) with perfect security in the(
M
1

)
-OT hybrid model while making

1 +
2

5
|f | ·

(
1 +

3/2

1 + ⌈log logM⌉

)
calls to the OT functionality, where |f | is the computational complexity of f with respect to the basis
of all binary boolean gates.
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