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Abstract 
Leaf-associated microbial communities can promote plant health and resistance to biotic and abiotic stresses. However, the importance 
of environmental cues in the assembly of the leaf endo- and epi-microbiota remains elusive. Here, we aimed to investigate the impact of 
seasonal environmental variations, on the establishment of the leaf microbiome, focusing on long-term changes (five years) in bacterial, 
fungal, and nonfungal eukaryotic communities colonizing the surface and endosphere of six wild Arabidopsis thaliana populations. 
While leaf-microbial communities were found to be highly stochastic, the leaf niche had a predominant importance with endophytic 
microbial communities consistently exhibiting a lower diversity and variability. Among environmental factors, radiation- and humidity-
related factors are the most important drivers of diversity patterns in the leaf, with stronger effects on epiphytic communities. 
Using linear models, we identified 30 important genera whose relative abundance in leaf compartments could be modeled from 
environmental variables, suggesting specific niche preferences for these taxa. With the hypothesis that environmental factors could 
impact interactions within microbial communities, we analyzed the seasonal patterns of microbial interaction networks across leaf 
compartments. We showed that epiphytic networks are more complex than endophytic and that the complexity and connectivity of 
these networks are partially correlated with the mentioned environmental cues. Our results indicate that humidity and solar radiation 
function as major environmental cues shaping the phyllosphere microbiome at both micro (leaf compartment) and macro (site) scales. 
These findings could have practical implications for predicting and developing field-adapted microbes in the face of global change. 

Keywords: leaf microbiome, leaf compartments, microbial network, environmental factors 

Introduction 
Leaves are colonized by various microbes including bacteria, 
fungi, oomycetes, and protists [1]. This leaf microbiota can play 
a beneficial role in protecting plants against biotic and abiotic 
stressors, thus ultimately promoting plant growth and fitness 
[2–6]. Within the microcosm of the leaf, distinct compartments 
emerge, primarily characterized as epiphytic (surface) and 
endophytic (internal tissues). Despite their proximity, these 
zones have different characteristics. The leaf surface is covered 
by a hydrophobic cuticle layer that prevents water loss from 
the leaf surface. This environment comprises components like 
wax and cutin [7], along with trichomes, which can protect 
against ultraviolet (UV) light and mediate leaf temperature [8]. 
Whereas, within the leaf interior, a vast area known as the 
apoplast facilitates gas and water exchanges for photosynthesis. 
This environment, with its higher humidity, is also subjected to 
microbial colonization [9]. In addition, the apoplast can be subject 
to pH fluctuations in response to biotic stresses such as pathogen 
attack and abiotic factors such as salinity or drought [10]. 
Due to their different characteristics, these two niches may favor 

certain microbes and make it difficult for others to survive. 
In this context, it is not well known how environmental cues 
differentially shape the microbial communities occupying these 
two niches. 

Environmental factors (e.g. light and humidity) significantly 
affect all microbial communities in different ecosystems and the 
phyllosphere [11, 12]. Light, as a fundamental element of living 
organisms, not only is essential for plant photosynthesis and 
growth but also mediates plant–microbe interactions. The pres-
ence of photoreceptor proteins in microorganisms enables them 
to detect light to use for adhesion to host tissues for colonization 
and for DNA repair [13]. In particular, UV light can enhance plant 
defense mechanisms by stimulating the production of defense-
related compounds such as salicylic acid and jasmonic acid, 
which strengthen plants against pathogens [14]. In addition, the 
availability of water and nutrients is critical for plant health and 
ecosystem balance [15]. Precipitation has been shown to play a 
significant role as a primary driver in shaping fungal communities 
and facilitating the spread of fungal plant pathogens via rain 
droplets [16, 17]. Accordingly, precipitation has a significant effect
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on the composition of soil microbial communities [18]. Although 
some research has investigated the effects of environmental fac-
tors on leaf microbiomes, there remains a lack of studies focusing 
on the effects of such factors on different microbial communities 
within leaf compartments. 

Microbes often interact with each other through various 
relationship types, such as mutualism or antagonism, and can 
develop complex plant-associated communities that can change 
throughout the growing season of the host [19, 20]. The use of 
microbial interaction network analysis has been useful in under-
standing the variability and stability of these communities under 
changing environments [21–23]. For example, the complexity of 
microbial networks has been linked to community stability, as 
seen in a long-term study of grassland soil microbiome, showing 
that warming increases the complexity of microbial network (e.g. 
size and connectivity) [24]. Environmental stresses (decreasing 
water availability, nutrients, and vegetation) have been shown 
to have impact the stability of microbial communities by 
decreasing richness and altering the ratio of positive and negative 
interactions [25]. However, how plant-associated microbial 
communities respond to changing environmental conditions has 
rarely been studied using multikingdom microbial interaction 
networks. 

Microbiota associated with plants and animals undergo sea-
sonal fluctuations shaped by environmental cues and pertur-
bations [26, 27]. In plants, research has shown that the micro-
biome tends to become more tissue-specific throughout the host 
developmental stages [28], but these communities remain highly 
stochastic. For example, tracking the leaf microbiome of Ara-
bidopsis thaliana during its growing season from November to 
March in common garden experiments revealed overall high vari-
ability with some conserved patterns [29]. These conserved pat-
terns were characterized by identifying more persistent microbes 
known as core microbes. Among these core microbes, some mem-
bers of plant pathogens, such as Peronosporales, increased through-
out the growing season, reaching maximum values in March that 
aligns with the disease dynamics of downy mildew in Brassicaceae, 
known to be favored by cold, wet weather [29]. However, despite 
the recognized importance of longitudinal microbiome data, few 
studies have used environmental data to explain observed tem-
poral dynamics in the plant-associated microbiota. 

The objective of this research was to link temporal changes 
in the leaf microbiome of natural A. thaliana populations, with 
naturally occurring environmental factors, in a long-term study. 
We hypothesized that leaf-associated microbiomes occupying the 
epiphytic or endophytic compartment would respond differently 
to environmental cues. Using amplicon sequencing, we tracked 
leaf microbial communities (bacteria, fungi, and nonfungal 
eukaryotes [NFEuks]) during fall and spring seasons, over five 
consecutive years. Our results revealed that while many environ-
mental factors shaped these communities, the leaf niche emerged 
as the most important factor. Endo- and epiphytic microbial 
communities exhibited distinct responses to environmental 
cues, with radiation- and humidity-related factors appearing to 
have a greater influence on the diversity and structure of these 
communities. We further identified 30 microbial taxa showing 
distinct responses to certain environmental cues, suggesting 
some level of niche preference among leaf-colonizing taxa. By 
examining microbial interaction networks between epiphytic 
and endophytic communities, we further found that community 
cohesion, a measurement of connectivity, could be correlated 
with specific environmental factors suggesting that certain 
environmental cues can drive community stability. 

Materials and methods 
Collection of A. thaliana samples and 
environmental data 
Wild A. thaliana samples were collected from six sites near Tübin-
gen. In the fall and spring over five years (2014–2019, 11 time 
points, Table S1). Epiphytic and endophytic microorganisms were 
collected from each sample, as described in Agler et al. [30]. In 
brief, rosettes were washed gently with water for 30 s and then in 
5 ml of epiphyte wash solution (0.1% Triton X-100 in 1× TE buffer) 
for 1 min. Epiphytic microorganisms were collected by filtering the 
solution through a 0.2 um nitrocellulose membrane filter (What-
man, Piscataway, NJ, USA). The filter was placed in a screw-cap 
tube and frozen in dry ice. For collecting endophytic fractions, the 
rosette was then surface-sterilized by washing with 80% ethanol 
for 15 s, followed by 2% bleach (sodium hypochlorite) for 30 s. 
Rosettes were rinsed thrice with sterile autoclaved water for 10 s, 
before placing them in a screw-cap tube and freezing them on 
dry ice. Phenol-chloroform-based DNA extraction was performed 
according to a custom protocol as described in Agler et al. [30]. The 
extracted DNA was used for two-step PCR amplification of the V5– 
V7 region of bacterial 16S rRNA (primers 799F/1192R), the fungal 
ITS2 region (primers fITS7/ITS4), and V9 region of eukaryotic 18S 
rRNA (primers F1422/R1797) (Table S6). Blocking oligos were used 
to reduce amplification of plant DNA (Table S6). Purified PCR 
products were pooled in equimolar amounts before sequencing 
in Illumina MiSeq runs (Miseq 2 × 300 bases) spiked with PhiX 
genomic DAN to ensure high-enough sequence diversity. Four-
teen environmental factors (Fig. 1B) were collected from TerraCli-
mate [31] for each sampling month (Table S2). The TerraClimate 
database has a monthly temporal resolution and ∼4 km (1/24th 
degree) spatial resolution [31]. 

Amplicon sequencing data analysis 
Amplicon sequencing data was processed in Mothur (version 
1.42.3) [32, 33] as described in Almario et al. [29]. Single-end 
reads were combined to make paired-end reads (make.contigs 
command), and paired reads with less than five bases overlap 
between the forward and reverse reads were removed. Only 
100–600 bases long reads were kept (screen.seqs). Chimeric 
sequences were detected and removed using Vsearch [34] in  
Mothur (chimera.vsearch, remove.seqs). Cutadapt 2.10 [35] was  
used to trim primer sequences from 16S rRNA and 18S reads. 
For fungal reads, we used ITSx 1.1b [36] to trim reads to only the 
ITS2 region. Sequences were clustered into operational taxonomic 
units (OTUs) at 97% similarity threshold (cluster, dgc method), and 
abundance filtering was applied to retain OTUs with >50 reads 
(split.abund) and OTU tables were generated (make.shared). OTUs 
were taxonomically classified (classify.otu) based on the Silva 
database [37] (version 138.1) for bacterial 16S rRNA data, the 
UNITE_public database [38] (version 02_02_2019) for fungal ITS2, 
and the Pr2 [39] (version 4.12.0) for eukaryotic 18S rRNA. The PhiX 
genome was included in each of the databases to improve the 
detection of remaining PhiX reads. OTUs classified as chloroplast, 
mitochondria, Arabidopsis, Embryophyceae, unknown, and PhiX 
were removed (remove.lineage). Further details on additional 
removals can be found in the provided scripts. 

Diversity and multivariate analysis 
OTU tables (bacteria, fungi, and NFEuks) were modified by remov-
ing samples with <50 reads. OTU abundance tables were used to 
calculate Shannon’s H-diversity index (estimate richness function
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in Phyloseq [40] R package) to estimate alpha diversity. To cal-
culate between-sample diversity, relative abundance OTU tables 
were computed and transformed [log10 (x + 1)], to calculate Bray– 
Curtis dissimilarities used for nonmetric multidimensional scal-
ing ordination (NMDS, “ordinate” function, Phyloseq [40] R pack-
age). A PERMANOVA analysis on Bray–Curtis dissimilarities was 
performed to identify the main factors influencing the struc-
ture of the leaf microbiome (“adonis2” function, Vegan package 
[41], 10 000 permutations, P < .05, explanatory categorical vari-
ables: Compartment × Site × Season). To facilitate comparabil-
ity, all quantitative environmental variables (e.g. Temperature 
and Precipitation) were z-transformed to have a mean of zero 
and a standard deviation of one. These data were correlated 
to the measured alpha diversity (as mentioned above) of each 
compartment (“cor.test” function, spearman method, stats [42] 
package, P < .05). Environmental data were then used in PER-
MANOVA analyses to assess the effect of each factor on Bray– 
Curtis dissimilarities. In detail, for each microbial group and com-
partment, 14 models were performed (“adonis2,” Vegan package 
[41], 10 000 permutations, P < .05, explanatory categorical vari-
ables: one environmental factor). Unless otherwise stated, data 
normality was checked (“shapiro.test,” stats [42] package), and 
means were compared using the nonparametric multivariate test 
for multiple groups (“dunnTest” function, FSA [43] package, Ben-
jamini–Hochberg Padj < .05) and two groups (“wilcox.test” func-
tion, stats [42] package, P < .05). All analyses were performed in R 
(version 4.1.2) [44]. 

Whole genome sequencing data analysis 
Purified genomic DNA from 103 endophytic samples was ampli-
fied using REPLI-g Mini Kits according to the manufacturer’s pro-
tocol. Whole genome sequencing was performed on an Illumina 
NovaSeq system (2 × 150 bases). Paired-end sequencing reads 
were aligned to the Arabidopsis reference genome (TAIR10) using 
the Burrows–Wheeler Aligner (BWA) MEM algorithm [45]. The SAM 
file was converted to BAM format and sorted using Samtools. 
Variants were called using Bcftools [46]. The resulting Variant 
Call Format (VCF) files were merged using the ivcfmerge-batch.py 
script [47]. The merged VCF file was filtered using Bcftools [46] 
to retain variants with a quality score >70, resulting in 2 515 714 
single-nucleotide polymorphisms (SNPs). A binary SNP table was 
used to calculate distance matrices using the “vegdist” function 
(method = bray) Vegan package [41] and to perform principal coor-
dinate analysis (“cmdscale” function in R, stats package [42]) to 
show genetic variation among sites. Distance metric then used to 
make hierarchical clustering (hclust function, method = complete, 
stats package [42]) and resulting dendrogram visualized to show 
clustering of SNPs (number of genotypes) among sampling sites 
(fviz-dend function, k = 6, factoextra [48] package). A PERMANOVA 
analysis on Bray–Curtis dissimilarities was performed to identify 
the defined genotypes (six clusters) influencing the variation of 
the leaf microbiome (Model 1) and in combination with other 
factors (Model 2) (“adonis2” function, Vegan package [41], 10 000 
permutations, P < .05, explanatory categorical variable in Model 
1: Genotype and in Model 2: Compartment × Site × Genotype × 
Season). 

Linear model analysis 
The association between independent variables (environmental 
factors) and the dependent variable (relative abundance of gen-
era) was investigated using linear models. Original abundance 
OTU tables (samples with >1 read) were aggregated at the tax-
onomic genus level (aggregate function in R). Rare genera (those 

with <50 reads) were excluded, and the table was converted to 
relative abundance. Additionally, highly correlated environmental 
factors were identified, and one factor, actual evapotranspiration, 
was removed from the analysis. A z-transformed environmental 
table was utilized for consistency. 

Linear models (“lm” function, stats [42] package) were executed 
per compartment per genus using the formula: 

lm (Genus ∼ e1 + e2 + e3 + ... + e13) 

where “e” denotes environmental factors. The resulting models 
were employed to identify the most influential environmental 
factors (ols − step−best−subset function, olsrr package [49]). Mod-
els with the lowest estimated prediction error (msep parameter) 
were selected. To estimate the coefficient values of selected fac-
tors per genus, a generalized linear model was performed using 
the formula: 

glm
(
Genus ∼ subset of environmental factors

)

The significance of each factor individually (by dropping it 
from the model) was assessed (“drop1” function, “Chisq” test, 
lme4 [50] package). The obtained P-values from the chi-square 
tests were adjusted for false discovery rate (“p.adjust” function 
method = “fdr,” stats [42] package, P < .05). Coefficient values (of 
selected environmental factors, demonstrating their strength in 
predicting the relative abundance of microbes, were utilized to 
subset some of the genera that exhibited differential effects 
between both compartments for further visualization. To do 
this, absolute values of coefficient values of environmental 
factors per genus were averaged, and the top overlapping genera 
between epiphytic and endophytic compartments were selected. 
All analyses were performed in R (version 4.1.2) [44]. 

Microbial network calculations and properties 
Bacteria, fungi, and NFEuks’ OTU abundance tables were merged 
and used for correlation calculation using the SparCC algorithm 
[51], which relies on Aitchison’s log-ratio analysis and is designed 
to deal with compositional data with high sparsity. OTU tables 
were filtered to OTUs in at least five samples with ≥10 reads per 
OTU per time point per compartment. The filtered OTU tables 
(OTU raw abundances) were used to calculate SparCC correlation 
scores (with default parameters) in FastSpar platform [52]. Pseudo 
P-values were inferred from 1000 bootstraps. Only correlations 
with P ≤ .001 and absolute correlation >0 were kept for further 
analyses. Cytoscape (version 3.7.1) [53] was used for network 
visualization. A “Cohesion” metric [54] was calculated to quantify 
the connectivity of each network. For each sample (j), a  positive  
and a negative cohesion metric [equation (1)] were calculated by 
multiplying each of the n OTUs relative abundances to the average 
of the OTU’s positive or negative correlations. 

Cohesionj = 
n∑

i=1 

RAi ∗ corcor,i (1) 

where RAi is relative abundance of OTUi in sample j and corcor,i is 
the average of significant positive (range from 0 to +1) or negative 
(range from −1 to 0) correlations for OTUi. Total cohesion per 
sample is then measured by the sum of the positive and nega-
tive cohesions. Total cohesion is correlated with environmental 
factors using Spearman correlation (cor function in R).
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Results 
Leaf epiphytic and endophytic microbial 
communities differ in diversity and structure 
With the aim to study the impact of environmental cues on the 
temporal dynamics of the leaf endo- and epiphytic microbiota, 
we collected samples from six locations (sites) with stable 
A. thaliana populations in the proximity to Tübingen (south 
Germany) (Fig. 1A) [30] over two seasons (fall and spring), and 
five years (Fig. 1C; see  Table S1). Fall covers the early growth 
phase of A. thaliana under short-day conditions before resting in 
winter (from the end of November to early December). Spring 
includes samples just before the reproductive stage during 
increasingly longer days (from the middle of February to the end 
of March). We then correlated changes in the leaf microbiota with 
environmental variables measured locally (14 environmental 
factors with monthly resolution, Table S2). From each sample, 
we recovered epiphytic and endophytic microbial communities; 
extracted genomic DNA; and performed bacterial 16S rRNA, 
fungal ITS2, and eukaryotic 18S rRNA amplicon sequencing 
(Fig. 1D), as described in [30]. In the analysis of the 18S eukaryotic 
data, all microbes that belonged to the kingdom fungi were 
excluded. We refer to these data as NFEuks. Whole genome 
sequencing, which led to the identification of SNPs, was used 
to study the impact of host genetic variation on microbiome 
structure. 

To investigate the effect of the “compartment” (endophytic 
vs epiphytic fractions; Fig. 1), “site,” and “season” on leaf-
associated microbial communities, we conducted multiple diver-
sity analyses. Permutational multivariate analysis of variance 
(PERMANOVA) results show that the leaf “compartment” emerges 
as the primary driver of the structure of microbial communities 
(Fig. 2A). In particular, it exerts a major influence on the structure 
of bacterial (8.4% explained variance) and NFEuk communities 
(11.8%). Fungal communities appeared much less constrained by 
the leaf compartment (2.3% explained variance) and were more 
influenced by the sampling site (5.7%). These analyses further 
revealed a marginal effect of the “season” (explaining 0.8%–3% of 
the variance). Accordingly, NMDS plots showed a clear separation 
between epiphytic and endophytic samples for bacterial and 
nonfungal communities, while fungal communities exhibited 
the smallest separation (Fig. 2B). To assess whether host genetic 
variation differs among sampling sites, SNPs were visualized 
using principal coordinate analysis (PCoA), revealing observable 
differences between some sites (Fig. S1). The results showed six 
“genotype” clusters, indicating more than one cluster at most 
sites (Fig. S2). These clusters exhibited 3.8%–5.5% variation in the 
microbial communities of bacteria, fungi, and NFEuks (Fig. S3A). 
They showed 4.9%–6.2% variation in the microbiome when taking 
into account their interaction with the sampling sites (Fig. S3B). 
Further visualization using PCoA demonstrated the distribution 
of genotypes among the sampling sites for both epiphytic and 
endophytic compartments (Fig. S3C). 

Alpha-diversity measures (Shannon’s index, related to the 
number of taxa in the community) show that leaf endophytic 
communities were 1.6–2.6 times less diverse than their epiphytic 
counterparts (Fig. 2C). Additionally, the diversity of the endophytic 
communities appeared less variable between seasons than that of 
epiphytic communities that showed significant changes between 
seasons (Fig. S4A). A notable exception were endophytic bacterial 
communities that were significantly more diverse in the fall than 
in the spring (Wilcoxon’s test, P < .0001) (Fig. S4A). 

Differences in epiphytic and endophytic communities were 
associated with the enrichment of major microbial orders (overall 

most abundant orders; Fig. 2D). Among bacteria, Rhizobiales 
and Flavobacteriales were more abundant among epiphytes (1.1 
times and 1.2 times, respectively), while Burkholderiales and 
Pseudomonadales were more abundant among endophytes (1.9 
and 5 times more, respectively). Among fungi, Tremellales basid-
iomycetes and Capnodiales ascomycetes were more abundant in 
the epiphytic fraction (1.2 times and 1.4 times, respectively), while 
ascomycetes from the Helotiales were enriched in the endophytic 
fraction (1.1 times). In addition, NFEuk orders enriched in the 
epiphytic compartment included green algae Watanabeales and 
Klebsormidiales, as well as the cercozoan Cryomonadida (3.5 times, 
7.8 times, and 2.9 times, respectively). Surprisingly, green algae 
from the Chlamydomonadales were 1.3 times more abundant 
in endophytes. Finally, Albuginales, known to harbor the plant 
biotrophic pathogen Albugo, were 6.4 times more abundant among 
endophytes. These results illustrate the extent of preference that 
major leaf-associated microbes have for either the epiphytic niche 
or the endophytic niche. 

Endophytic and epiphytic microbial communities 
respond differently to environmental cues 
We hypothesized that the major differences observed between 
endo- and epiphytic communities are partially explained by the 
fact that these communities respond differently to major envi-
ronmental cues. To test this hypothesis, we evaluated the effect 
of 14 selected environmental factors on community structure 
(PERMANOVA on Bray–Curtis dissimilarities) and alpha-diversity 
(correlation of environmental factors with communities’ alpha 
diversity), in each of these niches. The 14 environmental variables 
selected (Fig. 1B and Table S2) showed variability across seasons, 
years and/or sampling sites (Fig. S5A). Significant differences 
were observed for most of the factors across seasons (Fig. S5B, 
Wilcoxon’s test P < .05). However, there were no significant dif-
ferences between factors among sampling sites (Fig. S5C, P > .05). 
While all environmental factors significantly impacted the struc-
ture of leaf-associated microbial communities, marginal effects 
were observed for most of the factors with very low percentages 
of variance explained (0.5–1.9, P < .05) (Fig. 3A, Table S3). Notably, 
bacterial communities were more affected by solar radiation 
and humidity-associated factors like vapor pressure, precipita-
tion, and evapotranspiration (actual and potential) than micro-
eukaryotic communities (fungal and nonfungal) (Fig. 3A). More 
pronounced effects were found when considering the correlations 
between these environmental factors and per-sample microbial 
alpha diversity. While factors associated with temperature (mini-
mum and maximum) and high humidity (vapor pressure, precipi-
tation, and soil moisture) had overall positive effects on microbial 
alpha diversity, solar radiation had an overall negative effect. A 
notable exception was that solar radiation was positively corre-
lated to higher fungal diversity, specifically on the leaf surface 
(epiphytic fraction) (Fig. 3B). This suggests that increased radia-
tion levels may stimulate the growth or proliferation of certain 
fungal species adapted to thrive under such conditions. 

Interestingly, certain factors had stronger effects on one niche 
or one microbial group. For example, in comparison to their 
epiphytic counterparts, the alpha diversity of endophytic micro-
eukaryotic communities (fungal and nonfungal) showed overall 
fewer significant correlations with the analyzed environmental 
factors (5 vs 17 significant correlations). This aligns with the 
previous observation that micro-eukaryotic alpha-diversity is less 
variable inside the leaf (endophytic) than on the leaf surface 
(Fig. 2C and Fig. S4), suggesting that these communities are more

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae103/7729359 by guest on 08 N
ovem

ber 2024

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae103#supplementary-data


Environmental effects on leaf microbiota | 5

Figure 1. Microbial community collection in natural A. thaliana populations over time. (A) Map showing the six sampling locations of natural A. 
thaliana in southern Germany near Tübingen [30]. The heatmap on the map represents average variation in solar radiation of sampling locations 
(downward surface shortwave radiation [srad]). (B) Environmental variables (14; Table S2) used in this study were obtained from the TerraClimate 
database [31]. (C) Plants (n = 351) were collected in the fall and spring of five consecutive years (starting spring 2014, ending spring 2019, 11 time 
points). (D) Leaf epiphytic and endophytic fractions collected from each sampled rosette (Table S1). Microbiome analysis was conducted via 
Illumina-based amplicon sequencing (Miseq 2 × 300 bases). Taxonomic markers included the bacterial 16S rRNA V5–V7 region, fungal ITS2, and 18S 
rRNA V9 region of eukaryotes. 

resistant and/or resilient to environmental perturbations. Inter-
estingly, these trends did not hold for bacterial alpha diversity, 
which correlated with several factors both for endophytic and 
epiphytic communities (10 vs 7 significant correlations). Some 
factors associated with water loss from the plant (wind speed 
and actual/potential evapotranspiration) had contrasting effects 
on microbial diversity depending on the niche considered, with 
negative effects on endophytic diversity (fungal and/or bacterial 
communities) and positive effects on epiphytic diversity (bacte-
rial and/or micro-eukaryotic communities). Taken together, these 
results suggest that environmental factors influence microbial 
communities differently depending on their habitat and their 
broad phylogenetic group. 

The abundance of specific taxa in different leaf 
compartments can be inferred from certain 
environmental data 
Further analyses aimed to assess the impact of key environmental 
factors on the relative abundance of major microbial genera. To 
this end, we used a GLM approach (generalized linear model) to 
assess the response of selected genera, in each leaf compart-
ment. These analyses revealed significant effects for at least one 

environmental factor on the relative abundance of most taxa: 91% 
of the bacterial genera, 85% of the fungal genera, and 86% of the 
nonfungal genera (FDR-corrected P < .05; Table S4). When exam-
ining the 30 most responsive genera shared between epiphytic 
and endophytic compartments (those with the highest average 
coefficient values in the GLMs), we found that they were mainly 
impacted by precipitation, soil moisture, maximum temperature, 
drought, radiation, and vapor pressure. Yet, no single factor was 
significant for all these taxa (Fig. 4). In this subset, the relative 
abundance of the considered bacterial genera on the leaf surface 
(epiphytes) was more often impacted by the considered factors 
than their endophytic counterparts, but the effects were marginal 
(coefficients below 0.01). Overall, radiation had a positive effect 
on the relative abundance of most of these taxa in the epi-
phytic compartment, while factors associated to high humidity 
(precipitation, vapor pressure, and potential evapotranspiration) 
had mixed results with negative effects on Sphingomonas and 
positive effects on Flavobacterium. For endophytic bacteria, the 
strongest effects were observed for Pseudomonas relative abun-
dance, which increased with higher radiation and lower humidity 
(lower soil moisture and lower potential evapotranspiration), and 
Sphingomonas relative abundance, which increased with higher
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Figure 2. Multivariate analysis on factors structuring leaf communities. (A) A PERMANOVA analysis on Bray–Curtis dissimilarities. Circles depict the 
percentage of variance explained by factors “compartment,” “site,” and “season”; connecting lines depict the percentage of variance explained by 
interactions between factors, and the thickness of lines shows the strength of explained variation. Only significant effects are shown (permutations 
10 000, P ≤ .05, explanatory categorical variables: Compartment × site × season). (B) NMDS ordination analysis of epiphytic and endophytic samples 
measured by Bray–Curtis dissimilarities in bacterial, fungal, and NFEuks. (C) Alpha-diversity measures (Shannon’s H index) of epiphyte and endophyte 
samples. The box plots display individual samples as dots. (D) Average relative abundances of the top five most abundant microbial orders in epiphytic 
and endophytic samples. Asterisks indicate significant differences based on Wilcoxon’s test: n.s. (P > .05), ∗(P ≤ .05), ∗∗(P ≤ .01), ∗∗∗(P ≤ .001), and
∗∗∗∗(P ≤ .0001). 

humidity (higher soil moisture and lower wind speed). These 
differential responses are probably associated with different niche 
preferences for these taxa. 

Like bacteria, the relative abundance of major fungal taxa 
on the leaf surface (epiphytes) was more frequently influenced 

by the considered factors than their endophytic counterparts. 
However, the effects observed were mostly marginal (coefficients 
below 0.01). Notably, radiation and precipitation yielded mixed 
results. High radiation and humidity (precipitation) negatively 
impacted the abundance of fungal taxa Cladosporium, Boeremia,
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Figure 3. Effects of environmental factors on microbial community structure and alpha diversity. (A) Heatmap displaying explained variance in 
PERMANOVA models (R2 value; Bray–Curtis dissimilarities) indicating the influence of individual environmental factors on microbial community 
structure, within each leaf compartment. (B) Heatmap showing spearman correlation coefficients (ρ) between alpha-diversity (Shannon’s H index) and 
environmental factors, in each compartment. Only significant results are displayed (P < .05). 

and Vishniacozyma, while increasing the abundance of Titaea 
(Tetracladium), a Helotiales fungus that is known to thrive in water 
environments [ 55]. 

Similarly, the relative abundance of major NFEuk taxa on the 
leaf surface (epiphytes) was more responsive to environmental 
factors than their endophytic counterparts, albeit with mostly 
marginal effects (coefficients below 0.01). Overall, temperature 
and precipitation had a positive impact on the relative abun-
dance of most taxa in the epiphytic compartment. Specifically, 
precipitation increased the relative abundance of green algae 
Chloridium and Klebsormidium in the leaf surface (epiphytic), which 
is in line with the fact that these organisms proliferate in light-
exposed high-humidity environments. The most striking results 
were observed with the pathogenic biotroph Albugo (oomycete) 
whose abundance inside the leaf was negatively impacted by high 
humidity indicators (high potential evapotranspiration, low wind 
speed) and promoted by high maximum temperatures, suggesting 
this pathogen invades the leaf under dry heat conditions. 

Microbial networks and community cohesion are 
driven by major environmental cues 
We conducted a microbial network analysis to explore changes in 
the interactions among microbes in the epiphytic and endophytic 
compartment, aiming to assess the impact of environmental fac-
tors on the connectivity of these communities. Microbial networks 
were constructed for each of the 11 sampling times, and a com-
parative examination was carried out between the epiphytic and 
endophytic networks (Fig. 5A). It is worth noting that the epiphytic 
network had a greater complexity than the endophytic network 
with a larger number of nodes (OTUs) and edges (correlations 
between taxa). On average, the epiphytic compartment contained 
15.1 times more nodes and 79.7 times more edges (559 nodes and 
3348 edges) than the endophytic compartment (37 nodes and 42 
edges). 

Further analyses were conducted to investigate the potential 
correlation between the complexity of microbial interaction net-
works (number of nodes and connectivity) and environmental 
factors. The findings revealed that from the 14 factors analyzed 

only two factors: precipitation and soil moisture, significantly 
correlated with the number of nodes in epiphytic networks (r = 0.7, 
P < .05) (Fig. 5B), while no significant correlations could be drawn 
for endophytic networks (P ≥ .05) (Fig. 5C, Table S5). 

We further investigated whether the connectivity of microbial 
communities, which considers the strength of positive and nega-
tive interactions, could be explained by these environmental fac-
tors. To this end, we computed a community cohesion metric pre-
viously proposed [54]. Our analysis unveiled that epiphytic com-
munities exhibited significantly higher cohesion levels compared 
to endophytic communities (P < .001) (Fig. 5D). Among environ-
mental factors shaping community cohesion (Fig. S6), radiation 
exhibited the highest positive effect both for epiphytic and endo-
phytic networks, along with factors associated with low humidity 
such as low vapor pressure and low precipitation (Fig. 5E). Taken 
together these results suggest that higher humidity is associated 
with bigger (more nodes) microbial networks on leaf surfaces, 
while increased solar radiation and low humidity are associated 
with overall more connected networks (higher cohesion). 

Discussion 
The phyllosphere is a system directly exposed to various envi-
ronmental factors such as light and humidity. All these factors 
can cause significant perturbations to the microbiome of the 
leaf [29, 56]. This leads to a fundamental question: to what 
extent do seasonal environmental factors determine the different 
dynamics of epiphytic and endophytic microbial communities? To 
address this fundamental ecological question, we have conducted 
a comprehensive, 5-year investigation of the leaf microbiome of 
A. thaliana from natural populations in six different geographical 
locations [30] (Fig. 1). Our results highlight the significant influ-
ence of plant compartment, site location, genetic variation of the 
host, and sampling season on shaping microbial communities, 
elucidating 14.6%–25.7% of their variability, including bacteria, 
fungi, and NFEuks (Fig. 2 and Fig. S3), consistent with results 
from previous studies [30, 57–62]. We showed that variation in 
the microbiome among sampling sites (up to 6.2%) is influenced
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Figure 4. Association between environmental factors and relative abundance of microbial genera among epiphytic and endophytic compartments. The 
values of the heatmaps show coefficient values of environmental factors in modeling the relative abundance of microbial genera using GLM. Negative 
values indicate genera that decrease with these environmental factors, while positive values indicate genera that increase. Only significant relations 
(P < .05, FDR-corrected) are displayed. The histograms display the average relative abundances of selected microbial genera in each compartment. 

by host genetic variation ( Fig. S3). Another study on A. thaliana 
using genome–environment association analyses demonstrated 
that most of the microbiome variation is due to host genetics 
compared to nonmicrobial ecological factors [60]. Integrating host 
genetic data could enhance our comprehensive understanding of 
microbial community dynamics. 

In our analysis, we identified the leaf compartment as 
the primary factor driving the variation in the bacteria and 
NFEuks, resulting in a lower level of alpha diversity among 
the endophytes (Fig. 2). This finding supports the hypothesis 
that the diversity gap might result from different conditions 
within these niches. Endophytic microbiomes face obstacles 
such as apoplastic acidity and oxidative stress [63], as well 
as nutrient deficiencies [64]. These are likely to affect their 
diversity patterns. These challenges may therefore be responsible 
for the observed lower endophyte diversity. Conversely, the 
observed higher diversity among epiphytes suggests that the 
leaf surface, which is more exposed to environmental elements, 
provides more favorable conditions for microbial proliferation 

than the protected environment within the plant. In addition, it’s 
important to recognize the potential influence of environmental 
factors on microbial communities distributed within these 
compartments. 

We found that solar radiation correlated negatively with micro-
bial alpha diversity (Fig. 3). This effect could occur directly by 
damaging microbial DNA, especially on the leaf surface. Alterna-
tively, it could affect diversity indirectly by promoting the pro-
duction of reactive oxygen species (ROS) that inhibit the growth 
and diversity of sensitive species. Long-term low-dose ionizing 
radiation has been shown to affect soil microbial communities 
by inhibiting predatory or parasitic fungi [65]. For example, we 
found a reduction in the abundance of the fungus Cladosporium in 
response to solar radiation (Fig. 4). While Cladosporium species are 
melanized filamentous fungi, and melanin can typically protect 
them from UV radiation, our results contradicted this expecta-
tion [66]. Interestingly, we observed an increase in endophytic 
Pseudomonas species favored by solar radiation, possibly due to 
their pigment-producing abilities. This suggests that bacteria in
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Figure 5. Correlating microbial network complexity and environmental factors. (A) Data from each time point was used to reconstruct co-abundance 
networks for epiphytic and endophytic compartments. The nodes (dots) represent OTUs, and the edges (colored lines) depict potential positive and 
negative interactions between OTUs (connections). Gray lines (connecting the networks) show nodes conserved in networks from one time point to the 
next (inherited nodes). (B, C) Correlation between the number of nodes and monthly precipitation and soil moisture in the epiphytic and endophytic 
compartments across time points (Pearson correlation coefficient r, P < .05). (D) Total cohesion (sum of positive cohesion and the absolute value of 
negative cohesion) in epiphytic and endophytic samples. (E) Correlations between total cohesion and solar radiation, vapor pressure or precipitation, 
across leaf compartments (Spearman correlation coefficient ρ, P < .05). The gray lines indicate 95% confidence intervals. Individual samples are 
represented by dots and colored by compartments. 

the plant microbiome may use pigments as a protective mecha-
nism against ROS, which is particularly important under high UV 
radiation or intense light [ 67, 68]. While analyzing microbial inter-
action networks, solar radiation emerged as an important factor 
positively correlated with their cohesion (Fig. 5). This suggests 
that radiation may increase the strength of interactions. This may 
represent a survival strategy whereby microbes form stronger 
bonds or dependencies to cope with the environmental stress 
imposed by radiation exposure, thereby increasing resilience to 
external perturbations. 

Humidity-related factors, such as precipitation and vapor pres-
sure, emerged as significant contributors to higher microbial 
alpha diversity (Fig. 3). This was expected as humidity influ-
ences microbial diversity by modifying substrate diffusion [69] 
and facilitating microbial dispersal via rain, as demonstrated 
for fungal diversity [16, 17]. However, we found negative cor-
relations between high humidity parameters (precipitation and 
vapor pressure), with microbial network cohesion (Fig. 5). This 
suggests that under conditions such as precipitation, microbes 
may choose strategies such as adhesion over motility, potentially 
reducing the connectivity of microbial interactions. In addition, 
intense precipitation may physically disrupt microbial habitats 

and structures, such as biofilms or microbial aggregates, leading 
to temporary disintegration of microbial networks and reduced 
cohesion. Alternatively, during periods of high precipitation or 
humidity, microbial communities may allocate more resources to 
survival mechanisms such as biofilm formation or stress response 
pathways rather than investing in microbial interactions. 

Conclusions 
Our study conducted a comprehensive analysis of leaf micro-
biomes over an extended period, revealing the leaf compartment 
as the primary determinant shaping microbial communities. In 
addition, we highlighted the critical role of environmental cues 
in shaping the diversity, composition, and interactions among 
microbes within leaf compartments. In particular, we identified 
specific microbial communities that respond to these environ-
mental cues. By using cohesion as a metric to quantify micro-
bial community connectivity [54], we illuminated how external 
environmental factors can alter internal microbial interactions. 
Our study introduces a novel approach for investigating temporal 
community dynamics in natural, host-associated microbiomes. In 
addition, our findings hold promise for advancing the modeling
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and prediction of microbial community dynamics over time using 
insights into environmental influences. Understanding these pro-
cesses could potentially guide efforts to direct microbial com-
munities toward desired states, with valuable implications for 
ecosystem management and sustainability. 
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