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Abstract

In the last decade, graphene has become an exciting platform for electron optical experiments,
in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major
advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which
gives the possibility of realising gap-less and compact p-n interfaces with high precision. The
latter host non-trivial states, e.g. , snake states in moderate magnetic fields, and serve as building
blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial
Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor
the band structure using proximity effects, such interferometers open up a completely new
playground based on novel device architectures. In this review, we introduce the theoretical
background of graphene electron optics, fabrication methods used to realise electron-optical
devices, and techniques for corresponding numerical simulations. Based on this, we give a
comprehensive review of ballistic transport experiments and simple building blocks of electron
optical devices both in single and bilayer graphene, highlighting the novel physics that is
brought in compared to conventional 2DEGs. After describing the different magnetic field
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regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of
the art in graphene-based Mach—Zender and Fabry—Perot interferometers.

Keywords: electron optics, graphene, quantum hall interferometer, magnetic focusing,
p-n junctions, snake states
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TEF Transverse electron focusing

h-BN Hexagonal boron nitride

Gr Graphene (usually monolayer)
BLG Bilayer graphene

LOR Lift off resist

PDMS Polydiméthylsiloxane
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QPC Quantum point contact

AB Aharonov Bohm

QH Quantum Hall

FT Fourier transform

1. Preface

1.1. Electron quantum optics; why graphene?

Since its discovery [1], graphene has emerged as a won-
der material and as a playground of different fascinating
condensed matter physics ideas. Due to its high electrical
and thermal conductivity that comes together with an almost
100% optical transparency for the visible optical spectrum,
monolayer and bilayer graphene, as well as the recently
discovered twisted bilayer and multilayer graphene [2], are
promising materials for various application areas including
advanced electronics and novel solutions for sustainability.
Advancement of nanofabrication techniques over the past
twenty years led to the realization of several interesting con-
cepts stemming from the linear energy-momentum relation
near the Fermi energy of undoped graphene, where the two-
dimensional Fermi surface shrinks to two Fermi points, known
as Dirac points. The two separate Fermi surfaces are termed
valleys (the K and K’ points) and for low-energy, each val-
ley hosts mass-less quasi-particles that are alike relativistic
Dirac/Weyl fermions.

Electron quantum optics is a field of research where the
focus is on the wave nature of electrons in solids. The goal is
to explore fundamental properties of fermionic quasi-particles
in solids by conducting prototypical experiments known from
optics. A typical traditional free space quantum optics experi-
ment is an interference experiment that converts the quantum
nature into a measurable intensity pattern as a function
of a control parameter. Examples are the text-book two-
slit interference experiment, Fabry—Pérot, Mach—Zehnder and
Michelson interferometers, and intensity-correlation experi-
ments along the line of Hanbury-Brown and Twist [3, 4]. These
experiments make use of the large velocity of photons given

by the speed of light which transforms even a rather short tem-
poral coherence of a light source of 1ns into an appreciable
coherence length of 0.3 m. Taking a laser source, some light
apertures and mirrors, it is straightforward to construct such
interference experiments on an optical table.

In a solid state, electrons move at much lower speeds. The
velocity is an interesting parameter as it can be dressed by all
interactions: it is usually enhanced by strong electron-electron
repulsion, but it can also be lowered through strong coup-
ling with lattice degrees of freedom, such as phonons. For a
typical doping, the group velocity of quasi-particles in semi-
conductors is only of order 10° ms~'. Noting that relaxation
times through electron-phonon interaction can easily be as
short as 1 ps, one finds an electron mean-free path /i, of only
~ 100 nm. Hence, it seems impossible to perform free elec-
tron propagation (ballistic) electron optics experiments. First,
one has to cool the solid state material to low enough tem-
peratures that relaxation through the lattice is sufficiently sup-
pressed. In the second place, one has to work with materials of
very high quality, since also inherent disorder, such as atomic
defects and grain boundaries, limit the mobility, and, hence,
Imp- Electron optics experiments become feasible when the
ballistic mean-free path g, is larger or comparable to sys-
tem sizes that can be patterned with current state-of-the-art
micro and nano-fabrication technology. So samples are of size
L>0.1 pm, and typically in the range of L~ 1 — 10 pm.

A second requirement is that the de Broglie wavelength \
of the electrons (or holes) in the solid-state material should
be A < Ingp. This is the limit of quasi-classical quantum
optics, where propagation along optical trajectories can be
defined and engineered through smooth electrostatic profiles.
Moreover, beyond conventional optical properties of light
rays, trajectories of Dirac charge carriers can be additionally
bent and controlled through magnetic fields, a hallmark and
unique stronghold of Dirac electron quantum optics. We note
here that the notion of quasi-classical electron propagation
looses its meaning in the opposite limit A ~ L. Here, localized
confined states appear, which are realized in quantum dots and
cavities. Such structures will also be covered in this review.

The field for electron quantum optics widened to a great
extent when graphene devices could be fabricated with
high enough purity yielding large enough ballistic mean-
free paths lyp. The large Fermi velocity of graphene of
v~ 10°ms~! helped to move on from disordered graphene
ribbons to graphene that is ballistic over macroscopic dis-
tances. Moreover the electric field controllable ambipolar
nature of graphene [1] provides a pristine way to control the
global carrier density over the ion-implantation method of
doping in conventional semiconductors. Realization of junc-
tions of opposite carrier densities (electron and hole-type)
in a single graphene sheet through the local control of car-
rier density using electrostatic gates is a milestone in elec-
tron quantum optics in general [5-8]. The ability of fabric-
ating p-n junctions gave rise to ‘relativistic’ condensed mat-
ter physics where relativistic quantum phenomena like Klein
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tunneling [9], Veselago lensing [10], particle collimation [11],
and quasibound states [12] were demonstrated on chip-size
devices.

1.2. Traditional quantum optics in a 2DEG

Two-dimensional electron gases (2DEGs) confined in a GaAs
quantum well in heterostructures of AlGaAs/GaAs-based
semiconductors [13] have been the historically dominant
material in which electron quantum optics experiments could
be realized. This is due to various factors: among the technical
ones, the use of microelectronics industry growth and pro-
cessing techniques has allowed obtaining high quality 2DEGs
on wafer scale, that can be electrically connected using highly
transparent ohmic contacts [14]. Due to the low mass of the
electrons in the conduction band, very high mobilities have
been achieved [15]. Record electron mobilities are p > 50 -
10 cm? (Vs)~! yielding macroscopic mean-free paths /g, >
250 pm. Perhaps even more importantly, the semiconduct-
ing nature of AlGaAs/GaAs heterostructures permits the use
of electrostatic depletion gates with which one can shape the
potential landscape in the 2DEG. Thereby, one can gain con-
trol over electron wave trajectories. The most commonly used
gating structure in electron quantum optics experiments with
GaAs quantum wells is a split gate realising a quantum point
contact (QPC) [16]: a saddle point-like constriction in the
2DEG through which the electrons are channeled.

For electron-transport experiments at low temperature,
which are the focus in this review, only electrons (or holes) at
low energies are considered. According to the de Broglie rela-
tion and parabolic energy dispersion of quasi-free electrons
with mass m,, the Fermi wavelength \g = h/+/2m,Eg, where
Er is the Fermi energy and h the Planck constant. For a low
effective mass and Fermi energy, the Fermi wavelength can
become large, reaching values Ag > 100 nm. Since structure
on the 100 nm scale can easily be fabricated today, QPCs can
be designed that can electrostatically be tuned to pass none,
only one, or a few (transverse) channels through the constric-
tion. This has led to the seminal work of quantized conduct-
ance in QPCs, first conducted by van Wees et al [16].

The most elementary electron optics experiment could start
with a QPC that is tuned to transmit exactly one single chan-
nel. If the channel opens adiabatically on the exit side, a spher-
ical electron wave would emerge. One could then place a gate
electrode in the shape of a half circle some distance behind the
QPC and applying a strongly negative voltage so that the gate
acts as a mirror for electrons. If the mirror is smooth enough,
it would reflect the electrons back to the QPC. Due to the
wave nature, this arrangement will give rise to so-called Fabry-
Pérot interferences, which, depending on the wavelength and
the distance from the QPC to the mirror, can be constructive
or destructive. This interference pattern can be made visible
in three ways: (i) by changing the Fermi energy of the 2DEG
with e.g. a global gate, (ii) by tuning the voltage that is applied
over the QPC, or (iii) by changing the magnetic field. In case

(i), one would measure the linear-response electrical conduct-
ance at small bias voltage as a function of gate voltage, and in
case (ii), one would measure the differential conductance as a
function of bias voltage. The (iii) way is by applying a tunable
magnetic field B, which is also a very important tuning knob in
quantum-interference experiment, and it will very often show
up in this review.

1.3. Graphene for quantum electron optics

In recent years graphene devices with amazing qualities
could be obtained, either by current-annealing suspended
graphene [17, 18] or by encapsulation into single-crystalline
hexagonal boron nitride (h-BN) [19-21] complemented with
one-dimensional (1D) edge contacts [21] which improved
the electronic performance of graphene-based devices drastic-
ally, as explained in detail in section 3. All these devel-
opments led to two-dimensional (2D) gate-tunable electrical
conductors with mobilities that typically reach values p, >
10° cm? (Vs)~!, in some cases even above 10° cm? (Vs)~!.
Correspondingly, large mean-free paths /5, exceeding 1 pm
could be established and ballistic transport became possible
in samples of ‘mesoscopic’, and even macroscopic size [17,
18, 22-24]. If in addition the coherence length is sufficiently
long, which requires low bias and low temperature experi-
ments, quantum interference starts to play a decisive role. In
graphene devices, all kind of quantum coherent interference
effects have been observed in a surprisingly clean fashion.

Three generic electron-optical device concepts that very
often appear in the literature are introduced in figure 1.

In a perpendicular magnetic field B the quantum effects are
very different for zero, small, intermediate and large fields. For
very small fields, the magnetic field adds a weak Lorentz force
which bends semiclassical trajectories slightly [25]. This adds
a small phase term in quantum interference as a correction
to the zero-field case. Nonetheless, this has interesting con-
sequences. At intermediate fields the bending can become sig-
nificant, leading to the formation of new bounds states within a
finite size graphene device [26]. If the magnetic field increases
beyond a critical value B, for which the cyclotron radius due
to the ballistic motion shrinks below the sample size L, edges-
states form at the boundary of the samples [27]. They can often
still be treated in a semiclassical manner as so-called skipping
orbits and they are crucial to understand transport in devices
where p-n junctions are realized. But if the magnetic field is so
large that Landau quantization becomes dominant, this is when
the bulk of the sample becomes gapped, one is entering the
quantum Hall regime [28, 29]. While the interior of the sample
is gapped in the quantum Hall state, compressible conduct-
ing channels form along the edges of the crystal. These chan-
nels are known as edges states. In the integer quantum Hall
regime the edge channels are chiral and the number of chan-
nels depends on the filling factor v = nh/eB which depends
on carrier density n and magnetic field strength B.

The edge channels of the quantum Hall state form ideal
channels, since backscattering is absent in wide enough
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Figure 1. Examples of electron optical devices. (a) shows a Fabry-Pérot interferometer where the ‘mirrors’ are defined by the boundaries
between two regions with different electron concentrations. Specific to graphene, the two regions can also have opposite doping, indicated
here in red as n-type and in blue as p-type. In this bipolar case, electron refraction is negative at the interface, which is something quite
peculiar. Constructive interference occurs when the phase acquired along the blue or yellow path is a multiple of 27r. The phase can be
controlled through gates that tune the electron concentrations in, for example, the middle region. (b) shows another interesting device
concept which is based on transverse magnetic focusing. The Lorentz force due to a magnetic field applied perpendicular to the graphene
plane deflects the electron trajectories. In the red case, the electrons are deflected from the source contact 1 into drain contact 2. Changing
either the direction of the magnetic field or the sign of the charge carrier type, flips the orientation of the circular motion from the red to the
blue case. The right figure in (b) shows transverse magnetic focusing along one sample edge. The resonance condition for scattering from
source contact A into drain contact B can be obtained for different strengths of magnetic fields. Finally, (c) shows a quantum Hall
interferometer that makes use of edge states (dark black lines with arrows indicating propagation direction). One can measure, for example,
the transmission probability from contact I to contact II or the reflection probability to IV. The edge state can be seen as a one-dimensional
propagating electron wave that is scattered with some probabilities at the left and right constrictions. With the aid of the side gate in the
interior region the path length can be adjusted resulting in Aharonov—Bohm oscillation in the measurements.

samples. The transport channels can be seen as analogs to
single- or few-mode optical fibres. They are ballistic over
lengths reaching the millimeter scale. In GaAs quantum wells
they became the tool to explore a very large number of elec-
tron quantum optics experiments, such as Aharonov—Bohm
oscillation in a ring [30], electronic quantum interferomet-
ers in Fabry-Pérot [31] and Mach—Zehnder [32] geometries,
the realization of on-demand single electron sources [33, 34],
Hanbury-Brown and Twiss correlations measurements in con-
tinuous [35-37] and single-excitations [38] electron beams,
or Hong-Ou Mandel two-particle interferences [39]. Lately,
the ability to combine these electron quantum optics schemes
with the fractionally charged anyonic excitations of the frac-
tional quantum Hall effect has further expanded the field [40,
41] with the perspective of developing yet another quantum
information processing platform relying on non-abelian stat-
istics [42]. A quantum Hall edge channel can be selectively
transmitted with a probability between zero and unity, fully
gate-tunable. As the edge channels form the electronic ana-
logue of fiber optics, QPCs are the electronic equivalent of
tunable beam-splitters, and are therefore ubiquitous in electron
quantum optics experiments realized in AlGaAs/GaAs 2DEGs
[43].

Transferring electron quantum optics experiments from
GaAs 2DEGs to graphene has become an important task in
the field in the past decade, as the quality and mobility of the
available graphene samples increased dramatically. Indeed,
the honeycomb lattice of graphene and its semi-metallic band
structure give rise to extremely rich quantum Hall effects [44],
which can be explored through electron quantum optics exper-
iments. In particular, the ambipolarity of graphene, as well
as the strong role of electronic interactions in the emer-
gence of quantum Hall ferromagnetism where both spin and
valley symmetries are broken [45-48], greatly expands the
playground for electron quantum optics. Furthermore, the

structural differences between AlGaAs/GaAs 2DEGs and
graphene, particularly with respect to the electronic confine-
ment at the edge of the sample, allows testing the hypotheses
upon which our current understanding of edge channel trans-
port is based.

Similar to monolayer graphene, electron quantum optics
experiments were early on also conducted with bilayer
graphene. In contrast to monolayer graphene, bilayer graphene
has additionally to the valley degree also a layer degree of free-
dom. The layer degree can directly be accessed through the
charge density in the two layers using a double gated stack,
which today typically starts with a graphite bottom gate, fol-
lowed by a h-BN gate dielectric, bilayer graphene, followed
by the top h-BN gate dielectrics, and ending by a top graphite
gate. A symmetric gate voltage will add the same amount of
charge to the two layers. However, if gating is asymmetric one
can induced opposite charge in the two layers. This gives rise
to a so-called displacement field, which—crucially—opens a
gap in bilayer graphene. In gapped bilayer graphene one can
realize the exact analogue of the QPC that was/is used in
GaAs quantum well structures. Gating allows to fully deplete
a region. This has also allowed to define gate controlled chan-
nels where the channel width is not determined by the natural
graphene edges or by etched edges, but rather by a smooth
bounding potential defined by the global gate structure [49—
52]. This has been an important milestone, since it allowed to
engineer ballistic few-mode channels without a magnetic field,
simply due to the presence of the gap in bilayer graphene with
non-zero displacement field. In earlier etched graphene rib-
bons the edge roughness was too large and strongly limited to
scattering mean-free path.

Finally, note that most of the physics discussed here is
observed at cryogenic temperatures. In these conditions, lat-
tice phonons become decoupled from the charge carriers, as
exemplified by the fact that thermal conduction in graphene
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Figure 2. (a) Lattice structure of graphene which is composed of two hexagonal sublattices (gray and pink balls). (b) The corresponding
reciprocal lattice (open circles) and the first Brillouin zone (yellow hexagon). (¢) Band structures along k-path of MI'KM with

(t,t') = (—3,0.23) eV (black dashed) and (z,¢") = (—3,0) eV (red solid). (d) Surface plot of the band structure for the case of ¢’ = 0. ()
The Dirac cone of graphene, i.e. its low energy band structure. (f) Schematics of shifted Dirac cones of a graphene p-n junction, assuming a
Bloch electron incident from the p-region at velocity v; and transmitted into the n-region at velocity v,.

is dominated by electron transport below 1 Kelvin [53].
The characteristic scales for electron-phonon dynamics in
graphene nanostructures are typically an order of magnitude
or more higher than the explored temperature ranges for elec-
tron quantum optics; e.g. the Bloch—Griineisen temperature is
in the few tens of Kelvin range in monolayer graphene [54],
and the coupling to optical phonons is observed above a thou-
sand Kelvin [55].

2. Introduction to graphene

2.1. Band structure

Graphene has a hexagonal lattice with a two-atom basis
as depicted in figure 2(a), where a~0.142 nm is the
carbon-carbon bond length, a; =a.(1/2,/3/2) and a, =
a.(—1/2,1/3/2) are the primitive vectors, a.=+/3a is
the hexagonal lattice constant, and the basis vectors of
the two atoms are ds = (0,0),dg = (0,a). The corres-
ponding reciprocal primitive vectors can be chosen as

by = 27/v/3a.(v/3,1) and by = 27/+v/3a.(—/3,1) as shown
in figure 2(b), where the empty dots are part of the hexagonal
reciprocal lattice, and the yellow area bounded by a dashed
hexagon is the (first) Brillouin zone (BZ), some symmetry
points of which are marked.

2.1.1. Band structure of single layer graphene.  Using a two-
basis tight-binding model considering only p,-orbitals up to
second nearest neighbors, the energy bands of graphene within
the entire BZ can be written as

E(K)=e¢,+1'F(K) £ 1,/3+F(K) (1)

where ¢, is the p.-orbital energy (often set to zero),  and ¢’ are
the nearest and second-nearest neighbor hopping energy (equi-
valent to Slater—Koster parameter V,,, and v,;pﬂ), respect-
ively, and the function F(Kk) is defined by

2

k
F(k)=2 (coskxa +2cos %a cos —

\/§kya>



J. Phys.: Condens. Matter 36 (2024) 393001

Topical Review

(a)

energy

no interaction

(b)

energy

interaction — Stoner instability

é g
N=2 /
N=2 AN

% N
DOS

Figure 3. (a) In the absence of interaction, each graphene Landau
level (denoted by the index N) is four time degenerate and each
level energy is given by Ex = iwc+/N + 1/2. (b) Electron
interactions lift up the spin and valley degeneracy through a Stoner
instability, leading to broken symmetry states Landau level
classified by the index v.

The graphene band structure based on equations (1) and (2)
along the k-path MT'KM points (marked on the BZ shown in
figure 2(b)) is shown in figure 2(c), considering ¢’ # 0 and
t' =0 cases. The surface plot of the band structure for the
t' =0 case is shown in figure 2(d), where the conic struc-
ture centered at K can be clearly seen. By Taylor expansion
of equation (2) at k = K + q with |q|a < 1, it can be shown
that up to terms quadratic in ¢, F ~ —3 + 9¢°a* /4. Substituted
into equation (1), we have E(K,+ q,,Ky+qy) = ¢, —3t' £
(3at/2)q, which can be briefly written as

E, (k) ~ —=3t' + ohvgk 3)
where k is relative to K, 0 = =+ is the band index (¢ = + for
the electron branch and o = — for the hole branch), ¢, =0 is
chosen, and the Fermi velocity of graphene, v, is defined via

3
fivg = §|t|a 4)

which is about 0.639 eV nm when using the commonly used
approximate value of = —3 eV. From this the value of vg
is about one nanometer per femtosecond, or vg = 10° ms—!,
which is 1/300 of speed of light. Note that # in equation (3)
appears to be just a trivial band offset, but in the scope of
strained graphene with nonuniform hopping, ' may play an
interesting role of pseudoscalar potential [56-59].

2.1.2. Graphene Landau levels.  Under high perpendicu-
lar magnetic field B, the band structure of graphene leads
to a peculiar quantum Hall effect [44], characterized by an

electron—hole symmetric spectrum of four-fold (spin and val-
ley) degenerate Landau levels (see figure 3) with energies

Ey = sgn(N)/2ehvi|NB| ,

with —e the electron charge, i = i /2 the reduced Planck con-
stant, N the Landau level index (positive for electron, neg-
ative for holes). For large magnetic fields, electron—electron
interactions lift the spin and valley symmetries such that each
Landau level splits into four sublevels that are fully spin and
valley polarized [44, 45]. The Oth Landau level, pinned at
zero energy, also splits into four sub-levels that reflect its
half electron, half hole nature. If the Zeeman energy can be
neglected with respect to interaction-driven spin and valley
gaps (which generally occurs unless a strong in-plane mag-
netic field is applied [60], or a high-constant dielectric is
used to screen interactions [61]), the O-th Landau level splits
into two electron-type sublevels with equal valley polariza-
tion (e.g. K) and opposite spins polarizations, and two hole-
type sublevels with equal valley polarization (but opposite to
that of the electron-type sublevels, e.g. K'), and opposite spin
polarizations. Thus, at quarter filling, that is at filling factor
vV =nemh /eB=+1 (n, /n s the carrier density with respect to
charge neutrality), both bulk and edge become fully spin and
valley polarized [44, 45, 62]. At filling factor v =0, the spin
and valley symmetry breakings lead to a fully insulating state
with no edge channels, the gap of which is about 150 K at
B = 10T, ten times larger than the Zeeman gap [45]. This insu-
lating v = 0 state is crucial in many electron quantum optics
experiments, as it allows to locally deplete the electron gas
using electrostatic gates, in a manner similar to experiments
realized in AlGaAs/GaAs heterostructures. Thus, the experi-
ments described in this section mostly rely on locally changing
the filling factor using gates to control the trajectories of edge
channels, as well as their coupling.

&)

2.1.3. Band structure of bilayer graphene. Similar to
the tight-binding description of monolayer graphene,
cf section 2.1.1, one can obtain the band structure of
Bernal stacked bilayer graphene [63—65], taking into account
intra-layer and inter-layer hoppings and inter-layer asym-
metry, see figure 4. One finds four bands, two valence
bands, and two conduction bands, see figure 4(b). In the
low-energy expansion around the K-points (cf the discus-
sion around equation (3)), bilayer graphene’s bands can be
described by
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Figure 4. Lattice and electronic structure of bilayer graphene. (a) Lattice structure of Bernal stacked bilayer graphene. We indicate nearest
neighbour intra-layer hopping (v), vertical inter-layer coupling (1), and skew inter-layer coupling (y3). (b) Cut through the bilayer
graphene band structure tracing the corners K™ and the centre I of the Brillouin zone. There are four bands, two valence bands, and two
conduction bands. Near the K points, one conduction band and one valence band are split from zero by an energy of the order of ~y;, while
the remaining two bands constitute the low-energy bands. These low-energy bands touch at the K-points for zero inter-layer asymmetry
(with an approximately parabolic dispersion), while finite inter-layer asymmetry opens a gap A. The inset shows the bands around the
Brillouin zone corners as described by equation (6). (c) The skew hopping breaks rotational symmetry, leading to trigonally warped bands

where the Fermi lines are of valley-dependent, triangular shape.

2 kz)z

where v =1 (o =2) yields the low-energy (split) bands, & =
+1 indexes the two valleys K=, ¢ = arctan [k, /k,] is the polar
angle of the momentum, and A is the interlayer asymmetry
gap. Equation (6) captures vertical inter-layer coupling of the
dimer sites (1), in-plane nearest-neighbour intra-layer hop-
ping (v), and skew inter-layer coupling between non-dimer
orbitals (v3).

The latter skew hopping parameter breaks rotational sym-
metry and induces trigonal warping to the parabolic bands,
leading to triangularly deformed Fermi surfaces with oppos-
ing orientation in the K* valleys, see figure 4(c).

2.14. Density of states.  Given the energy band of a cer-
tain material, the corresponding density of states p(E), i.e. the
density of the number of states at energy E, is generally given
by the sum of contributions from all bands: p(E) = > _ p(E)
where

+ V22 (7 + A2 +13K2) + 2871 v3v2k3 cos 3, (6)
[
gA % déy
po(E)=—= = @)
) (27r)2 E, (k)= | ViEo (K) |

is the density of states of the oth band. Here, g is the degen-
eracy factor and A is the area of the 2D material. The above
closed contour integral generally needs to be done numeric-
ally, but can be greatly simplified when the energy band is
isotropic: E, (k) = E (k), such as graphene at low energy. For
bilayer graphene, on the other hand, the low-energy bands
given by equation (6) are isotropic only when the skew inter-
layer hopping v3 =0.

For graphene, we need to sum up all contributions from the
six Dirac cones within the first BZ, with each cone described
by equation (3) and shared by three BZs. A factor of 6/3 =2,
also called the valley degeneracy g, = 2, should be therefore
taken into account. Together with the spin degeneracy g, = 2,
the total degeneracy factor in equation (7) for low-energy
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graphene should be set to g = g,g, = 4. Since there is no over-
lap of energy bands, the contribution to the density of states
is from either the electron branch (o = +) or the hole branch
(o0 = —). Using |VE, (k)| = hivg from equation (3), the dens-
ity of states per unit area, D(E) = p(E)/A, is given by

2|E|

D(E)=——
( ) W(EVF)Z

®)

for the case of ' =0 with the Dirac point at E =0. For the
case of ' # 0 with the Dirac point shifted to —3¢’, as indicated
by equation (3) and seen in figure 2(c), the density of states
equation (8) should be modified with |E| — |E + 3¢'|. For BLG
the quasi-quadratic dispersion relation leads to enhanced DOS
close to CNP, leading to better screening of disorder and also
to the enhancement of correlation effects.

2.15. Energy carrier density relation. At zero temperature,
the carrier density n as a function of energy E can be obtained
via

n(E) = /E D(E')dE’ ©)

0

where Ey is the charge neutrality energy which is zero for
graphene with ' = 0. By inverting the relation, the Fermi
energy as a function carrier density, E(n), can be obtained.
When energy bands are analytically available and are isotropic
in k, i.e. E(k) = E(k), the result from the above described
approach is equivalent to replacing k in the energy dispersion
with n = gk? /4, which gives

k= +/m|n|

for graphene with g = 4. Substituting (10) into (3) for the case
of t' =0, we have

E(n) =sgn(n) hvp/7|n| |

where n > 0 and n < 0 correspond to n- and p-type graphene,
respectively.

(10)

an

2.2. Semiclassical description for motion of carriers

In solids, the semiclassical dynamics of Bloch electrons
(without the correction from the Berry curvature [66]) is gov-
erned by [67]

P= %vkEg (k) (12)

k= (E.+xB) (13)
where V, is the gradient operator with respect to k, E, (k) is
the energy band, o is the band index, % is the reduced Planck
constant, —e is the electron charge, E, is the electric field,
and B is the magnetic field. For two-dimensional materials
arranged in the x-y plane, the position vector is r = (x,y),
and the wave vector is also two-dimensional, k = (k,,k,).

Given an energy band E,(K), equation (12) stands for two
first-order ordinary differential equations (ODEs) for x and y.
Together with equation (13) that describes another two first-
order ODEs, one for kx and the other for I'cy, equations (12)
and (13) represent four first-order coupled ODEs that can be
numerically solved to describe the semiclassical dynamics of
Bloch electrons in 2D. Without having to bother with such
numerics, however, the following section provides a simple
understanding of the basic properties of Dirac electrons in
graphene based on equations (12) and (13).

2.2.1. Cyclotron motion. To describe the semiclassical
motion of the Bloch electron in the present focus of graphene,
it is sufficient to adopt the low-energy dispersion equation (3),
which exhibits a conic band structure, known as the Dirac
cone, already shown in the inset of figure 2(d) and now elabor-
ated in figure 2(e), where carriers occupying the upper branch
(0 = +) behave like negatively charged electrons and those
occupying the lower branch (o = —) behave like positively
charged holes. The behaviors of electron-like and hole-like
carriers can be understood by considering Bloch electrons in
graphene applied with only B = (0,0,B) = Be, where B is
constant and €, is the unit vector along the z axis. The absence
of E, simplifies equation (13) to

. e.

k=—-rxB. (14)

h

By a bit of mathematical processing [67], the above
equation (14) leads to the following geometric relation:

_r
" eB

r (1) —r(0) k(1) —k(0)] x &, (15)
which indicates that the real-space trajectory of a Bloch elec-
tron is just its reciprocal-space trajectory scaled by 7i/eB and
rotated about the z-axis by 90 degrees clockwise.

Since the magnetic force is perpendicular to the group velo-
city r and does not alter the kinetic energy, the motion of
a Bloch electron in a constant magnetic field is a constant-
energy motion. Put in another way, its reciprocal-space tra-
jectory is a constant-energy contour, i.e. the Fermi contour
for Bloch electrons at the Fermi energy. At sufficiently low
energies, the Fermi contour is a circle of radius k, with which
equation (15) indicates that the corresponding real-space tra-
jectory is a circle of radius

hk

B’ (16)

re =
called cyclotron radius. Whereas the above discussion is valid
independent of the band structure, the cyclotron radius formula
equation (16) is applicable also for other 2D materials with
isotropic dispersion relation.

2.2.2. Electron and hole orbits.  Equation (14), together with
the group velocity r given by equation (12), allows us to distin-
guish between electron and hole orbits. Since the group velo-
city r is directed along the energy gradient, which is radially
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outward for the electron branch and inward for the hole branch
(see figure 2(e)), how k evolves with time follows the direction
of B x r, leading to counterclockwise and clockwise orbits for
electrons and holes, respectively; see figure 2(e).

Note that the above argument is valid not only for graphene.
What makes graphene different from its linear energy disper-
sion equation (3) is that the group velocity equation (12) expli-
citly reads

k
V=0VEi—

, 17
k] (I7)

whose magnitude is always vg, independent of energy.

2.2.3. Cyclotron frequency. The energy-independent mag-
nitude of the group velocity equation (17) leads to distinct
behaviors of electrons in graphene compared to non-Dirac
materials where the energy dispersion is not linear in k. Take
the cyclotron motion for example. Because of the constant
|v| = vE, the smaller the cyclotron radius, the shorter the time
needed for the electron to complete a cycle, which is in
sharp contrast with electrons in usual two-dimensional elec-
tron gas (2DEG) where E(k) = i*k? /2m*, the magnitude of
group velocity then clearly depends on energy: |v| = fik/m* =
\/2E/m*, leading to energy-independent cyclotron frequency
|v|/re = eB/m*. Using the effective mass of GaAs, m* =
0.067m,, m, the bare electron mass, the cyclotron frequency in
2DEG confined in GaAs is about 2.63 THz under B=1T. On
the other hand, the cyclotron frequency in graphene is energy-
dependent:

eBv:

. 1
We=—p" (18)

which ranges between a few THz (E > 100 meV) to about one
hundred THz (E < 10 meV) under the same magnetic field of
B=1T.

2.2.4. Negative refraction. ~ Although the problem of trans-
mission across a graphene p-n junction will be elaborated in
more details in section 2.3, the above semiclassical description
allows us to easily understand the origin of negative refraction
in graphene.

Suppose a graphene sheet is subject to an on-site energy
band offset arranged in a way that the Dirac cone in the left
(right) region is shifted upward (downward) in energy, form-
ing a graphene p-n junction; see figure 2(f), where the hori-
zontal green plane is the global Fermi energy, and the circles
in the bottom part of the figure are the Fermi circles in the cor-
responding regions. Because the left region is p-type, the group
velocity points radially inward as explained above, and a pos-
sible incoming state with positive x-component of the group
velocity vector v; is shown in figure 2(f). After transmission
across the p-n junction with the k, component conserved, the
Bloch electron occupies a state in the n-region at the Fermi
energy with the resulting group velocity v, which points radi-
ally outward of the Dirac cone (see figure 2(f)), leading nat-
urally to the negative refraction of the Bloch electron because

v; and v, lie on opposite side of the incidence normal (dashed
line in figure 2(f)).

The above explanation considers the special case of a sym-
metric p-n junction where the Fermi energies in the p and n
regions are equal in magnitude and opposite in signs. Whereas
more general cases will be elaborated in section 2.3.1, from
the simple picture based on the semiclassical description here,
it can be seen that the origin of the negative refraction for
electrons traversing p-n junctions in graphene arises from
the opposite energy gradient of the conductance and valence
bands.

2.3. Graphene junctions

If one uses two gates, for example, one bottom and one top-
gate, one can define regions of different doping and gate-
controlled p-n devices. If the doping has the same sign on the
two sides (n-n’ or p-p’) it is called a unipolar junction, if it
changes sign it is a bipolar (p-n or n-p) junction. The sharp-
ness of the change in potential profile can also vary: the carrier
density can switch sharply or smoothly, depending on the geo-
metrical parameters and on screening properties in general. If
the gate electrodes are very close to the graphene layer, the
potential step is more abrupt as compared to the case when
thicker insulating barrier layers are employed. The sharpness
of the potential affects how electrons traverse the p-n region.
In the ‘abrupt’ case, the p-n junction can be seen as a ‘thin’
scattering region.

2.3.1. Snell'slaw. Consider an infinitely extending graphene
sheet arranged in the x-y plane, subject to a potential profile
V(x) causing an interface along the y direction. Let the left
(right) region be the incoming (outgoing) region labeled by i
(0). The local Fermi energy, i.e. the highest filled energy relat-
ive to the Dirac point, is E; in the incoming region and E, in the
outgoing region. We consider an incoming state occupying a
wave vector k; corresponding to E; and a positive x-component
of the group velocity v;. The outgoing wave vector k, cor-
responding to energy E, also has positive x-component of the
group velocity v, as shown figure 5.

Regardless of the sign of E; and E,, Snell’s law for electrons
in graphene is simply the conservation of the y-component of
the wave vector,

kyi = ky,o 5 (19)
due to the translational invariance along y. Without loss of gen-
erality, we fix E, > 0 and consider two cases of E; > 0 and
E; <0, the former corresponding to a unipolar nn junction and
the latter a bipolar p-n junction.

2.3.1.1. Unipolar nn junction. =~ When both of E; and E, are
positive, the band offset profile and the local energy bands are
schematically shown in figure 5(a). Since the group velocity
is parallel to the wave vector for n-type graphene, as indicated
by equation (17), both of k; and k, have positive components
along k,, as shown in figure 5(b). Since the angle of incident
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Figure 5. Band offset profiles V(x) and local energy band diagrams of (a) a unipolar nn junction, whose corresponding Fermi circles are
shown in (b), and (c) a bipolar p-n junction, whose corresponding Fermi circles are shown in (d).

(refraction), 6; (6,), defined as the angle between the incoming
(outgoing) velocity and the normal of the interface (i.e. the
x- or equivalently the k,-axis), is the same as the azimuthal
angle of k; (k,), the conservation of k, equation (19) reads
kisinf; =k, sinf,, where k; = |k;| and k, = |k,|. Multiplying
the equation by 7vg, we have E; sin; = E, sin6,.

We note, that for unipolar junctions it is even possible to
achieve total internal reflection if the incident angle is large
enough.

2.3.1.2. Bipolar p-n junction.  For a p-n junction with E; <
0 and E, >0 (figure 5(c)), we consider k; with a negat-
ive k,-component in order to have a positive x-component
of the group velocity v;, as shown in figure 5(d). Because
of equation (17), v; is now antiparallel to k;, and the
angle of k; is not just the angle of incidence 6;, but 6; +
m. Therefore, the conservation of k, equation (19) reads
kisin(0; + ) = k, sin,. Multiplying the equation by 7ivg, we
have —fhvgk; sinf; = fivgk, sinf,. Since k; = |k;| and k, = |k, |
are both positive, we have E; = —hvgk;, and the resulting
Snell’s law

E;sinf; = E,sind, (20)

remains the same form as that in the previous case of the nn
junction. Equation (20) is valid for both unipolar and bipolar
junctions, with none of 6;,6,, E;, E, restricted to positive. In

the case of bipolar junctions with E;E, < 0, the angles of
incidence and refraction must, in view of equation (20), be of
opposite signs: 6,6, < 0, consistent with the negative refrac-
tion described in section 2.2.4.

2.3.2. Transmission across graphene junctions.  The Snell’s
law equation (20) discussed above indicates that the role of
refraction index in ray optics is played by Fermi energy in elec-
tron optics of graphene. The equation gives a constraint for the
angles of incidence and refraction, but says nothing about the
quantum-mechanical transmission yet.

In the literature, two main approaches are adopted in solv-
ing the problem of transmission across graphene junctions:
analytical Dirac equation and numerical tight-binding model.
The former leads to useful formulas but is restricted to simple
potential profiles. The latter is not restricted to any potential
profile but provides only numerical results without any neat
formulas. At low-energy, the tight-binding approach agrees
with the analytical formulas obtained from solving the Dirac
equation, as was shown in [68] for the case of sharp p-n
junctions [11], linearly smooth p-n junctions [11], and sharp
n-p-n junctions [9] for graphene. The case of gapless bilayer
graphene n-p-n junctions discussed in [9] was also repro-
duced by the numerical tight-binding method [68] but below
we briefly review only the cases of single layer graphene
junctions.
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Figure 6. Angle-resolved transmission of symmetric graphene p-n junctions considering (a) a sharp (abrupt) junction of potential difference
0.16 eV and (b) a linearly smooth junction of potential difference of 0.1 eV and smoothing thickness d =20 nm. Diagrams of (c) are similar
to (b) with the only difference being the potential difference increased to 0.4 eV. (d) considers a nonlinear smooth p-n junction. Upper
panels of each subfigure show the onsite-energy profile V(x) and the lower panels show the angle-resolved transmission 7(¢) based on the
numerical tight-binding model (thick solid cyan curves) and analytical formulas (dashed black curves). (a)—(c) are modified and reproduced

from [68].

2.3.2.1. Sharp p-njunctions.  Graphene subject to a potential
profile V(x) shown in figure 5(c) is the case of an asymmetric
sharp p-n junction. The upper panel of figure 6(a) is a case of
a symmetric p-n junction, across which the transmission as a
function of the angle of incidence, denoted as 6 for brevity, has
a neat expression first derived based on the Dirac equation in
[11]:

T(6) = cos*6 , (2D

which is shown in the lower panel of figure 6(a) by the black
dashed curve. The result is independent of the potential height
and can be reproduced by using the numerical tight-binding
approach (thick solid cyan curve in figure 6(a) [68]. The trans-
mission at all angles is non-zero, but most strikingly, for
0 =0 transmission probability approaches one! This surpris-
ing effect is known as Klein tunneling [25].

2.3.2.2. Smooth p-n junctions. If the potential varies
smoothly on the scale of the Fermi wavelength Ag, electrons
incident from the left with an angle 6 > 0 relative to the nor-
mal of the scattering region are smoothly bent within the scat-
tering region. If the carrier density now truly crosses from n-
type to p-type, the electrons are bent off the scattering region,
never reaching the other side. This is schematically shown in
figure 7(a). One would therefore predict a transmission prob-
ability of zero in case of a p-n junction with a smooth ‘soft’
potential change.

As shown in [11] based on the Dirac equation, the angle-
resolved transmission 7(#) for a linearly smooth p-n junction
such as those considered in figure 6(b) or 6(c), can be described
by

T(0) =exp <7rkF2d sin’ 9) , (22)

when the product of the Fermi wave vector® kg and the
smoothness d fulfills kgd > 1. Two examples for such linearly
smooth p-n junctions are shown in figure 6(b) with kgd ~ 1.54
and figure 6(c) with kpd ~ 6.16.

The simulation also shows that the situation is again angle
dependent. For incident electron trajectories that are nearly
perpendicular to the scattering region with the line of zero
density located at position xg, the probability for transmis-
sion T(#) gets appreciable. The angle dependence shown in
figures 7(a) and 6(b)—(d) can be understood in a qualitative
manner as follows: appreciable transmission sets in when the
classical electron trajectory approaches x( at a distance /i,
with the condition that the Fermi wavelength at this position
exceeds Inin. In this case, there is appreciable wavefunction
overlap between the two sides.

We note, that the analytical formula of equation (22) does
not match the numerical tight-binding results for the case
of figure 6(b) because krgd > 1 is not fulfilled, while the
agreement for the case of figure 6(c) can be seen. Figures 6(a)—
(c) have been shown in [68]. For completeness, we show
another p-n junction in figure 6(d) which is the same as
figure 6(c) except that the junction profile is not linear but
modeled by a sine function; see the upper panel of figure 6(d).
The T(6) is analytically difficult to solve but remains numer-
ically straightforward. Nevertheless, because of kgd > 1, the
difference between the two approaches is not drastic, as seen in
the lower panel of figure 6(d). We conclude that the exponen-
tial form of equation (22) can always serve as a good approx-
imation for smooth n-p and p-n junctions.

8 Note that the Fermi wave vector is temporarily denoted as kg here in order
to be consistent with the literature, but is mostly denoted simply as & in the
rest of our discussions.
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Figure 7. Electron transmission at a p-n junction. The graph in (a)
shows the expected transmission probability color coded as a
function of incident angle 6 and carrier density n. Here, an equation
for a smooth potential change has been used according to [9]:

1() = exp(—m krdsin(6)?). Reproduced with permission from [69].
The semiclassical particle trajectories illustrate in (b) how they are
repelled from the region of zero carrier density which is located at
position xo. The smaller the incident angle 6, the closer the
trajectories approach xo. If the remaining classical distance /nin gets
shorter than the Fermi wavelength Ag, the wavefunction will have an
appreciable overlap on the other side leading to an increase in
transmission probability. Quite remarkably, for § = 0 transmission
probability approaches unity. This is known as Klein tunneling.

2.3.2.3. Klein tunneling. ~ Whether sharp (equation (21)) or
smooth (equation (22)), the transmission probability across
a graphene p-n junction at normal incidence is always
perfect: T(0) = 1, which resembles the original Klein para-
dox in relativistic quantum electrodynamics [70], and is often
referred to as the Klein tunneling [71-73].

2.3.2.4. Interfaces at contact electrodes. In experiments
mostly soft p-n interfaces are often reported. Suspended
graphene devices have typically a soft p-n junction, while
encapsulated devices can have sharper potential steps
approaching the 10 nm range, determined by the thickness
of the gate insulator. However, there are inherent potential
steps at the contacts themselves. This has two reasons: a)
depending on the contact material, the workfunction differ-
ence between the metal and graphene results in an exchange
of carriers, hence, to a region of contact doping; b), due to

screening properties, the metal contacts can also be seen as an
effective capacitor. Together with the gate capacitor(s), this
changes the so-called gate-lever arms in the vicinity of the
contact region. Again, one expects a change in carrier density
in the vicinity of contacts. Since the metal electrode is in direct
contact with the graphene sheet, this potential change can be
rather steep. Consequently, as long as diffusive scattering can
be disregarded, a normal metal contacts can also be seen as a
(partially) reflecting mirror as will be seen e.g. in figure 24.

2.4. Ballistic conductance

For a two-dimensional material of width W at energy E cor-
responding to the magnitude of the wave vector k, the number
of modes is given by

kW

M="—,
™

(23)

which is obtained from 2k/(27 /W) and is just the number of
ky, points (assuming the transport direction is along x). This
estimation arises from the assumption of applying the peri-
odic boundary condition along the y dimension, and becomes
exceptionally precise whenever W is sufficiently large, or in
simpler terms it counts how many times the half wavelength of
electrons’ fits into the transport channel. Taking into account
the degeneracy factor g, the ballistic conductance of the mater-
ial in the absence of any potential, defect, and disorder, is
given by

(24)

according to the Landauer formula [74].

2.4.1. Pristine graphene. Using g=4 for graphene
(section 2.1.4) and substituting equation (23) into
equation (24), we have the ballistic conductance for pristine
graphene:

2
4

_eaw
h «

which is plotted in figure 8(a) (solid cyan curve), consid-
ering an example of W=1 pum. Note that from the above
equations (23) and (24), the ballistic conductance of all 2D
materials exhibit such a linear-in-k dependence, or square-
root-in-n dependence when using k = /7|n| (section 2.1.5),
up to a different degeneracy factor g.

G (25)

2.4.2. Ballistic graphene p-n junctions. ~ When the pristine
graphene is subject to a potential V(x) without breaking the
translation symmetry along y, the contribution of each k,
mode to the conductance is generally limited by the trans-
mission probability 0 < T(k,) < 1. By summing over contri-
butions from all modes, the ballistic conductance is given by

22w [k

G="5" | Tk)dk,. (26)

—k
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Figure 8. Energy (and hence wave vector) dependence of graphene conductance in the clean limit. (a) Ballistic conductance as a function of
E/hvr based on analytical formulas (colorful solid lines) and numerical quantum transport simulations (black markers), considering a
pristine graphene sheet (cyan curve and black squares), a sharp graphene pn junction (red curve and black crosses), and a linearly smooth
(d =50 nm) graphene pn junction (orange curve and black circles), all with width W =1 pm. The inset shows the range of

E/Tvg € [—0.03,0.03) nm ™! and G € [0,40] */h. (b) Ballistic conductance of a suspended graphene pn junction: experiment vs theory;
taken from [75]. The smoothness of the junction and the width of the graphene sample are assumed tobe d =1 pymand W=2 um,

respectively.

which recovers equation (25) when V(x) = 0 such that T'(k,) =
1 for all —k <k, < k. For arbitrary V(x), the transmission
T(ky) can be numerically computed, but no neat formulas for
the resulting conductance equation (26) can be obtained in
general, except the two special cases reviewed in section 2.3.2.

For symmetric sharp p-n and n-p junctions, using
equation (21) we have [ * i T(ky)dk, = 4k/3, and the conduct-
ance is precisely given by

e* 8W
G= A k, 27
which differs from equation (25) only by a factor of 2/3,
indicating that an ideally sharp graphene p-n junction is rather
transparent (highly conductive); see the red solid curve in
figure 8(a).

For linearly smooth p-n and n-p junctions, the | f o T(ky)dk,
integral is not analytically solvable even using equation (22)
when kd > 1 is fulfilled. However, as we have seen in
figure 6(c), T(6) decays to zero well before § = +7 /2, which
means that approximating the integral as [ fooo T(ky)dk, =
[7 exp(—m dk; /2k) dk, = /2k/d is quite fine. Substituted
into equation (26), the final result is [11]

e?2W 2k
o\ (28)
which has a square-root-in-k dependence, contrary to
equations (25) and (27), as shown by the solid orange curve
in figure 8(a).

Note that the horizontal axis of figure 8(a) summarizing
the k dependence of the ballistic conductance for a pristine
graphene sheet, equation (25), a sharp graphene p-n junction,

equation (27), and a linearly smooth graphene p-n junction,
equation (28), is E/hivg instead of k, because k is defined posit-
ive in our discussions while E can be negative. All of the three
cases well agree with the numerical results (black markers)
based on quantum transport simulations, to be briefly reviewed
in the following section 2.5.

It is also nice to illustrate how close experimental graphene
p-n junctions come to theoretical prediction for a clean device
with soft potential. Figure 8(b) shows a comparison of an
actual measurement with the theoretical prediction. The meas-
ured dependence does indeed follow a square-root depend-
ence G o< v/kg, proving that the potential barrier is smooth
and varies in this example on a length scale of d=1 pm.
The comparison also reveals that there is an additional contact
resistance of order 2¢?/h in series to the junction resistance.
Finally, the conductance G does not approach zero at the Dirac
point, as there should be a cut-off which theory predicts to be
Gunin = 4¢*/7h [9]. That the experimentally measured min-
imal conductance is close to the ideal ballistic limit illustrates
the cleanliness of this device [75].

2.5. Quantum transport simulation for clean graphene

Quantum transport in the framework of Landauer-Biittiker
formalism [74] is an exceptionally useful and powerful tool,
especially for low-bias, low-temperature transport in the clean
limit. To focus on clean graphene devices, let us summarize
the formalism by considering an exemplary two-terminal sus-
pended graphene device.

2.5.1. Real-space Green’s function method.  As shown in
figure 9(a), the system we are interested in is composed of a
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Figure 9. (a) Optical images (background and left) of exemplary suspended graphene devices. Lower right: An SEM image of a
two-terminal device made of a suspended graphene sample (described by a tight-binding Hamiltonian Hy) attached to two contacts
(described by X1 and 3,) and tuned by a central gate at voltage V. (marked on the figure) and a global backgate at voltage V, which is not
shown in (a) but sketched in (b). (b) Schematics of the side view of the device shown in the SEM image of (a). Considering

(£g,hs) = (500,600) nm and V;, = —20 V, (c) shows carrier density profiles n(x) of graphene at V. =0V (blue),2 V,--- ;10 V (red), and
their corresponding on-site energy profiles V(x) are shown in (d). The upper part of (c) shows an example of the electrostatic potential
u(x,z) at (Ve, V) = (10,—20) V, and the inset shows 71/n vs V. at x =0 with the same fixed V, = —20 V.

\> Graphene

scattering region described by a clean Hamiltonian H( and the ~ without translational invariance, the hopping parameters ¢ and
attaching electrical contacts described by X| and X, i.e. the ' are often assumed to be the same as those for the energy
so-called lead self-energies. To model and simulate electronic  bands introduced in section 2.1.1 where translational invari-
devices in real space, the local orbitals of the atoms compos-  ance is the basic requirement.

ing the lattice may be chosen as the basis to represent Hy. Apart from the clean part of the graphene Hamiltonian, H,
Considering only the p, orbital of the carbon atoms, the real- the on-site energy term appearing as a diagonal matrix,

space tight-binding Hamiltonian can be written as

Hy=1Y clej+1"> clq, (29)
(i) ()

U=> v(r)cle, (30)

takes into account electrons’ potential energy from all differ-
where c;r (ci) creates (annihilates) an electron on site i located et gources, such as electrical gating, chemical doping, con-
at position r;, so that ¢/¢; stands for an electron hopping from  tact doping, disorder, atomic orbital energy, and so on. In the
rjtor; and 3 ;v (3, ) means that the sum runs over all  clean limit, equation (30) mainly describes the electrical gat-
nearest (second nearest) neighboring site pairs fulfilling |r; —  ing, which will be explained in the following section 2.5.2.
rjj=a(r,—rj = V3a); see figure 2(a) for the definition of Together with the lead self-energies ¥ and X, describ-
a. Despite that equation (29) describes a finite-sized graphene ing the electrical contacts which serve as electron reservoirs,

15
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the effective Hamiltonian describing the contact-graphene-
contact system can be written as

H(E)=Hy+U+%,(E)+3,(E) , (31)

which is a function of energy E because the lead self-
energies depend on E. Commonly adopted methods for calcu-
lating the lead self-energies include eigenfunction expansion
[74], eigendecomposition and Schur decomposition [76], and
recursive Green’s function [77], but are beyond the scope of
this review.

Once equation (31) is built, the retarded Green’s function
at energy E is by definition given by

Gr(E)=[E-H(E)™" . (32)

Since all terms in equation (31) are Ny X N, square matrices, N
being the total number of lattice sites, the above equation (32)
stands for a matrix inversion, which is computationally heavy
unless N; is small. For graphene, it is possible to rescale the lat-
tice to reduce N, to be explained in the following section 2.5.3.
Note, however, that even N; is not too large, inverting the entire
matrix [E — H(E)] is not necessary, because not all elements of
Gg(E) are needed. Technical details are crucial at this point but
are also beyond the scope of this review.

With the retarded Green’s function obtained, together with
the broadening matrices

I, (E) = —2Im%, (E) 33)

corresponding to the pth lead self-energy, the transmission
function from lead ¢ to lead p at energy E can be obtained:

TI"_‘I

(E) =Tr[, (E)Gr (E)T'y (E)Ga (E)]  (34)
where Gy (E) :GL(E) is the advanced Green’s function

matrix.

2.5.2. Realistic on-site energy. ~ When tuning the carrier
density of graphene by electrical gating, what does the gate do?
To a simple picture, when a positive gate voltage is applied,
negative charges are induced on the surface of graphene, caus-
ing the raise of Fermi level, and vice versa. The change of the
Fermi level can also be understood as the change of the entire
energy bands with the Fermi level fixed. This picture is more
useful when the carrier density is not uniform, corresponding
to a spatially varying energy band offset, which is exactly the
V(r) in equation (30).

Without taking into account the correction due to quantum
capacitance [78-81] and assuming no intrinsic doping, ny =0,
the carrier density profile of graphene is given by the following
linear superposition of the classical contribution,

n(r)=>»_

J

Ci(r)

Vi (35)

where Cj(r) is the capacitance profile of the jth gate which
can be either analytically described by a proper model func-
tion or numerically obtained by solving the Poisson equation

[81] using commercial software such as CoMsoL [82] or finite-
element-based partial differential equation (PDE) solvers such
as FENICS in PYTHON [83] or PDEMODELER (PDETOOL in older
versions) of MATLAB [84].

To continue with the example of suspended graphene,
consider the scanning electron microscopy (SEM) image of
figure 9(a)(lower right), whose side view is schematically
shown in figure 9(b). The carrier density of the graphene
sample placed at z =0 is tuned by a central gate at voltage V.
and a back gate at voltage V},. Since the width of the graphene
sample W is sufficiently large and the geometry of the metal
contacts and gates does not depend on y, we may consider
the two-dimensional Laplace equation V?u =0 to solve for
the electrostatic potential u(x,z), subject to properly assigned
boundary conditions. The suspension height A is typically
several hundreds of nanometers and is roughly the smooth-
ness of gate capacitance profiles. This means that the result-
ing carrier density and onsite energy profiles are completely
smoothed (exhibiting no plateaus) whenever the gate length
Ly < hy, which is the case in the example shown here.

An exemplary solution of u(x,z) subject to (V.,V,)=
(10,—20) V is shown in the top panel of figure 9(c), con-
sidering (£4,h,) = (500,600) nm. From the surface gradient
of u at z =07, the corresponding surface charge density (and
hence the carrier density in graphene) can be obtained [81].
Because the Laplace equation is linear, it is more convenient
to first obtain the central gate capacitance, C.(x), by consider-
ing (V.,V;) = (1,0) V, and back gate capacitance, C,(x), by
considering (V,, V}) = (0, 1) V. For arbitrary gate voltages, the
calculated C,(x) and Cp(x) allow us to obtain the carrier dens-
ity profile, n(x), using equation (35), which explicitly reads

C.(x)

Ch (x)

n(x)

Ve +

Vi (36)

here. When the quantum correction is considered, the net car-
rier density for the present example is, based on the formulas
in [81] as well as [85], given by

ii(x) =n(x)+ An(x) 37

where n(x) is the classical contribution, equation (36), and

) (38)

is the quantum correction. The term ny in the above
equation (38) given by
(hvp Cc(x) + Gy (x))2

arises due to quantum capacitance and is generalization of
the uniformly single-gated case of [79]. From equations (37)—
(39), it can be seen that 72(x) differs significantly from n(x)
either when n(x) is small or when ng(x) is large. The former
generally occurs whenever the carrier density in graphene is
low, and the latter corresponds to large gate capacitance due

|n(x)|
ng (x)

An(x) =sgn(n(x))ng (x) <1 —/1+2

no (x) = g ; - (39)
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to, for example, thin dielectric layers. The carrier density cor-
rection based on the quantum capacitance model has been
shown in [81] to be equivalent to that by self-consistently
solving the Poisson equation with graphene’s density of states
(equation (8)) taken into account; see also [86].

The bottom panel of figure 9(c) shows spatial profiles of
the classical carrier density n(x), equation (36), considering
various V. at a fixed V; (values specified in the caption of
figure 9(c)). Curves of 72(x) based on equations (37)—(39)
appear almost the same as n(x) and are not shown here. The
inset of figure 9(c) shows 71(x = 0) /n(x = 0). As expected, the
quantum correction is negligible in this example of suspen-
ded graphene whose gate capacitances are generally small,
except for central gate voltage values around V.~ 1.09 V
which makes n(x = 0) close to zero.

Because of the negligible An in the present example, the
following discussion about the onsite energy profile considers
only n(x). Since the length scale of the variation of the car-
rier density is much larger than the atomic scale as seen in
the examples shown in figure 9(c), it is legitimate to assume
that the energy-carrier relation equation (11) is locally ful-
filled. Therefore, considering the local energy band offset
defined as

V(x)=—E(n(x)) = —sgn(n(x))vegy/xn(x)|, (40)
which is the onsite energy term in equation (30), the global
Fermi energy for the entire graphene sample is expected to
be fixed at zero. In short, using equation (40) in the above
introduced quantum transport, the transmission equation (34)
should be evaluated at E =0.

2.5.3. Scalable tight-binding model.  From section 2.5.1, we
have seen that the matrix size of equation (29) mainly depends
on the number of atoms (or the lattice sites) composing the
lattice under consideration. In the present spinless case of
equation (29) with only one p, orbital per atom considered, the
H thus represented is an Ny x N, square matrix. Using the unit
cell area |a; x a;| = v/3a2/2, it can be shown that the number
of carbon atoms is about 38 millions per pm?, which is the
typical order of magnitude of the sample area used in transport
experiments. Dealing with Ny X Ny matrices with Ny ~ 107 is
not a simple task. When the spin degree of freedom or other
orbitals are taken into account, the size of Hy may be further
doubled, tripled, or even more.

For graphene, luckily the lattice spacing a and the nearest-
neighboring hopping ¢ appear in the low energy disper-
sion equation (3) simply as a product; see equation (4).
Therefore, by considering a honeycomb lattice of lattice spa-
cing @ = spa and nearest neighbor hopping energy 7 =t/sy,
its low-energy dispersion proportional to fa = fa is guaran-
teed to be the same as that of real graphene. This scaling
approach first introduced for spinless monolayer graphene in
[87] led to the possibility of simulating micron-sized graphene
samples [27, 75, 85, 88-105] and therefore made quantum
transport simulations for ballistic graphene a very powerful
tool. Moreover, the approach is compatible with spin—orbit
coupling [106] as applied in a recent work on spin-dependent

transport in graphene on WSe; [107], and can also be applied
to bilayer graphene as was remarked in [87] and applied in
[105, 108].

2.5.4. Periodic  boundary hopping. Previously, in
section 2.3.2 we have mentioned that the angle-resolved trans-
mission can be numerically computed by the tight-binding
approach. For such calculations, the real-space Green’s func-
tion method described in the above section 2.5.1 remains the
same, except that equation (29) for Hy needs to be modified,
in a way to allow hopping between, for example, upper and
lower edge sites, modulated by the Bloch phase. Such so-
called periodic boundary hopping terms arise from the Bloch
theorem [68, 76, 109] because of the assumed translational
invariance along the lateral dimension, as briefly explained
below.

Consider a graphene lattice arranged with the zigzag dir-
ection along the x-axis and assumed to be infinitely extend-
ing along the +y direction, as sketched in figure 10(a), where
a minimal supercell with periodicity w = 3a is highlighted in
black. Let the y coordinate of the bottom edge sites within the
supercell be y;, and top edge sites be y;. Now, consider a cer-
tain x coordinate, say x’, which aligns with a pair of bottom
and top edge sites of the supercell, one at (x’,y;) and one at
(x’, ). At (x’,y, + a), there is another lattice point which is a
nearest neighbor to (x’,y,); see figure 10(a). If the wave func-
tion at (x’,yp) is (x’,yp|¢)), then according to the Bloch the-
orem, {x’,y, +alh) = e (x’ y,|¢), because y, +a —y, =w
is exactly one period. Multiplying both sides of the equation
by |x’,y;) from the left, canceling |1)), and moving the phase
factor to the other side, we have

Wy (6 yel = ey (e tal . @D
Since |x’,y;)(x",y,+ a| on the right-hand side represents the
nearest neighbor hopping, the above equation (41) indicates
that the hopping from the bottom edge to top edge site can be
described by ¢ multiplied by the Bloch phase e ~*". From the
Hermitian conjugate of equation (41),

|x/ayb><x/7yt| = e+1k),.w‘x/’yl +a> <x',y,| ’ (42)
we see that the hopping from the top edge to bottom edge site
can be described by # multiplied by the Bloch phase etk
Equations (41) and (42) illustrated by figure 10(b) are what we
call periodic boundary hopping, which greatly reduces the size
of a tight-binding model Hamiltonian for an infinitely extend-
ing graphene from (oo X co) down to (4N, X 4N,) where N,
(=11 in the exemplary sketch of figure 10(b)) is the period-
icity along the x axis.

Now that the periodic boundary hopping terms contain
ky, the tight-binding Hamiltonian becomes k,-dependent, i.e.
Hy = Hy(ky). Because of the k, dependence of the Hy, the
lead self-energies, the effective Hamiltonian equation (31),
retarded Green’s function equation (32), the broaden-
ing matrices equation (33), and the transmission function
equation (34) all contain the k, dependence. In terms of the
incidence angle, 6 = arcsin(k,/k), the numerically computed



J. Phys.: Condens. Matter 36 (2024) 393001

Topical Review

Figure 10. (a) Schematics of a graphene lattice, which is oriented
with the zigzag along the x-axis and assumed to be infinitely
extending along the £y direction. (b) The equivalence of (a) but
restricted to a minimal zigzag graphene ribbon with periodic
boundary hopping arising from the Bloch theorem.

T(ky) can be plotted as T(#) as shown in figure 6. Note that
despite the different primitive description of the graphene lat-
tice here (figure 10(a)) compared to the standard hexagonal
lattice (figure 2(a)), the k, introduced in the Bloch phase
exp (&ik, - 3a) is the same as that in, for example, figure 2(f)°.

In addition to the angle-resolved transmission, the method
of periodic boundary hopping is also very useful for quasi-
one-dimensional two-terminal graphene device, such as the
example of figure 9(a) where W is sufficiently large. In such
cases, the onsite energy V(x) is one-dimensional, and 7'(k,)
can be numerically computed. Integrating over k, and using
equation (26), the conductance thus obtained is consistent with
the one computed using a finite-width ribbon, but the compu-
tation is much lighter and faster. In the recent work about gate-
controlled one-dimensional superlattice in graphene, the two
kinds of computations were explicitly compared [100], and the
results are hardly distinguishable.

In the literature, the first work applying this method to
reproduce the features of the experimentally measured con-
ductance was [109], revisiting the experiment [22] showing
the phase shift of Fabry—Pérot interference due to the Berry
phase [25]. Subsequent applications include p-n junctions of
suspended graphene [23], multiple p-n junctions of graphene
on substrate [110], p-n-p junctions of bilayer graphene [108,

9 When arranging the graphene lattice in the way that the armchair direction is
parallel to the x-axis, the periodicity for the Bloch phase becomes w = v/3a,
the Dirac cones will not be centered at ky = 0, and the relation between k, and
the incidence angle 6 will be different.

18

111], and large-angle decoupled twisted bilayer graphene
[85, 112].

2.6. Summary of useful formulas

Table 1 summarizes useful formulas for single-layer graphene,
assuming uniform distribution of carrier density n. For sym-
metric graphene p-n junctions, useful formulas are summar-
ized in table 2.

3. Fabricating clean graphene devices

The observation of electron optical phenomena requires high
quality devices with ballistic transport where electrons can
travel large distances without scattering processes. In 2DEGs
buried below the surface record high mobilities were achieved,
which allowed to perform electron optical experiments like
magnetic focussing [113-116]. The special Dirac spectrum
of graphene leads to protection against back-scattering events
which promises large electron mobilities. However, in the first
transport experiments rather low quality devices (at least com-
pared to 2DEGs) have been realized with a mean free path
on the order of 100 nm and mobilities on the order of few
1000 cm? (Vs)~! [1, 29]. It was soon realised that in these
devices the mobility was limited by the charge traps in the SiO,
that was used as a gate dielectric on silicon wafers [117] and
by contamination of the graphene surface mostly originating
from the fabrication process. Whereas the latter can be par-
tially eliminated by cleaning the graphene surface with form-
ing gas (or other gases) or by AFM cleaning [118, 119], for
the former, separation of the graphene flake from the surface
was required.

3.1 Suspended graphene

To achieve separation from the substrate the graphene flakes
were suspended above the SiO, wafer. This was in the begin-
ning done by etching away the SiO, with buffered HF solution,
followed by a critical point drying step [17, 18]. First devices
fabricated using this method reported mobilities on the order
of 200°000 cm? (Vs)~!. Later on the fabrication of top gates
to suspended devices was achieved [114], which together with
a doped Si substrate allowed the realisation of double gated
high quality devices. Later, another method was developed by
Tombros et al [120] and further extended by Maurand et al
[121], where instead of etching away the SiO, below graphene,
the flakes were transferred onto a sacrificial layer that was
spin-coated on top of the Si/SiO, wafer. This sacrificial layer
could be locally removed by electron beam lithography and
liftoff without the need for critical point drying, and the con-
tact material was not limited by the HF etching. This method
could also be extended with top-gates, but was better suited
for local-bottom gated structures. The fabrication method and
examples of suspended devices are shown in figures 11(a)—(c).

The drawback of both methods was that after fabrication
the graphene flakes were covered by resist residues and other
contaminants, which had to be removed at low-temperature
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Table 1. Useful formulas for single-layer graphene of uniform carrier density n and Fermi energy E, without and with the applied external

magnetic field B perpendicular to the graphene sample.

Physical quantity Formula Equation number
1 0E
Group (Fermi) velocity V=4 % =vp~10°ms™!
Wave vector k= +/m|n| (10)
Energy E = sgn(n)hiiver/7|n| (11)
2|E

Density of states per unit area == ( ]Lvi)z 8)
Cyclotron radius® re= Ik (16)

Y ]

2
Cyclotron frequency We = eB% (18)
Magnetic length? Ig= e
s "7\ el
Nth Landau level energy Ey = sgn(N)4/2ehvi|N|B ®)
) h

Filling factor® ==

illing factor v=-—g

2 2
4 4
Ballistic conductance of pristine graphene of width W G = % —Wk = %W M (25)
™ T

2 Valid also for other 2D materials.

Table 2. Useful formulas for symmetric p-n junctions of single-layer graphene.

Physical quantity Junction type Formula Equation number
Angle-resolved transmission® Abrupt T(#) = cos* @ 21

2 2
Ballistic conductance® Abrupt G= ¢ S—W k= ¢ S—W M 27

h 3w h 3 s
Angle-resolved transmission® Linear® T(0) = exp (—w% sin’ 9) (22)

2
Ballistic conductance® Linear® G~ % Z—W % (28)

s

2 Of incidence angle 6.
b Of graphene sample width W.
¢ Of smoothness d; see figure 6.

by passing a large current through the device (current anneal-
ing). This process allowed the realization of ultra-high quality
devices, however led to a substantial decrease of fabrica-
tion yield. For complicated devices with multiple contacts
and graphene flakes that are shaped to a certain form, the
yield became extremely low. Moreover, these devices were
hard to clean homogeneously and residues could accumulate
close to the contact or at the samples edges [122]. It was also
shown, that substantial strain can be accumulated in suspended
graphene structures (also from the current annealing), which
was demonstrated via mechanical oscillation measurements
[123].

3.2. Graphene-hBN heterostructures

The next breakthrough came when Dean et al demonstrated
that another 2D crystal, hBN, could be an ideal substrate for
graphene devices [19]. First of all, hBN could be exfoliated
similarly to graphene, and due to the 2D nature of the crys-
tal an atomically smooth interface could be achieved between
graphene and hBN, as demonstrated by TEM studies [124].
Second, hBN is an insulator with a large bandgap and can

be used as a gate dielectric. The high quality hBN crystals
separated the flakes from the SiO, substrates and allowed the
formation of high quality devices with mobilities similar to
the suspended ones. The hBN crystals grown by T. Tanaguchi
and K. Watanabe led to a revolution in the field and now
they are central building blocks of 2D heterostructures. In
these heterostructures, where graphene was placed on top of
an hBN flake, the top surface was usually cleaned with form-
ing gas or AFM [19]. In a next step it was also shown that
the graphene devices can be fully encapsulated between hBN
flakes [21], where the devices were made with the pick-up
method shown on figure 11(d). The method relies on van der
Waals interaction between 2d crystals and allows to pick up
flakes from a substrate using another one, leading to the fab-
rication of not only hBN/Gr/hBN, but more complex hetero-
structures. The atomically clean interfaces were once again
demonstrated by TEM measurements [21] and also signalled
by the high-quality transport experiments. Since the graphene
is encapsulated between hBN crystals prior to fabrication, in
order to fabricate electrical contacts, an etching step was per-
formed which exposed the edge of the device and allowed the
fabrication of 1D edge contacts which worked surprisingly
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Figure 11. High mobility graphene devices. (a) Suspended graphene devices realised by selective removal of a sacrificial LOR polymer
layer. (b)—(c) Graphene suspended devices with complicated structure were demonstrated, with several contacts and bottom gates (b) or
even with suspended topgates. Images (a) and (b) are from [121], (c) from [69]. (d) Encapsulating graphene with h-BN lead to high mobility
devices and allowed a higher yield in fabrication [21]. Using these methods complicated gate structures and device architectures can be
realized. Figure (e) shows a graphene heterostructure with local top-gates allowing the formation of a beam-splitter in magnetic field based
on classical snake states, whereas panel (f) shows a Hall-bar and Corbino geometry from encapsulated bilayer graphene. Image (e) is from
[69], (f) is from C. Schonenberger, S. Zihlmann and coworkers. (a) and (b) Reprinted from [121], Copyright (2014), with permission from
Elsevier. (d) From [21]. Reprinted with permission from AAAS. (c) and (e) Reproduced with permission from [69].

well, with low contact resistance. This method was further
extended/altered by later works [125-130] and is the standard
fabrication technique for most research groups.

An important advancement in reaching high quality devices
was the introduction of graphite gate electrodes. It was found
that in this case potential fluctuation from the substrates was
further removed in graphite/hBN/Gr/hBN/graphite devices
[131-133]. The decrease of potential fluctuations was con-
firmed in scanning SET measurements as discussed in more
detail e.g. in [134]. Finally, very recently a novel transfer
method based on silicon cantilevers has been developed for
the fabrication of vdW heterostructures [135]. This allows
polymer-free transfer and a compatibility with UHV based
fabrication for extremely air-sensitive materials. This meth-
ods leads to ultra-clean devices and a very fast fabrication
procedure.

The advent of encapsulated devices gave a new boost for
electron optical experiments, since the device architectures
could become much more versatile compared to suspended
devices, as shown by examples in figures 11(e)—(f).

3.83. Device characterization

The quality of graphene devices is usually characterised by
field effect mobility. This is extracted from conductance vs.
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density plots, often by dividing or by derivating the conduct-
ance by density. Other methods rely on fitting the conductance
vs. density dependence with a formula taking into account con-
tact resistance as well (for two terminal measurements), short
range scattering, residual doping around the CNP and a given
form of density dependent mobility (often constant). Some
typical results are demonstrated on figure 12. The fitting pro-
cedure with the equation 0~ = p, + (pe/n? +n2)~! for an
encapsulated device is shown in figure 12(a), where a doping
independent mobility p is supposed originating from scatter-
ing either on charged impurities or from strain fluctuations. p,
is the contact resistance and n, is the residual doping. The field
effect mobility can be converted into a mean free path, which
determines the length-scale on which electron-optical experi-
ments can be performed. Though this depends on the density,
in high quality devices this can reach from a few micrometres
up to 20-30 micrometres by now [24, 135, 136].

For low energy experiments performed close to the CNP,
another quantity, the residual doping n, is important. This
quantifies the cut-off lowest density that can be achieved in the
device, below which an inhomogenous doping profile forms
with electron-hole puddles. The lowest values that can be
reached were around below 10°cm~2 demonstrated in sus-
pended devices [75, 137, 138]. This is often extracted from
log-log conductance-density plots, see also figure 12(b) for an
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Figure 12. Standard characterization of high mobility samples. (a) Conductivity versus carrier density (with fitting procedure described in
the text). (b) Conductivity versus carrier density in a log log plot shows a saturation corresponding to a residual doping at charge neutrality
of about 5 x 10° cm ™2 (c) Resistance versus back-gate voltage at finite field showing quantum Hall plateau emerging at field as low as 50
mT which demonstrates the high quality of the device. (a)—(c) Reproduced with permission from [69].

example. Finally device quality can also be inferred from the
magnetic field at which Shubnikov de Haas (SdH) oscillations
appear. This leads to another lifetime, the quantum lifetime,
which is susceptible to small angle scattering as well. This
contrasts with the momentum scattering time, which is more
sensitive to backscattering events involving large momentum
changes. The SdH oscillations can appear in a few tens of mil-
liTeslas, and in figure 12(c) a well-developed quantum Hall
plateau is observed already at 50 mT. The splitting of Landau
level degeneracy also signifies high quality devices, however
the strength of the electronic interactions also matter, which
could also depend on the device architecture, e.g. on the dis-
tance of screening gate electrodes [112, 139-142]. Finally,
other time-scales that are usually longer than the momentum
scattering time are intervalley-scattering, phase coherence or
spin-relaxation time can also be important for certain set of
experiments.

We note, that device quality prior to experiments is often
characterized by Raman mapping, where the distribution of
peak width can give information of strain and doping variation
within the sample [143].

To sum up, since the invent of graphene the device qual-
ity has evolved immensely. From 100 nm of mean free path
and close to 1000 cm? (Vs)~! mobilities now 10° cm? (Vs)~!
mobilities can be reached. In state-of-the art devices, one limit-
ing factor for the mobility could arise from strain fluctuations,
but for the best devices scattering on the edges of the device
limit the mobility [128, 136, 144, 145] (seen as saturation of
mobility at large densities). In [135] it was shown that mobil-
ities close to 3 x 10° cm? (Vs)~! and mean free path corres-
ponding to 18 um is reached. More importantly, the mobil-
ity does not saturate at large densities, therefore the authors
suggest, that in their case not the sample size is the limiting,
but, carbon and oxygen substitutional impurities intrinsically
present in the hBN. At higher temperatures phonons start to
limit the mobility (for suspended devices out-of plane phon-
ons become important). However, since most experiments we
report on are carried out at low temperatures, the detailed ana-
lysis of this goes beyond the scope of our review.

An amazing advancement in device quality was also
achieved in CVD and epitaxial graphene systems. For CVD

21

graphene ballistic transport via magnetic focusing [146]
and bend resistance measurements have been shown up to
28 um [24], see section 4.1 in detail. Besides obtaining large
single crystal domains it was also important to use an hBN
substrate [147] or full encapsulation [148, 149] to reach high
mobilites, and even a pickup technique from growth Cu sub-
strate was demonstrated [150]. In epitaxial graphene nan-
oribbons ballistic transport was reported [151] even up to
16 um [152] and in annealed edges of epigaphene up to
50 pm [153].

4. Electron optics experimental toolbox

4.1 Magnetic focussing

4.1.1 Bend resistance.  One of the first signatures of bal-
listic transport on the micron-scale came from Hall crosses in
hBN encapsulated devices [113], as shown in figure 13(a). In
the experiment, a voltage is measured between terminal 3 and
4, the current is injected at contact 2, while contact 1 is groun-
ded. The voltage—current ratio yields the bend resistance. In
zero magnetic field a large negative resistance was observed
originating from straight trajectories from contact 2 and 4. In
perpendicular magnetic fields, however the trajectories start to
bend, as described in section 2.2.1 and electrons are guided
towards contact 3 leading to a crossover to positive bend res-
istances. These measurements suggested ballistic transport up
to 3 um. With the development of device quality similar negat-
ive bend was observed but now on the 30 um length scale [24].

4.1.2. Focussing experiments.  Similar physics arises in
Hall-bars in magnetic focusing experiments, as shown in
graphene for the first time by Taychatanapat ef al in [114]. As
shown on figure 13(b), one of the side electrodes of the Hall-
bars are used as electrons injectors, whereas on a neighbouring
electrode the increase of the electrochemical potential is meas-
ured as a result of electron trajectories hitting the electrode. In
magnetic fields the electrons follow circular trajectories, and
if twice the cyclotron radius matches the distance of the con-
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Figure 13. Ballistic electron propagation in high mobility devices. (a) Mayorov et al demonstrated in [113] negative resistance vanishing
with magnetic field in a non-local measurement, consistently with a device size limited mean free path. (b) Selective focusing of electron
trajectories with up to three specular reflections on the sample edge was demonstrated soon after [114]. (c) The cyclotron orbits were
directly imaged in [115] with a scanning gate microscope. (d) Lee and coworker were able to observe magnetic focusing originating both
from the usual graphene bands (main panel) as well as the magnetic focusing of the mini bands originating from the moire potential between
graphene and h-BN. The band structure modification is shown on the left [116]. (a) Reprinted with permission from [113]. Copyright (2011)
American Chemical Society. (b) Reproduced from [114], with permission from Springer Nature. (c) Reprinted with permission from [115].
Copyright (2016) American Chemical Society. (d) From [116]. Reprinted with permission from AAAS.

tacts, an increased voltage is observed. The cyclotron radius
given in equation (16) can be rewritten as

ro = hk/eB = hv/nm /eB, (43)

therefore both magnetic field and the electron density tunes
the resonance condition. As a result these focusing resonances
show up as dispersing lines in the measured voltage in gate-B-
field maps, as shown in figure 13(b) for positive gate voltages
and magnetic fields. The focusing peaks also show up at neg-
ative gate voltages (for holes), however for opposite mag-
netic fields compared to positive densities. This is the result of
opposite group velocity and hence chirality in the electron and
hole band for given momentum. The dashed line shows the
focusing conditions based on equation (43), which matches
quite well the measurements. Note that for the correct peak
positions the valley degeneracy has to be taken into account. In
the real experiments the electrons are injected under an angu-
lar distribution, however their majority will still focus to the
same position along caustics. The focusing trajectories have
been imaged using scanning gate microscopy [115, 154, 155]
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and an example is shown in figure 13(c), which nicely demon-
strates their tunability using magnetic fields and gate voltage.

4.1.3. Higher order focussing. =~ A focusing condition can
also be reached if the electrons bounce on the side of the
sample. These account for higher focusing peaks, whenever
2r. X j = L, where j is an integer. The visibility of higher order
peaks depends on the sample quality (mean-free path) and on
the specularity of the interface on which the trajectories are
scattered. A disordered edge leads to the randomization of
reflection angles and to the loss of visibility for higher order
focusing peaks. This has been very recently investigated in
BLG [156], where the edge was realised by electrostatic gat-
ing opposite to etched single layer devices, see in more detail
figure 19(b) in section 4.4.1. It was found that in this case the
smoother edge potential leads to a specular reflection demon-
strated by the high visibility of higher order focusing peaks.
We note here that the magnetic focusing has also been applied
in a special setting [155], where the edge of the graphene, on
which the charge carriers bounce, was replaced by a super-
conducting electrode. In this case due to Andreev reflection,
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instead of electrons, holes can reach the detector leading to
a reversed sign for the second focusing peak. In general, by
investigation of the temperature dependence of the focusing
signal (the weight of the focusing peak) it was found that it
cannot be explained by thermal broadening of the injected
electrons’ momenta. It was found from these experiments that
at low temperature electron-electron interaction dominates the
momentum scattering time with 7~2 dependence.

We note that the magnetic focusing/bend resistance exper-
iments only give indications for partial ballistic transport.
E.g. if one detects a negative bending resistance it indeed
indicates that there is a fraction of electrons with a large mean-
free path on the length scale of the trajectory. However, if this
bending signal is small, it could still mean that most electrons
have suffered an elastic scattering event before. So alone a neg-
ative bend resistance does not prove a ballistic mean-free path
that equals the size of the sample. The mean-free path has a
distribution which could be quite wide. In order to quantitat-
ively give a number, one needs a particular model that yields
a forecast to the distribution. Only with such a model is it pos-
sible to make a connection between the observed magnitude
of the negative bending signal and the mean elastic scattering
length.

4.14. Revealing the band structure.  Finally, magnetic
focusing is a sensitive tool to probe modification of the band
structure and the Fermi surface. In a recent example the split-
ting of the graphene Fermi surface was realized by inducing
spin-orbit interaction in graphene that is placed on a WSe;
substrate [107]. This led to a splitting of the Fermi surface
and to signatures of splitting in the focusing peaks. Another
example is coming from graphene/hBN structures, where hBN
is aligned with the graphene lattice which imposes a super-
lattice on graphene and leads to strong modification of the
band structure, as shown in figure 13(d). As a result of the
band structure modification mini-bands with secondary CNPs
appear. The focusing peak position will be sensitive to the
band structure and in this case several transitions between
electron and hole-like carriers have been observed [116], as
shown in figure 13(f). These measurements therefore give an
important tool in the mapping of the band-structure modifica-
tions of graphene heterostructures. Another work investigated
the case of twisted bilayer graphene where similar transitions
from electron to hole Fermi surfaces have been found [158].
Moreover, in [159] ballistic valleycurrents have been repor-
ted in SLG/hBN superlattice, whereas in [136] negative bend
resistance measurements of Brown-Zak fermions have been
shown.

4.1.5. Focussing in p-n junctions.  Chen et al used a trans-
verse focusing setting through a p-n junction to verify Snell’s-
law both in the unipolar (n-n’) and the bipolar (p-n) regime.
This is shown in figure 14(a), where the doping on the left and
right side of the junction can be tuned using two separate gates.
These allow to generate a homogeneous doping with circular
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trajectories (panel (c), top cartoon) or distorted trajectories by
having different dopings (but with the same carrier type) on
the two sides (middle cartoon), and even situations when the
doping is opposite on the two sides (bottom sketch). In this
case, the trajectories on the p-side bend in the opposite direc-
tion due to the opposite group velocity (see section 2.2 or [71]),
and the carriers are focused to an opposite terminal leading to
a sign change in the voltage. The measurements are shown in
panel (b) for fixed doping on the left side, as a function of
right doping and magnetic field. For negative gate voltages the
focusing signal can be well fitted (see dashed lines) by tra-
jectories similar to the one shown in panel (b)). Moreover, for
positive gate voltages the focusing through a p-n junction is
observed. By tuning the magnetic field and the gate voltage
on the left side the incidence angle of the carriers to the p-
n junction can be set. To achieve the focusing condition the
gate voltage on the right side is tuned, which also determines
the angle of the electrons refracted through the junction. The
refracted angle multiplied with the momentum as a function of
the same quantity on the left side is plotted in figure 14(d), veri-
fying Snell’s law given in equation (20). Finally, the intens-
ity of the focusing peaks can also be used to determine the
angle dependent transmission through a p-n junction, which
is shown in panel (e). The measurements can be well repro-
duced with a model of a graded p-n junction with a width
of 70nm.

4.2. Electron optical elements

4.2.1. Electron guiding.  In section 2.3 we have seen that
the reflection and refraction properties of n-n’ and p-n junc-
tions depend on the densities, hence are gate tunable. Using
this with local gating different electron optical devices can
be engineered. The critical angle of reflection is used to keep
photons inside optical fibres and a similar guiding experiment
has been engineered also in multiterminal suspended devices
[88]. A false-colored SEM image of the device is shown in
figure 15, where the local gates below the graphene allow
to tune the electron density in the outer regions and in the
central channel, marked with dashed lines, separately. This
allows the formation of n-n’-n, n-p-n junctions. The injectors
and detectors of the channel are the suspended narrow elec-
trodes, whereas the large electrodes are used to measure the
loss. In panel (b), we show by red the density regions where
optical fiber guiding originating from total internal reflection
is expected. Moreover, as soon as a p-n junction is formed
(marked by the striped region), the guiding is expected to
become more effective due to the larger reflection probab-
ility in smooth p-n junctions if the electrons do not arrive
close to perpendicular to the junction. Finally for narrow chan-
nels, the appearance of mode-by-mode filling is possible, as
shown by the blue regions. The experiment shown in panel
(c) shows strong resemblance to the expectation with guid-
ing efficiencies close to 50%. The experiments were repro-
duced by tight-binding based calculations and even signatures
of mode filling were observed. The guiding efficiency was
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Figure 14. Snell’s law across p-n junction in ballistic graphene device. (a) Schematic of the h-BN encapsulated graphene device: a local
graphite gate below half of the device is used to create a p-n junction, the carrier density in the rest of the device is controlled by the Si
backgate. (b) Non-local resistance shows focusing peak similar to the one in figure 13, instead of being reflected on the sample edge as in
figure 13, the charge carriers are here deflected by the p-n junction. (c) schematic of electrons trajectories for different carrier densities. (d)
The estimated outgoing angle versus incident angle (dots) follow the Snell’s law (blue and red lines). (f) Focusing peak signal versus
incidence angle (dots), fitted by a simulation for a 70 nm wide p-n junction. From [157]. Reprinted with permission from AAAS.
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Figure 15. Electron-optics building blocs. (a) False colored electron optical image of a suspended graphene sheet where carrier density is
tuned locally such to mimic the behavior of an optical fiber. (b) Different regions for device operation as function of channel and bulk carrier
densities, marking regions of optical fiber guiding, p-n guiding and mode filling. (c) Measured transmission reproducing well the
expectations shown in panel (b). (d) False colored electron optical image of a suspended graphene devices with local gates splitting the
graphene sheet into two regions and effectively creating an electronic beam splitter between different contacts. (e) Current reflected from the
beam splitter towards terminal 7' (normalised to the injected current) as a function of both local carrier densities. The reflection efficiency
increases as the p-n junction is formed. (f) corner reflector, (g) resistance of the corner reflector as a function of carrier densities in the B
(horizontal axis) and A regions (vertical axis). (a)—(c) Reprinted with permission from [88]. Copyright (2015) American Chemical Society.
(d) and (e) Reprinted from [89], with the permission of AIP Publishing. (f) and (g) Reproduced from [160]. CC BY 4.0.
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Figure 16. Electronic flow collimation. (a) Electron collimation based on a pointlike source at the focal point of a parabolic interface
separating two regions with opposite charge carrier densities. Calculation shows small scale and large scale current distributions. In the inset
this current density analyzed for the white box area. The beam is collimated on the scale of the electronic wavelength. Reprinted (figure)
with permission from [92], Copyright (2017) by the American Physical Society. (b) Electron collimation based on etching the graphene to
specific shape [164]. (c) Pinhole configuration used to generate a directional beam in [165]. (b) Reproduced from [164], with permission

from Springer Nature. (c) Reproduced from [165]. CC BY 4.0.

limited by electrons injected perpendicularly from the side of
the contact to the interface (see dashed arrow), which could
then easily reach the large electrodes via Klein tunnelling.
With proper shaping of the devices and the versatility of hBN
encapsulated device architectures higher efficiencies could be
reached now.

4.2.2. Tunable-beam splitters and reflectors. ~ The angle-
dependent transmission was also used to make a gate tun-
able beam-splitter [89]. The device architecture is shown in
figure 15(d). The electrons are injected from electrode L, the
current is measured on the rest of the terminals and tilted gates
are used to realise a junction tilted with respect to the injec-
ted current. The percentage of the current measured at the top
contact in the bipolar region (p-n, n-p) clearly increases com-
pared to the unipolar region (n-n or p-p) case, as demonstrated
in panel (e). It was found that most of the current is diverted
to the top contact when a p-n junction is formed. This study
was followed by studies on similar architectures, where even
higher tunability was demonstrated [161, 162]. The geometry
shown on figure 15(f) relies on similar principles [160, 163]. In
the corner-reflector devices the source and the drain is connec-
ted by two gates: gate A used for collimation and gate B used
as the reflector. The principle is similar to that of a prism, how-
ever here the refractive index of the inner and outer region are
gate tunable. The measurements from [160] are shown in panel
(f). The reflector works in the n-p-n regime, for large densities
within region B. In this case, resistance larger than in the CNP
region can be reached. Limitations on the visibility come from
residual scattering mechanism (here phonons), since electrons
which do not arrive perpendicularly to the interface need to tra-
verse several times within the prism, which leads to enhanced
scattering probability.

4.3. Collimation and lensing

4.3.1. Collimation using p-n junctions.  For the experiments
above the collimation effect of a p-n junctions was important.
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As shown in section 2.3.2 and demonstrated on figure 14(a)
smooth p-n junction only transmits electrons under small
incidence angles. Smooth p-n junctions are easy to realize in
suspended samples, where the gate distance is large. However,
for several experiments, this has to be combined with sharp p-
n interfaces, which poses technical challenges. An improved
version of p/n collimation have been suggested by Liu and
coworkers in [92]. Specifically, by combining negative refrac-
tion and Klein collimation at a parabolic p-n interface, highly
collimated, non-dispersive electron beams can be engineered,
which stay focused over scales of several microns, as shown
in figure 16(a). Such ‘beams of electron waves’ can be bent
and steered by a magnetic field without losing collimation, see
figure 20. This provides a setup for observing high-resolution
angle-dependent Klein tunneling and high-fidelity transverse
magnetic focusing [166].

This setting is based on feeding charge carriers through a
point-like source (vertically) into the system. Indeed, such sub-
100nm point contacts have already been experimentally real-
ized in graphene [167]. However, the intensity of the created
beams suffers from the fact that only an angular segment of the
isotropically emitted wave is collimated. Enclosing the point
source by a cavity to collect such losses should, in principle,
allow for strongly enhancing the beam intensity.

4.3.2. Geometrical collimation.  Other methods to generate
collimated beams are shown in panels b and c of figure 16.
In panel (b) the geometrical shaping of the devices is used
to make narrow injector contacts [164]. This allows a well-
defined injection angle to the central region and the p-n junc-
tion that is realized at the boundary of the yellow gate. In such
architecture the injector part has to be ballistic as well, which
puts more serious constrains on the device quality. Moreover,
the edge of the injector part of the devices often suffer from
edge roughness due to the etching procedure used to define
them, which leads to random scattering and hence can ran-
domize the outgoing electron trajectories close to the injection
point. A solution for this problem is shown in figure 16(c),
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Figure 17. Negative refraction and Veselago lensing. (a) Theoretical concept of a graphene based Veselago lens using negative refraction.

(b) Experimental design with electron trajectories traced in red. (c) False colored scanning electron microscope of the device. (d) Constant
current is injected from top left contact and the collected current at bottom left contact is measured. Background (taken at V), = —9.5V) is
substracted. Red triangles indicate current enhancement. (a) From [10]. Reprinted with permission from AAAS. (b)—(d) Reproduced from

[164], with permission from Springer Nature.

where the side of the injector contact is used to drain the elec-
trons that are not injected under a narrow angular distribution
[165]. Here the injection is done from the bottom of the
injector-collimator element (shown in red), and after the con-
striction the black contact can be used to drain the uncollim-
ated electrons. The viability of this method was tested using
magnetic focusing experiments [165].

4.3.3. The Veselago lens. A very peculiar negative refrac-
tion property of p-n junction can also be used to make a ‘per-
fect lens’, called Veselago lens. In their early work Cheinaov
and coworkers have suggested [10] that a flat p-n surface can
be used to focus the trajectories originating from a point like
source to a point like detector. This is shown in figure 17(a)
where the trajectories originating from S source electrode are
refocused to D1 after two reflection through the p-n junc-
tion. The experimental challenge lies in the formation of point
like sources [167] and in the realization of sharp p-n inter-
faces. This is important, since as described in section 2.3.2.2,
for smoother junctions only trajectories that are close to per-
pendicular to the junction are transmitted. The first signa-
tures of the lensing was shown in [164] in a geometry shown
in figure 17(b). The trajectories are injected through a con-
striction, which similarly to the proposal are twice refracted
through a p-n junction. The SEM image of the device is shown
in panel (c). The geometrical parameters of the device, a and
b determines the density ratio at which the focusing to the
drain (‘OUT’) electrode should happen. Weak signatures of
this focusing effect were observed in the measurements shown
in figure 17(d), the position where a weak enhancement is
observed is marked by red arrows. The different curves cor-
respond to different doping in the green region of the device,
and for the position of the arrows the doping in the yellow
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region is set to the focusing condition. Later work have shown
signatures of this lensing effect in interference experiments
[169]. Other theory works considered focusing using circu-
lar p-n junctions and analyzed the appearing caustics and the
viability of semi-considerations [170-172].

4.4. Anisotropic Fermi surfaces

4.4.1. Gate-defined electron gquiding in ballistic bilayer
graphene.  Early designs of quantum nanostructures in
mono- and bilayer graphene confined the charge carriers by
physically etching the graphene sheet [173—175]. This method
allowed to observe some quantum confinement effects in
graphene, but introducing hard wall boundaries by etching
is intrinsically flawed. Edge disorder and, consequently, ran-
domly localised states along the sample edges are inevitable,
leading to a loss of coherence and control of the charge carri-
ers’ degrees of freedom.

An alternative for confinement in bilayer 2D materials uses
electrostatic gating [49-52]. In a bilayer lattice, an external
electric field breaks the inversion symmetry and opens a band
gap. Then, in the gapped device, e.g. two split gates may
define a channel: adjusting the potentials of the gates tunes
the Fermi energy into the conduction band within the chan-
nel region but into the band gap underneath the split gates, as
shown in figure 18(a). This method of electrostatic confine-
ment introduces smoother confinement potentials and avoids
edge-induced device perturbations. Over the recent years, such
gate-defined soft electrostatic potentials have developed into a
formidable tool for electron confinement, steering, and con-
trol in bilayer graphene. Immense progress in sample qual-
ity and gating has enabled the demonstration of electron con-
finement and control in a series of gate-defined quantum
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Figure 18. Electron guiding and anisotropic propagation in bilayer graphene. (a) Device schematic for electrostatic soft confinement and
guiding in gapped bilayer graphene: Multiple gates locally modulate both the gap and the charge carrier density such that, e.g. the Fermi
energy is within the band gap underneath the split gates, but in the conduction band in the centre, defining a 1D channel. (b) Collimated
electron jets behind a gate-defined channel in gapped bilayer graphene. Left: spatial structure of electron flow in the bilayer graphene bulk
on both sides of the channel measured by SGM. Right: the trigonally warped Fermi lines in bilayer graphene are anisotropic in both
valleys, entailing an anisotropic, valley dependent velocity distribution of the charge carriers. The angle-dependent propagation probability
is calculated here from the velocity distribution of the anisotropic dispersion weighted by the confined channel states within the four-band
continuum model of bilayer graphene. Reprinted (figure) with permission from [168], Copyright (2021) by the American Physical Society.

nanostructures, including quantum wires [98, 156, 168, 176—
180], quantum dots [181-196], and electron interferometers
[197-199].

Due to the high quality of the gate-induced electro-
static confinement and the hBN-encapsulated bilayer graphene
samples [24, 116, 158, 168] charge carriers in such confined
structures often propagate in a largely ballistic manner and can
be guided and controlled by virtue of the external gates.

4.4.2. Lowered rotational symmetry of the electronic struc-
ture and anisotropic charge carrier dynamics.  The tunable
band gap and the anisotropic, trigonally warped low-energy
dispersion are the key factors for unusual ballistic electron
optics in bilayer graphene (BLG) different from the standard
Dirac case. The low-energy band-structure of BLG is given
by equation (6). The presence of v3 skew hopping parameter
breaks rotational symmetry and induces trigonal warping,
leading to triangularly deformed Fermi surfaces with opposing
orientation in the K= valleys, as can be seen in figure 19(b).
Since an anisotropic dispersion entails a corresponding aniso-
tropy in the charge carriers’ velocity distribution, v = %VkE,
the trigonally warped dispersion of the bilayer graphene leads
to directional and valley dependence of the ballistic electronic
transport.

Anisotropic ballistic charge carrier dynamics in bilayer
graphene has been observed directly in scanning gate micro-
scopy (SGM) experiments: In [168], they raster-scan the
bilayer graphene areas behind a gate-defined channel with
an SGM tip and measure the linear conductance between
source and drain as a function of the tip position. The
resulting conductance map in figure 18(b) shows two narrow
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jets emanating from a gate-defined bilayer graphene channel
predominantly at an angle of 60° with respect to each other.
These collimated jets at this specific angle directly result from
the reduced symmetry of bilayer graphene’s trigonally warped
dispersion, equation (6). For charge carriers at a given Fermi
energy, the triangular Fermi line gives rise to three distinct
preferred directions per valley (normals to the triangle’s flat
legs). The electronic states emerging from the channel pop-
ulate these directional states according to the distribution of
the occupied channel mode. As a result, there are two jets
behind the channel corresponding to one of the preferred dir-
ections per valley. The right panel of figure 18(b) depicts the
calculated angle-dependent propagation probability that one
obtains when weighting the propagation directions prescribed
by equation (6) by the distribution of the lowest confined chan-
nel mode. The calculations were carried out in the frame of the
four-band continuum model of bilayer graphene [63-65, 168]
valid at the relevant low energies. For recent additional evid-
ence for the anisotropic transport, see [200]).

The charge carriers’ anisotropic velocity distribution is an
intrinsic material property of bilayer graphene and its trigon-
ally warped dispersion impacts different aspects of ballistic
propagation.

For one, the real-space anisotropy translates into the Fresnel
and Snell laws for diffraction and reflection at p/n-junctions
in bilayer graphene. The discussion is similar to that of
monolayer graphene laid out in section 2.3.1, but for bilayer
graphene, the non-isotropic Fermi lines and opening of a
gap must be taken into account [201, 202]. The unique
interplay between anisotropic scattering and anisotropic bal-
listic propagation in bilayer graphene has prompted investig-
ations into the potential for intraband electron focusing and
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Figure 19. Anisotropic magnetic trajectories in bilayer graphene. Due to the C3 symmetry of the trigonally warped Fermi lines, transverse

electron focusing in bilayer graphene depends on the orientation of emission and detection with respect to the lattice (a). (b) TEF resonances
for two differently oriented devices. (¢) Simulated TEF signal for perfectly aligned (top) and 3° misaligned (bottom) quantum point contacts
with respect to bilayer graphene’s armchair crystallographic direction taking into account the trigonally warped and valley dependent Fermi

lines. Reproduced from [156]. CC BY 4.0.

valley-selective electronic Veselago lenses in bilayer graphene
[202]. These concepts allow for manipulating and controlling
electron motion based on a material’s properties and symmet-
ries. Further research has explored the motion of electrons
in gate-defined bilayer graphene cavities, revealing unusual
regular and chaotic trajectory dynamics due to the anisotrop-
ies and nonlinearities induced by the trigonally warped Fermi
lines [103, 201]. We discuss electronic cavities in detail in
section 4.5.

Moreover, the deformation of the Fermi lines in bilayer
graphene has consequences for the trajectories of charge carri-
ers when exposed to weak magnetic fields. Sections 4.1 and 5.2
describe how the combined influence of the magnetic field
and the charge carrier density on the radius of circular cyclo-
tron orbits of circularly symmetric dispersions leads to trans-
port resonances in transverse magnetic focusing experiments.
Specifically, the deformation of the Fermi lines and the cor-
responding cyclotron orbits changes these caustics of trans-
verse electron focusing resonances. For example, in bilayer
graphene, the valley dependence and deformation of the Fermi
lines change the position and shape of these caustics depend-
ing on the orientation of the device with respect to the lat-
tice, and hence the positions where the charge carriers are
focused and defocused as they move through the material.
These deformations have implications for how to steer and
confine bilayer graphene’s charge carriers in magnetotrans-
port, cf figure 19 from [156]: Here, the authors study mag-
netic focussing between gate-defined bilayer graphene chan-
nels along different crystallographic directions, demonstrating
the effect of the non-rotationally symmetric, trigonally warped
cyclotron orbits.
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The discussion above about anisotropic electron optics in
ballistics bilayer graphene relies on the anisotropic band struc-
ture and resulting velocity distribution. This line of argument-
ation is not limited to Bernal stacked bilayer graphene but
applies to any material with an anisotropic dispersion. Further
common examples of materials with anisotropic Fermi lines
include heterostructures of graphene and hBN, twisted mul-
tilayer graphene structures, and graphene with gate-defined
superlattices. In the former instance, the moiré superlattice
potential induced by the adjacent hBN leads to reconstruc-
ted spectra with circular, trigonal, or hexagonal symmetry
as a function of doping, cf figure 20 on transport studies of
anomalous cyclotron motion in hBN/graphene/hBN) [99] and
figure 13 ([116]).

In the left panel of figure 20(a) the computed modified band
structure is shown, which exhibits strong electron—hole asym-
metry. As visible in the left inset, the Fermi surface can assume
both isotropic or hexagonal textures, depending on the energy
regime. This leads to distinctly different electron propagation
in magnetic field as shown for two different doping situations:
The lower sequence of panels shows for the circular Fermi sur-
face the magnetic-field dependent propagation of bended elec-
tron waves along usual cyclotron orbit segments. In contrast to
that, at an energy corresponding to the hexagonal Fermi con-
tour, electron waves stay straight and nearly B-field unaffected
at weaker fields and follow peculiar hexagonal-shaped orbits
for stronger fields [99].

In the case of graphitic multilayers, e.g. large angle twis-
ted bilayer graphene [158] and twisted monolayer-bilayer
graphene [203] show trigonally distorted Fermi lines with
various shapes at different Fermi energies. Gate-defined
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Figure 20. Magnetotransport in graphene/hBN superlattices depending on the Fermi line shape. (a) Left: the band structure of a
graphene/hBN moiré superlattice exhibits hexagonal (red) or circular (green) Fermi lines at the K point of the mini-Brillouin zone
depending on doping. Right: charge carrier beams from simulations in the two different regimes show bending or no bending in a magnetic
field depending on the possible directions prescribed by the Fermi line symmetry. (b) Bending or no bending of the ballistic charge carrier
trajectories was evidenced in dispersive or nondispersive interference fringes in graphene/hBN Fabry—Pérot cavities reprinted (figure) with
permission from [99], Copyright (2020) by the American Physical Society, (see section 5.1 and section 5.2 for a detailed discussion about

interferences in Fabry—Pérot cavities).

superlattices allow inducing diverse and variable potential
modulations by virtue of patterned gates [110, 204-206],
entailing Fermi surfaces of various shapes and symmetries
[207]. Furthermore, external perturbations such as mech-
anical strain and shear can lower spatial symmetries and
induce anisotropies in a material’s electronic dispersion [208,
209]. Generally, the discussion of anisotropic ballistic elec-
tron optics highlights the complex nature of electron motion
in materials with anisotropic dispersions.

4.5. Directed emission from single- and bilayer graphene
cavities

4.5.1. Tailoring charge carrier emission from graphene disks.
There are different ways to tailor graphene-based cavity
regions. Complementary to gates, as used in several of the
charge carrier guiding and steering experiments reviewed in
section 4.4.1, disk-like cavities have been created by employ-
ing a scanning tunneling setting, see figure 21(a). Within
such circular p-n junctions, whispering-gallery type reson-
ant states that are confined through the ring-shaped p-n junc-
tion have been probed experimentally [210], see also [104,
211]. Such resonant states are exceptionally long-lived and
stable against decay from the cavity due to Klein tunneling
suppressing the tunneling of waves with grazing incidence.
In figure 21(b), such whispering-gallery modes are depicted
for different angular momenta, respectively. Panels (c) and (d)
display corresponding observed and calculated dI/dV spec-
tra of the whispering-gallery resonant states. Subsequently,
non-reciprocity of such whispering gallery modes was theoret-
ically predicted [212]. Earlier theoretical works had addressed
the influence of the classical charge carrier dynamics’ charac-
ter (integrable versus chaotic) on transport through open cav-
ities [213-218] and spectra of closed cavities [219-221] of
different shapes. Recently, in [222] ballistic graphene disks
with spin-orbit interaction have been shown to host chiral spin
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channels with the spin fully in-plane and radially polarized
upon tuning certain parameters.

The experimental realization of disk-like cavities has
opened up several intriguing directions, arising from the fact
that the physics of resonant states in single-layer graphene cav-
ities has much in common with the field of mesoscopic optics:
there, corresponding settings for electromagnetic radiation
have been devised for controlling highly directional emission
from asymmetrically shaped, lasing cavities [223]. In these
dielectric microcavities, total internal reflection partially con-
fines light in whispering-gallery type modes [224]. Breaking
of the rotational symmetry was found [223, 225] to lead to
directional light emission of decaying resonant states. These
emission characteristics were understood by invoking optical
ray-wave correspondence. The cavity geometry determines the
phase space structure of the rays inside the cavity in the clas-
sical ray limit of optics. Controlling the ray phase space struc-
ture by deforming the cavity allowed one to steer directional
emission and lasing in the optics context.

Based on a corresponding ray-wave correspondence
approach for electrons in graphene, such mesoscopic optics
concepts have recently been transferred to specific graphene
cavity setups. These cavities are defined by the p-n inter-
face geometry that, in turn, is determined by the gate voltage
step from the inner to the outer region, i.e. Vi, to V,, where
Vin is related to V,, by an effective index n of refraction,
Vin = nVou, as explained in section 2.3.1. A back-gate voltage
provides a tunable parameter to mimic different effective
refractive indices and, thereby, the corresponding Fresnel
laws at the boundaries. The possibility of readily realizing
negative refractive indices in graphene adds to the fascination
of such studies.

In [226], the decay features of integrable disk- and
chaotic stadium-type cavities were studied based on classical
ray tracing. Schrepfer et al [103] explores charge carrier
trapping and (directed) emission for deformed leaky graphene
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Figure 21. Confining and probing electronic states in single-layer
graphene cavities. (a) Disk-like microscopic cavity (hosting
resonant states) based on a circular p-n junction created by the
combined effect of an STM tip with voltage bias (Vb) and a
back-gate voltage (Vg) inducing a ring-type p-n junction (see
[210]). It creates a sharp boundary with associated Klein scattering
of charge carrier waves giving rise to confined whispering-gallery
resonant states. (b) Spatial profile of calculated whispering-gallery
modes. The effective confinement is stronger for larger angular
momentum with more oblique wave incidence angles. The left
(right) panel shows modes with weak (strong) confinement,
respectively. (c) Differential tunneling conductance (dI/dVb) as a
function of Vb and Vg. The two fans of interference features,
marked WGM’ and WGM”, originate from different WGM
resonances. (d) Corresponding calculations based on an effective
Dirac model. From [210]. Reprinted with permission from AAAS.

micro-disks by considering the complete ray-wave corres-
pondence through classical and quantum simulations. As
depicted in figure 22(a), the corresponding ray and wave res-
ults agree semi-quantitatively. They both exhibit a pronounced
directed emission of electrons, leaving the cavity to the right
for that setting. More generally, one finds various emis-
sion characteristics depending on the position of the source
where charge carriers are fed into the cavities. Furthermore,
single-layer and double-layer graphene cavities exhibit Klein-
and anti-Klein tunneling at the cavity boundary, respectively,
leading to distinct differences concerning dwell times and res-
ulting emission profiles of the cavity states. Moreover, bilayer-
based cavities offer the additional possibility to tune between
Klein and anti-Klein tunneling by varying a respective asym-
metry parameter [65, 108, 111, 201, 227, 228]. For bilayer
graphene, trapping of resonant states is more efficient, and
the emission characteristics depend less on the source posi-
tion [103]. Recently, in [228] the trapping, respectively trans-
mission, of charge carriers in a single- and bilayer graphene-
based Corbino disk has been studied and proposed as a signa-
ture of Klein and anti-Klein tunneling, respectively.
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4.5.2. Symmetry breaking through anisotropic Fermi surfaces.
The left panel of figure 22(b) shows a typical resonant state in
a bilayer-graphene-based disk. Interestingly, despite the circu-
lar cavity geometry, the wave simulation result displays dis-
tinct emission directions, which can be understood as follows.
While the current is injected isotropically from the central
point source, the reflected waves (through anti-Klein tunnel-
ing) return to the point injector, then acting as a scatterer.
However, the scattering is non-isotropic because the under-
lying Fermi contour gets non-circular for bilayer graphene
at finite energies. Hexagonal contributions to the Fermi con-
tour lead to six predominant velocity directions [99] that
are filtered out, cf section 4.4.2, figure 20. They determine
the resonant state in figure 22(b) and thereby peculiar dir-
ectional charge carrier emission. In [201], the emergence of
non-standard fermion optics solely due to anisotropic mater-
ial characteristics, i.e. k-space structure, has been examined in
much more detail. There it is shown how the anisotropic dis-
persion of bilayer graphene induces chaotic and regular charge
carrier dynamics depending on the gate voltage, despite the
high symmetry of the circular cavity, cf the right panel of
figure 22(b).

These findings imply that directional emission can be
steered by breaking the cavity geometry’s symmetry and
through an anisotropic dispersion. Compared to standard
mesoscopic optics, graphene electron optics provides an addi-
tional, fundamentally different further mechanism for sym-
metry breaking and steering electron beams. Besides, con-
trary to electromagnetic optics, the charge carrier dynamics in
graphene can be further manipulated through external mag-
netic fields, opening another angle of research. We discuss
various aspects of k-space anisotropies in ballistic graphene-
based systems in section 4.4.2.

5. Quantum-interference in graphene p-n junctions

5.1. Quantum-interference in zero magnetic field

5.1.1. FPI based on p-n junctions. In a ballistic 2D elec-
tron system, a combination of semitransparent mirrors can res-
ult in cavity resonances when wave propagation is coherent.
A very well-known example from optics is the Fabry—Pérot
interferometer (FPI). It consists of two parallel semitranspar-
ent mirrors that are spaced by a distance L.. An illustration is
shown in figure 23(a). An optical plane wave incident from
left under an angle © relative to the normal of the mirrors
enters the cavity with transmission probability 7. At the other
mirror the wave is reflected with probability R = 1 — T. This
process can be continued to a finite number of partial waves
limited by temporal and spatial coherence. Once summing up
all transmitted partial waves » . 1); one obtains for the trans-
mitted intensity the well-known relation 1/(1 + Ksin(vy/2)?),
where K = 4R /T? is proportional to the square of the so called
Finesse F=7+/R/T and v the propagation phase between
two successive emitted partial waves: v = 4w nL.cos(0)/\.
Here, n is the refractive index and A the wavelength. The fin-
esse can be seen as the quality factor, which in a practical
optical etalon or narrow-band filter can take large values close
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Figure 22. (a) Directed charge carrier emission from tailored graphene-disks. Ray-wave correspondence in single-layer graphene billiards
of Limagon shape with effective refractive index n = —1. The light blue area marks the cavity. Left: Ray simulations for point source
injection marked as yellow dot. Right: Corresponding wave simulations for the same source position as on the left. The color scale
represents the electronic wave function intensity. Reprinted (figure) with permission from [103], Copyright (2021) by the American
Physical Society. (b) Effects of k-space anisotropy. Left: Local charge carrier density for charges injected from a point-like source at the
center of a bilayer graphene disk (diameter 1 pm), dashed line marks the midfield region (7, = 2 pm). Reprinted (figure) with permission
from [103], Copyright (2023) by the American Physical Society. Right: Poincaré surface of section revealing different types of trajectory
dynamics in a gate-defined bilayer graphene electron cavity: chaotic dynamics (iii), stable triangular, periodic orbits (ii, v), unstable periodic
orbits along the diameter (iv), and whispering-gallery-like orbits (i, vi). Images taken from [201].
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Figure 23. FP oscillations in p-n-p or n-p-n cavities. (a) Schematics of a Fabry—Pérot (FP) setup with two planar mirrors separated by the
distance L. The mirrors have a fixed transparency of 7. In the lower part, the bandstructure is shown for such a three-section graphene device
in a p-n-p gate configuration. (b) Cross section of the encapsulated graphene device with the two outer sections controlled by the global
back gate (BG) and the middle one controlled by the local top gate (TG). In (c) the measured conductance G(n) as a function of carrier
density n is shown for a typical device. The conductance modulation corresponds to ~10%. (d), (e) The derivative dG/dVpg of the
two-terminal conductance is shown as a function of back-gate and top-gate voltages. The left graph (d) is the experiment and the right one
(e) the simulation. (f) G as a function of normalized densities in the outer, oy, and inner region, ni,. On the right side (g) three cuts along
different directions (red, green, blue) are shown. The modulation is clearly largest along the blue cut, which is the directions along which
only the carrier density of the inner region is changed. (a)—(e) Reproduced with permission from [69]. The calculation in (e) was performed
by Ming-Hao Liu and (f) and (g) Reprinted with permission from [229]. Copyright (2017) American Chemical Society.

to F ~ 1000000, see e.g. in [230]. In analogy, electrons in a they can serve as elements to realize an electronic FPI. An
ballistic 2D electron systems at the Fermi energy are coherent example is sketched in figure 23(b) and a typical interfer-
if temperature is small enough and phase randomization due, ence pattern as measured by the two-terminal conductance G,
for example, gate noise can be neglected. Since p-n junctions  which is proportional to the total transmission probability, is
in graphene have the properties of a semitransparent mirror, shown in figure 23(c). Here, an encapsulated graphene device
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is sketched that consists of three gateable regions: the cent-
ral inner one and two outer regions that are gated by the back
gate BG, while an additional top gate TG is used for the inner
region. Here, we can realize a n-p-n, p-n-p or a general n-
n’-n device. Let us assume that we gate the device into the
p-n-p regime as indicated by the energy diagram. The meas-
ured interference pattern in G is shown as a function of carrier
density in the middle section n;,. The carrier density in the
inner n-region is increased starting from the CNP at iy, = 0 to
4-10'® m~2. The conductance increases with carrier density as
expected, but on top of this general trend conductance oscil-
lations are seen. The visibility is of order 10%. This is very
different to optical cavities where the visibility is ~ 100%.
This shows that the transmission probability of the mirrors in
graphene, averaged over all angles is surprisingly large. This
is due to Klein tunneling which leads to a large transmission
at normal incidence. If we would only consider waves travel-
ling normal to the p-n junctions, the visibility would disappear.
It is important to remember that the low visibility in graphene
interferometers based on p-n junctions as semitransparent mir-
rors is not caused by limitations in coherence but is intrinsic
and caused by Klein tunneling [25].

The bandstructure of graphene at the tight-binding level is
rather simple. However, combining all electrodes and contacts
with graphene is not straightforward to model, but it can be
performed using the scaling approach introduced in detail in
section 2.5.3. Figure 23 shows a comparison between a meas-
urement (panel (d)) and the respective parameter-free sim-
ulation (panel (e)). The correspondence between the two is
remarkable, even detailed features are reproduced. Note, to
enhance the features, the derivative of the conductance versus
the back-gate voltage is plotted here. There are four regions,
clearly separated by two pronounced lines. The vertical line at
Vg = 0 corresponds to the CNP in the outer two regions. The
line with the negative slope corresponds respectively to the
CNP of the middle region. This line has a finite slope because
ni, is tuned by both gate voltages. Of the four quadrants, the
top left corresponds to the gating situation p-n-p, the top right
to n-n’-n, bottom right to n-p-n, and bottom left to p-p’-p. We
see Fabry—Pérot (FP) interference effects in all four quadrants,
though they are the weakest in the n-n’-n case. In contrast,
they are most pronounced in the bipolar regions. Here, the
main contribution originates form the expected FP resonances
formed in the inner region. For the unipolar situations, the elec-
tron waves propagate all the way from the left source to the
right drain contacts, where reflections can happen, too. That
the oscillations are fainter in the n-n’-n case as compared to the
p-p’-p case suggests that the contacts are n-doped. In this case,
there are also p-n junctions present at the contacts enhancing
the reflection probability. It is instructive to inspect the inter-
ference pattern even further. A zoomed-in graph is shown in
figure 23(f), now plotted as a function of normalized coordin-
ates, ni, and ngy. The modulation in G that one experiences in
a cut along the blue line corresponds to the proper FP oscil-
lations of the inner cavity (see panel (g) for the conductance
traces along these lines). The oscillation along the green cut
shows oscillations that are due to FP oscillations generated in
the left and right outer regions separately. And finally, the red
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cut corresponds to unipolar gating with the largest cavity size.
The visibility is the weakest in the red cut, intermediate for the
green one, and largest for the blue cut.

FP resonances have become the key signature for claiming
ballistic transport in all kinds of graphene devices [23, 25, 31,
61, 87, 111, 229, 231-240] which is only qualitatively cor-
rect as detailed below. FP resonances not only appear in the
linear-response conductance, but also when superconductors
are involved, for example in the critical current of graphene-
based Josephson junctions [234, 236, 238, 239] and in
Andreev reflection in normal metal-graphene-superconductor
devices [240]. They would also show up in thermoelectrical
properties [231, 241] and higher moments in charge trans-
fer, for example in noise properties. FP interferences go
beyond monolayer graphene. They have been observed in
bilayer [111] and trilayer graphene [232]. Additionally, in
graphene superlattices the secondary Dirac points can give rise
to additional (quasi-) bipolar barriers, yielding more complex
interference patterns [99, 229, 242].

While the observation of FP interferences is widely used
as evidence for ballistic transport, based on the bare observa-
tion one should not claim that the scattering mean-free path
is larger than the sample size: g, > L (see a similar discus-
sion on magnetic focusing in section 4.1). Even if there is
appreciable disorder, e.g. close to sample edges, there is still
a distribution in scattering so that there might still be enough
electron trajectories that remain ballistic in the interior of the
sample. A detailed study would require modelling the visib-
ility of the interference pattern taking also finite temperat-
ure into account [243]. As mentioned before, p-n junctions
are never abrupt, and they are rather smooth in high-quality
graphene devices which can be operated at lower carrier con-
centrations for which Ag is large. To assess the effective width
of the p-n junction barriers, it is helpful to deduce the effect-
ive cavity length L. from the experiment. It can be estim-
ated if we assume hard wall potentials bounding the cavity.
For waves travelling normal to the cavity mirrors, constructive
interference occurs if the path difference between the adjacent
partial waves is a multiple of A\g. This leads to the condition
2L, = jAr, where j is an integer. Since the Fermi wavelength
Ar depends on the carrier density as kg = 27/ A\ = /71, we
obtain for the j-th constructive interference maximum the con-
dition L¢\/n; = J+/7. In the experiment we can note down the
carrier density for two adjacent conductance maxima, 7;4 and
n;, to obtain for the effective cavity length L. the equation
L.;j=+/7/(\/fj51 — /7). This length depends on the index
Jj. In practice it should be a constant if the barrier were indeed
hard wall potentials. However, it strongly varies in graphene
devices. In a p-n-p graphene cavity, the extracted L. ; strongly
depends both on the inner and outer carrier density. L. expands
(shrinks) if the inner carrier density is increased (decreased),
and vice versa, L. shrinks (expands) if the outer carrier dens-
ity is increased (decreased). The change in cavity length can
be large and can account for a ~100% change [69, 229]. Until
today, Fabry—Pérot interference effects were only studied in
the low bias regime, where the oscillations display a checker-
board pattern in conductance on bias-gate maps. It would be
interesting to explore interference effects also in the non-linear
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Figure 24. Different field regimes. This schematic emphasizes on the four different magnetic-field regimes. In the Fabry—Pérot regime (a)
the straight classical electron trajectories are only slightly bent, while for larger fields (b) two-dimensional cavity bound states, also known
as scar states, can form. If the magnetic field is as large that the cyclotron orbit is smaller than the sample dimension both in width and
length, skipping orbits are formed (c). These orbits are chiral, meaning that there is a unidirectional propagation determined by the sign of
magnetic field and the sign of the charge carriers (electron or holes) along each edge. At a p-n junction, and for a constant magnetic field,
snake states lead to a current flow that follows the p-n junction, crossing one side of the sample to the other. If the field is even higher (d),
one enters the quantum Hall regime where skipping orbits become one-dimensional edge channels. Reproduced from [27]. CC BY 4.0.

transport regime, which is a topic of increasing interest [244].
The temperature dependence of FP resonances has been stud-
ied in detail in [243].

5.2. Non-zero magnetic field (low field regime)

5.2.1. Different magnetic-field regimes.  In the following, we
introduce the four different magnetic field regimes for p-n
junctions, depicted in figure 24. We assume phase-coherent
ballistic transport and consider a single p-n junction in the cen-
ter of a two-terminal graphene device. Since there are two cav-
ities, Fabry—Pérot resonances may appear on both sides of the
p-n junction, provided there is enough specular scattering of
electron waves at the contacts. We have already mentioned that
contact doping is a general phenomenon in graphene devices.
It can be n or p-type depending on the contact material and
fabrication processes involved. It is a parameter that is still
today not very well understood. Let us further assume that the
size of the sample is much larger than the Fermi wavelength
Ar and that the graphene edge is ideal with a large probability
for specular reflection. In this case, we can consider electron
propagation in the form of wave packets that follow semiclas-
sical electron-optical trajectories. A magnetic field B applied
perpendicular to the graphene plane causes a Lorentz force to
act on the electrons which consequently are deflected. If the
deflection angle is much smaller than one, we are in the low
field limit which is indicated in figure 24(a). Here, the Fabry—
Pérot condition for constructive interference is only slightly
modified. But there is an interesting effect in the acquired
phase which has been used as evidence for Klein tunnel-
ing [22]. It will be discussed further below. The electrons in
a homogeneous magnetic field will follow cyclotron motion,
as detailed in section 2.2.1. The cyclotron radius, r. shrinks
with increasing magnetic field. If r, is of order sample size
(length or width), the corrections to the conventional Fabry—
Pérot resonance are becoming large. New bound states can
form, so called scar-states [245]. A very symmetric scar-state
is indicated as an example in figure 24(b). Scar states can be
much more complex having intersecting electron trajectories,
for example. If 7. is smaller than the sample size, full cyclo-
tron orbits fit into the two cavities. Now, so-called skipping
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orbits are formed along the edges of the device as seen in
figure 24(c). They lead to charge transport along the edges in
a directional manner determined by both the sign of the mag-
netic field and the carrier type. The cyclic motion is opposite in
a p-type materials as compared to an n-type one, as discussed
in section 2.2. If we follow the cyclic motion along the edges,
we see that propagation can be pinned to a p-n junction, due to
the opposite chirality on opposite sides of the junctions. The
charge motion now follows the partial cyclotron orbits along
the p-n junction. This propagating state is known as snake-
state [27, 94, 235, 246-253]. This is a very peculiar addition to
charge transport as it connects the two edges of the graphene
device. Snake-states were proposed already before graphene
for 2D electron systems realized in semiconducting hetero-
structures [254-257]. Since this electron gas is unipolar (elec-
trons), one requires a magnetic field reversal in the two areas
to obtain a snake state. This is much more difficult to real-
ize. Hence, the ambipolar nature of graphene has given us a
neat playground to study this special kind of electron state [27,
235]. If the magnetic field is increased further, the skipping
orbits evolve into quantum Hall edge states [95, 258-262]. To
understand when and how one enters the quantum regime it is
instructive to look at the cyclotron frequency w, = eBvg/fik.
To reach the quantum Hall regime, w, times the scattering
time in the bulk should be larger than one. This ensures that
there are full cycles that need to be quantized along the usual
Sommerfeld-Bohr condition. Additionally, Aw, should be lar-
ger than the thermal energy. There is an additional length
parameter, known as the magnetic length Iz which follows
from the Landau quantization: [z = \/h/eB. Now, we can for-
mulate the two conditions required to remain in the regime
where semiclassical electron orbits can be considered: Iz > Ag
and r. > Ag. To remain in the semiclassical regime, the mag-
netic field cannot be too large. What is very interesting and
peculiar is the dependence on electron density. The cyclotron
radius shrinks with decreasing density. Hence, the closer one
approaches the Dirac point (zero density), the less trustable
is the assumption of semiclassical transport. If one crosses
from an n-type to a p-type region, the semiclassical approach
must break down in the center of the junction. It is therefore
clear that a semiclassical approach to snake states can only
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Table 3. This table illustrates the dependence of the Fermi
wavelength Ar and cyclotron radius . at a relatively weak magnetic
field of 0.1 T on the gate voltage V, or the respective carrier-density
n. The first two rows show cases where a classical description is not
valid, as the filling factor v drops below one. It is important to
rationalize that while passing across a p-n junction the
carrier-density must change sign. Hence, there is a region in the
center of the p-n junction where a classical description in terms of
electron trajectories can only provide an approximation.

Ve (V) n(cm™2) A re at0.1T) I (at0.1T) v (at0.1T)

001 10% 3 ym 12 nm 200nm  0.04
0.1 10° 1 pm 40 nm 200nm 04
1.0 10'° 330 nm 120 nm 200nm 4.0
10 10'! 100 nm 400 nm 200nm 40

deliver qualitative results and that a proper quantum treatment
is required to make quantitative predictions.

Another interesting relation is given by (I /\g)? = re/Ap =
v /4w, where v denotes the filling factor given by v = nh/eB.
Semiclassical transport, as discussed in the following two
sections, requires large filling factors. To have an idea regard-
ing absolute values, examples for typical graphene densities at
a still low magnetic field of 0.1 T are given in table 3:

5.2.2. Correction to Fabry-Pérot oscillations for the lowest
magnetic fields.  For low magnetic fields the classical
electron-optical trajectories bend very little. It is important to
recall how the FP signal appears in a graphene p-n-p device
without a magnetic field. Due to Klein tunneling, there are no
contributions to the interference from trajectories that propag-
ate normal to the two mirrors. These trajectories have angles
O = O, = 0. Only trajectories with a finite angle add to the
interference. Since the reflection amplitude at each mirror
drops fast with angle, due to the typical soft potential steps
in realistic devices, the main contribution to the interference
is due to electron trajectories with finite but small angles [22].
A scattering situation with finite angle in zero magnetic field
is shown in figure 25(a). The two angles at the two mir-
rors have opposite sign, ©; = —0; in (i). As pointed out
by Shytov et al [25] the reflection amplitude of the mirrors,
r12(©), must be an odd function, since r; » goes through zero
when O changes sign. This sign change is thus an additional
feature of Klein tunneling. It has measurable consequences
when a magnetic field bends the electron trajectories. There
are bent trajectories of two kinds possible: (ii) one for which
the two angles remain of opposite sign, and one kind for which
the two angles have the same sign. In the former, and thus for
small magnetic fields, a phase shift of 7 adds to the interfer-
ence contribution due to the product r| - , acquiring a minus
sign. With increasing magnetic field, the symmetric trajector-
ies that enclose the origin start to dominate and the 7 shift dis-
appears. Hence, it has been proposed that a hallmark of Klein
tunneling would be a 7-shift of the FP oscillation pattern when
a magnetic field is added [25]. This has indeed been observed,
first by Young and Kim [22]. The magnetic field scale for this
transition is determined by the inverse of the cavity area given
by the length of the cavity times its width.
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Figure 25(b) shows the first experimental evidence for the
m-shift due to Klein tunneling [22]. One can see that the inter-
ference fringes shift a bit faster with magnetic field around a
field value of 0.5 T. The additional five cross-sections in (c)
make this effect a bit clearer. Due to the generally observed
dispersion of the interference fringes with magnetic field the
m-shift is not as evident as one would like to have it. In
higher mobility samples, the shift can show up in a more pro-
nounced manner. This is illustrated with figure 25(d) where
the cross-over already appears at around 25 mT [69]. This
result was obtained in an encapsulated graphene device with
a much longer cavity length compared to the previous men-
tioned example. Figure 25(e) shows FP resonances measured
in a suspended ultraclean graphene device in a larger para-
meter range [75]. For magnetic fields 215 mT further oscil-
lations appear. They are highlighted with yellow lines on the
negative magnetic field side. These resonances are so-called
scar-states. They were discovered in studies of bound states of
quasi-classical trajectories of electrons in a two-dimensional
electron gas with stadium boundaries [263]. Unlike the FP res-
onances, which can be seen as one-dimensional bound states,
scar states are cavity states that include scattering at the edges
of the sample. Additionally, a measurement and a simulation
of conductance oscillations in a graphene device with a single
p-n junction is reproduced in figure 25(f) and (g). Here the
boundary between the ‘low-field’ regime and the ‘large-field’
regime is emphasized. The boundary is determined by the con-
dition r. = L, where L is the cavity size and r, the cyclotron
radius. Outside this boundary, states with a parabolic-like dis-
persion are seen. These are due to skipping orbits and will be
discussed in the next chapter. The resonances emphasized in
blue are FP resonances where the typical 7-shift is evident too.
In addition, one can clearly see many more interference fea-
tures in the low-field regime caused to two-dimensional cavity
states. A remarkable good agreement between simulation and
experiment is found [75].

5.2.3. Skipping orbits and snake states at intermediate to high
magnetic fields.  In the intermediate to high magnetic-field
regime, the cyclotron radius r, is smaller than the length and
width of the cavity: r, < L, W. In agreement with figure 24(c)
we assume here a graphene device with a single p-n junction
in the middle. The p-doped region is on the left side and has a
hole-carrier density of piegt > 0. In analogy, the n-doped region
is on the right side with electron carrier density of night = Pleft-
We assume first, that the carrier-density jumps abruptly at
the p-n junction located at coordinate x = 0 (the x-axis points
along the sample direction from source to drain and the y-axis
is transverse along the p-n junction). In the classical electron
optical picture and for a global constant perpendicular mag-
netic field B, the carrier trajectory would alternate between
the p and n-side with skipping orbits being half circles with
opposite chirality. This situation is illustrated in figure 26(a).
The picture also suggest why one should observe conductance
oscillations due to these so-called snake-states [264-266]. If
the last half-cycle ends on the left side, the charge is reflected
back to the source contact on the left. In contrast, if it ends
on the right side, it will be transmitted to the drain contact
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(a) (b) 10 0 0 ) (e) set of scar states

n, (10'2 cm2)

Figure 25. Low and intermediate field regime with 7-shift and scar states. (a) schematically shows classical electron trajectories for a FP
arrangement with two mirrors m; and my at position x; and x; in (i) zero magnetic and (ii,iii) in a weak magnetic field. For the latter one
must distinguish between two cases: (ii) when the two scattering angles have opposite or (iii) the same sign. The contribution from the
symmetric loop, where the angles have the same sign, dominates for larger fields. This change in sign gives rise to a m-shift in the
interference pattern. (b), (c) Experimental data of the 7-shift. (b) and (c) Reproduced from [22], with permission from Springer Nature. The
shift appears at around 0.5 T. (d) Similar experimental data obtained with an encapsulated graphene device, reproduced with permission
from [69]. Here, the shift already appears at a much lower field of ~20 mT. (e) shows another low-field interference pattern obtained from
an ultraclean suspended graphene device, taken from [75]. The fine regular pattern, which is emphasized in yellow on the negative field side,
is caused by scar states. Measurement (f) and a simulation (g) for interference in a single p-n junction as a function of magnetic field and
gate axis taken along the bipolar direction. What is emphasized here, is the border between the low field and higher-field regime determined
by the cavity size L and the cyclotron radius r.. The upwards dispersing curves emphasized in light blue belong to the small angle FP
interferences. The additional interference pattern within the low field region is due to cavity states (scar states). (¢) and (f) Reproduced with
permission from [75].

(9) B lower

Figure 26. Intermediate to high-field regime with quasi-classical skipping and snake-state orbits. (a) Illustration of snake-states that
propagate along p-n junctions. If we assume a common starting point (crosses) at the bottom, the trajectory may either end up on the left or
right side, depending on the ratio between the width W and the cyclotron radius r.. This results in conductance oscillations. Lines for a fixed
ratio W/r, are parabolic in a density n versus magnetic field B map, as seen in (b). For a constant density, neighboring peaks in G(B) are
expected to be equidistantly spaced (red dots). (c), (d) show an experimental result obtained in an h-BN encapsulated graphene p-n device.
The snake-state oscillation is emphasized by the red arrows and red points. It is found that the peaks are not equidistantly spaced. This is
caused by a distortion of the orbits due to the gradual density change at the p-n junction, sketched in (f), see text for further explanations. (e)
shows the oscillation pattern in a gate-gate map at constant magnetic field. The peaks and dips follow a hyperbolic-like pattern (inset).
Finally, (g) and (f) show numerical simulations of p-n junctions for two different magnetic fields. Plotted in color is the current density
along the horizontal axis. If one follows the pattern along the zero-density line (dashed), one can see that there is a periodic sign change
consistent with the notion of snake-states. In addition to the snake-state, one can see other bound states residing on the left side. These
simulations were performed by Ming-Hao Liu, see [75]. Note, there are further equidistant oscillations (orange lines) seen in (c). They are
of Aharonov-Bohm type and are addresses in further chapters. (a), (b), (e),(f)—(h) Reproduced from [27]. CC BY 4.0. (c) and (d) Reprinted
(figure) with permission from [95], Copyright (2018) by the American Physical Society.
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on the right. Hence, the conductance should oscillate with a
period given by 4r, if we assume that pief; = nyjgn = 1 > 0.
The conductance modulation 8G can be written to be propor-
tional to cos(m W/2r.), leading to conductance minima and
maxima whenever W is an even multiple of r.. Since r, is pro-
portional to /n/B, lines of constant phase in the n versus B
plane follow a parabolic dependence: n oc B. This is sketched
in figure 26(b). In the experiment we expect the conduct-
ance modulation to follow the colored curves. The dashed
red line denotes the condition Iz = r., with Iz = \/h/eB is
the magnetic length. In the shaded region, where Iz > r, the
quasi-classical description must break down. In this regime
of large magnetic field and/or small carrier concentration,
Landau quantization needs to be considered.

Figure 26(c) shows an experimental result [75]. Note, the
gate voltage V, controls both the carrier density on the p- and
n-side with an equal magnitude. The stronger intensity modu-
lation which starts with a spacing in magnetic field of ~0.5 T,
which then seems to decrease, is thought to be due to snake-
states [27, 235]. The previous reasoning for the snake-state
oscillation predicts a constant period 6B in magnetic field at
constant carrier density. This is not what is observed, as shown
in panel (d). Clearly, if we consider a horizontal cut at con-
stant density, the spacing narrows with increasing magnetic
field. In the data, there is another set of faster but weaker
oscillations seen superimposed. This oscillation pattern is to a
good approximation equidistant in magnetic field. It likely ori-
ginates from Aharonov—Bohm oscillations due to edge-states
forming along the p-n junctions at small densities [95, 154].
This physics will be covered in section 6.2.

One could also think that other quasi-classical electron tra-
jectories could contribute to the current. For example, traject-
ories crossing the p-n junction not at normal incidence, but
with a shallower or larger angle. However, one expects that
these contribute less to the total conductance. The main contri-
bution is due to trajectories that cross the interface at (or close
to) normal incidence, since for those trajectories the transmis-
sion probability is maximal due to the Klein effect, while for
all others the transmission probability is strongly suppressed.
This argument does not really hold for a sharp step in car-
rier density, but only for a smooth potential changes. In real
devices, however, the step varies smoothly over a length of
> 20 nm.

It is not straightforward to calculate the shape of the snake-
state electron trajectory in a self-consistent manner, account-
ing accurately for the gradual potential change. The semi-
circles deform by elongating along the y-direction as indicated
in figure 26(f). However, it is possible to evaluate the length
R, assuming a linear density change between the p and the n
side [95]. One obtains:

X

Here, d is the width over which the density changes from
the p to the n-side. Interestingly, the skipping orbit length at
fixed magnetic field is determined by the local electric field.

mh

eB

2
|pleft - nright|

2d (44)
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Figure 26(e) shows measurements at fixed magnetic field of
0.12 T as a function of the two gate voltages Vier, and Vg
that control the densities in the two regions. The inset shows
lines of constant electric field E, obtained numerically. The
oscillation pattern appears in the gate-gate map in the form of
hyperbola. The modified equation for the skipping-orbit length
preserves the relation n(B) o B? that is followed by intensity
maxima and minima as introduced with figure 26(b). However,
it does change the periodicity in magnetic field for constant
densities. One does not expect a constant AB anymore, but
rather AB o 1/B. This fits much better to the experimental
observation in figures 26(c) and (d) where it is evident that
for a horizontal cut the spacing between adjacent conductance
maxima decreases with increasing magnetic field. This obser-
vation can be taken as a confirmation that the potential drops
gradually at the p-n junction.

Figure 26(f) also shows 2D-simulations of current patterns.
Here, the current component in x-direction is shown for two
different scenarios: a small and a large field. If we concentrate
on the region of the p-n junction, with the zero-density line
indicated by a dashed line, we can recognize the alternating
skipping pattern. Following along the dashed line from the bot-
tom to the top, the current alternates. It is first blue (positive),
then changes to red (negative), and so forth. Hence, the pic-
ture of commensurate snake orbits determining the conduct-
ance is appealing. However, it assumes a fixed starting point.
This starting point is indicated in figure 26(a) with a cross.
One might think that the conductance oscillation could average
out if one varies the starting point. There has been simulation
of this problem in which the sum of all trajectories was con-
sidered. Interestingly, caustics can show up causing repeated
refocusing which in a similar manner can cause the conduct-
ance modulation [116, 264]. If we look at the left half of the
sample in the simulations, we see two things: (i) a fast oscil-
lation pattern which is due to scar states, but (ii) we also see
a peculiar blue region close to the bottom sample edge and an
opposite red one close to the upper sample edge. These regions
can be interpreted as the starting points of the quasi-classical
picture with snake trajectories. The charge current is fed into
the sample along the bottom edge with j, > 0 (blue region).
The current stream then follows the snake orbit. The part that
is reflected ends on the top edge with j, < O (red region). The
part that is transmitted to the right can nicely been seen as skip-
ping orbits along the upper edge in the right half of the sample.
What exactly determines these ‘starting points’ is at present
not known.

Since graphene is a zero-bandgap semimetal, the Fermi
energy can continuously by moved from the valence band into
the conductance band. Hence, the discovery of graphene had
made it possible to study snake state physics in quite some
detail for the first time [27, 235]. Other geometries that were
theoretically studied are cylindrical magnetic field patterns,
which can be realized in graphene with a cylindrical gate. Such
a gate can confine electrons through boundary snake-states.
Many more electron-optical devices can be conceived based on
confinement geometries defined by bipolar junctions. Further
examples are discussed in the section 4.2 and section 4.3.
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6. Edge state interferometers

In the previous section we saw that semiclassical arguments
well describe transport in a wide range of magnetic field
strengths, see figures 24(a)—(c). We now move to the quantum
regime, when semiclassical skipping orbits and snake states
break down and give way to fully formed quantum Hall edge
channels—such channels exist wherever the electronic dens-
ity changes enough for at least one Landau level to be crossed,
which is for example the case both at the physical edge of
the graphene flake and on each side of a p-n junction, see
figure 28. We thus present electron quantum optics develop-
ments in graphene setups using such edge channels as wave-
guides. The first step is to outline the basics of quantum
Hall transport. Fundamental concepts, including the physics
of decoherence, will be introduced from a general perspective,
while the peculiarities of graphene will be highlighted when
necessary. The second step is a detailed review of different
edge state interferometers realised in graphene, in particular
Mach-Zehnder interferometers (MZIs) based on p-n junctions
and Fabry—Pérot ones formed by QPCs, much as in 2DEGs.
We also present some considerations, both experimental and
theoretical, on decoherence effects in these experiments, and
how they compare with their AlIGaAs/GaAs counterpart.

6.1. Chiral edge electronics: theory essentials

The basics of integer quantum Hall transport can be under-
stood within a single (quasi)particle picture via the Landauer-
Biittiker formalism [74, 267]. In the simplest linear-response
scenario, electrons injected from a given reservoir propagate
phase-coherently and independently from each other along
the available 1D edge channels—one for each filled Landau
level—and are finally absorbed by a second reservoir. The
conductances of arbitrary multi-terminal setups are obtained
once the single-particle transmission amplitudes at the Fermi
energy f,% are known, where m(n) labels a given quantum
channel from/into reservoir a (/5). Numerous extensions of the
formalism were worked out, e.g. to deal with non-linearities
[268] in various contexts [269-272] or to consider AC trans-
port and current fluctuations via Floquet scattering theory
[273, 274]. Though simple'?, this approach provides a clear
and remarkably well-working physical picture of edge trans-
port. It is on this basis that some key concepts behind elec-
tron quantum optics eventually developed [32, 274, 277, 278].
In spite of its successes, this intuitive construction has lim-
itations coming from its two main requirements: (i) ideal-
ised, featureless 1D chiral edge channels in one-to-one corres-
pondence with bulk Landau levels; (ii) Fermi liquid premises,
i.e. free quasielectrons propagating from reservoir to reser-
voir. Though fair initial assumptions, neither turns out to be
particularly accurate.

Consider first the edge state problem, starting from a 2D
system at B = 0. The sample edges are defined by a confining

10 Tts simplicity is actually deceiving, as it hides numerous subtleties rooted in
mesoscopic physics (non-locality of responses, role of contacts, invasiveness
of probes...). See e.g. [275, 276] for some details.
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Figure 27. (a)—(c): Single-particle Landauer-Biittiker picture of
widely-separated, exactly 1D edge channels. Arrows indicate the
propagation direction. (d)—(f): Chklovskii-Shklovskii-Glazman
self-consistent (Hartree) picture. Edge channels are compressible
(shaded) strips of finite width a distance b;,i = 1,2 apart, separated
by narrow incompressible (white) strips of width a;,i = 1,2.
Reprinted (figure) with permission from [281], Copyright (1992) by
the American Physical Society.

potential ®(r), to which one can (semiclassicaly) associate a
smooth local electronic density ny(r) which decreases to zero
as it approaches the sides. Now let B £ 0. The textbook picture
of adiabatically bending the Landau level energies E, (k) as
they approach the sample sides [74]

E, (k) = E, (k) —e® (ry), 1o = (x,y), ;e = kI3, (45)
yields sharply defined 1D channels with velocity v, ~
OkE,(k), and an associated electronic density np(r) which is
discontinuous at each Landau level crossing. This is shown
in figures 27(a)—(c). The smooth density profile at B=0,
sketched in red, is massively distorted and becomes step-like
when the magnetic field is switched on, ny(r) — ng(r). It was
realised [279, 280] and formalised [281, 282] early on that
this cannot be accurate: the electrostatically defined profile
no(r) can only be modified slightly in the presence of B, since
hw, < |e®|. At the same time the Landau levels do not simply
adiabatically bend. The qualitatively correct picture is shown
in figures 27(d)—(f). It implies the formation of compress-
ible (O, # 0) electronic strips—the edge states—separated
by incompressible (0, = co) regions—the gapped Landau
levels. The problem must be solved self-consistently, since the
electrostatic potential, the electronic density and the spectrum
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Figure 28. Edge channel structure at a graphene p-n junction. The
top (blue) and bottom (red) gates define the junction and the filling
factors v, here v = 2, —1 respectively on the n and p side. The n and
p quantum Hall channels are compressible regions of finite width
(shaded gray in the right panel) running along the graphene edges
and following the junction profile. They are labelled by valley
(K,K') and spin (1,]). The red curves in the right panel show the
density and electrostatic profiles for B = 97,d; = d, = 20 nm.
Reprinted (figure) with permission from [284], Copyright (2022) by
the American Physical Society.

form a set of coupled non-linear equations. The original con-
struction by Chklovskii, Shklovskii, Glazman and Matveev
[281, 282] was recently improved via self-consistent numerics
[283] and in this form applied to graphene p-n junctions [284],
see figure 28. It is a Hartree-level construction. What if non-
local exchange (Fock) is also taken into account? Remarkably,
in this case the bulk-boundary correspondence ‘one edge state
for each Landau level’ does not necessarily hold [285]. This
‘edge state reconstruction’ was experimentally confirmed in
different systems [286, 287], and recently further investigated
[288, 289]. One concludes that the edge state properties of
a quantum Hall droplet are less universal than those of the
bulk topological phase. In particular, the edges have in gen-
eral a non-trivial internal structure possibly hosting multiple
co- and counter-propagating modes of varying width—which
may also be more or less strongly coupled to one another, see
below. This is a general conclusion, affecting both integer and
fractional quantum Hall phases. In fact, since transport exper-
iments probe edge state excitations, it is not always obvious
how to relate these with excitations of the topological bulk,
e.g. the fractionally charged quasiparticles of a fractional
quantum Hall phase [279]. Note that full edge reconstruction
with counter-propagating modes is expected to take place for
smoothly confined quantum Hall droplets [285, 289], but the
situation in graphene is varied, as it depends on how edges
are experimentally realised. Pristine edges obtained by exfoli-
ation can be sharp and clean, showing no sign of reconstruction
[290, 291], while in etched samples the formation of incom-
pressible strips is important [292], and counter-propagating
modes were also observed [293]. Edges obtained by gating are
clean but smooth on the /5 scale at higher fields [283, 284], so
that full reconstruction cannot always be excluded a priori.
Let us now reconsider the Fermi liquid assumption. This
is somewhat questionable for narrow edge states, since in 1D
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the Fermi liquid picture breaks down and is substituted by the
Luttinger liquid one [294]. The breakdown is brought about
by electron—electron interactions, whose critical importance in
1D can be formalised by the bosonisation procedure [295]. It
turns out that the (almost) free quasiparticles of a 1D fermionic
many-body state are not the quasielectrons of Fermi liquids,
but collective bosonic modes, the simplest being charge dens-
ity waves. Ideal 1D quantum Hall edge states are actually
realisations of chiral Luttinger liquids, i.e. , Luttinger liquids
hosting either only left- or only right-propagating modes.
Explicitly, considering spinless electrons for simplicity’s sake,
the chiral (right) Luttinger model may be brought into the fol-
lowing basic form'!

Hep = hvgqblbq, (46)
q>0

with I;:;,Bq bosonic operators creating/annihilating collective
density fluctuations propagating with velocity vq > 0, the lat-
ter depending on details of the electron-electron interaction.

An in-depth discussion of the Tomonaga-Luttinger low-
energy model does not belong here [294-299]. It suffices to
say that it is a standard starting point to study (time-dependent)
quantum Hall edge transport [300, 301], though not always
necessary [278, 302-304]. Indeed, the internal structure of the
compressible edge strips (varying width, lack of perfect homo-
geneity) and the coexistence of different channels in close
vicinity, see figures 27 and 28, remind us of the approximate
nature of equation (46), and that strips are not ideal 1D objects.
Their width should notably influence their character (Fermi vs.
Luttinger) and the velocity of excitations propagating through
them [283, 305], as well as posing fine practical problems in
the definition of a surface they may enclose [306]. On the
other hand disorder of different origins may cause phase trans-
itions within the (quasi) 1D state, as well as enhancing inter-
channel coupling [294, 301]. The latter is a fundamental point,
as inter-channel coupling is a major source of decoherence in
quantum Hall setups [307-312], together with intrinsic non-
linearities of the 1D electron liquid beyond the ideal Luttinger
construction [296, 298, 299].

Decoherence indicates the loss of phase memory of a
quantum state. It is intimately related with irreversible loss
of (quantum) information, which takes place whenever the
quantum state interacts with additional entities—a heat bath,
a fluctuating electromagnetic environment and so on—whose
dynamics is beyond our control [275, 313]. The quantum state
here is an electronic excitation propagating along an edge
channel, be it of Fermi or Luttinger nature. Its phase-memory
loss comes e.g. from interactions with a bath [314], which may
explicitly be classical [302] or quantum [303, 315], or from
intra-channel [305, 316] and inter-channel coupling [307-310,
312, 317].

To be definite, consider the case of inter-channel coupling
in an ideal Luttinger liquid scenario. The propagating sig-
nal is an eigenmode of the Hamiltonian equation (46), thus

11 See e.g. [294] for details.
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by definition it never decays. In presence of a second chiral
Luttinger strip coupled to the first by e-e interactions [305,
307, 318] the Hamiltonian becomes

H=Hy, +Hy +0H,;. (47)
Consider an excitation propagating through the first Luttinger
strip. If the second channel sits unbiased nearby it will act as
a bath, which can be traced out breaking the unitarity of time
evolution within the first channel. The dynamics induced by
mutual coupling is however richer in general, since excitations
become coherent objects spreading across two channels [304,
307, 318]. The latter may lose phase coherence by coupling to
additional environment entities, e.g. other channels, the bulk,
nearby gates. Notice that qualitatively similar conclusions
would be reached if the strips were Fermi liquid in character. In
fact, decoherence processes can be modelled quite effectively
via phenomenological ‘Biittiker probes’, i.e. fictitious floating
voltage probes which spoil phase memory without affecting
the overall charge transfer [278, 319]. This widely employed
approach is successful also in graphene [96], but obviously
cannot provide substantial microscopic insight.

We have thus seen that the theory basis for electron
quantum optics in the quantum Hall regime is the competi-
tion between electron-electron interactions (electrostatics and
beyond) and the applied strong magnetic field. Specifically
concerning graphene as a platform, some of its characteristics
set is aside from traditional semiconductor systems. Besides
its ‘relativistic’ Landau level spectrum, see section 2.1.2, two
are of central importance: (i) the valley and sublattice internal
degrees of freedom (isospin) and their locking to momentum;
(ii) the finer control one has over electrostatics and specific-
ally screening, since metallic gates can be very close to the
transport sample. The latter is in particular a great advantage,
since it allows to realise compact p-n interferometers and to
effectively screen edge channels from the environment and
each other, largely increasing the coherence length within each
[320].

6.2. P-n junction based MZIs

The first observation of a graphene p-n junction based MZI
was reported by Morikawa and coworkers in [321]. They
have realized a p-n-p junction using two gate electrodes. At
high magnetic fields edge states form which propagate along
the sample edges, and the outermost electron and hole edge
states, corresponding to filling factor 2 and —2, merge at the
p-n interface where they co-propagate at v =0, as shown in
figure 29(a). However, if as written in section 2.1.2, the inter-
actions split the lowest Landau level up, at lower field or mod-
erate interaction strength, into a doublet (K and K') then the
edge states at the p-n interface will move away from the inter-
face to regions where the doping corresponds to v = +1 (sep-
arating gapped bulk regions of ¥ =0 and v = £2). This is
shown in panel (b) of figure 29. As a result, co-propagating
edge states are formed at the p-n junction. If there is no coup-
ling of these edge states, this would lead to an insulating beha-
viour in transport measurements. As long as these edge states
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Figure 29. The formation of MZ interferometers in graphene p-n
junctions. (a) Edge states along a p-n junction, with an electron—hole
like edge states propagating along the p-n junction. Scattering
between the channels is possible at the edges. Green dashed line
mark possible MZ interformeter areas. (b) For larger fields the
lowest LL is split up and the gapped region between electron and
hole trajectories gives the interferometer’s area. (c¢) If spin spilitting
is present mixing is only possible between states with the same spin.
(d) The positions of the edge states, which reside at a given filling
factor along the p-n junction are marked with small circles with at
two different magnetic fields. (e) Position of the edge states is shown
for two different dopings. Reproduced with permission from [69].
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are close (smaller magnetic field) the coupling along the full
length of the p-n interface will result in an oscillating motion
of electrons originating from the source electrode, which is the
quantum description of the quasi-classical snake states. Edge
states with larger filling factor on both sides can participate in
the formation of quasi-classical trajectories [95]. As the mag-
netic field is increased, the edge states become separated in
the bulk, but as was suggested by Morikawa and coworkers
they can be coupled at the bottom and top edge of the sample,
as shown in figure 29(b), and hence an interferometer loop
can be formed. This interference loop results in an oscillat-
ing conductance, where the conductance maxima is separated
by a change of flux quantum within the loop. Therefore one
expects that the conductance maxima follows lines on gate-
gate or gate-magnetic field maps, where the flux within the
interference loop is constant.

For simplicity, let us assume, that a symmetric, smooth
p-n junction is formed. In this case, by increasing the dop-
ing on the two sides, the density gradient at the p-n junc-
tion increases, therefore the edge states which reside at fix
filling factor move inward, as shown in panel (f) of figure 29.
In order to keep the flux constant, the magnetic field has
to be increased. Without a detailed derivation, this leads to
parabolic-like oscillation maxima in the conductance in gate-
magnetic field maps, as can be seen in figure 30(a). Using
similar arguments, it can be shown, that for constant mag-
netic field if one of the gate voltages is changed, to keep the
area constant the other gate needs to be used for compensa-
tion, leading to hyperbolic lines in the conductance in gate-
gate maps as shown in figures 30(b)—(d).
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Figure 30. First graphene based MZ interferometers. (a) Magneto-resistance oscillations dispersing as a function of B-field and doping.

Simple calculations reproducing the findings based on the edge state

positions is shown in the right [321]. (b) Magneto-conductance

oscillation as a function of the filling factors on the two sides of the p-n junction [322]. (c) and (d) Similar features shown from [95] in 2 and
4 T magnetic field, respectively, as a function of the two gate voltages. The derivative of the conductance is shown to highlight the
oscillations. Different oscillations marked with different colors are attributed to different origin. (¢) Bias dependence of the magneto
conductance oscillation as function of magnetic field demonstrating a checkerboard pattern [321]. (f) Oscillation periodicity for MZ
oscillations is extracted for different samples, and the from that the length of the interferometer is calculated, matching nicely the
dependence on p-n junction length [322]. (g) Magnetoconductance oscillations attributed to valley-isospin physics shown in gate-B-field
maps with horizontal lines. For this figure the gate voltage is tuned such that only the p-n junction position is changed, whereas the potential
profile remains the same [323]. (a) Reprinted from [321], with the permission of AIP Publishing. (b), (e), (f) From [322]. Reprinted with
permission from AAAS. (c) and (d) Reprinted (figure) with permission from [95], Copyright (2018) by the American Physical Society. (g)
Reprinted with permission from [323]. Copyright (2017) American Chemical Society.

If the magnetic field or the interaction strength is further
increased then the lowest Landau level splits further. In this
case, spin and valley split edge states co-propagate along the
p-n interface (figure 29(c)). Since spin-scattering is prohibited
even on the edge of the sample, only edge states with the same
spin can mix. This was first observed by in [322] (figure 30(b))
and later in [95] (panels (c)and (d)). The Mach—Zehnder inter-
pretation was also corroborated in [322] by investigating inter-
ferometers with different p-n junction lengths leading to dif-
ferent oscillation periodicity (figure 30(f)). Finally, the bias
dependence of these oscillations was also studied, for which
an example is shown in figure 30(e), more details can be found
in [95, 321, 322]. We note that even in the non-split Landau
level case (figure 29(a)) Aharonov—Bohm oscillations are pos-
sible between, e.g. the lowest and higher lying Landau levels.
Since all these different MZ oscillations and the snake states
give similar signatures in both magnetic field-gate and gate-
gate maps, see, e.g. all the oscillations in figures 30(c) and
(d) with different colors, their identification is possible only
based on further bias or temperature dependent measurements.
Whereas snake states can be observed up to 100K, MZ oscil-
lations disappear at few Kelvins or below. Finally we would
draw the attention to another set of very prominent oscillations
which stem radially from the charge neutrality point (marked

by black dashed lines in figure 30(g)). As seen in panel (g) they
seem to be magnetic field dependent. Along such lines and
the position of the p-n junction is fixed and these oscillations
have been attributed to valley-isospin oscillations probing the
microscopic character of the edges [323]. This is discussed in
the next section.

6.3. Tunable Mach Zehnder inteferometers

A controlled approach to achieve Mach-Zehnder interferences
was demonstrated in a recent study [324] where electronic
beam splitters were utilized, leveraging the valley degree of
freedom in graphene. The concept of valley beam splitters
builds upon theoretical work by [325, 326] and earlier exper-
imental work of [323, 327], where the crystalline structure at
the corner of a graphene p-n junction enables electron scatter-
ing between p-n interface channels with opposite valley polar-
izations of quantum Hall edge channels. In the experiment,
the researchers employed small electrostatic side gates to tune
the mixing point of the edge channels along the edge of the
graphene flake, thereby controlling the scattering process. This
allowed for the reliable modulation of electronic transmission
through the valley beam splitters, ranging from zero to near
unity. Notably, this work demonstrated the complete tunability
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Figure 31. (a) Schematic of a fully tunable Mach—Zehnder interferometer using valley degrees of freedom of graphene [324]. (b) Measured
transmission T'; of the top valley splitter as a function of the side gate voltage i.e controlling the filling fraction below it. (c) Oscillation of
transmission of a valley splitter. Right panel: The edge state configuration in this condiction. (d) KWANT simulation of transmission (7'1) as
a function of the position along the p-n interface. (e¢) Measured 7'; as a function of gate voltage and magnetic field. (f) Transmission in the
MZ interferometer configuration (7mz) when both (top and bottom) the splitters are allowed to have valley mixing. (g) 7.MZ as a function
of magnetic field and gate voltage. Reprinted (figure) with permission from [324], Copyright (2021) by the American Physical Society.

of Aharonov—Bohm (AB) interference by adjusting the side
gate voltage and magnetic field. The resulting AB oscillations
exhibited stability and reproducibility.

The sample schematic is depicted in figure 31(a), illus-
trating an encapsulated graphene in a bipolar quantum Hall
state. In the N region, the Landau-level filling factor is vy = 2,
resulting in two counterclockwise circulating channels with
opposite spins (1, J) along the boundary. On the other hand,
the p region has a filling factor of vp = —1, featuring only one
clockwise circulating spin-down channel.

When an injected current of /2 carried by spin-down car-
riers is introduced, it can interact with the edge current flow-
ing from the p region. Consequently, this interaction leads to
a contribution to the transmitted current /7. The flow of the
spin-down current is regulated by splitting it into p-n interface
channels that possess opposite valley isospins [328]. After the
physical top edge of graphene intersects with the electrostat-
ically defined p-n interface, the current proceeds along either
the p -side or the n -side of the interface. The transmission
probability along the P -side is denoted as T} = |¢;|?, while the
reflection probability on the N side is given by |r(|*> =1 —T.
In the presence of a strong perpendicular magnetic field, the
valley degeneracy is lifted, as discussed in section 2.1.2. As a
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result, the currents on the n -side and p -side exhibit opposite
valley isospins, represented as +w. The probability T reflects
the degree of valley-channel splitting, which can be described
by a quantum-mechanical superposition.

[Winitia1) = 71| T,W) + 11| T,—W). (48)
At the n-side interface, the spin-up state is represented as
| T,w), while at the p-side interface, it is denoted as | T, —w).
The valley-isospin undergoes a change from that of the top
edge channel to +w, resulting in a significant momentum
shift. This change is attributed to the atomic structure at the
intersection [326].

By applying voltages to the side gates, they could modify
the electrostatic potential profile at both ends of the p-n inter-
face, as depicted in the schematic diagram figure 29. In a recent
investigation employing the Chklovski-Shklovskii-Glazman
formalism, the precise positioning of edge states in a graphene
p-n junction was determined through rigorous quantitative
calculations [284]. When the filling factor below a side gate
was set to v < —1, the p-n junction intersected the physical
edge, creating a sharp potential change at the atomic distance
scale. This sharp potential change facilitated the mixing of the
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valley channels. On the other hand, by setting the filling factor
to v =0, the p-n junction intersected an electrically defined
edge where the potential landscape was smooth, resulting in
no change in valley isospin. Through the manipulation of these
side gates and the associated filling factors, the researchers
could control the extent of valley-channel splitting and restrict
the mixing of valleys. This allowed for precise control over the
transmission probability and the preservation of valley isospin
within the system.

The authors of this study first demonstrated the ability to
tune the transmission probability T, defined as the ratio of
transmitted current I to half of the injected current Iy /2. This
tuning was achieved by adjusting the voltage V| applied to
the top side gate, as shown in figure 31(b). To achieve valley-
channel splitting at the top intersection while suppressing it
at the bottom, they set the filling factor v; below the top side
gate to v} < —1, and v, below the bottom side gate to v, =0.
When a positive non-zero voltage was applied to V, it resul-
ted in v; =0, ensuring that the edge channels only intersected
at electrostatically defined edges without valley-channel split-
ting, leading to a vanishing transmission. Conversely, for V| <
0, they ensured v < —1, causing the p-n junction to intersect
the top physical edge. This enabled valley-channel splitting
and resulted in a finite transmission. Subsequently, the authors
demonstrated the full tunability of the transmission probabil-
ity T from zero to nearly unity, as depicted in figure 31(c),
by varying the voltage V. Importantly, they also showed that
T could be tuned by changing the magnetic field, as illus-
trated in figure 31(e). The period of the dependence on V| was
estimated to be around AV, ~ 100 meV on average. It was
calculated that this change in voltage caused the p-n interface
to shift by approximately ~1 nm below the top side gate. The
period of the magnetic field (B) dependence was found to be
AB; ~ 300 mT, corresponding to a change of approximately
~0.2 nm in the magnetic length at B=9.2 T. These length
scales are comparable to the interatomic distance of pristine
graphene (approximately 0.142 nm) and the period of atomic
edge structures (e.g. 0.246 nm for the zigzag edge), but sig-
nificantly shorter than the spatial variation of the electrostatic
potential induced by gate voltage. This strongly suggests that
the transmission probability 7'} can be controlled by the atomic
structure at the top intersection. The shift of the p-n interface,
estimated from experimental data, was made possible by inde-
pendent control of the top and bottom side gates, which was
not achievable in previous works [322, 323]. Similar experi-
ments were conducted with the bottom side gate, yielding a
comparable physical scenario and trend in the results. In the
transmission results, some irregular but reproducible oscilla-
tions were observed. These oscillations were attributed to the
roughness in the upper physical edge of the graphene. The the-
oretical simulation using KWANT simulations, as depicted in
figure 31(d), supported this explanation. Overall, the experi-
ments and simulations provided strong evidence that the trans-
mission probability 7' in the system could be controlled by
the atomic structure at the top intersection, and the observed
irregularities in the results were attributed to edge roughness
effects.
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Finally, the investigated the MZIs by utilizing both the
top and bottom valley splitters. The edge channels from
the two sides of the p-n junction acted as the arms of the
interferometer, while the valley splitters served as the beam
splitters, as illustrated in figure 31(f). Notably, smaller-scale
Aharonov-Bohm oscillations were observed with a magnetic
field period of approximately 25 mT. The area of the inter-
ferometer was calculated to be 0.15 pm?, indicating a sep-
aration of around 110 nm between the edge channels. This
separation is attributed to electron-electron interactions. When
both valley splitters were set to a half-transmission config-
uration, the interferometer exhibited regular oscillations, as
depicted in figure 31(g). The visibility of the MZIs, defined
a8 (Tmax — Tmin)/(Tmax + Timin)» Was approximately 60%.

The paper also discussed the coherence properties of the
valley-split state in relation to the energy of the transported
electrons. A lobe pattern was observed in the transmission
probability Tz as a function of the bias voltage, which is
a typical behavior in MZIs fabricated in conventional GaAs
heterostructures. The microscopic origin of this lobe pattern
is now well understood and discussed in detail in the [320].
Moreover for the graphene MZI studied in these works, the
value of V|, was found to be 210 peV, which is relatively large
compared to the reported value of 20 peV for MZIs fabric-
ated in GaAs/AlGaAs heterostructures. This suggests that the
graphene MZI exhibits robust phase coherence over a wider
energy range.

This robustness of phase coherence of graphene MZI has
been harnessed recently to demonstrate coherent phase manip-
ulation of periodically injected single electronic state [329].
This development opens up further avenues for exploring elec-
tronic experiment analogous to optics in graphene platform.

6.4. Decoherence and relaxation in quantum Hall MZIs

Single electron coherence in quantum edge channels is notably
highlighted by Mach—Zehnder interferometry experiments.
But it also digs up a number of questions on the electron
decoherence mechanism in these systems. A large majority
of experiments dealing with quantum Hall interferometers
in conventional semiconductors suffers from decoherence,
which can come from different sources like edge recon-
struction due to the presence of impurity [285], inter-edge
interaction [330, 331] and intra-edge Coulomb interaction
[307, 332, 333]. Most of the time, those interactions are inter-
twined which makes it hard to address them separately. Within
the last decade, the majority of experimental and theoretical
works addressed the issue of inter-edge interaction [39, 300,
301, 307-310, 312, 315, 332, 334-348] but there is still an
ongoing debate about the observed results. One possible way
out is demonstrated in [320] by using a fully tunable graphene
MZ interferometer utilizing p-n junctions. In the experiment,
three interferometers of different lengths (figures 32(a)—(c))
were studied, showing a persistence of the interferences up to
1.6 K, relatively high compared to the operating temperature
of GaAs interferometers. The visibility of the interferences, as
shown in figure 32(d), was shown to have two distinct regimes
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Figure 32. (a) AB oscillation in three MZ interferometer of different lengths. (b) The schematic of channel mixing points in the
interferometer. (c)Temperature dependence of the transmission for the large interferometer. (d) Visibility decay of with temperature for all
the interferometer. (e) universal scaling behaviour of visibility. (f) Visibility decay profile in presence of different number of edge channels.

Reproduced from [320]. CC BY 4.0.

in temperature. Visibility decay is found to be algebraic instead
of exponential below 1 K which signifies the suppression
of thermal route of decoherence. This ‘new-found’ algebraic
decay regime was not observed before in conventional semi-
conductor system, and it does not depend on the different con-
figurations (e.g. different edge configurations of p and n side)
of the interferometer. Electron heating giving rise to this kind
of scaling behavior was ruled out by careful measurement of
thermal noise at each temperature confirming the electrons to
be well thermalized. Interestingly, the decay profile for all the
three interferometers lies on a single curve (figure 32(e)) if
plotted against a scaled temperature LT/Ly where T is tem-
perature, L is the interferometer length, and L is the length
of the large interferometer. This scaling behaviour is in good
agreement with an intra-channel interaction model. To access
the effect of the presence of adjacent edge channels, the tem-
perature dependence of interference visibility was monitored
by changing the number of edge channels which is shown in
figure 32(f). The short-range inter-channel interaction frac-
tionalizes the electron flow in fast and slow modes which
causes decoherence. No significant change in decay profile
was observed, indicating the absence of influence of inter-edge
channel interaction mechanisms. In a van-der-Waals archi-
tecture, the possibility to position the electrostatic gates very
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close (vertical distance 30 nm) to the 2DEG provides screen-
ing between nearest edge channels. Therefore, the decoher-
ence mechanism due to inter-edge channel interaction can be
efficiently suppressed and one can only talk about the intra-
edge channel interaction.

Moreover, at high bias, magnons can be emitted which are
also a source of decoherence [328, 349].

6.5. Graphene QPCs in the QH regime

Quantum points contacts realized in conventional 2DEGs rely
on the ability to deplete the electron gas locally using elec-
trostatic gates. This is not possible in single layer graphene at
zero magnetic field since in this condition graphene is gapless.
Under a high magnetic field, one can rely on the gap between
different Landau levels to locally confine the edge channels
with gates until backscattering occurs between the two counter
propagating edges. An order of magnitude of these gaps is
given by recent measurement conducted at 4 T and 1.4 K,
estimating broken symmetry state gaps to be about 100 meV
[353]. This QPC technique under strong magnetic field has
been implemented in several recent experiments both in the
integer [91, 350, 354] and in the fractional QH regime [351,
352, 355, 356]. Typical geometries are depicted in figure 33.
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S correspond to the QPC gates. (a) and (b) Reprinted (figure) with permission from [350], Copyright (2011) by the American Physical
Society. (¢) Reproduced from [351]. CC BY 4.0. (d)—(f) Reproduced from [352], with permission from Springer Nature.

QPC split gates, made of either metal or thin graphite flakes,
are fabricated on top of an hBN-encapsulated graphene flake,
and are biased with a dc voltage such that the quantum Hall
states below them is set to a filling factor smaller than the bulk
filling factor, thereby expelling the edge channel from beneath.
The filling factor of the bulk is tuned using a global back gate
(usually in graphite) combined with additional graphite top
gates in [352, 355, 356]. The distance between the split gates is
typically about 100 nm. In [352, 355, 356], the QPC and bulk
top gates are realized from a single top graphite flake divided
into the local gates by either reactive ion etching as shown in
figure 35(c) [355] or by local anodic oxidation using an AFM
tip as shown in figures 33(d)—(f) [352, 357] .

Typical QPC characterization, shown in figure 34, consists
in maps of the electric conductance across the QPC meas-
ured as a function of both QPC gate voltage and back/top gate
voltage. They show regions of quantized conductance, corres-
ponding to an integer number of channels perfectly transmit-
ted across the QPC. When applying larger negative voltage
on the QPC, a depleted region is first created below the gate.
At higher voltages this region become populated with neg-
atively charged carriers leading to an effective p-n-p barrier.
In earlier devices [91, 350, 354], equilibration among chan-
nels in p and n regions led to an effective short cut of the
split gates who could then not work as a QPC. These devices
thus required the filling factor below the top gate to be fixed
at v =0, the gap of which prevents equilibration across the
gate. Because of the finite density range over which v =0
is defined, the QPC gate voltage could only be tuned in a
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limited range (typically, AVgpc ~ 100 mV at 5 T, for an
approx. 50 nm thick BN). The global back gate and addi-
tional top gates were thus tuned in combination with the QPC
gates, such that the electrostatic potential at the saddle point
is raised or lowered while the filling factor below the QPC
gates, and in the bulk of the sample, are fixed. This leads to
configurations typically depicted in figures 34(g)—(i), where
an integer number of edge channels can be ballistically trans-
mitted across the QPC in a controlled fashion, leading to the
conductance plateaus shown, e.g., in figure 34(f). The condi-
tion for the split gates to operate correctly as a QPC in these
early devices depending on the carrier concentration below
the gate and a critical magnetic field has been extensively
studied for example in [61]. Most recent devices with higher
mobility and operating at higher field do not present signs of
equilibration [351, 352, 355, 358]. In particular, they show
extended regions of zero conductance, demonstrating the abil-
ity to effectively pinch those devices thanks to the different
quantum Hall gaps and even in the absence of an intrinsic
bandgap.

The ideal point contact signature has been the subject of
debates in the GaAs community recently [359-361]. While
these discussions focused on the use of QPCs for shot noise
measurement, similar questions arise for the use of QPCs for
interferometry, and it is not clear whether a QPC which is
ideal for all measurements exists (or is even possible). Notably,
a recent article showed for the first time tunneling measure-
ments across a QPC between edge channels at filling factors
v=1and v = 1/3, and observed the scaling laws for the bias
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Figure 34. Conductance measurements in graphene QPCs. (a) conductance map of the QPC realized in [351], as a function of the back gate
(Vig) and QPC gate (V) voltages. (b) line cuts of the data plotted in (a) at fixed back gate voltage, showing the quantized conductance
plateaus. (c), (d) and (e) conductance map of the QPC realized in [352] as a function of the bulk top gates ((Vew) and QPC gates (Vns)
voltages, for 3 different values of the bulk back gate (V) voltage. The white bar indicates the QPC gate voltage range over which the filling
factor below the QPC gates is v = 0. (e) line cut of the conductance data as a function of a combination of the bulk top and back gates,
showing the quantized conductance plateaus. (g), (h) and (i) schematic representation of the filling factors in the vicinity of the QPC
corresponding to the points marked I, I and III in (c)—(f). (a) and (b) Reproduced from [351]. CC BY 4.0. (c)—(i) Reproduced from [352],

with permission from Springer Nature.

and temperature dependence of the tunneling conductance pre-
dicted by the Tomonaga-Luttinger liquid theory [356].

6.6. Quantum Hall FPIs

6.6.1 Principle of the FPI experiment. ~ The quantum Hall
Fabry—Pérot interferometer (FPI) is a pivotal tool for access-
ing the exchange statistic of exotic quasiparticles and realiz-
ing anyonic braiding [363, 364]. In analogy with optical FPI,
where semi-transparent mirrors reflect the incident light back
and forth and enable photon interference, QPCs are utilized
as electron beam splitters to backscatter the chiral edge chan-
nels of the quantum Hall states. The electronic QH FPI can
be built with two QPCs in series in a two-dimensional elec-
tron gas in semiconducting heterostructures or 2D materials in
the QH regime, where selective partitioning of the edge chan-
nels leads to interferences. In this configuration, interference
of electrons propagating along the periphery of the cavity can
be controlled by the Aharonov—Bohm phase wap = 2w AB/ ¢y,
where A and B are the enclosed area and magnetic field, and
¢o = h/e is the magnetic flux quantum.

Historically, this type of interferometer was first realized
in a 2D electron gas embedded in GaAs/AlGaAs quantum
wells [365-369]. However, the presence of charging effects
between the edge modes and the compressible bulk has long
hindered the measurement of the Aharonov—Bohm phase, not
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to mention the exploration of braiding statistics [31, 368-370].
Recently, new GaAs heterostructures, purposely designed to
mitigate charging effects by incorporating additional quantum
wells serving as screening layers, have enabled the long-
awaited observation of Aharonov—Bohm interference of a 1/3
fractional QH edge [40, 369] and subsequently at filling factor
2/5 [371]. Nevertheless, the quest for smaller interferometers
with negligible charging energy is fervently pursued for prac-
tical applications.

Graphene-based van-der-Waals heterostructures offer a
promising alternative platform for realizing QH FPI due to
their intrinsically advantageous dielectric environment. The
presence of a graphite backgate, typically positioned in close
proximity (~20 — 60 nm) to the graphene, naturally provides
electrostatic screening, which effectively reduces the device’s
charging energy. Moreover, crystallographic edges create a
hard-wall potential, limiting possible edge reconstructions
[291] that might otherwise generate undesired additional
integer, fractional and even neutral modes. These neutral
modes are known to be detrimental to coherence [287].

Recently, monolayer and bilayer graphene-based FPIs have
been successfully fabricated. We review here the various
strategies employed in the design of interferometers with min-
imal charging energy, as well as the observation of Aharonov—
Bohm conductance oscillations in the integer quantum Hall
regime [198, 355, 358].
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Figure 35. Quantum Hall Fabry-Pérot interferometers. (a) Schematic and (b) SEM image of the device studied in [358]: 1D Ohmic contact
made by Cr/Au, QPC split gates and plunger gates are made by depositing Pd electrodes on the hBN top flake. (c) Schematic and (d) SEM
image of the device studied in [355]. QPC and plunger gates are made by selectively etching the uppermost graphite flake. (e) Optical image
and (f) SEM image of the device studied in [362]. QPC and plunger gates are made by etching both the top h-BN and the graphene flake. (a)
and (b) Reproduced from [358], with permission from Springer Nature. (c) and (d) Reproduced from [355], with permission from Springer
Nature. (e) and (f) Reprinted with permission from [362]. Copyright (2022) American Chemical Society.

6.6.2. Monolayer graphene based FPI.  Figure 35 illustrates
representative graphene-based devices. These heterostructures
consist of h-BN encapsulated graphene deposited on top of
a graphite backgate as detailed in [355, 358]. Two distinct
technical approaches have been employed to define the FPI
cavity for quantum Hall edge channels. In the first approach,
the physical edge of graphene, in conjunction with QPCs and
plunger gates made from Pd deposited atop the uppermost h-
BN, were used by Déprez and coworkers [358] as shown in
figures 35(a) and (b). Plunger gates placed between the QPCs
manipulate the electron trajectory, enabling the modulation of
the interference loop area. Multiple FPIs can be constructed
by incorporating additional QPCs, as shown in figures 35(a)
and (b), where three QPCs define three cavities of different
sizes. A second approach, developed by Ronen and coworkers
[355], involves an additional graphite layer on top of the hBN
heterostructure. This layer is locally etched to establish QPC
and plunger gates (as depicted in figures 35(c) and (d)). The
interferometer cavity is thus entirely determined electrostatic-
ally through these top-gates. These gates offer the flexibility to
tune the smoothness of the electrostatic edge potential, thereby
enabling a modulation of the edge channel velocity. Last, Zhao
and coworkers [362] implemented a similar device where the
QPCs are constructed by etching both graphene and top h-BN
layer.

A standard measurement setup, as shown in figure 35(c),
is commonly used in most experiments [355, 358]. The meas-
urement of the longitudinal or diagonal resistance of the FPI
are performed using lock-in amplifiers.

The new interesting aspect of the graphene platform lies
in the extensive tunability provided by the plunger gate. In
contrast to GaAs heterostructures, where the plunger gate tun-
ability is constrained by the depletion of electrons beneath
the gate, graphene’s gapless band structure allows for a broad
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gate sweep covering multiple quantum Hall states and filling
factors. Figure 36 illustrates characteristic resistance oscil-
lations with high visibility across a wide voltage range.
Applying a negative voltage to the plunger gate depletes the
electron gas and eventually accumulates holes beneath the
gate. Consequently, the electron trajectory is continuously
pushed toward the device interior with decreasing plunger gate
voltage (see figure 36(d)).

Graphene-based FPIs exhibit less charging effect compared
to GaAs-based ones of similar sizes. Figures 37(a) and (b)
depict 2D plots of the resistance Rp as a function of both
magnetic field and plunger gate voltage for the outer chan-
nel interference of two interferometers of different sizes (A =
3.1 pm? and A = 14.7 um?). Effective interferometer areas
(A) calculated from magnetic field periodicities (AB) using
the formula A = ¢/AB, are found to be in excellent agree-
ment with area defined by lithography. The periodic stripes
in the plot correspond to lines of constant phase. The direc-
tion of these lines is used to distinguish whether the inter-
ference is dominated by Aharonov—Bohm effect or Coulomb
interactions [364]. A constant Aharonov—Bohm phase res-
ults in stripes with a negative slope due to the diminished
area being compensated by an enhanced magnetic field, as
expressed by the equation Apap = 27 /¢o(BAA+AAB) =
0. The observed negative slopes in figures 37(a) and (b), along
with the accurate estimation of interference area, provide
clear evidence that these interferometers are operating in the
Aharonov-Bohm regime. It is noteworthy that GaAs-based
interferometers of similar size were reported to be dominated
by Coulomb interactions [31].

Edge velocity can be probed through the oscillation
dependence on both the DC bias voltage and the temper-
ature. When a source-drain DC bias voltage is applied,
electrons experience a dynamical phase shift given by
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PIunger gate voltage (V)

15 05

14 T.Plunger gate voltage sweeps

from —3.2 V to —2.8 V in (a), from —1.2 V to —0.8 V in (b) and from -4 V to 0 V in (c). (d) Schematic of the edge channel position at
different plunger gate voltages. (e) Amplitude of sliding Fourier transform of the resistance oscillations shown in (c) as a function of plunger
gate voltage and plunger gate frequency. Adapted from [358]. Reproduced from [358], with permission from Springer Nature.

@dyn = 2meVpc2L/(hv) = 4w eVpe / Emn, Where L is the length
of edge propagation between the two QPCs, v is the edge velo-
city, and Ery, = hv/L is the Thouless energy. Depending on the
energy relaxation processes consecutive to the current flow,
and on the electrostatic coupling between the cavity, the back
gate, the source and the drain, the electrochemical potential
in the cavity will adjust itself at a value intermediate between
that of the source and that of the drain. The resulting conduct-
ance oscillations depending on the potential drop across the
interferometer have been calculated in [358] by extending the
theory of [372]. It reads

G = gowe [ﬁ cos (27r % - %eVﬁ) (49)
L2
+ Bcos (27r eVﬁ) (50)
o

where /3 and ( are asymmetry parameters describing how
symmetric is the voltage drop on the two side of the inter-
ferometer (see Supplementary Information in [358] for defin-
ition), and gosc = %22\/m with R, and R, the reflec-
tion coefficients of each QPCs. Equation (49) reduces to
AG ~ cos (2w ¢/ Py — 4w eVpe/Em) for a fully asymmet-
ric potential drop across the interferometer and AG ~
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cos (27 ¢/ do) cos (2w eVpc /E) for a fully symmetric poten-
tial drop. Figures 37(c) and (d) illustrates the resulting con-
ductance oscillations as a function of plunger gate voltage
and voltage bias for the asymmetric (small interferometer)
and symmetric (large interferometer) cases, respectively. The
edge velocity v determined from the bias periodicity via v =
AVpcL/h, is found to be approximately 1.4 x 10° ms~! (at
14 T). Another method to estimate the Thouless energy stems
from the temperature dependence of the oscillation amplitude,
described by exp (—T/T)), as exemplified in figures 37(e)—(f)
[358]. The fits of the Fourier peaks are used to estimate 7y and
the Thouless energy Ery, = 4m%kgT,L. Figure 37(g) demon-
strates the excellent agreement between the Thouless energies
estimated using these two methods.

The interferometer geometry in [355] shown in
figure 35(d), allows to study the phase coherence of interfer-
ing edges defined either by gating or by etching. Figure 38(a)
shows plunger gate dependent oscillations of the inner chan-
nel at filling factor 2, where interfering channels undergo
distinct potential confinements, as schematized on top of the
figure. Figure 38(b) shows the edge channel positions (upper
panel), interfering area (middle panel) and coherence length
(lower panel) in these different configurations. In regime I
(1 V < Vpe <1.4V),oscillations’ visibility remains relatively
constant and the extracted interfering area corresponds to
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Figure 39. Bilayer graphene based Fabry-Pérot interferometer. (a) Optical image of the device. (b) Schematic of the device in an exploded
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(extracted from lobe structure as in (e) versus filling factor. The decrease in velocity for increasing filling factor can be understood in a
non-interacting edge channel picture as the channels are further and further from the edge as the filling factor increase [198]. Reprinted with
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the inner channel traveling along the plunger gate. In regime
II (Vg > 1.6 V), the oscillations’ visibility is dramatically
reduced and the extracted area now includes the plunger gate
delimited area, suggesting that both channels are propagat-
ing along the etched graphene edge. Note that the coherence
lengths are about 7 pum for gate defined channels and 400 nm
for etched defined channels. The detrimental effect on the
coherence observed in etched-edge defined FPIs can be attrib-
uted to edge disorder and charge accumulation at the phys-
ical edge. Interestingly graphene crystal edges that have not
undergone etching, as in the experiment conducted by Déprez
and coworkers [358], led to a coherence length assessment
of 10 um, implying that pristine edges are equally good for
coherence.

The authors of [355] systematically investigated the inter-
ference of various channels at filling factors 2 and 3.
Figure 38(c) summarizes the plunger gate periodicity, oscil-
lation visibility, edge velocity, and phase coherence length
for these channels. The colors blue, red, and green are used
to distinguish the innermost, middle, and outermost edges,
respectively. The coherence lengths are of the order of tens
of microns. The highest velocity and coherence length are
obtained in the middle channel of vg = 3 and are accounted
for by interaction screening by adjacent edges.
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6.6.3. Bilayer graphene based FPI.  Bilayer graphene also
hosts numerous fractional QH states, particularly those with
even denominator fractions are believed to involve non-
Abelian quasi-particles [373]. BLG is thus considered as a
highly promising platform for performing non-Abelian braid-
ing through interferometry. In the study reported by Fu and
coworkers [198], the first Fabry-Pérot quantum Hall interfer-
ometer in bilayer graphene was introduced. In this investiga-
tion, bilayer graphene is encapsulated by h-BN flakes, with
a global graphite gate at the bottom and several split gates
on the top (see figures 39(a) and (b)). The devices operate in
the Aharonov—Bohm regime as demonstrated in figure 39(c).
The checkerboard pattern (figure 39(d)) is analysed through
the same framework as in [355, 358], and the edge channel
velocity is extracted from the lobe structure (figure 39(e)) at
different filling factors (figure 39(f)). A careful analysis show
that this velocity decreases as the distance of the edge chan-
nel to the edge increases, as expected. This work opens the
door for further studies that might benefit from recent technical
improvement, such as the use of air bridges [355] or atomic
force microscopy etching [352].

In conclusion, the robust oscillations observed in single
and bilayer graphene-based quantum Hall FPIs with various
designs, characterized by strongly suppressed charging energy
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and an extended phase coherence length, offer compelling
reasons to advance and deepen these studies into fractional
quantum Hall interferometry. Concurrently, some correlated
phenomena in the integer quantum Hall regime remain to be
understood. Very recent experiments have presented evidence
for electron pairing at bulk filling factors v > 2 [374, 375],
reproducing the phenomenology of GaAs FPIs [370, 376],
and even tripling of electrons at v =3 [375]. These phenom-
ena are characterized by an anomalous Aharonov—Bohm flux
period of i1/2e and h/3e, respectively. Interpretations suggest
that these intriguing phenomena result from attracting pair-
ing emerging via the exchange of neutral modes [377], or
from inter-edge states charging effects [374]. They underscore
the genuinely complex nature of these FPI devices, challen-
ging initial expectations based on an apparently simple, non-
interacting theory [372]. Exploring the physics of anyons in
the fractional quantum Hall regime will undoubtedly require
careful and systematic experiments, but the highly versatile
graphene platform may bring advantages that may be pivotal
for nailing down anyon interferometry.

7. Conclusion and perspectives

We have seen throughout this review that graphene has
emerged as an excellent and unique platform for the realiz-
ation of electron optical devices. This stems, among other
things, from the ultra-high mobility of graphene structures
and the ability of forming gapless p-n interfaces, where the
doping changes continuously from electron to hole doping.
This allowed, as detailed before, observing magnetic focus-
ing and snake states and realizing interferometers based on
quantum-Hall edge channels. The presence of the lattice and
valley degree of freedom (or the layer in case of bilayer
graphene) leads to a richer and much more fascinating beha-
viour than in conventional 2DEGs. Moreoever, due to the
semimetallic nature of graphene, it can be contacted with fer-
romagnetic and superconducting electrodes. This yields bal-
listic spintronic devices that can show chiral properties, on the
one hand, and ballistic interferometers that are governed by
unconventional Andreev physics at p-n interfaces, on the other
hand. The ability to combine graphene with other 2D materials
and to stack different materials together with arbitrary twist
angles opens a large parameter space, allowing to tailor the
bandstructure and to design materials with yet unknown phe-
nomenology. Correspondingly, these developments, including
emergent phenomena such as unconventional superconduct-
ivity, also open up new challenges to theory. Properties, like
superconducting pairing, spin-orbit interaction and magnetic
exchange can also be introduced in monolayer and bilayer
graphene through proximity to TMDCs or van der Waals
superconductors and ferromagnets. This is a largely unex-
plored area where the combination with ballistic carriers opens
up a new playground for quantum electron optics.

The outlook for graphene-based quantum devices is
marked by intriguing possibilities and technological chal-
lenges. Research endeavors are directed towards achieving
metrologically precise single electron pumps in graphene,
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aiming to match or even surpass the precision observed in
traditional materials like GaAs [33, 378] and Silicon [379].
Additionally, the exploration of single electron transport util-
izing surface acoustic waves in graphene presents a novel
avenue, leveraging the unique properties of both the material
and wave-based manipulation. Investigating the potential for
Coulomb-induced anti-bunching [380-382] with single elec-
trons in graphene, coupled with single-shot detection, stands
as a challenging yet transformative goal with implications for
quantum information processing. Furthermore, the pursuit of
flying electron qubits in non-chiral geometry [383] opens up
innovative pathways for quantum computing, capitalizing on
graphene’s exceptional electronic structure. The overall tra-
jectory suggests a dynamic field with prospects for ground-
breaking advancements, necessitating interdisciplinary collab-
oration at the intersection of materials science, quantum phys-
ics, and engineering to unlock the full potential of graphene in
quantum technologies.
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