Serotonin 2C receptor in a rat model of temporal lobe epilepsy: From brainstem expression to pharmacological blockade in relation to ventilatory function Hayet Kouchi, Jonathon Smith, Béatrice Georges, Freya Cracknell, Laurent Bezin, Sylvain Rheims ### ▶ To cite this version: Hayet Kouchi, Jonathon Smith, Béatrice Georges, Freya Cracknell, Laurent Bezin, et al.. Serotonin 2C receptor in a rat model of temporal lobe epilepsy: From brainstem expression to pharmacological blockade in relation to ventilatory function. Epilepsia, 2024, 65 (7), 10.1111/epi.18006. hal-04773367 ## HAL Id: hal-04773367 https://hal.science/hal-04773367v1 Submitted on 10 Nov 2024 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ### BRIEF COMMUNICATION ## **Epilepsia** ## Serotonin 2C receptor in a rat model of temporal lobe epilepsy: From brainstem expression to pharmacological blockade in relation to ventilatory function Hayet Kouchi¹ | Jonathon Smith¹ | Béatrice Georges¹ | Freya Cracknell¹ | Laurent Bezin¹ | Sylvain Rheims^{1,2} ### Correspondence Hayet Kouchi and Sylvain Rheims, Epilepsy Institute, 59 boulevard Pinel, 69677 Bron Cedex, France. Email: hayet.kouchi@univ-lyon1.fr and sylvain.rheims@chu-lyon.fr ### **Funding information** ERANET- NEURON - Agence Nationale de la Recherche, Grant/ Award Number: ANR-21- NEU2-0006; French Chapter of ILAE (Ligue Française contre l'Epilesie); Agence Nationale de la Recherche, Grant/ Award Number: ANR-21-CE14-0036 #### **Abstract** Because of its involvement in breathing control and neuronal excitability, dysregulation of the serotonin (5-HT) 2C receptor (5-HT2C) might play a key role in sudden unexpected death in epilepsy. Seizure-induced respiratory arrest is thus prevented by a 5-HT2B/C agonist in different seizure model. However, the specific contribution of 5-HT2C in chronic epilepsy-related respiratory dysfunction remains unknown. In a rat model of temporal lobe epilepsy (EPI rats), in which we previously reported interictal respiratory dysfunctions and a reduction of brainstem 5-HT tone, quantitative reverse transcriptase polymerase chain reaction showed overexpression of TPH2 (5-HT synthesis enzyme), SERT (5-HT reuptake transporter), and 5-HT2C transcript levels in the brainstem of EPI rats, and of RNA-specific adenosine deaminase (ADAR1, ADAR2) involved in the production of 5-HT2C isoforms. Interictal ventilation was assessed with whole-body plethysmography before and 2h after administration of SB242084 (2mg/kg), a specific antagonist of 5-HT2C. As expected, SB242084 administration induced a progressive decrease in ventilatory parameters and an alteration of breathing stability in both control and EPI rats. However, the size of the SB242084 effect was lower in EPI rats than in controls. Increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower. ### KEYWORDS 5-HT2C, epilepsy, serotonin, SUDEP #### INTRODUCTION 1 Alteration of serotonin (5-HT) transmission in the brainstem might play a key role in the cascade of events that can result in seizure-related postictal apnea and sudden unexpected death in epilepsy. Among 5-HT receptor subtypes, dysregulation of the 5-HT2C receptor (5-HT2C) may strongly contribute to the impairment of respiratory control in epilepsy, by modulating the activity of neuronal groups involved in the central regulation of respiration.² Laurent Bezin and Sylvain Rheims are co-last authors. © 2024 International League Against Epilepsy. ¹Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Lyon 1 University, Lyon, France ²Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France Hence, seizure-induced respiratory arrest is prevented by a 5-HT2B/C agonist in DBA/2 mice but not in DBA/1 mice,³ likely due to interstrain difference in 5-HT2B and 5-HT2C expression.³ Moreover, 5-HT2C knockout mice exhibit a reduced threshold for seizure induction and enhanced susceptibility to audiogenic-induced seizure that can lead to death.⁴ In contrast, although alterations in 5-HT are also associated with epilepsy-related chronic respiratory dysfunction,⁵⁻⁷ the specific contribution of 5-HT2C to this process remains unknown. Here, we investigated this issue in a rat model of temporal lobe epilepsy (TLE), which exhibits chronic interictal ventilatory dysfunction, including hypoventilation under basal conditions that is associated with a reduced brainstem 5-HT tone, yet has no mortality. ^{5,6} Using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) quantification in control and epileptic (EPI) rats, we measured brainstem transcript levels of the 5-HT synthesis enzyme (TPH2), the 5-HT reuptake transporter (SERT), and 5-HT2C, as well as those of 5-HT1A and 5-HT3B, which play a role in 5-HT-mediated modulation of neuronal excitability in epilepsy. ⁸ We then assessed the involvement of 5-HT2C on respiratory function in control and EPI rats using SB242084, a selective, brain-penetrant and highly specific 5-HT2C antagonist. ⁹ ### 2 MATERIALS AND METHODS All details of the methods, especially those related to plethysmography, are described in Appendix S1. A flowchart of experiments detailing the sample sizes at each step is provided in Figure S1. ### 2.1 | Animals Experimental procedures were approved by the ethical committee of the University Claude Bernard Lyon 1 (approval #32115-2021062414439857). A total of 44 male Sprague Dawley rats (Envigo) were used, and a protocol of animal care was followed until the end of experiment to reduce as much as possible the animal's discomfort.⁶ # 2.2 | Pilocarpine-induced status epilepticus and epilepsy onset Pilocarpine-induced status epilepticus (Pilo-SE) was triggered in 31 rats at the age of 7weeks, as previously described.⁶ Following Pilo-SE, a protocol of visual tracking of spontaneous recurrent seizures (SRSs) was applied⁶ during daylight period (between 9 a.m. and 6 p.m.) until all Pilo-SE rats demonstrated the establishment of epilepsy (EPI) with SRSs. ### 2.3 | Experiment 1 At 18 weeks post-SE, total RNAs from the brainstem of three control and 10 EPI rats were used for qRT-PCR quantification of TPH2, SERT, 5-HT1A, 5-HT2C, 5-HT3B, and ADAR (adenosine deaminase acting on RNA) 1 and 2 transcript levels, as previously described. Details about the primer pairs are provided in Table S1. ### 2.4 | Experiment 2 Ventilation and epileptic activity were evaluated after acute administration of SB242084 (2 mg kg⁻¹ sc), a 5-HT2C antagonist. After electrode implantation, 22 rats underwent two video-electroencephalographic (video-EEG) recording sessions, including 14 EPI rats and eight control rats. Session 1 was performed at week 18 and lasted 90 min with a 30-min baseline evaluation and 60 min of video-EEG recording after injection of vehicle solution (10% dimethylsulfoxide in .9% NaCl sc). Session 2 was performed between weeks 19 and 22. During session 2, rats were placed individually in a plethysmography chamber to assess ventilation coupled with video-EEG recordings for 30 min under basal conditions, then for 2 h following subcutaneous injection of SB242084 solution. During each session, seizure frequency, severity, and duration were evaluated using video-EEG recordings. Ventilatory response to acute SB242084 administration of each rat was evaluated as percentage of variation of the following ventilatory variables in comparison to values recorded prior its administration. Ventilatory variables included minute ventilation (VE) as the product of respiratory frequency (FR) and an estimated tidal volume (VT). Calculation of apnea events (>2 breath cycles) were subdivided into postsigh and spontaneous subtypes whether or not apnea was preceded by a sigh event. Sigh was defined as breath amplitude 100% above the average of the preceding 20s of breathing. Coefficient of variation is calculated as the ratio of SD to the mean frequency (methods detailed in Appendix S1). ### 2.5 Data signal and statistical analysis All data were analyzed using Spike-2 software (Cambridge Electronic Design). All data are expressed as mean±SEM, and statistical analysis was performed using Prism 9.0.2 (GraphPad Software). Shapiro–Wilk test was used to -Epilepsia^{* | e127} determine whether the data followed a normal distribution. For multiple group comparisons, we used unpaired t-test, two-way analysis of variance, and a mixed model of regression that took into account data repetition over sessions for each rat. Statistical significance was predefined as p < .05. ### 3 | RESULTS # 3.1 | Increased level of 5-HT2C transcript within the brainstem of EPI rats TPH2, SERT, 5-HT1A, 5-HT2C, and 5-HT3B transcript levels were measured in the brainstem (Table 1). A significant increase in 5-HT2C (+78%, p=.045), TPH2 (+73%, p=.002), and SERT (+50%, p=.038) mRNA levels was found in EPI rats compared to controls. No change was observed for 5-HT1A and 5-HT3B mRNA levels. 5-HT2C pre-mRNA can undergo adenosine-to-inosine (A-to-I) editing in humans, rats, and mice, resulting in the potential production of 24 5-HT2C isoforms to which 5-HT has a lower affinity, in comparison to 5-HT2C coded by the nonedited mRNA.¹⁰ Because the prevalence of A-to-I editing of a pre-mRNA appears to be correlated with transcript level of ADARs,¹¹ ADAR1 and ADAR2 mRNA levels were measured in EPI rats and were found to be significantly increased compared to control rats (+36% [p=.01] and +41% [p=.003], respectively; Table 1). # 3.2 | Effect of SB242084 on ventilation during interictal period Considering that the decrease of ventilation at rest in EPI rats was previously associated with the decrease of 5-HT **TABLE 1** Transcript levels of 5-HT-related genes within the brainstem of rats with active epilepsy. | | cDNA copy number/μg total RNA | | | EPI vs. | | |------------|-------------------------------|--------------------|-----|---------|--| | Transcript | CTRL rats, $n=3$ | EPI rats, $n=10$ | % | p | | | TPH2 | 191640 ± 3084 | 332402 ± 17835 | 173 | .002 | | | SERT | 170805 ± 15710 | 256396 ± 18877 | 150 | .038 | | | 5-HT1A | 124427 ± 7292 | 121926 ± 5375 | 98 | .819 | | | 5-HT2C | 167305 ± 11501 | 297607 ± 30419 | 178 | .045 | | | 5-HT3B | 500 ± 83 | 792 ± 83 | 158 | .931 | | | ADAR1 | 433350 ± 23450 | 589700 ± 26150 | 136 | .010 | | | ADAR2 | 698850 ± 20200 | 981900 ± 41000 | 131 | .003 | | $\it Note$: Bold type indicates statistical significance. Abbreviations: 5-HT, serotonin; ADAR, adenosine deaminase acting on RNA; CTRL, control; EPI, epileptic; SERT, 5-HT reuptake transporter; TPH2, 5-HT synthesis enzyme. tone⁶ and the role of 5-HT2C in breathing control,² we hypothesized that the increase in 5-HT2C transcript level in EPI rats might reflect an adaptive mechanism that aims to increase the binding of residual 5-HT with 5-HT2C to prevent more disturbance in breathing. In this context, we investigated whether administration of SB242084, a 5-HT2C antagonist, resulted in the aggravation of the epilepsyrelated respiratory dysfunction (Figure 1). Prior to SB242084 injection and under basal conditions, EPI rats showed alterations of ventilation compared to control rats, with $20 \pm 5\%$ (p = .01) and a $15 \pm 4\%$ (p = .04) lower VE and VT, respectively. No difference was observed in FR, the coefficient of variation, the frequency or duration of spontaneous and postsigh apneas, the ratio of postsigh and spontaneous apneas, the total frequency of sighs (with and without apneas), or the percentage of sighs without apneas between control rats and EPI rats (Table S2). As expected, SB242084 administration induced a progressive decrease in VE, VT, and FR both in control rats (p<.001, p=.047, and p<.001, respectively) and in EPI rats (p=.016, p=.025, and p=.006, respectively; Figure 1 and Table S3A). However, although the evolution pattern of each of these variables after SB242084 administration was similar in both groups, the size of the SB242084 effect was lower in EPI rats than in control rats for both VE (p<.001) and FR (p<.001; Figure 1). Compared to the baseline, SB242084 altered postsigh apnea frequency in both control (p=.013) and EPI (p=.031) rats (Figure 1 and Table S3B). SB242084 induced a similar change in frequency of sighs in both control (p=.017) and EPI (p=.001) rats (Figure 1 and Table S3C). In contrast, the duration of postsigh apneas was significantly higher after SB242084 administration in controls than in EPI rats (p=.001), whereas the frequency of spontaneous apneas increased significantly in EPI rats only (Figure 1). # 3.3 | Effect of SB242084 on seizure activity of rats with chronic epilepsy SB242084 provoked no seizure in control rats and did not significantly aggravate seizure activity in EPI rats (p = .07), in line with previous studies in rats using absence epilepsy or TLE models (results detailed in Appendix S1).^{12,13} ### 4 DISCUSSION We investigated the involvement of 5-HT2C in a rat model of chronic epilepsy with reduced 5-HT tone in the brainstem and long-term interictal respiratory alterations. ^{5,6} ### Ventilatory variables ### Sigh and apnea pattern **FIGURE 1** Effect of SB242084 on ventilation and apnea/sigh pattern. At 19–22 weeks after status epilepticus, after 30-min measurement of ventilation under basal conditions, the effect of a specific 5-HT2C antagonist on ventilation was evaluated by injecting SB242084 into control (n=8) and epileptic (EPI; n=14) rats. Signal was analyzed for each 30-min breathing period over 2h of recording, corresponding to the four time points after drug administration in the graphs. Gray bars represent values under basal conditions. Each time point represents ventilation variables in EPI (in orange) and control (in blue) rats, and is expressed as the mean \pm SEM of the percentage of variation compared to baseline values. Ventilatory variables include minute ventilation (VE), tidal volume (VT), and frequency (FR). Apnea and sigh pattern include only those with statistical significance (**p < .01, ***p < .001). Mixed model of regression analysis was used for the comparison between groups after administration of SB242084. This study demonstrated that (1) 5-HT2C was involved in 5-HT excitatory drive toward ventilatory function in both healthy and epileptic rats and (2) increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower. 5-HT2C, like other 5-HT2 receptor subtypes,^{2,14} has an excitatory effect on the activity of inspiratory neurons of the pre-Bötzinger complex and on ventilatory motor output from phrenic and hypoglossal nerves in brainstem–spinal cord preparation of juvenile rats.² The present study shares converging conclusions at the in vivo level, as inactivation of 5-HT2C by acute administration of SB242084 induced a decrease of VE. resulting in a decrease of both FR and VT. Furthermore, our results indicated that 5-HT2C has a major role in the generation of sighs. According to the literature, sigh is a breathing behavior that enables the central respiratory control to be reset and breathing stability to be improved. 15 Although the lower VE at rest in EPI rats than in controls observed in the present study was a confirmation of the results we reported using a more comprehensive experimental setup, 6 it is important to note that the VT was not directedly measured but estimated (see Appendix S1). Furthermore, in the absence of concomitant measurement, the effect of acute administration of SB242084 on oxygen consumption rate could not be assessed. Similarly, we could not exclude that chronic administration could result in a different effect, including aggravation of seizures or more adverse effects on ventilation. However, the effect of SB242084 was lower than expected in EPI rats, in which the epilepsy-related increased level of 5-HT2C transcript has directed our expectation toward a very severe respiratory phenotype after acute pharmacologic inactivation of 5-HT2C. The exact physiological explanation of this observation remains to be determined. We cannot exclude that the epilepsy-related overexpression of 5-HT2C transcript was ancillary to other adaptative mechanisms, which would not have been affected by SB242084, including 5-HT4 modulation.^{5,16} However, according to the increase of ADAR1 and ADAR2 transcript levels observed in EPI rats, another hypothesis might be an increase in 5-HT2C pre-mRNA editing mechanisms in EPI rats, leading to 5-HT2C isoforms with reduced coupling to G proteins and/or with reduced affinity for 5-HT. 17 It has been reported that affinity of 5-HT can be >10 times lower with edited 5-HT2C isoforms than that with nonedited 5-HT2C forms. 17,18 In support of this hypothesis, it has been shown that increased 5-HT2C gene expression in EPI rats in the same pilocarpine model is associated with decreased 5-HT affinity for 5-HT2C.¹⁹ If the affinity to 5-HT for 5-HT2C is decreased, a similar decrease in SB242084 affinity for 5-HT2C is expected, which may partially explain the slight ventilatory effect of SB242084 in EPI rats. However, this hypothesis will need to be specifically investigated in dedicated studies, including the comparative effects of different agonists and antagonists of 5-HT2C as well as the impact of the modulation of the ADAR1 and ADAR2 activity. Importantly, as 5-HT2C mRNA editing involves five adenosines spread over a 13-nucleotide sequence, it is impossible to design primers to reliably detect and quantify the different possible isoforms using RT-PCR. Consequently, future studies will have to include high-throughput sequencing to detect and quantify 5-HT2C mRNA isoforms subjected to A-to-I editing. ### **AUTHOR CONTRIBUTIONS** Hayet Kouchi, Laurent Bezin, and Sylvain Rheims designed the study. Hayet Kouchi collected and analyzed all respiratory data. Béatrice Georges and Laurent Bezin performed the qRT-PCR analyses. Hayet Kouchi wrote the first draft of the manuscript. All authors contributed to the final version of the manuscript. ### **ACKNOWLEDGMENTS** We would like to thank Anne-Marie Mouly, Emmanuelle Courtiol, and Belkacem Messaoudi for their help in setting up electrode surgery implantation and video-EEG acquisition. ### FUNDING INFORMATION H.K. was funded by the French Chapter of ILAE (Ligue Française contre l'Epilepsie) and by the ANR (seroDravet project, ANR-21-CE14-0036). J.S. was funded by an ERANET-NEURON grant (AUTONOMIC project, ANR-21-NEU2-0006). ### CONFLICT OF INTEREST STATEMENT S.R. has received speaker or consulting fees, or both, from UCB Pharma, Eisai, GW Pharma, Jazz Pharmaceuticals, LivaNova, Zogenix, and Angelini Therapeutics. We confirm that we have read the Journal's position on issues involved in ethical publication and affirm that this report is consistent with those guidelines. ### ORCID Hayet Kouchi https://orcid.org/0000-0003-1443-0645 Laurent Bezin https://orcid.org/0000-0001-6411-4267 Sylvain Rheims https://orcid.org/0000-0002-4663-8515 ### REFERENCES - 1. Patodia S, Somani A, O'Hare M, Venkateswaran R, Liu J, Michalak Z, et al. The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy. Brain. 2018;141(6):1719–33. - Ptak K, Yamanishi T, Aungst J, Milescu LS, Zhang R, Richerson GB, et al. Raphé neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. J Neurosci. 2009;29(12):3720–37. - Faingold CL, Randall M, Mhaskar Y, Uteshev VV. Differences in serotonin receptor expression in the brainstem may explain the differential ability of a serotonin agonist to block seizureinduced sudden death in DBA/2 vs. DBA/1 mice. Brain Res. 2011;1418:104–10. - Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 1995;374(6522): 542-6. - 5. Luna-Munguia H, Zestos AG, Gliske SV, Kennedy RT, Stacey WC. Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy. Neurobiol Dis. 2019;121:177–86. - 6. Kouchi H, Ogier M, Dieuset G, Morales A, Georges B, Rouanet J-L, et al. Respiratory dysfunction in two rodent models of chronic epilepsy and acute seizures and its link with the brainstem serotonin system. Sci Rep. 2022;12(1):10248. - 7. Manis AD, Cook-Snyder DR, Duffy E, Osmani WA, Eilbes M, Dillard M, et al. Repeated seizures lead to progressive ventilatory dysfunction in SS rats. J Appl Physiol (1985). 2023;135:872–85. - Bagdy G, Kecskemeti V, Riba P, Jakus R. Serotonin and epilepsy. J Neurochem. 2007;100(4):857–73. - 9. Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, et al. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology. 1997;36(4–5):609–20. - Werry TD, Loiacono R, Sexton PM, Christopoulos A. RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther. 2008;119(1):7–23. - Salvetat N, Van der Laan S, Vire B, Chimienti F, Cleophax S, Bronowicki JP, et al. RNA editing blood biomarkers for predicting mood alterations in HCV patients. J Neurovirol. 2019;25(6):825–36. - Jakus R, Graf M, Juhasz G, Gerber K, Levay G, Halasz P, et al. 5-HT2C receptors inhibit and 5-HT1A receptors activate the generation of spike-wave discharges in a genetic rat model of absence epilepsy. Exp Neurol. 2003;184(2):964–72. - 13. Orban G, Bombardi C, Marino Gammazza A, Colangeli R, Pierucci M, Pomara C, et al. Role(s) of the 5-HT2C receptor in the development of maximal dentate activation in the hippocampus of anesthetized rats. CNS Neurosci Ther. 2014;20(7):651–61. - 14. Peña-Ortega F. Tonic neuromodulation of the inspiratory rhythm generator. Front Physiol. 2012;3:253. - Franco P, Verheulpen D, Valente F, Kelmanson I, de Broca A, Scaillet S, et al. Autonomic responses to sighs in healthy infants and in victims of sudden infant death. Sleep Med. 2003;4(6):569–77. - 16. Tupal S, Faingold CL. Serotonin 5-HT4 receptors play a critical role in the action of fenfluramine to block seizure-induced sudden death in a mouse model of SUDEP. Epilepsy Res. 2021;177:106777. - 17. Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem. 1999;274(14):9472–8. - Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, et al. Regulation of serotonin-2C receptor Gprotein coupling by RNA editing. Nature. 1997;387(6630):303–8. - Krishnakumar A, Nandhu MS, Paulose CS. Upregulation of 5-HT2C receptors in hippocampus of pilocarpine-induced epileptic rats: antagonism by Bacopa monnieri. Epilepsy Behav. 2009;16(2):225–30. ### SUPPORTING INFORMATION Additional supporting information can be found online in the Supporting Information section at the end of this article. How to cite this article: Kouchi H, Smith J, Georges B, Cracknell F, Bezin L, Rheims S. Serotonin 2C receptor in a rat model of temporal lobe epilepsy: From brainstem expression to pharmacological blockade in relation to ventilatory function. Epilepsia. 2024;65:e125–e130. https://doi.org/10.1111/epi.18006 ### **Supplementary methods** *Pilocarpine induced-SE.* Epilepsy was triggered following pilocarpine induced *status epilepticus* (Pilo-SE) in 180-200 g Sprague-Dawely (Envigo) male rats at the age of 7 weeks, as previously described ¹. Starting by the administration of scopolamine methylnitrate (1 mg×kg-1, s.c.; S-2250, Sigma-Aldrich) 30 min prior to pilocarpine hydrochloride (350 mg×kg-1, i.p.; P-6503, Sigma-Aldrich). The onset of SE was characterized by continuous tonic-clonic activity of the trunk and the limbs. Two hours later, to stop SE, rats received a first injection of diazepam (Diazepam TVM®, 10 mg×kg-1, i.p.; TVM lab) and a second half dose 30 min later. Rats were then hydrated with 2 mL of saline solution (0.9% NaCl; s.c.) and housed in groups of 5 to avoid any stress that may result from social isolation. During the recovery period, animals were weighted, nourished and hydrated individually until their body-weight curve reached the one of control rats. Visual-tracking of spontaneous recurrent seizures after Pilo-SE. Visual tracking of behavioral spontaneous recurrent seizures (SRSs) in rats aims to make sure that all Pilo-SE rats had become epileptic (EPI rats). The visual-tracking of SRSs was fully described in a previous published work ⁽¹⁾. It requires a daylight surveillance (between 9 a.m. and 5 p.m.) during usually the 2-3 weeks following Pilo-SE. Animals that were identified as EPI rats developed at least two spontaneous seizures during SRSs tracking. All rats that underwent Pilo-SE had chronic epilepsy before they were included into experiments 1 and 2. RT-qPCR quantification of serotoninergic transcripts level within the brainstem. At 18 weeks post-SE, epileptic and control rats were anesthetized with 4% of isoflurane, injected with lethal dose of Euthasol (150 mg x kg⁻¹) and transcardially perfused with cold saline solution (30 mL x min⁻¹) for 3 minutes to wash-out the blood from cerebral vessels. Blocs including medulla oblongata and pons were dissected rostrally from the mesencephalon and caudally from spinal-cord and frozen with liquid nitrogen. The quantification of transcript levels coding for the key enzyme of 5-HT synthesis (TPH2), 5-HT reuptake (SERT), full-length 5-HT2C receptor (5-HT2CR), and 2 ADARS isoforms (adenosine deaminase acting on RNA: ADAR1 and ADAR 2) was performed using RT-PCR as previously reported (Kouchi, 2022). After extraction, total RNAs were reverse transcribed to complementary DNA (cDNA) using both oligo dT and random primers with PrimeScript RT Reagent Kit (Takara, #RR037A) according to manufacturer's instructions in the presence of a synthetic external non-homologous poly(A) standard messenger RNA (SmRNA; A. Morales and L. Bezin, patent WO2004.092414) to normalize the RT step. Each cDNA of interest was amplified using the Rotor-Gene Q thermocycler (Qiagen), the SYBR Green PCR kit (Qiagen, #208052) and oligonucleotide primers (Eurogentec) specific to the targeted cDNA. cDNA copy number detected was determined using a calibration curve, and results were expressed as cDNA copy number/µg tot RNA. Sequences of the primer pairs used for PCR amplification are listed in supplementary table S1. *Implantation of cerebral electrodes and wireless EEG recording*. At 5-7 weeks post-SE, rats were anesthetized with a mix of ketamine and xylazine (80/10 mg x kg⁻¹). Animals were placed on a stereotaxic set-up and their head was fixed with ear-bars. After incision on the scalp, 4 cranial drills were made and stainless-steel screw electrodes were implanted bilaterally on above the partial cortex, the right hippocampus and then the cerebellum as a reference. In addition, each rat had an intra-cerebral electrode into the left hippocampus at Bregma coordinates: AP: 0.38, ML: 0.25 and DV:0.32 according to the rat brain atlas. The distal part of each electrode was plugged into a head connector and consolidated with dental cement. During 2 weeks of recovery period, protocol of animal care was applied with 3 days of analgesia (Carprofen, i.p., 5mg/kg), daily body-weight measurement, humidified food. Seizure frequency, severity and duration were evaluated using video-EEG recordings coupled to a wireless head-connector (EMKA technologies) that displayed EEG activity from 4 channels corresponding to bilateral parietal and hippocampal regions. Telemetric signal was recorded with an acquisition box and a home-made python program. Whole-body plethysmography. Under BTPS (body temperature and pressure, saturated) conditions, unrestrained rats were placed into a customized plethysmography chamber (diameter: 20cm, height: 30cm) with two compartments, one where animal is placed and the second as reference chamber (EMKA technologies, France). Breath-signal was acquired using differential pressor captor (EMKA technologies, France) between 9:00 am and 5:00 pm and home-made python program software ^(2,3). A constant airflow was supplied to animal with inflow (from the top, 2000 mL x min⁻¹) and outflow (from the bottom port, 2000 mL x min⁻¹). Note that the customization of high volume of plethysmography chamber and air-flow supplying was thought to allow head-implanted animal to stand and move freely and avoid important variation in temperature and accumulation of humidity within plethysmography chambe. Experiments were conducted within animal facility where temperature of experiment room is maintained at 22-24C° and relative humidity at 40-60%. Before each animal recording, animal is weighted and the calibration was performed by injecting three times 1 mL air-pulse inside the recording chamber. The mean value is therefore used for milliliters conversion and the calculation of breathing volumes. During each recording-day, we alternated assessment of ventilation between EPI and control groups in order to reduce daytime bias and have close conditions between experimental groups, including variation of body temperature, and arousal state. Hence, for morning and afternoon sessions, at least one EPI rats and one control rats were assessed, respectively. Note that we have previously reported that over the nychthemeral cycle (24-hours), body-temperature was similar between control and EPI rats ⁽¹⁾. Using spike-2 (Cambridge Electronic Design Limited, UK), respiratory frequency (FR) is calculated from the deflation curve that results from rat's air inhalation, and which is calculated from time (second) between two consecutive inspiratory events. Note that for better accuracy, breath analysis is based on inspiratory events for the calculation of ventilatory parameters. The estimation of tidal volume (VT) is defined by the inhaled volume, which is calculated as the integral of each inspiratory curve that we assumed to occur under saturated vapor pressior at body-temperature and normal barometric pressure (sea level, 760 mmHg) conditions ^(4; 5). Note that based on previous work, we also assumed that both EPI and control rats had during the same period of the day, similar body-temperatures ⁽¹⁾. VT values are corrected using calibration and 100 grammes of body-weight of rats. Minute ventilation (VE) is calculated as product of instantaneous FR and VT. Coefficient of variation is calculated for each rat as ratio of standard deviation divided and mean frequency. Apnea number and - 91 duration were calculated as event that was greater than duration of two breath cycles within - 92 a previous 20 sec of breathing. We subdivided apnea into spontaneous apnea and post-sigh - apnea, which is an apnea that occurs directly after a sigh event or separated by two respiratory - cycles. Sigh is each breath amplitude above at least 100% of the average of previous 20 sec of - 95 breathing. Numbers of apneas and sighs are expressed as frequency of event per min of - 96 breathing. - 97 Paradigm of ventilation coupled to video-EEG recordings after acute administration of - 98 **SB242084** (Figure S1). - 99 Session 1. At 18 weeks post-SE, to evaluate the effect of handling and injection on seizure - 100 occurrence, head-connector was plugged to cortical electrodes of EPI rats to record video-EEG - for 30 min then rats are injected subcutaneously with vehicle solution (s.c., 10% DMSO in - 102 NaCl) and recorded for one more hour. Control rats underwent the same protocol. - 103 Session 2. At 19-22 weeks post-SE, to evaluate the effect of 5-HT2C antagonism on epileptic - activity and ventilatory function, head-connected rats were placed into a plethysmography - 105 chamber to perform coupled ventilation/video-EEG assessments under basal conditions for - 30 min before SB242084 (diluted into 10% DMSO-NaCl solution) was injected (s.c., 2mg/kg). - 107 After administration of SB242084, coupled ventilation/video-EEG was performed for 2 hours. - 108 Note that video-EEG also allowed to define whether animal is awake or asleep during the - 109 recording. - Data analysis. For the detection of epileptic activity in EPI rats, two experimenters analyzed - the video-EEG recordings. To evaluate the effect of SB242084 on seizure activity, we compared - seizure frequency, duration and severity over one-hour periods between session 1 and session - 113 2. The one-hour period in session 1 included 60 min of video-EEG signal after vehicle - administration. In session 2, we recorded 2 hours after administration of SB242084, hence we - analyzed video-EEG signal for each hour, separately. Seizure severity was classified according - to the Racine's scale, defined as follows: stage 0, immobility; stage 1, mouth and facial - movements; stage 2, head nodding, clonic head movements; stage 3, forelimb clonus, clonic - forelimb movements; stage 4, rearing with bilateral forelimb clonus; stage 5, rearing and - 119 falling with bilateral forelimb clonus. - To evaluate the ventilatory effect of SB242084, basal ventilation was assessed during 30 min - preceding SB242084 injection. Analysis of ventilation variables after SB242084 administration - was divided into 4 epochs of 30 min each as follow: 30 min (segment between injection time - 123 0 to 30 min), 60 min (segment between injection time 31 to 60 min), 90 min (segment - between injection time 61 to 90 min), and 120 min (segment between injection time 91 to - 125 120 min). It is noteworthy that to reduce bias of injection, the first 10 min of ventilatory signal - 126 following injection was excluded. Moreover, ictal ventilation and the 10 min breath signal - 127 following seizures was also removed from data presented for each time point. For the - comparison of ventilatory effect of SB242084 in EPI vs control rats, we considered each rat as - 129 its own control and calculated the percentage of variation in ventilation after the - administration of SB242084 normalized to the mean value recorded under basal conditions. - 131 This approach allowed to reduce both internal and external confounded factors and to obtain - more accuracy on the effect of SB242084 for the group comparison. ### Supplementary results. ### Effect of SB242084 on epileptic activity. We observed a trend toward an increased risk of seizure after SB242084 administration in EPI rats (p=0.07), while no seizures were observed in controls. During session 1, only one of the 14 EPI rats (7%) showed a stage 4 seizure of 67.55 sec duration. SB242084 effect on seizure activity was observed during the second hour post-administration. Indeed, during the first hour post-SB242084 administration (from 0 to 60 min), 21% of EPI rats (3 of 14 rats) had seizures, whose severity ranged from stages 2-3 (n=2) to stage 4 (n=1) with an average duration of 36 ± 9 sec. Conversely, during the second hour after SB242084 administration (60 to 120 min), six EPI rats (43%) showed one seizure, ranging from stage 2-3 (n=3) to stage 4 (n=3) according to Racine scale. The mean \pm sem seizure duration was 47.2 \pm 15.3 sec. No seizure-related death was observed during both sessions or over experiments corroborating previous studies that showed that mortality in pilocarpine induced-SE in rat is only reported during SE and not during chronic phase of epilepsy (7; 8). Analysis of video-EEG showed that during the period of recordings (90 min and 180 min in session 1 and 2, respectively), none of rats were asleep. This could therefore be linked to the short period of recording and the fact that animal's rest during recording is interrupted when rats received an injection with saline or SB242084 after 30 min of baseline. ### 171 172 173 174 175 176177 178 179 180 181 182183 184 185 186 187 188 189 190 ### Supplementary tables/figures. Supplementary figure S1. Experimental design of the study. At 7 weeks of age, 31 rats underwent pilocarpine induced status epilepticus (SE) and 13 rats were used as controls. Subsequently to SE, 4 rats either died (n=2) or did not develop SE (n=2) and 28 rats became epileptic (EPI rats) at 2-3 weeks post-SE. At 5-7 weeks post-SE, 10 control and 17 EPI rats were implanted with cerebral electrodes to record seizures. Two control rats and 3 EPI rats did not survive to surgery. Experiment 1: at 18 weeks post-SE, 3 control rats and 10 EPI rats, which were not subjected to electrode implantations, have been used to quantify by RT-qPCR transcripts of the serotonin system from the brainstem. Experiment 2: at 18 weeks post-SE (session 1 of video-EEG), each rat (8 control rats, 14 EPI rats) was video-EEG recorded for 30 min under baseline conditions, then subcutaneously injected with vehicle solution (s.c.; 10% of DMSO in 0.9% NaCl) and recorded for one additional hour. The aim of session 1 was to control the effect of injection and manipulation on epileptic activity, in order to later assess the specific effect of SB242084 on the same variables. Between 19- and 22- week post-SE (session 2 of video-EEG coupled with assessment of ventilatory function), each rat was individually placed into a plethysmography chamber coupled with video-EEG for 30 min under baseline conditions, then injected s.c. with SB242084 (specific 5-HT2C antagonist, 2 mg/kg diluted in 10% of DMSO in NaCl solution) and recorded thereafter for 2 hours. The aim of session 2 was to evaluate the effect of SB242084 on epileptic activity and ventilatory function. 191 ### **Supplementary table S1. Pair of primers** 194 195 | Rat | Forward primer sequence (5´-> 3´) | Reverse primer sequence (5´-> 3´) | |------------------------------|-----------------------------------|-----------------------------------| | TPH2 (NM_173839.2) | TAC GGC ACC GAG CTT GAC | TGG CCA CAT CCA CAA AAT AC | | SERT (NM_013034.3) | ATC ACC TGG ACG CTG CAT | TGG ATC TGC AGG ACA TGG | | 5-HTR1a (NM_012585.1) | GGC ACC TTC ATC CTC TGC T | GTG GCA GCT GCT TTC ACA G | | 5-HTR2c (NM_012765.3) | CCG AGT CCG TTT CTC GTC TA | CTA TGC TTG CAG GTA ATA GTT GAC A | | 5-HTR3b (NM_022189.1) | CTC CTG GTG GCT GTC GTA G | AGA GGA ATT CCC AGG CTG A | | ADAR1
(NM_031006.1) | CCT CTA CAT CAG CAC GGC AC | GGT ACG GAG TCT TTC CCC AA | | ADAR2
(NM_001111056.1) | GTC TGC CTT GGC TAC TGT CT | AGC ACT TTT CTT CGT GCG TG | **Supplementary table S2. Ventilation of rat with chronic epilepsy.** Between weeks 19 and 22 post-SE, ventilation of 14 EPI and 8 control rats was recorded for 30 min. Values are expressed as mean ± SEM. Significance defined as P value <0.05 and resulted from unpaired t-test comparison between experimental groups. | Ventilation under basal conditions | Grou | P value | | |--|--------------------|-----------------|------------| | ventuation under pasai conditions | Control rats (n=8) | EPI rats (n=14) | Ctr vs EPI | | Ventilation | | | | | Ventilatory frequency (FR), breath cycle/min | 83 ± 3 | 79 ± 3 | 0.39 | | Tidal volume (VT), mL/100g | 0.61 ± 0.04 | 0.52 ± 0.03 | 0.04 | | Minute ventilation (VE), breath cycle/min/100g | 50 ± 3 | 40 ± 2 | 0.01 | | Coefficient of variation | 0.38 ± 0.04 | 0.33 ± 0.04 | 0.46 | | Apneas | | | | | Frequency of spontaneous apnea, counts/min | 0.12 ± 0.03 | 0.11 ± 0.02 | 0.68 | | Duration of spontaneous apnea, s | 1.91 ± 0.16 | 1.61 ± 0.09 | 0.10 | | Frequency of post-sigh apnea, counts/min | 0.30 ± 0.05 | 0.23 ± 0.04 | 0.27 | | Duration of post-sigh apnea, s | 1.68 ± 0.13 | 1.81 ± 0.10 | 0.46 | | Total time in apnea, s/min | 0.75 ± 0.14 | 0.57 ± 0.08 | 0.24 | | Sighs | | | | | Frequency of total sighs, counts/min | 0.67 ± 0.09 | 0.49 ± 0.05 | 0.09 | | Percentage of sighs without apnea | 53 ± 7 | 57 ± 7 | 0.69 | Supplementary table S3. Time course of ventilatory variables after the administration of SB242084. Between weeks 19 and 22 post-SE, ventilatory function of 8 control and 14 EPI rats was recorded over 120 min to evaluate the effect of SB242084 (specific 5-HT2C antagonist). Ventilatory response to SB242084 was calculated for each experimental group and divided into 4 epochs of 30-min period each. The time course started at the time of injection (time point =0). Values are expressed as mean ± SEM of each group. (a) Ventilatory function was evaluated by minute ventilation (VE), which is the product of respiratory frequency (FR) and estimated tidal volume (VT) that was reported to 100g of body-weight. (B) Apnea was defined as cessation of breathing that was longer than previous two breath cycles. Spontaneous apnea subtype was each apnea that was not preceded by a sigh event. Apnea post-sigh was each ventilatory pause that occurred within the 2 breaths succeeding to a sigh. Frequencies are expressed as numbers of events per time unit (min; sec). (C) Sigh was each breath amplitude above at least 100% of the previous 20 sec of beathing, the frequency of total sighs included number of sighs followed or not by apnea and reported per min of breathing. SB242084 effect on control and EPI rats was statistically tested after comparison of baseline and SB242084 values, by using a one-way ANOVA with repeated measures, with the level of significance defined by a P value <0.05. Dunnett post-hoc multiple comparison allowed to compare each time point of the postSB242084 period to the baseline value. *<0.05, ** <0.01 and *** <0.001. | Ventilatory variables | Time course after SB242084 (s.c. 2mg/kg) | | | | Versus baseline | |---|--|-------------------|-------------|-------------|-----------------| | ventuatory variables | 30 min | 60 min | 90 min | 120 min | (P value) | | | | Controls rats (r | 1=8) | | | | Ventilatory frequency
(FR), cycle/min | 83 ± 6 | 70 ± 4* | 66 ± 4** | 62 ± 2*** | <0.0001 | | Tidal volume
(VT), mL/100g | 0.55 ± 0.04 | 0.56 ± 0.03 | 0.57 ± 0.03 | 0.56 ± 0.03 | 0.047 | | Minute ventilation
(VE), breath cycle/min/100g | 44 ± 2 | 39 ± 2*** | 37 ± 2** | 35 ± 2*** | <0.0001 | | Coefficient of variation | 0.38 ± 0.03 | 0.30 ± 0.04 | 0.30 ± 0.05 | 0.29 ± 0.04 | 0.079 | | | | Epileptic rats (n | =14) | | | | Ventilatory frequency
(FR), cycle/min | 96 ± 6 * | 80 ± 3 | 74 ± 3 | 74 ± 5 | 0.006 | | Tidal volume
(VT), mL/100g | 0.46 ± 0.03 * | 0.48 ± 0.03 * | 0.51 ± 0.02 | 0.49 ± 0.02 | 0.025 | | Minute ventilation
(VE), breath cycle/min/100g | 42 ± 2 | 38 ± 2 | 37 ± 2 | 36 ± 2 | 0.016 | | Coefficient of variation | 0.38 ± 0.04 | 0.36 ± 0.04 | 0.30 ± 0.03 | 0.27 ± 0.02 | 0.034 | В. Time course after SB242084 (s.c. 2mg/kg) Apnea pattern versus baseline 120 min (P value) 30 min 60 min 90 min Controls rats (n=8) Frequency of spontaneous apnea, counts/min 0.12 ± 0.02 0.08 ± 0.02 0.10 ± 0.03 0.09 ± 0.02 0.280 Frequency of post-sigh apnea , counts/min 0.38 ± 0.06 0.33 ± 0.04 0.24 ± 0.05 0.19 ± 0.05 0.013 Duration of spontaneous apnea, s 1.40 ± 0.41 1.55 ± 0.29 1.79 ± 0.34 1.75 ± 0.32 0.389 Duration of post-sigh apnea, s 2.01 ± 0.27 2.03 ± 0.22 2.05 ± 0.19 0.086 2.10 ± 0.21 Epileptic rats (n=14) Frequency of spontaneous apnea, counts/min 0.15 ± 0.04 0.16 ± 0.03 0.16 ± 0.03 0.18 ± 0.03 0.400 Frequency of post-sigh apnea, 0.19 ± 0.05 0.12 ± 0.04** 0.13 ± 0.02* 0.15 ± 0.03 0.031 counts/min Duration of spontaneous apnea, s 1.04 ± 0.21* 1.84 ± 0.20 1.76 ± 0.13 1.90 ± 0.12 0.013 0.241 1.62 ± 0.24 1.52 ± 0.23 Duration of post-sigh apnea, s 1.47 ± 0.09 1.24 ± 0.24 | C | | | | | | | |-----------------------|--------------------------------------|--|--------------|----------------|--------------|-----------------| | | Sigh pattern | Time course after SB242084 (s.c. 2mg/kg) | | | | versus baseline | | | | 30 min | 60 min | 90 min | 120 min | (P value) | | | Controls rats (n=8) | | | | | | | | Frequency of total sighs, counts/min | 0.60 ± 0.06 | | | | 0.017 | | | Percentage of sighs without apnea, % | 37 ± 7 | 32 ± 7 | 52 ± 6 | 46 ± 11 | 0.155 | | Epileptic rats (n=14) | | | | | | | | | Frequency of total sighs, counts/min | 0.46 ± 0.05 | 0.34 ± 0.04* | 0.29 ± 0.04 ** | 0.31 ± 0.05* | 0.001 | | | Percentage of sighs without apnea, % | 62 ± 7 | 73 ± 7 | 64 ± 8 | 59 ± 8 | 0.349 | | 1 | 1 | _ | |---|---|---| | Z | Z | / | 228 250 | _ | | • | | | | | | |---|---|----|----|---|---|---|---| | R | e | te | re | n | C | e | ς | - Kouchi H, Ogier M, Dieuset G, Morales A, Georges B, Rouanet J-L, et al. Respiratory dysfunction in two rodent models of chronic epilepsy and acute seizures and its link with the brainstem serotonin system. Sci Rep. 2022; 12(1):10248. - Hegoburu C, Shionoya K, Garcia S, Messaoudi B, Thévenet M, Mouly A-M. The RUB Cage: Respiration-Ultrasonic Vocalizations-Behavior Acquisition Setup for Assessing Emotional Memory in Rats. Front Behav Neurosci. 2011; 5:25. - Gonzalez-Palomares E, Boulanger-Bertolus J, Dupin M, Mouly A-M, Hechavarria JC. Amplitude modulation pattern of rat distress vocalisations during fear conditioning. Sci Rep. 2023; 13(1):11173. - Bartlett D, Tenney SM. Control of breathing in experimental anemia. Respir Physiol. 1970; 10(3):384–95. - Joseph V, Uppari N, Kouchi H, De Bruyn C, Boukari R, Bairam A. Respiratory regulation by steroids in newborn rats: a sex-specific balance between allopregnanolone and progesterone receptors. Exp Physiol. 2018; 103(2):276–90. - 6. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972; 32(3):281–94. - 7. Curia G, Longo D, Biagini G, Jones RSG, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008; 172(2):143–57. - 247 8. Lévesque M, Biagini G, de Curtis M, Gnatkovsky V, Pitsch J, Wang S, et al. The pilocarpine 248 model of mesial temporal lobe epilepsy: Over one decade later, with more rodent 249 species and new investigative approaches. Neurosci Biobehav Rev. 2021; 130:274–91.