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MINIMAL SURFACES IN SUB-RIEMANNIAN MANIFOLDS
AND STRUCTURE OF THEIR SINGULAR SETS

IN THE (2, 3) CASE

Nataliya Shcherbakova1

Abstract. We study minimal surfaces in sub-Riemannian manifolds with sub-Riemannian struc-
tures of co-rank one. These surfaces can be defined as the critical points of the so-called horizontal
area functional associated with the canonical horizontal area form. We derive the intrinsic equation
in the general case and then consider in greater detail 2-dimensional surfaces in contact manifolds
of dimension 3. We show that in this case minimal surfaces are projections of a special class of
2-dimensional surfaces in the horizontal spherical bundle over the base manifold. The singularities
of minimal surfaces turn out to be the singularities of this projection, and we give a complete local
classification of them. We illustrate our results by examples in the Heisenberg group and the group of
roto-translations.
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Introduction

In the classical Riemannian geometry minimal surfaces realize the critical points of the area functional with
respect to variations preserving the boundary of a given domain. In this paper we study the generalization of
the notion of minimal surfaces in sub-Riemannian manifolds known also as the Carnot-Carathéodory spaces.
This problem was first introduced in the framework of Geometric Measure Theory for the Lie groups. Mainly
the obtained results [6,7,10–12,15,16] concern the Heisenberg groups, in particular H

1; in [9,13] the authors were
studying the group E2 of roto-translations of the plane, in [7] there were also obtained some results for the case
of S3. In [7], followed by just appeared paper [8], the authors considered the problem in a more general setting
and introduced the notion of minimal surfaces associated with CR structures in pseudohermitian manifolds of
any dimension.

In this paper we develop a different approach using the methods of sub-Riemannian geometry. Though
in particular cases of Lie groups H

m, E2 and S3 the surfaces introduced in [7] are minimal also in the sub-
Riemannian sense, in general it is not true. The sub-Riemannian point of view on the problem is based on the
following construction.
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Consider an n-dimensional smooth manifold M and a co-rank 1 smooth vector distribution Δ in it (“hori-
zontal” distribution). It is assumed that the sections of Δ are endowed with a Euclidean structure, which can
be described by fixing an orthonormal basis of vector fields X1, . . . , Xn−1 on Δ (see [5]). Then Δ defines a sub-
Riemannian structure in M . In this case M is said to be a sub-Riemannian manifold. Given a sub-Riemannian
structure there is a canonical way to define a volume form μ ∈ ΛnM associated with it. In addition, for any
hypersurface W ⊂ M the horizontal unite vector ν such that for any bounded domain Ω ⊂ W∫

Ω

iνμ = sup
X∈Δ

‖X‖Δ=1

∫
Ω

iXμ,

plays the role of the Riemannian normal in the classical case, and the n− 1-form iνμ defines the horizontal area
form on W . All these notions are direct generalizations of the classical ones in the Riemannian geometry (i.e.,
in the case Δ ≡ TM).

Going further in this direction, we define sub-Riemannian minimal surfaces in M as the critical points of
the functional associated with the horizontal area form. It turns out that these surfaces satisfy the following
intrinsic equation

(d ◦ iνμ)
∣∣∣
W\Σ

= 0, (0.1)

where Σ = {q ∈ W | TqW ⊆ Δq} is the singular set of W , which along with the singular points of W contains also
the so-called characteristic points, i.e., the points where W is tangent to Δ. The described construction does
not require the existence of any additional global structure in M , and can be generalized for sub-Riemannian
structures of greater co-rank.

The existence of the singular set Σ is one of the main difficulties of the problem. In general, the set Σ can be
quite large and have its own non-trivial intrinsic geometry. In Section 2 of this paper we show how this problem
can be resolved in the case of 2-dimensional surfaces in 3-dimensional contact manifolds.

It turns out that in the (2, 3) case, due to the relatively small dimension, there is an elegant way to extend the
definition of a sub-Riemannian minimal surface over its singular set. Namely, in this case the intrinsic geometry
of a surface W is encoded in its characteristic curves γ : [0, T ] → W such that γ̇(t) ∈ Tγ(t)W ∩ Δγ(t) for all
t ∈ [0, T ]. The vector field η (the characteristic vector field) tangent to characteristic curves is Δ-orthogonal to
the sub-Riemannian normal of W . We show that actually this vector field is a projection onto M of a special
invariant vector field V in the horizontal spherical bundle SΔM over M . In contrast with ν, the vector field V
is well defined everywhere in SΔM , and moreover, minimal surface equation (0.1) can be transformed into a
quasilinear equation whose characteristics are exactly the integral curves of V . In particular, in this way one
can define η also on Σ as the projection of V .

These observations motivated the key idea of the present paper. By introducing an additional scalar param-
eter ϕ we show that the highly degenerate PDE (0.1) can be transformed into a system of ODEs on SΔM ,
associated with the vector field V : ˙̄q = V (q̄), q̄ ∈ SΔM . This allows us to consider the sub-Riemannian minimal
surfaces in the (2, 3) case as the projections of a certain class of 2-dimensional surfaces in SΔM foliated by
the integral curves of V (the generating surfaces of the sub-Riemannian minimal surfaces). By varying initial
conditions, one can provide a local characterization of all possible sub-Riemannian minimal surfaces, together
with their singular sets.

From the point of view that we develop in this paper the set Σ may contain
• projections of the singular points of the generating surfaces;
• singularities of the projection of the generating surface onto the base manifold M (singular characteristic

points);
• regular points of the projection of the generating surface onto M (regular characteristic points).

In this work we focus out attention on the case of regular generating surfaces. Then their projections on M
can have characteristic points of the last two types. We show that regular characteristic points form simple
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singular curves. Moreover, generically a small neighborhood of a sub-Riemannian minimal surface containing
a singular characteristic point q has a structure of Whitney’s umbrella, and the point q gives rise to a curve
of self-intersections and a pair of simple singular curves (see Thm. 2.9 in Sect. 2). Other types of singularities
may appear in some particular cases. For instance, certain minimal surfaces may contain isolated characteristic
points or entire curves of singular points (strongly singular curves).

All described types of singularities are already present in the Heisenberg group H
1. In Section 3 we exhibit

several examples to illustrate our results.

There are still many natural questions concerning the structure of sub-Riemannian minimal surfaces, which
are not touched in the present paper. First of all, we consider only surfaces generated by smooth curves in SΔM .
Then, we do not discuss the problem of gluing together smooth surfaces, as well as the existence of a smooth
minimizing surface spanning a given contour. We leave these problems as the topics for the further studies.

1. Minimal surfaces in sub-Riemannian manifolds

1.1. Sub-Riemannian structures and associated objects

Let M be an n-dimensional smooth manifold. Consider a co-rank 1 vector distribution Δ in M :

Δ =
⋃

q∈M

Δq, Δq ⊂ TqM, q ∈ M.

By definition, a sub-Riemannian structure in M is a pair (Δ, 〈·, ·〉Δ), where 〈·, ·〉Δ denotes a smooth family of
Euclidean inner products on Δ. In what follows we will call Δ the horizontal distribution and keep the same
notation Δ both for the vector distribution and for the associated sub-Riemannian structure.

Let Xi, i = 1, . . . , n − 1, be a horizontal orthonormal basis:

Δq = span{X1(q), . . . , Xn−1(q)}, q ∈ M,

〈Xi(q), Xj(q)〉Δ = δij , q ∈ M, i, j = 1, . . . , n − 1.

By Θ ∈ Λn−1Δ we will denote the Euclidean volume form on Δ. Throughout this paper we assume that the
fields Xi, i = 1, . . . , n − 1, are defined everywhere on M .

In what follows we will also assume that Δ is bracket-generating in the sense that

span{Xi(q), [Xi, Xj ](q), i, j = 1, . . . , n − 1} = TqM, q ∈ M.

Hereafter the square brackets denote the Lie brackets of vector fields. If Δ is bracket-generating, then by the
Frobenius theorem it is completely non-holonomic, i.e., there is no invariant sub-manifold in M whose tangent
space coincides with Δ at any point.

We can also define the distribution Δ as the kernel of some differential 1-form. Let ω ∈ Λ1M be such a form:

Δq = Kerωq = {v ∈ TqM | ωq(v) = 0}, q ∈ M.

It is easy to check that Δ is bracket-generating at q ∈ M if and only if dqω �= 0.
Though in general the form ω is defined up to a multiplication by a non-zero scalar function, there is a

canonical way to choose it by using the Euclidean structure on Δ. Indeed, by standard construction the
Euclidean structure on Δ can be extended to the spaces of forms ΛkΔ, k ≤ n − 1. In particular, for any
2-form σ we set

‖σq‖Δ =

⎛⎜⎝ n−1∑
i,j=1
i<j

σq(Xi(q), Xj(q))2

⎞⎟⎠
1
2

,
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{Xi(q)}n−1
i=1 , as before, being the orthonormal horizontal basis of Δq. Now we can normalize ω as follows:

ωq(Δq) = 0, ‖dqω|Δ‖2
Δ = 1, ∀q ∈ M. (1.1)

In the fixed horizontal orthonormal basis {Xi(q)}n−1
i=1 ∈ Δq equations (1.1) become

ωq(Xi(q)) = 0,

n−1∑
i,j=1
i<j

dqω(Xi(q), Xj(q))2 = 1, i = 1, . . . , n − 1. (1.2)

Clearly the 1-form ω is defined by equations (1.2) up to a sign and it is invariant with respect to the choice
of the horizontal basis. In what follows we will call ω satisfying (1.1) the canonical 1-form associated with
the sub-Riemannian structure Δ. In local coordinates on M the components of the canonical form ω can be
expressed in terms of the coordinates of the vector fields Xi and their first derivatives. Indeed, we have

‖dqω|Δ‖2
Δ =

n−1∑
i,j=1
i<j

dqω(Xi(q), Xj(q))2 =
n−1∑
i,j=1
i<j

ωq([Xi, Xj](q))2

because according to Cartan’s formula for any pair of vector fields X and Y

dω(X, Y ) = Xω(Y ) − Y ω(X) − ω([X, Y ]).

Once the orientation in M is fixed by a choice of the sign of ω, the volume form

μ = Θ ∧ ω

is uniquely defined. We will call this volume form the canonical volume form associated with Δ.

1.2. Horizontal area form

Let W ⊂ M , dimW = n − 1, be a smooth hypersurface in M and let Ω be a bounded domain in W . Let
X ∈ Vec(M) be a smooth vector field and denote by etX the flow generated by X in M . Consider the map

ΠX : [0, ε] × Ω → M,

ΠX(t, q) = et X(q), q ∈ M.

Let us denote by
ΠX

(ε,Ω) =
{
etX(q)| q ∈ Ω, t ∈ [0, ε]

}
(1.3)

the cylinder formed by the images of Ω translated along the integral curves of X parameterized by t ∈ [0, ε].
Clearly, ΠX

(0,Ω) = Ω. By definition,

Vol(ΠX
(ε,Ω)) =

∫
ΠX

(ε,Ω)

μ =
∫

[0,ε]×Ω

(ΠX)∗μ,

where (ΠX)∗ is the pull-back map associated with ΠX , and μ is the canonical volume form defined above1.
Before going further observe that since (ΠX)∗μ is a form of maximal rank n in M we have dt∧ (ΠX)∗μ = 0.

Hence
0 = i∂t

(
dt ∧ (ΠX)∗μ

)
= i∂tdt ∧ (ΠX)∗μ − dt ∧ i∂t(Π

X)∗μ,

1Here we use the canonical volume form associated with Δ, though the whole construction works for any volume form in M .
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i.e.,
(ΠX)∗μ = dt ∧ i∂t(Π

X)∗μ.

Taking into account that ΠX
∗ ∂t = X we obtain

Vol(ΠX
(ε,Ω)) =

∫
[0,ε]×Ω

(ΠX)∗μ =
∫

[0,ε]×Ω

dt ∧ i∂t(Π
X)∗μ =

ε∫
0

( ∫
ΠX

(t,Ω)

iXμ
)

dt.

In particular, it follows that

lim
ε→0

Vol(ΠX
(ε,Ω))

ε
=

d
dε

∣∣∣
ε=0

Vol(ΠX
(ε,Ω)) =

∫
Ω

iXμ.

Definition 1.1. We will call
AΔ(Ω) = sup

X∈Δ
‖X‖Δ=1

∫
Ω

iXμ (1.4)

the sub-Riemannian (or horizontal) area of the domain Ω associated with Δ.

Remark 1.2. The horizontal area (1.4) is a natural generalization of the classical notion of the Euclidean area:
it defines the area of the base of a cylinder as the ratio of its volume and height.

Definition 1.3. The horizontal unit vector field ν ∈ Δ, ‖ν‖Δ = 1, such that for any bounded domain Ω ⊂ W∫
Ω

iνμ = sup
X∈Δ

‖X‖Δ=1

∫
Ω

iXμ

is called the sub-Riemannian or horizontal normal of W . The (n− 1)-form iνμ is called the sub-Riemannian or
horizontal area form on W associated with Δ.

Remark 1.4. According to the definition, the horizontal normal ν is well defined everywhere except the points
where the surface W is tangent to the distribution Δ. Such points are called the characteristic points of W and
they belong to the subset

Σ = {q ∈ W | TqW ⊆ Δq}
called the singular set of W . The set Σ can have a very non-trivial intrinsic geometry. In Section 2 we will
analyze in detail the structure of Σ in the case dimM = 3.

The sub-Riemannian normal is an intrinsic object associated with any hypersurface in M , and Definition 1.3
does not require any other global structure in M besides Δ. Nevertheless, if M is endowed with a Riemannian
structure compatible with the sub-Riemannian structure on Δ, i.e., the inner product 〈·, ·〉 on TM satisfies
〈·, ·〉Δ = 〈·, ·〉∣∣

Δ
, then it is easy to see that the sub-Riemannian normal ν is nothing but the projection on Δ of

the Riemannian unit normal N of W , normalized w.r.t. ‖ · ‖Δ. This fact follows from the relation∫
Ω

iXμ =
∫
Ω

〈X, N〉iN μ, ∀X ∈ Vec(M).

Thus if X1, . . . , Xn−1 ∈ Δ is an orthonormal horizontal basis of Δ, then

ν =
n−1∑
i=1

νiXi, νi =
〈N, Xi〉√〈N, X1〉2 + . . . + 〈N, Xn−1〉2

, (1.5)
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and the horizontal area form reads

iνμ = 〈ν, N〉iN μ =
√
〈N, X1〉2 + . . . + 〈N, Xn−1〉2 iN μ.

Consider now a hypersurface W defined as a zero level set of a smooth, let us say C2, function:

W = {q ∈ M | F (q) = 0, dqF �= 0} , F ∈ C2(M).

If X ≡ Xn ∈ Vec(M) is such that {Xi(q)}n
i=1 is an orthonormal basis of TqM at q ∈ M , then

N(q) = D−1
0

n∑
i=1

XiF (q)Xi(q), D0 =

(
n∑

i=1

XiF (q)2
)1/2

and

ν(q) = D−1
1

n−1∑
i=1

XiF (q)Xi(q), D1 =

(
n−1∑
i=1

XiF (q)2
)1/2

. (1.6)

Hereafter XiF denotes the directional derivative of the function F along the vector field Xi.

1.3. Sub-Riemannian minimal surfaces

Let us compute the first variation of the horizontal area AΔ(·). Let W ⊂ M be a smooth hypersurface. Take
a bounded domain Ω ⊂ W and a vector field V ∈ Vec(M) such that V

∣∣
∂Ω

= 0. For the moment we assume
that Ω contains no characteristic points. Consider a one-parametric family of hypersurfaces generated by the
vector field V

Ωt = etV Ω, Ω0 = Ω,

and denote by νt the horizontal unit normals to Ωt. We have

AΔ(Ωt) =
∫

etV Ω

iνt μ =
∫
Ω

(etV )∗iνt μ =
∫
Ω

etLV iνt μ,

where etLV : ΛkM → ΛkM , k = 0, 1, . . . , is the operator on the space of forms defined as the unique solution
of the operator Cauchy problem (see [2]):

d
dt

(P t) = P t ◦ LV , P 0 = Id.

Further,
∂

∂t

∣∣∣
t=0

AΔ(Ωt) =
∫
Ω

LV iν μ +
∫
Ω

i ∂νt

∂t

∣∣
t=0

μ. (1.7)

The second integral in (1.7) vanishes because the horizontal vector field ∂νt

∂t

∣∣
t=0

is tangent to Ω. Indeed, at any
non-characteristic point q ∈ Ω we have ν(q) /∈ TqΩ and dimΔq ∩ TqΩ = n − 2. On the other hand it is not
difficult to show that νt is smooth w.r.t. t for t sufficiently small (for instance, in can be derived from (1.6)).
Thus differentiating the equality 〈νt, νt〉Δ = 1 we get〈

∂νt

∂t

∣∣∣
t=0

, ν

〉
Δ

= 0, (1.8)

and hence ∂νt

∂t

∣∣
t=0

(q) ∈ TqΩ.
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Using Cartan’s formula we can transform the first part of (1.7) as follows:∫
Ω

LV iν μ =
∫
Ω

(iV ◦ d + d ◦ iV )iν μ =
∫
Ω

(iV ◦ d ◦ iν)μ +
∫
Ω

(d ◦ iV ◦ iν)μ.

Applying the Stokes theorem to the second integral we see that it vanishes:∫
Ω

(d ◦ iV ◦ iν)μ =
∫
∂Ω

(iV ◦ iν)μ = 0

provided V
∣∣
∂Ω

= 0 and ∂Ω is sufficiently regular. Thus,

∂

∂t

∣∣∣
t=0

AΔ(Ωt) =
∫
Ω

iV (d ◦ iνμ).

Definition 1.5. The hypersurface W is called minimal w.r.t. the sub-Riemannian structure Δ (or just
Δ-minimal) if

(d ◦ iνμ)
∣∣∣
W\Σ

= 0, (1.9)

where Σ is the singular set of W .

Needless to say that property (1.9) does not depend on the chosen orientation in M . The whole construction
can be further generalized for the case of vector distributions of co-rank greater than 1.

1.4. Canonical form of the minimal surface equation in contact sub-Riemannian manifolds

Up to now we were dealing with the general case of a sub-Riemannian manifold endowed with a co-rank 1
distribution. From now on we restrict ourselves to the case n = 2m + 1 and assume that the distribution Δ
is contact, i.e., the 2m + 1-form (dω)m ∧ ω is non-degenerate. In this case we say that M is a contact sub-
Riemannian manifold.

First of all we recall that in the contact case there exists a special uniquely defined vector field X ∈ Vec(M)
associated with ω. This vector field is called the Reeb vector field of the contact form ω and it satisfies the
following equalities

ωq(X(q)) = 1, dqω(v, X(q)) = 0, ∀v ∈ Δq. (1.10)
Using this vector field we can canonically extend the sub-Riemannian structure on Δ to the whole TM . The
resulting Riemannian structure in M is compatible with Δ by construction.

In what follows we set X2m+1 ≡ X and denote by ck
ij ∈ C∞(M) the structural constants of the frame {Xi}2m+1

i=1 :

[Xi, Xj] = −
2m+1∑
k=1

ck
ijXk. (1.11)

Let {θi}2m+1
i=1 be the basis of 1-forms dual to {Xi}2m+1

i=1 . Clearly, θ2m+1 ≡ ω and the canonical volume form
reads

μ = θ1 ∧ . . . ∧ θ2m+1.

We also recall that from Cartan’s formula it follows that

dθk =
2m+1∑
i,j=1
i<j

ck
ijθi ∧ θj , k = 1, . . . , 2m + 1. (1.12)
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Now we are ready to derive the canonical form of the minimal surface equation (1.9) in the contact case. We
have

iν μ =

(
2m∑
k=1

(−1)k+1νk θ1 ∧ . . . ∧ θ̂k ∧ . . . ∧ θ2m

)
∧ θ2m+1 = Ξ ∧ θ2m+1.

Here θ̂k denotes the omitted element in the wedge product and

Ξ =
2m∑
k=1

(−1)k+1νk θ1 ∧ . . . ∧ θ̂k ∧ . . . ∧ θ2m.

Further,

d iν μ = dΞ ∧ θ2m+1 − Ξ ∧ dθ2m+1.

Recalling now that dνk =
2m+1∑
i=1

Xiνk θi, we get

dΞ ∧ θ2m+1 =
2m∑
k=1

(−1)k+1
(
dνk ∧ θ1 ∧ . . . ∧ θ̂k ∧ . . . ∧ θ2m + νk d(θ1 ∧ . . . ∧ θ̂k ∧ . . . ∧ θ2m)

)
∧ θ2m+1

=

⎛⎝ 2m∑
k=1

Xkνk +
2m∑
j=1

νkcj
kj

⎞⎠μ.

On the other hand,

Ξ ∧ dθ2m+1 = Ξ ∧
2m+1∑
i,j=1
i<j

c2m+1
ij θi ∧ θj = −

(
2m∑
k=1

νkc2m+1
k2m+1

)
μ.

Summing up we obtain the following equation:⎡⎣divΔν +
2m∑
i=1

νi

⎛⎝2m+1∑
j=1

cj
ij

⎞⎠⎤⎦∣∣∣∣∣∣
W\Σ

= 0. (1.13)

The left-hand side of (1.13) corresponds to the sub-Riemannian mean curvature of the hypersurface W , while
its first term

divΔν =
2m∑
i=1

Xiνi

is called the horizontal divergence of the sub-Riemannian normal ν. Equation (1.13) is the canonical sub-
Riemannian minimal surface equation in a contact sub-Riemannian manifold.

Remark 1.6. In [7] there was introduced the notion of minimal surfaces associated with CR structures in
pseudohermitian manifolds. This approach later was used in [6,8], and in [13]. In general the sub-Riemannian
structures we consider in the present paper are not equivalent to the CR structures, and the class of surfaces
satisfying (1.13) differs from its analog defined in [7]. Nevertheless, in many particular cases, for instance, in
the cases of sub-Riemannian structures associated with the Heisenberg group, the group of roto-translations,
and S3, these structures coincide. Thus in these cases our results are comparable with the ones of cited papers.
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Example 1.7 (the Heisenberg distribution). Let M = R
2m+1 and denote by (x1, . . . , x2m, t) = q the Cartesian

coordinates in M . Let Δ be such that Δq = span{Xi(q)}2m
i=1, q ∈ M , where

Xi(q) = ∂xi −
xi+m

2
∂t, (1.14)

Xi+m(q) = ∂xi+m +
xi

2
∂t, i = 1, . . . , m.

The vector distribution Δ is characterized by the following commutative relations:

[Xi, Xj] = 0 for |i − j| �= m, and [Xi, Xi+m] = ∂t, (1.15)

and therefore it is a co-rank 1 bracket-generating distribution. The vector fields Xi, i = 1, . . . , 2m, generate the
Heisenberg Lie algebra in R

2m+1. In what follows we will call vector distributions, which satisfy the commutative
relations (1.15), the Heisenberg distributions. One can show that the space R

2m+1 endowed with the structure
of this distribution is the Heisenberg group H

m [14].
From (1.2) we find the canonical 1-form ω:

ω = ± 1√
m

(
dt − 1

2

m∑
i=1

(xi dxi+m − xi+m dxi)

)
. (1.16)

Clearly ω is a contact form since (dω)m ∧ dω = ± 1
mm

2m∧
i=1

dxi ∧ dt is non-degenerate. The associated Reeb

vector field is X = ±√
m∂t. The only non-zero structural constants of the canonical frame are c2m+1

ii+m = ± 1√
m

,
i = 1, . . . , m. Due to the high degeneracy of the sub-Riemannian structure the canonical minimal surface
equation takes a very simple form:

divΔν
∣∣∣
W\Σ

= 0.

This is the well known minimal surface equation in the Heisenberg group (see [7,10,12,16], etc.)

2. Sub-Riemannian minimal surfaces associated with (2, 3) contact
vector distributions

The less dimensional situation where sub-Riemannian minimal surfaces appear is the case of a contact
distribution Δ of rank 2 in the 3-dimensional manifold M . Almost all known results on sub-Riemannian minimal
surfaces are related to this case and concern minimal surfaces in Lie groups mentioned above. In this paper we
try to give a general picture. Our main idea is to study (1.13) using the classical method of characteristics. This
point of view permits to describe all minimal surfaces, and, as we will show in a while, to solve the problem
of the presence of the characteristic points. All this is possible due to the fact that dimTqM ∩ Δq = 1 at any
non-characteristic point q ∈ M .

2.1. The (2, 3) structures

From now on n = 3 and Δ =
⋃

q∈M Δq with Δq = span{X1(q), X2(q)}, q ∈ M . As before, we complete the
horizontal frame by the Reeb vector field X ≡ X3 associated with Δ, and denote by ck

ij the structural constant
of the frame {Xi}3

i=1. By definition, ck
ij = −ck

ji. Moreover, (1.10) and (1.11) imply

c3
12 = ±1, c3

13 = c3
23 = 0. (2.1)



848 N. SHCHERBAKOVA

Here the sign of c3
12 is to be chosen in agreement upon the sign of ω. More symmetry relations of the structural

constants can be obtained from the Jacobi identity

[X1, [X2, X3]] + [X3, [X1, X2]] + [X2, [X3, X1]] = 0.

In particular, if M is a Lie group, and {Xi}3
i=1 is the associated basis of invariant vector fields, then the

structural constants do not depend on the points of the base manifold M , and the Jacobi identity implies the
following additional symmetry relations:

c1
13 + c2

23 = 0, c1
12c

1
13 + c2

12c
1
23 = 0, c1

12c
2
13 + c2

12c
2
23 = 0. (2.2)

Let us now consider a regular hypersurface W ⊂ M and let ν ∈ Δ be its horizontal normal. As we know, ν
is well defined on W \ Σ, where Σ is the singular set of W , which contains characteristic points of W . If W is
Δ-minimal, then by (2.1), (

X1ν1 + X2ν2 + ν1c
2
12 − ν2c

1
12

)∣∣∣
W\Σ

= 0. (2.3)

Assume that W is given as a zero level set of a smooth function F . Then Σ = {q ∈ W | X1F (q) = X2F (q) = 0},
and away from Σ the function F satisfies the following PDE:[(

X2
1F (X2F )2 + X2

2F (X1F )2 − X1F X2F (X1 ◦ X2 + X2 ◦ X1)F
)
D−3

1 + (2.4)

(
c2
12X1F − c1

12X2F
)
D−1

1

]∣∣∣
W\Σ

= 0, D1 =
√

(X1F )2 + (X2F )2.

Some non-trivial solutions of this equation are known, especially in the particular case of H
1, the interested

reader can consult [7] and other papers from the bibliography. Let us also consider another important for
applications case of the distribution associated with the Lie group E2 (the group of rotations and translations
of the plane).

Example 2.1. The Lie group E2 can be realized as R
2 × S

1. In coordinates q = (x, y, z), where (x, y) ∈ R
2

and z ∈ S
1, the left-invariant basis of the corresponding Lie algebra is given by vector fields

X1 = cos z∂x + sin z∂y, X2 = ∂z.

It is easy to check that the horizontal distribution ΔE2 with sections ΔE2
q = span{X1(q), X2(q)}, q ∈ M , is

contact, the corresponding canonical 1-form is ω = ±(sin zdx−cos zdy). The Reeb vector field coincides with the
Lie bracket [X1, X2] (up to the sign) and the only non-zero structural constants are c3

12 = c1
23 = ±1. Therefore,

the minimal surface equation, as in the Heisenberg case, contains only the divergence term:

(X1 ν1 + X2ν2)
∣∣∣
W\Σ

= 0.

For instance one can easily check that the following surfaces are ΔE2-minimal:

(a) y = x + B(sin z + cos z) + C, B, C = const.;
(b) Ax + B sin z = C, A, B, C = const.;
(c) x cos z + y sin z = 0.
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2.2. General structure of sub-Riemannian minimal surfaces and the method
of characteristics

Equation (2.4) is essentially degenerate and it is quite difficult to treat it by direct methods. Instead here
we propose an alternative way to study its solutions using the classical method of characteristics. The first step
in this direction is to pass from the sub-Riemannian normal ν to its Δ-orthogonal complement. Namely, we
denote by η the horizontal unite vector field η = η1X1 + η2X2 ∈ Δ such that η1 = ν2 and η2 = −ν1. Clearly η
is well defined on W \Σ. One can easily check that 〈ν, η〉Δ = 0 and η(q) ∈ TqW for all q ∈ W \ Σ. The vector
field η is called the characteristic vector field of W , its integral curves on W are the characteristic curves of W .
By definition, these curves are horizontal curves t → γ(t) ∈ W satisfying

γ̇(t) ∈ Tγ(t)W ∩ Δγ(t) ∀t.

Since ‖ν‖Δ = ‖η‖Δ = 1, we can introduce a new scalar parameter ϕ such that

cosϕ = η1, sin ϕ = η2, (2.5)

so that
η = cosϕX1 + sin ϕX2.

Our further analysis is based on the following observation. Assume for the moment that the sub-Riemannian
minimal surface W contains no characteristic points. Then ν and η are well defined, and (2.3) becomes

− sinϕX2ϕ − cosϕX1ϕ = cosϕ c1
12 + sin ϕ c2

12. (2.6)

The equation above is a quasilinear PDE and we can apply the classical method of characteristics to find its
solutions. Indeed, denote by qi, i = 1, 2, 3 some local coordinates on M and let t → (q1(t), q2(t), q3(t)) be a

smooth (at least C1) curve. Along this curve ϕ̇ =
3∑

i=1

∂ϕ
∂qi

q̇i with ˙ = d
dt . Substituting this expression into (2.6)

we get the following system of ODE:{
q̇ = η(q)
ϕ̇ = − cosϕ c1

12(q) − sin ϕ c2
12(q).

(2.7)

Clearly this system is equivalent to (2.6).

The described construction motivates the following geometric interpretation of the problem. Denote M =
{q̄ = (q, ϕ)| q ∈ M, ϕ ∈ R}. The space M is a trivialization of the horizontal spherical bundle SΔM over M :

SΔM = {(q, v)| q ∈ M, v ∈ Δq, ‖v‖Δ = 1}.

By π we denote the canonical projection M → M and set X4 ≡ ∂ϕ. Clearly, the Riemannian structure on M
associated with the orthonormal frame {Xi}4

i=1 is compatible with the sub-Riemannian structure on Δ. Since
[Xi, X4] ≡ 0 for i = 1, 2, 3, the non-zero structural constants of the extended frame are the same as the ones of
the frame {Xi}3

i=1.
Now consider the generalized characteristic vector field V ∈ Vec(M):

V = cosϕX1 + sin ϕX2 + gX4, g = −c1
12 cosϕ − c2

12 sin ϕ.

It is easy to see that V is well defined everywhere on M , it has no singular points, and it is not difficult to
verify that it is invariant w.r.t. the choice of the horizontal basis on Δ. Moreover, since π∗[V (q̄)] = η(q) the
projection of the integral curves of V on M are exactly the characteristics of equation (2.6).
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Let us take now a smooth vector field ξ ∈ Vec(M) and denote by Γ its integral curve starting at q̄0: Γ(s) =
esξ q̄0. Further, consider

W = {q̄(t, s) ∈ M | q̄(t, s) =
(
etV ◦ esξ

)
q̄0, t ∈ [−ε1, ε2], s ∈ [−δ1, δ2]}, (2.8)

where δi and εi, i = 1, 2, are some positive numbers. By construction, W is the solution of the Cauchy problem{
˙̄q(t, s) = V (q̄(t, s))
q̄(0, s) = Γ(s), s ∈ [−δ1, δ2]

(2.9)

for t ∈ [−ε1, ε2]. The theorem of existence and uniqueness of solutions of ODE guarantees that this solution is
unique since the manifold M and the curve of initial conditions Γ are smooth. Moreover, if ξ ∧ V

∣∣
Γ
�= 0, then

W locally has a structure of a 2-dimensional sub-manifold of M . In our further considerations we will use the
following:

Proposition 2.2. Let q̄ ∈ M and ζ =
4∑

i=1

ζiXi(q̄). Then ζ ∧ V (q̄) = 0 if and only if

ζ3 = 0, (2.10)

ζ1 sin ϕ − ζ2 cosϕ = 0, (2.11)

g(q̄)ζ1 = ζ4 cosϕ, g(q̄)ζ2 = ζ4 sin ϕ. (2.12)

Proof. The condition ζ ∧ V (q̄) = 0 means that

dim span{V (q̄), ζ} < 2.

In other words, all second order minors of the matrix(
ζ1 ζ2 ζ3 ζ4

cosϕ sinϕ 0 g(q̄)

)
are zero. Taking into account that the pair of conditions ζ3 sin ϕ = 0, ζ3 cosϕ = 0 imply ζ3 = 0 we get (2.10),
(2.11) and (2.12). �

Conditions (2.10)–(2.12) admit a very clear geometrical interpretation. Indeed, needless to say that by
construction any singular point of W of form (2.8) is a singular point of its projection W = π[W ]. On the other
hand, at a regular point q̄ ∈ W conditions (2.10)–(2.12) cannot be satisfied simultaneously for all ζ ∈ Tq̄W . In
particular, if for some ζ ∈ Tq̄W (2.10) fails, then q̄ is a regular point of W , its projection q = π[q̄] is a regular
point of the projected surfaces W , and W satisfies equation (2.3) at q. On the other hand, it is easy to see that
q is a characteristic point of W if and only if ζ3 = 0 for all ζ ∈ Tq̄W . In addition, if (2.11) fails at q̄ for some ζ,
then π∗[Tq̄W ] = Δq. If both conditions (2.10) and (2.11) are satisfied at q, then Tq̄W = span{V (q̄), ∂ϕ}. In this
case dim rank{η(q), π∗[ζ]} = 1 for all ζ ∈ Tq̄W , and hence the characteristic point q is a singular point of W .

Definition 2.3. Let W ⊂ M , dimW = 2, be a smooth surface and let W = π[W ]. Assume q̄ ∈ W is such that
q = π[q̄] ∈ Σ. Then q is

(a) a regular characteristic point of W if

π∗[Tq̄W ] = Δq;
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(b) a singular characteristic point of W if

Tq̄W = span{V (q̄), ∂ϕ}.

Summing up we see that the projected surface W = π[W ] for the solutions of (2.9) is a Δ-minimal surface,
possibly with singularities of the described above types. Moreover, given a Δ-minimal surface W and a non-
characteristic point q on it there always locally exists a 2-dimensional surface in M of form (2.8) projecting
on it. Indeed, one can easily reconstruct V and ϕ using (1.6) and (2.5). In addition, since q is non-singular,
there exists a smooth curve s → γ(s) ∈ W containing q and such that dγ(s)

ds ∧ η(γ(s)) �= 0. So, solving (2.9) for
Γ(s) = (γ(s), ϕ(γ(s))), one finds a 2-dimensional surface (2.8) for some εi, δi, i = 1, 2, which projects on W .
Thus in the case of (2, 3) contact sub-Riemannian structures Definition 1.5 can be naturally generalized as
follows:

Definition 2.4. Let M , dimM = 3, be a smooth contact sub-Riemannian manifold. We say that the hyper-
surface W ∈ M is Δ-minimal w.r.t. the sub-Riemannian structure Δ of co-rank 1 if it can be presented as the
projection of the one-parametric family of solutions of the Cauchy problem (2.9) for some curve Γ ∈ SΔM .

Notice, that in the sense of the above definition the characteristic vector field η of a sub-Riemannian minimal
surface W , being the projection of the generalized characteristic vector field V , is defined also on the singular
set Σ, though it not true for the sub-Riemannian normal ν.

In what follows we will call W and Γ the generating surface and generating curve of the minimal surface
W = π[W ].

Remark 2.5. In a particular but important for the applications case of Lie groups the described method
provides an explicit parameterization of the minimal surfaces. Indeed, recall that in the Lie group case the
functions c1

12 and c2
12, associated with the basis of the invariant vector fields, are constants. So, for any fixed s

one can perform the direct integration of the second equation of (2.7). The obtained function ϕ(t, s) can be
used then to solve the first equation of (2.7). If, moreover,

c1
12 = c2

12 = 0, (2.13)

then ϕ is constant along any characteristic curve. The resulting minimal surface is a kind of ruled surface,
whose rulings are the characteristic curves.

Example 2.6. Consider the case of the Heisenberg group H
1. Let us use the standard Cartesian coordinates

(x, y, z) in R
3 so that the horizontal basis is given by

X1 = ∂x − y

2
∂z, X2 = ∂y +

x

2
∂z .

We fix the orientation by choosing the Reeb vector field X3 = ∂z, so that the only non-zero structural constant
is c3

12 = −1. Condition (2.13) is satisfied, and hence the parameter ϕ is constant along characteristic curves.
The characteristic vector field reads

V = cosϕ∂x + sinϕ∂y +
1
2
(x sin ϕ − y cosϕ)∂z .

Thus any characteristic curve satisfies the following system of ODE for some fixed ϕ:

ẋ = cosϕ, ẏ = sin ϕ, ż =
1
2
(x sin ϕ − y cosϕ). (2.14)
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We easily see that characteristic curves are straight lines. The minimal surface generated by the curve Γ(s) =
(x0(s), y0(s), z0(s), ϕ(s)) admits the following parameterization:

x(t, s) = t cosϕ(s) + x0(s), y(t, s) = t sin ϕ(s) + y0(s), (2.15)

z(t, s) =
t

2
(x0(s) sin ϕ(s) − y0(s) cosϕ(s)) + z0(s).

Example 2.7. In the case of the group of roto-translations E2 condition (2.13) is satisfied as well, and ϕ is
constant along characteristics. The characteristic vector field is given by V = cosϕ cos z∂x + cosϕ sin z∂y +
sin ϕ∂z. The characteristic curves are then the integral curves of the system:

ẋ = cosϕ cos z, ẏ = cosϕ sin z, ż = sinϕ. (2.16)

The solution generated by the curve Γ(s) = (x0(s), y0(s), z0(s), ϕ(s)) has the form

x(t, s) = cos(t sin ϕ(s) + z0(s)) cotϕ(s) + x0(s),
y(t, s) = − sin(t sin ϕ(s) + z0(s)) cotϕ(s) + y0(s),
z(t, s) = t sin ϕ(s) + z0(s)

for all s such that ϕ(s) �= 0, π, and

x(t, s) = ± t cos z0(s) + x0(s), y(t, s) = ± t sin z0(s) + y0(s), z(t, s) = z0(s)

for s where ϕ(s) = 0 mod π. It is not difficult to verify that this surface is smooth w.r.t. s. Observe that the
characteristic curves, except those that correspond to ϕ(s) = 0 modπ, are not straight lines.

2.3. Local structure of singular sets of sub-Riemannian minimal surfaces

Given a vector field ξ ∈ Vec(M) let us denote by ξt =
4∑

i=1

ξt
iXi = etV∗ ξ its push-forward by the characteristic

flow etV . Consider the parameterized surface W ∈ M of form (2.8). As

∂

∂s
q̄(t, s) =

(
etV
∗ ξ

)
(q̄(t, s)) = ξt(q̄(t, s)),

it follows that ξt(q̄) ∈ Tq̄W for all q̄ ∈ W and t ∈ [−ε1, ε2]. So, ξt and V form a basis on TW .
We also observe that for any curve β(s) = q̄(t(s), s) ∈ W

dβ(s)
ds

= t′(s)V (β(s)) + ξt(s)(β(s)). (2.17)

If π[β] contains a singular characteristic point of W , then it is tangent to the characteristic vector field at this
point.

Our further analysis is based on the following Taylor’s expansion of the components of the vector field ξt

along the integral curves of V .
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Proposition 2.8. Let ξ ∈ Vec(M) and consider the curve q̄t = etV q̄ starting at some point q̄ = (q, ϕ) ∈ M .
Then the functions αi(t) = ξt

i(q̄t), i = 1, 2, 3, 4, have the form

α1(t) = α1(0) − t
(
c1
12(q)

(
α1(0) sin ϕ − α2(0) cosϕ

)
−α3(0)

(
c1
13(q) cosϕ + c1

23(q) sin ϕ
)

+ α4(0) sin ϕ
)

+ o(t2),

α2(t) = α2(0) − t
(
c2
12(q)

(
α1(0) sin ϕ − α2(0) cosϕ

)
−α3(0)

(
c2
13(q) cosϕ + c2

23(q) sin ϕ
)− α4(0) cosϕ

)
+ o(t2),

α3(t) = α3(0) + t
(
α1(0) sinϕ − α2(0) cosϕ

)
− t2

2
(
α4(t) + c1

12(qt)α1(t) + c2
12(qt)α2(t) + o(t)

)
. (2.18)

Proof. The proof of the proposition consists in a straightforward computation. We give just a sketch of it for
α3(t), the remaining formulae can be derived in the same way.

Recall that the push-forward operator admits the following representation (see [1,2]):

etV
∗ ξ = e−tadV ξ =

(
Id − t[V, ·] + t2

2!
[V, [V, ·]] + . . .

)
ξ, ξ ∈ Vec(M). (2.19)

Let us compute explicitly the first terms of this expansion. We have

[V, ξ] = (V ξ1 + c1
12(ξ1 sin ϕ − ξ2 cosϕ) − ξ3(c1

13 cosϕ + c1
23 sin ϕ) + ξ4 sin ϕ)X1

+ (V ξ2 + c2
12(ξ1 sin ϕ − ξ2 cosϕ) − ξ3(c2

13 cosϕ + c2
23 sinϕ) − ξ4 cosϕ)X2

+ (V ξ3 − (ξ1 sin ϕ − ξ2 cosϕ))X3 + (V ξ4 − ξg)X4.

This expression can be used in order to calculate the second order brackets. In particular, after all necessary
simplifications for the third component we obtain

[V, [V, ξ]]3 = V 2ξ3 − 2V (ξ1 sinϕ − ξ2 cosϕ) − (ξ4 + c1
12ξ1 + c2

12ξ2).

Observe that for any smooth function f

f − tV f +
t2

2!
V 2f + . . . = e−tV f,

where, by definition, for any q̄ ∈ M one has
(
e−tV f

)
(q̄) = f(e−tV q̄) (see [2]). Therefore

ξt
3 = e−tV ξ3 + te−tV (ξ1 sinϕ − ξ2 cosϕ) − t2

2
(ξ4 + c1

12ξ1 + c2
12ξ2) + o(t3).

Taking into account that (
e−tV f

)
(q̄t) = f(e−tV q̄t) = f(q̄),

and recalling that by definition α3(t) = ξt
3(e

tV q̄) and ξi(q̄) = αi(0), we get the desired expression:

α3(t) = α3(0) + t
(
α1(0) sinϕ − α2(0) cosϕ

)− t2

2
(
α4(t) + c1

12(qt)α1(t) + c2
12(qt)α2(t)

)
+ o(t3).

The formulae for α1(t) and α2(t) can be derived in the same way. �
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We are now ready to describe the structure of a sub-Riemannian minimal surface close to its characteristic
point. Let the generating surface W be as in (2.8) for some ξ ∈ Vec(M) which satisfy the non-degeneracy
condition

ξ ∧ V
∣∣
q̄(s)

�= 0, (2.20)

where q̄(s) = esξ q̄0, s ∈ [−δ1, δ2], is the integral curve of ξ passing through q̄0. The point q = π[q̄(t, s)] is a
characteristic point of W = π[W ] if and only if

φ(t, s) = ξt
3(e

tV q̄(s)) = φ0(s) + tφ1(s) − t2

2
φ2(t, s) = 0,

where φ0(s) = ξ3(q̄(s)), φ1(s) = (ξ1 sin ϕ − ξ2 cosϕ)(q̄(s)), and φ2(t, s) = (ξ4 + c1
12ξ1 + c2

12ξ2 + tf)(q̄(t, s)). In
the last formula the function f contains the higher order terms of the expansion (2.18).

If φ �= 0 on I = [−ε1, ε2] × [−δ1, δ2], then W is a sub-Riemannian minimal surface without characteristic
points. Assume now that W contains a characteristic point. Without loss of generality we may assume that
this point is q0 = π[q̄(0, 0)], i.e., φ(0, 0) = φ0(0) = 0.

I. Generic case. Recall that a generic property in the space Cr(I; R) is the property satisfied in an open dense
subset of Cr(I; R). In particular, it is easy to see that generically a function φ ∈ C1(I; R), satisfying φ(0, 0) = 0,
has no singular point at (0, 0), i.e.2,

dφ(0, 0) �= 0. (2.21)

In view of Definition 2.3, at q0 we have to distinguish between the following two situations:

φ0(0) = 0,
∂φ

∂t

∣∣∣
(0,0)

= φ1(0) �= 0; (2.22)

and

φ0(0) = 0,
∂φ

∂s

∣∣∣
(0,0)

= φ′
0(0) �= 0,

∂φ

∂t

∣∣∣
(0,0)

= φ1(0) = 0. (2.23)

Notice, that conditions (2.22) and (2.23) are conditions on the velocity of the generating curve Γ at q̄0 and they
are invariant w.r.t. regular reparameterizations of Γ. According to Definition 2.3, (2.22) describes a regular
characteristic point, while (2.23) corresponds to a singular characteristic point.

Let us first consider case (2.22). We have

φ(0, 0) = 0,
∂φ

∂t
(0, 0) = φ1(0) �= 0.

By the implicit function theorem in a small neighborhood of the origin in R
2 there exists a unique curve t = t(s)

such that t(0) = 0 and φ(t(s), s) = 0. By construction, the curve q(t(s), s) ∈ W consists of regular characteristic
points, we will call such a curve a simple singular curve of W 3.

Now let us consider in detail the situation described by (2.23). Let us introduce two functions φ̃0 and φ̃1

such that φ0(s) = sφ̃0(s) and φ1(s) = sφ̃1(s), and, in addition, φ̃0(0) �= 0. Observe that φ̃0(0) = d
dsξ3(q̄(s))

∣∣
s=0

,
i.e., (2.23) means that locally the projection of the generating curve contains no other characteristic points
besides q0.

2This simple fact can be also derived from the the Weak Transversality theorem: indeed, for φ ∈ C1(I; R) the condition
dφ(0, 0) �= 0 means that φ is transversal to {0} ⊂ R, which implies that φ belongs to an open dense subset C1(I; R) [3].

3In the language of the singularity theory the simple singular curves are resolvable singularities of sub-Riemannian minimal
surfaces.
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Theorem 2.9. Let q̄0 be a regular point of a generating surface W of form (2.8) for ξ ∈ VecM . Assume
q0 = π[q̄0] is a singular characteristic point of W = π[W ], and (2.21) holds true. Then:

(a) a small enough neighborhood of q0 in W contains a pair of simple singular curves γ± so that γ =
γ− ∪ {q0} ∪ γ+ is a smooth (at least C1) curve on W ;

(b) there exists a choice of local coordinates (τ, σ) ∈ Ω ⊆ R
2 such that

W = {q(τ, σ) = (τ2, σ, τσ), τ, σ ∈ Ω ⊆ R
2}, q(0, 0) = q0,

i.e., in the neighborhood of q0 W has the structure of Whitney’s umbrella.

Proof. Denote ζ = ξ(q̄0). Observe that since q̄0 = q̄(0, 0) is a regular point φ2(0, 0) �= 0. Indeed, otherwise we
would have ζ4 = −c1

12ζ1 − c2
12ζ2 and ζ1 sin ϕ = ζ2 cosϕ. It is not difficult to see that these two conditions are

equivalent to (2.12), and this contradicts the regularity assumption on the initial point q̄0.
In order to prove part (a) let us treat the implicit equation φ(t, s) = 0 as a quadratic equation w.r.t. t-variable.

The discriminant of this equation is given by the function

D(t, s) = s(sφ̃2
1(s) + 2φ̃0(s)φ2(t, s)) = sβ(t, s),

where D(0, 0) = 0 and β(0, 0) �= 0. We have ∂
∂tD(0, 0) = 0 and ∂

∂sD(0, 0) = β(0, 0) �= 0. Observe also that
D(t, 0) ≡ 0. Thus we can assume D(t, s) > 0 in a small neighborhood of (0, 0) for s > 0. Indeed, this condition
can be always satisfied by an appropriate choice of the sign of the parameter s. Now we obtain two implicit
equations

t =
sφ̃1(s) ±

√
sβ(t, s)

φ2(t, s)
, (2.24)

which describe zero level sets of two functions

Φ±(t, s) = t − sφ̃1(s) ±
√

sβ(t, s)
φ2(t, s)

·

We have

Φ±(0, 0) = 0,
∂

∂t
Φ±(0, 0) = 1.

Applying the implicit function theorem to each of the functions Φ± we see that in a small enough neighborhood
of the origin in the half-plane s ≥ 0 of the (t, s)-plane there exist two curves (t±(s), s) satisfying (2.24). Since
t±(0) = 0 these curves meet each other at the origin of the (t, s)-plane. Since lim

s→0

∂
∂sΦ±(0, s) = ∓∞ they are

both tangent to the t-axis. The corresponding curves on W form a unique curve

γ = γ− ∪ {q0} ∪ γ+, (2.25)

where γ±(s) = q(t±(s), s), s > 0. The curve γ is smooth at q0, actually, in view of (2.17), it is tangent to the
characteristic passing through q0.

We claim that the short enough pieces of curves γ± contain only regular characteristic points. In order to
prove this we show that the function χ = ξt

1 sin ϕ− ξt
2 cosϕ is different from zero in a small neighborhood of q̄0.

First of all we observe that for s fixed

sin ϕ(t, s) = sin(ϕ(s) + tg(s) + o(t2; s)) = sin ϕ(s) + tg(s) cosϕ(s) + o(t2; s),

cosϕ(t, s) = cos(ϕ(s) + tq(s) + o(t2; s)) = cosϕ(s) − tg(s) sin ϕ(s) + o(t2; s).

Hereafter we denote ϕ(s) = ϕ(0, s), ξi(s) = ξi(q̄(0, s)), g(s) = g(q̄(0, s)), and χ(t, s) = χ(q̄(t, s)).
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Without loss of generality we can assume that ζ1 = ζ2 = 0. We have χ(0, 0) = 0, and by definition,
χ(0, s) = sφ̃1(s). Using (2.18) we obtain

∂χ

∂t

∣∣∣
(0,0)

=
∂

∂t
(ξt

1 sin ϕ − ξt
2 cosϕ)(q̄0) = (ζ4 − g(0)(ζ1 cosϕ(0) + ζ2 sin ϕ(0))) �= 0,

because, by assumption, q̄0 is a regular point of W . Hence function χ can be zero only along the generating
curve, i.e., the singular points should necessarily belong to the curve q(s). But this is impossible since q(s) does
not contain other characteristic points besides q0 due to (2.21). Therefore there is a small neighborhood of q0

in W which contains no other singular points besides q0, and in particular the points q(t±(s), s) for sufficiently
small s > 0 are regular characteristic points.

Let us prove part (b). The sub-Riemannian minimal surfaces are the images of the map q : I ⊆ R
2 → M

such that q(t, s) = π[q̄(t, s)] ∈ M . Again we assume that ζi = 0, i = 1, 2. We have

∂q

∂t

∣∣∣
(0,0)

=
(
cosϕX1 + sin ϕX2

)
(q(0, 0)),

∂q

∂s

∣∣∣
(0,0)

= π∗[ζ] = 0. (2.26)

In order to prove (b), according to the well-known result by Whitney [17], it is enough to show that the vectors
v1 = ∂q

∂t

∣∣∣
(0,0)

, v2 = ∂2q
∂t∂s

∣∣∣
(0,0)

and v3 = ∂2q
∂s2

∣∣∣
(0,0)

are linearly independent. We have

∂2q(t, s)
∂t∂s

= ϕ′
s(t, s)

(− sin ϕ(s)X1(q(t, s)) + cosϕ(t, s)X2(q(t, s))
)

+ cosϕ(t, s)
∂

∂s
(X1(q(t, s))) + sinϕ(t, s)

∂

∂s
(X2(q(t, s))).

By (2.26), the last two terms on the expression above vanish at q0 = q(0, 0). So,

v2 = ζ4

(− sin ϕX1 + cosϕX2

)
(q(0, 0)),

since ϕ′
s(s) = ξ4(s). Analogously we get

v3 =
(

dξ1

ds
X1 +

dξ2

ds
X2 +

dξ3

ds
X3

)
(q(0, 0)).

An easy calculation shows that det{v1, v2, v3} = ζ4
d
dsξ3(0) �= 0. �

II. Non-generic cases. It is worth to say a couple of words about what may happen in some degenerate
situations, i.e., when φ is singular at (0, 0).

Consider first the case φ0(0) = 0, φ1(0) = φ′
0(0) = 0, and φ′′

0 (0) �= 0. Then we can set φ0(s) = s2φ̃0(s). Now,
repeating the same steps as in the proof of Theorem 2.9, we get a pair of implicit functions:

Φ̃±(t, s) = t −
sφ̃1(s) ± s

√
β̃(t, s)

φ2(t, s)
·
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The implicit function theorem applied to both functions Φ̃± implies the existence of two pairs of curves q(t±(s), s)
in a small enough neighborhood of s = 0. Notice that the concatenations

γ±(s) = q(t±(s))
∣∣
s<0

∪ {q0} ∪ q(t±(s))
∣∣
s>0

(2.27)

are smooth and both tangent to the characteristic passing through q0.
Concerning the degeneracies of higher order we observe that the local behavior of the singular curves in a

neighborhood of a singular point is determined by the behavior of the function t(s) ∼ sk/2 in the proximity of
the singularity. So, for any finite m1 > 2 and m2 > 1, the structure of the singular curves in the case φm1

0 �= 0,
φm2

1 �= 0 will be analogous to one of the two situations (2.25) and (2.27) described above. The rigorous proof
in each singular case can be done in the same manner as above modulo a suitable modification, but this lies
behind the scope of this paper.

To conclude this discussion we have to consider the following two particularly degenerate cases. Namely, if
φ0 = φ1 ≡ 0, the generating curve Γ∗ is everywhere tangent to the plane span{∂ϕ, V }, though (2.20) may be
still verified. The projected curve γ∗ = π[Γ∗] consists of singular characteristic points (strongly singular curve),
and any narrow enough stripe along γ∗ contains no other characteristic points of W . Indeed, the equation
φ(t, s) = 0 has only trivial solution t = 0 and moreover, φ(t, s) �= 0 for small enough t > 0 since φ2(0, 0) �= 0.

The sub-Riemannian minimal surface generated by a purely “vertical curve” q̄(s) = (q0, ϕ(s)) passing
through q̄0 contains an isolated singular point q0. In this case the whole strongly singular curve γ∗ collapses
into a single point q0 = π[q̄0]. The same argument as before, after an obvious modification, implies that q0 is
an isolated singular point. Since, by assumption, q̄0 is a regular point of W , the component ξ4(s) = ϕ′(s) �= 0.
The characteristic vector η(q0) “rotates” monotonically in the plane Tq(0,0)W . Moreover, if we consider a closed
curve γ(s) = π[eεV q̄(s)] for some fixed and sufficiently small ε, then to a complete revolution of the point along γ
there corresponds one complete revolution of the vector η(γ(s)). In particular, it follows that the index of the
isolated singular point is +1 [4].

We now conclude this section by the following classification of characteristic points of sub-Riemannian min-
imal surfaces:

Let W ∈ M be as in (2.8) and assume (2.20). Let q̄0 is be a regular point of W such that q0 = π[q̄0] is a
characteristic point of the projected surface W = π[W ]. Then in a small neighborhood of q0 ∈ W there realizes
one of the following situations:

• q0 is a regular point of W . In a small enough neighborhood of q the surface W contains a unique simple
singular curve passing through q0;

• q0 is a singular point of W . In addition,
– it can be an isolated singular characteristic point;
– in a small neighborhood of q0 in W there is a strongly singular curve passing through q0;
– in a small neighborhood of q0 in W there is a smooth curve γ, which contains q0 and has a common

tangent with the characteristic passing through this point. This curve has form (2.25), and its
branches γ± consist of regular characteristic points;

– in a small enough neighborhood of q0 the surface W contains a pair of curves of form (2.25), which
are both tangent to the characteristic passing through q0 and contain no other singular points
besides q0.

3. Example: singular sets of sub-Riemannian minimal surfaces in H
1

We now illustrate the results of the previous section by examples of minimal surfaces associated with the
Heisenberg distribution in H

1. Some of the facts that will be discussed below were already noticed in [6,7]. We
limit ourselves to consider only the sub-Riemannian minimal surfaces generated by smooth generating curves.
Due to the explicit parameterization (2.15) knowing the generating curve Γ(s), s ∈ R, is enough to reconstruct
the whole projected surface together with its singular set.
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First of all observe that in the H
1 case the Lie brackets of order greater than 2 of the generalized characteristic

vector field V with the vector fields X1, X2 and X3 vanish. This implies that for any vector field ξ ∈ Vec(M)
the right-hand sides of (2.18) contain at most quadratic terms w.r.t. t. More precisely,

α1(t) = ξ1(q̄) − t ξ4(q̄) sin ϕ(q̄), α2(t) = ξ2(q̄) + t ξ4(q̄) cosϕ(q̄),

α3(t) = ξ3(q̄) + t(ξ1(q̄) sin ϕ(q̄) − ξ2(q̄) cosϕ(q̄)) − t2

2
ξ4(q̄), (3.1)

α4(t) = ξ4(q̄).

Moreover, ζ ∧ V (q̄) = 0 for ζ ∈ Tq̄M if and only if

ζ1 sin ϕ − ζ2 cosϕ = 0, ζ3 = ζ4 = 0.

Proposition 3.1. Let s → Γ(s) be an integral curve of a smooth vector field ξ ∈ Vec(M) such that ξ∧V
∣∣
Γ
�= 0.

Let W be a sub-Riemannian minimal surface generated by Γ. Then if for some ŝ

2ξ3ξ4 + (ξ1 sin ϕ − ξ2 cosϕ)2
∣∣∣
Γ(ŝ)

= 0, and ξ4(ŝ) �= 0, (3.2)

then the point q(t̂, ŝ) is a singular point of W for

t̂ =
ξ1 sin ϕ − ξ2 cosϕ

ξ4

∣∣∣
Γ(ŝ)

· (3.3)

Moreover, the singular points of the type (t̂, ŝ), where t̂ is defined by (3.3), are the only singular points of W .

Proof. The point q∗ = π[q̄(t̂, ŝ)] is a singular point of W iff

dim span{π∗[ξt̂], η}
∣∣∣
q∗

< 2,

i.e.,
cosϕ(ŝ)α2(t̂; ŝ) − sinϕ(ŝ)α1(t̂; ŝ) = (cosϕ(ŝ)ξ2(ŝ) − sin ϕ(ŝ)ξ1(ŝ)) + tξ4(ŝ) = 0, (3.4)

cosϕ(ŝ)α3(t̂; ŝ) = 0, sin ϕ(ŝ)α3(t̂; ŝ) = 0.

Taking into account (3.1), one can easily see that (3.2) and (3.3) imply (3.4) and vice versa. �
Remark 3.2. The role of the condition ξ4(ŝ) �= 0 in (3.2) becomes clear from the following observation. If
ξ4(ŝ) = 0 and cosϕ(ŝ)ξ2(ŝ) − sin ϕ(ŝ)ξ1(ŝ) = 0 for some ŝ, then ξ3(ŝ) �= 0 by the non-degeneracy assumption
ξ ∧ V

∣∣
Γ
�= 0, and hence q(t, ŝ) is a regular point of W for any t.

The left-hand side of (3.2) is the discriminant

D(s) = (ξ1(s) sin ϕ(s) − ξ2(s) cosϕ(s))2 + 2ξ3(s)ξ4(s) (3.5)

of the quadratic equation

ξ3(s) + t(ξ1(s) sin ϕ(s) − ξ2(s) cos ϕ(s)) − t2

2
ξ4(s) = 0, (3.6)

which describes the characteristic points of W . If ξ4(s) �= 0, then it has at most 2 real roots:

t±∗ (s) =
ξ1(s) sin ϕ(s) − ξ2(s) cosϕ(s) ±√

D(s)
ξ4(s)
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provided D(s) ≥ 0. According to Proposition 3.1, the singular points are characterized by the roots of the
equation D(s) = 0. The two branches of simple singular curves described in Theorem 2.9 have the form

x±
∗ (s) = t±∗ (s) cosϕ(s) + x0(s), y±

∗ (s) = t±∗ (s) sin ϕ(s) + y0(s), (3.7)

z±∗ (s) =
t±∗ (s)

2
(x0(s) sin ϕ(s) − y0(s) cosϕ(s)) + z0(s)

and are defined for s such that D(s) > 0.

Example 3.3. The curve Γ(s) = (0, 0, s, s) for s ∈ R generates the counter-clockwise helicoid q(t, s) =
(t cos s, t sin s, s), whose rulings are parallel to the (x, y)-plane. Since ξ1(s) = ξ2(s) = 0 and ξ3(s) = ξ4(s) = 1,
we found that D(s) = 2. Hence the singular set consists of two simple singular curves (±√

2 cos s,±√
2 sin s, s)

which never meet each other (Fig. 1). It is easy to see that all counter-clockwise helicoids have the same
structure of singular set. Notice, that the clockwise oriented helicoids, for instance, the one generated by
Γ̃(s) = (0, 0,−s, s), contain no singular curves neither singular points.

All these facts obviously hold true for all helicoids with rulings parallel to any contact plane Δp and generated
by the curve Γ(s) = (p + sw, ϕ0 ± s), where p = (x0, y0, z0) and w =

(
y0
2 ,−x0

2 , 1
)
. Indeed, these helicoids can

be obtained just by shifting the origin to the point p in the previous example. In particular, it follows that the
helicoids of the described class have no singular points. A similar result was also obtained in [6].

Example 3.4. Consider the curve Γ(s) = (0, 0, 1
6s3, s) for s ∈ [0, 2π]. This curve is the integral curve of the

vector field

ξ =
ϕ2

2
X3 + X4

starting at the point q̄0 = (0, 0, 0, 0). In particular, for any s ∈ [0, 2π] we have ξ1(s) = ξ2(s) = 0, ξ3(s) = 1
2s2

and ξ4(s) = 1, so that D(s) = s2. Therefore q0 is the unique singular point of the resulting minimal surface.
There are two pairs of simple singular curves g±(s) = (±|s| cos s, ±|s| sin s, 1

6s3), s �= 0, whose concatenations
(with the point q0) are smooth curves. In Figure 2 we show the general look of this surface (Fig. 2a) and the
structure of its singular set (Fig. 2b). In worth to notice that for this example the genericity condition (2.21)
fails and the singular point q0 does not give rise to a self-intersection. We will give a simple criterion for the
existence of self-intersections for the minimal surfaces in H

1 at the end of this section.

Example 3.5. The surface generated by the curve

Γ(s) =
(
sin s,− cos s, 1 +

s

2
, s
)

,

contains a strongly singular curve, actually is it the curve γ = π[Γ]. Indeed, Γ is the integral curve of the field
ξ = cosϕX1 + sin ϕX2 + X4. Notice, that despite π∗[ξ] = η condition (2.20) is still verified thanks to the fact
that the forth component of the field ξ is different from zero. One can easily check that D ≡ 0, t∗(s) ≡ 0, and
the strongly singular curve is tangent to the characteristic field at every point (Fig. 3).

As we have already seen, sub-Riemannian minimal surfaces generated by purely vertical lines (x0, y0, z0, s)
have isolated singular points. Indeed, it follows that in this case the resulting minimal surface is formed by a
one-parametric family of ellipses (t cosϕ + x0, t sin ϕ + y0,

t
2 (x0 sin ϕ− y0 cosϕ) + z0), t ≥ 0, that fills the whole

plane Δp, p = (x0, y0, z0). In particular, it follows that in H
1 the only sub-Riemannian minimal surfaces having

isolated characteristic points are planes. Moreover, they can contain at most one isolated singular point (this
facts was first noticed in [7]), since they are formed by characteristics which are straight lines, which all intersect
at the singular point.

According to Theorem 2.9, any singular characteristic point of type (2.23) is a starting point of a germ
of a curve of self-intersections of Whitney’s umbrella type. The next proposition describes all possible self-
intersections for minimal surfaces in H

1 case. This result is an immediate consequence of the explicit parame-
terization (2.15). Here we denote v(s) = η(γ(s)) ∈ R

3.



860 N. SHCHERBAKOVA

a)

-2

-1

0

1

2

X

-2

-1

0

1

2
Y

-2

-1

0

1

2

Z

-2

-1

0

1
Y

-2

-1

0

1

b)

-2

-1

0

1

2

X

-2

-1

0

1

2
Y

-2

-1

0

1

2

Z

-2

-1

0

1
Y

-2

-1

0

1

Figure 1. Counter-clockwise oriented helicoid (t cos s, t sin s, s) and its singular set.

a)
-2

-1

0

1

2

X

-2

-1

0

1

2

Y

-1

0

1

Z

-1

0

1

2

X

-1

0

1

2

Y

-1

0

b)
-2

-1

0

1

2

X

-2

-1

0

1

2

Y

-1

0

1

Z

-1

0

1

2

X

-1

0

1

2

Y

-1

0

Figure 2. An example of a surface with a pair of simple singular curves and one singular point.

Proposition 3.6. Let W = {q(t, s) : s ∈ [−δ1, δ2], t ∈ R} be a piece of sub-Riemannian minimal surface in H
1

corresponding to the generating curve Γ(s) = (γ(s), ϕ(s)). If there exist a pair a, b ∈ [−δ1, δ2] such that a �= b
and a pair of numbers τ1, τ2 ∈ R such that

γ(a) − γ(b) = τ1v(a) + τ2v(b), (3.8)

then W contains a point of self-intersection q∗ = q(a,−τ1) = q(b, τ2).

Example 3.7. Let Γ(s) = (−2 cos s,−2 sin s, cos s, s) be the generating curve and denote γ = π[Γ]. We have
ξ1(s) = 2 sin s, ξ2(s) = −2 cos s, ξ3(s) = −2−sins and ξ4(s) = 1. First we find the singular points. In the present
case D(s) = −2 sin s, i.e., according to Proposition 3.1, the sub-Riemannian minimal surface generated by Γ
contains two singular points q(2, 0) and q(2, π). At these points two simple singular curves q(t±(s), s) branch
out. Here t±(s) = 2±√−2 sin s for s ∈ (π, 2π). The concatenation of these simple singular curves (with singular
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Figure 3. A piece of a surface containing a strongly singular curve.
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Figure 4. Illustration to Example 3.7.

points) is a unique closed smooth curve. Moreover, at both singular points the genericity assumption (2.21) is
verified, so at these points we expect to have two germs of self-intersections.

In order to complete the picture we apply the criterion of Proposition 3.6. Assume that a and b are two
distinct numbers on [0, 2π]. Notice that v(s) = (cos s, sin s, 0) for all s. Therefore the pairs a and b, which may
generate self-intersections, necessarily satisfy the relation cos a − cos b = 0. The non-trivial pairs of solutions
of this equation are given by the pairs (a, b) where a = −b mod 2π. Substituting this condition into (3.8) and
performing all necessary simplifications we find the following non-trivial pairs of solutions:

a = −b mod 2π, τ1 = −2, τ2 = 2.

Thus the surface in question intersects itself along the segment connecting the singular points q(2, 0) and q(2, π).
Moreover, for a = π

2 and b = 3π
2 any pair of numbers τi satisfying τ1 − τ2 + 4 = 0 is a solution of equation (3.8).
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Therefore the whole line passing throw the points γ(π
2 ) = (0,−2, 0) and γ(3π

2 ) = (0, 2, 0) is a line of self-
intersection. In Figure 4a we show how the sub-Riemannian minimal surface described in this example looks
like, and in Figure 4b its singular set (bold curves).
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