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Abstract

The article investigates the fine structure of free cocommutative
Hopf algebras, which are unshuffle Hopf algebras, that is enveloping
algebras of free Lie algebras (possibly up to completion), and of the
dual commutative cofree Hopf algebras, which are shuffle Hopf alge-
bras. We introduce and study in particular base changes related to
Lie idempotents families. The article also develops a categorical and
duality framework to address the non graded case that includes for ex-
ample quasi-shuffle Hopf algebras. Lastly, we survey various classical
examples. We develop in detail the one of finite topologies that illus-
trates how one can take advantage of various extra algebraic structures
such as infinitesimal bialgebras or double bialgebras structures in this
context.

1 Introduction

The purpose of the present article is to systematically develop the theory
of free cocommutative and the dual commutative cofree Hopf algebras. In
concrete terms, a free cocommutative Hopf algebra is a cocommutative Hopf
algebra H which is freely generated as an associative algebra by a subset S
of elements (the set of generators). We will also consider the case where H
is complete; H is then, up to isomorphism, the algebra of noncommutative
formal power series over S. When the elements of S are primitive, H iden-
tifies with an unshuffle Hopf algebra. That is, it identifies with the tensor



algebra over S (resp. its completion) equipped with the unshuffle coproduct.
The Hopf algebra H is then the enveloping algebra of the free Lie algebra
generated by S, which is the central object of the modern theory of free Lie
algebras [36].

Dually, a commutative cofree Hopf algebras is a commutative Hopf al-
gebra H that has furthermore a basis indexed by words over a subset X
(the set of cogenerators, spanning linearly the vector space of primitive el-
ements) in such a way that the expression of the coproduct in that basis is
the deconcatenation coproduct of words. This notion of commutative cofree
Hopf algebras is equivalently encoded by the one of commutative By,-algebra
(a vector space equipped with a family of multilinear operations satisfying
ad hoc properties, to be recalled later in the article). When the By, structure
is trivial (see Definition [{.4), H identifies with the shuffle Hopf algebra over
X, the dual notion to the one of enveloping algebra of the free Lie algebra
generated by X, and another fundamental object of the theory of free Lie
algebras [36].

The choice of a set S of generators in the free cocommutative case and
of a basis of words over a set of cogenerators is in general highly non canon-
ical and there is actually an infinity of possible choices. The most classical
example of such phenomena in algebraic combinatorics, in the theory of free
Lie algebras and in the structure theory of Hopf algebras is probably pro-
vided by change of bases in the Hopf algebra of quasi-symmetric functions
or, dually, by change of bases in the Hopf algebra of descents in symmetric
groups (see Section . We will show later in the present article that there is
actually a very close connection between the structure theory of free cocom-
mutative and of commutative cofree Hopf algebras, and the one of descent
algebras. This extends the classical connection between the structure the-
ory of graded commutative or cocommutative Hopf algebras and the one of
descent algebras.

Various examples of the structures we investigate are provided by familiar
and fundamental objects in algebra, combinatorics and topology. Examples
of free cocommutative Hopf algebras include tensor algebras equipped with
the unshuffle coproduct, the Hopf algebra of descent classes in symimetric
groups and the isomorphic Hopf algebra of noncommutative symmetric func-
tions, the enveloping algebras of free prelie algebras, the free noncommuta-
tive shuffle (aka dendriform) algebras equipped with the canonical coproduct
(the one inherited from the Hopf monadic structure) and, more generally, all
enveloping algebras of free Lie algebras. Examples of commutative cofree
Hopf algebras include shuffle and quasi-shuffle Hopf algebras over a com-
mutative algebra, Hopf algebra structures constructed on finite topologies,
quasi-orders, orders, the Hopf algebra of quasi-symmetric functions... Most
of these structures will be discussed below in the article. Details will then
be given on their definitions and properties.

Recall that the two notions of free cocommutative Hopf algebras and



commutative cofree Hopf algebras are in perfect duality in the locally finite
graded connected case (the two categories are anti-isomorphic; locally finite
meaning here that each graded component is finite-dimensional). Most of
the above examples correspond to this case. The situation is more complex
in the non graded case, of which a typical example are quasi-shuffle Hopf
algebras.

The article will accordingly consider largely separately the two cases and
be divided into two parts focusing for each on specific ideas. We thus in-
vestigate on one side free cocommutative, and commutative cofree graded
Hopf algebras H from the point of view of Lie idempotents. It is known in
this setting that free cocommutative Hopf algebras are always isomorphic
to enveloping algebras of free Lie algebras, that is tensor algebras equipped
with the unshuffle coproduct [34, Lemma 22|. The dual result was obtained
more recently by C. Bellingeri, E. Ferrucci and N. TapiaE] in the context
of the (Butcher)-Connes-Kreimer Hopf algebra of non planar trees and its
applications to the theory of branched rough paths: a graded commutative
cofree Hopf algebra is always isomorphic to the shuffle Hopf algebra over the
space its primitive elements |2, Remark 3.5].

We recover these results and augment them in several respects. Firstly,
we show that any family of Lie idempotents (Eulerian, Dynkin, Klyachko,
Zassenhaus... — there are infinitely many of them) gives rise to a natural
Hopf algebra isomorphism between graded free cocommutative Hopf algebras
and unshuffle Hopf algebras. Dually, any such family gives rise to a natural
Hopf algebra isomorphism between commutative cofree graded Hopf algebras
and shuffle Hopf algebras. The isomorphisms introduced in [34] Lemma 22]
and [2, Remark 3.5] correspond to the particular case of the Eulerian family.

On another side, we consider the general (non graded) case. It includes in
particular quasi-shuffle Hopf algebras over a commutative algebra A, studied
in detail in [26], 15, [14]. Quasi-shuffle Hopf algebras provide a right framework
to investigate objects as different as for example Multiple Zeta Values, Rota-
Baxter algebras (of weight non 0) or the Hopf algebra of quasi-symmetric
functions. The latter is indeed, up to isomorphism, the quasi-shuffle Hopf
algebra over the algebra of polynomials in one variable, or in additive no-
tation, over the nonnegative integers. In probability theory, quasi-shuffies
are associated to Itd to Stratonovich transformations for continuous semi-
martingales. There is an large literature on these topics, see e.g. the works
quoted above or [30, 8 6, [7] also for further references.

In order to study free cocommutative and commutative cofree Hopf alge-
bras, we construct an adapted theoretical framework (graded-complete and

!We thank them warmly for pointing out to us the relevance of their article on branched
rough paths for the theory of commutative cofree Hopf algebras. Our initial project was
focusing on the general (non graded) case; their article was a key motivation to extend the
scope of the article and systematically study the fine structure phenomena that appear in
the graded case.



filtered-graded structures, with an adapted notion of duality between them).
This framework accounts for example for the fact that in spite of commu-
tative cofree Hopf algebra not carrying a graded Hopf algebra structure in
general (more precisely, the existence of a grading is not part or a direct
consequence of their definition), its product has always a nice behavior with
respect to the filtration induced by the cofree coalgebra structure. Similar
observations hold at the dual level, in spite of the situation being slightly
more complex as one has then to consider complete vector spaces.

Building on these definitions, we study free cocommutative Hopf alge-
bras and show that they are (up to completion) enveloping algebras of free
Lie algebras. The method is the same as in the graded case excepted for
two ingredients: one has to appeal to structure theorems for complete Hopf
algebras, and the only idempotent available is the suitable generalisation in
this framework of the Eulerian family. We turn then to the dual framework
and investigate firstly isomorphisms between a commutative cofree Hopf al-
gebra H and a shuffle Hopf algebra using general Hopf algebra techniques
that were first developed to investigate the properties of Hopf algebra endo-
morphisms. We obtain a parametrisation of such isomorphisms by what we
call tangent-to-identity infinitesimal endomorphisms of H. This extends the
study that we performed with Jean-Yves Thibon in [I5] — in the language
of the present article, that article studied natural deformations of the shuffle
Hopf algebra and the quasi-shuffle Hopf algebra functors from commutative
algebras to commutative cofree Hopf algebras. We essentially drop here the
naturality requirement. We use then an idea that was implicitly used in sev-
eral of our earlier works and was developed systematically in [4], namely the
fact that classical structure theorems and key properties of graded connected
commutative or cocommutative Hopf algebras still hold under the assump-
tion that the Hopf algebra is unipotent (that is, that its identity map is
locally unipotent for the convolution product [4, Def. 4.1.2]). This allows to
extend the results in the commutative cofree graded case to the non graded
setting.

The article also includes a survey of various classes of Hopf algebras to
which these various results apply. Building on [10, 11] and previous con-
structions in joint works with C. Malvenuto [12] 13], we expand specifically
the case of the Hopf algebra of finite topologies, showing how one can in that
particular case take advantage of a double bialgebra structure to approach
differently the construction of a set of cogenerators.

The article is organized as follows. We recall first in section [2| basic
definitions about coalgebras and introduce the notion of graded-complete
and filtered-graded coalgebras that will prove useful later, when studying
Hoffman-type isomorphisms (between shuffle and quasi-shuffle Hopf alge-
bras). Section |3| considers cofree coalgebras in these categories. Section
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introduces By-algebras and related notions, whereas section [5| discusses
graded By structures. The next sections introduce fundamental examples:
free Lie algebras and their enveloping algebras (section @), shuffle and quasi-
shuffle Hopf algebras (section , the Hopf algebra of descents (section .
Section [0 on finite topologies, illustrates how one can prove that a Hopf
algebra can be equipped with a commutative cofree or free cocommutative
structure when the existence of such a structure is non trivial. Section [I(]
investigates the structure of cofree commutative graded Hopf algebras and
the dual free cocommutative graded Hopf algebras using duality properties
and the theories of free Lie algebras and Lie idempotents. Section [11|studies
free cocommutative and cofree commutative Hopf algebras, extending the
results of the previous section to the non graded case (under some suitable
completion hypotheses). Finally, in section , we take advantage of the
fine structure on finite topologies to perform explicit computations illustrat-
ing the ideas developed in the article, using however a different approach
to the generalized Eulerian idempotent relying on the existence of a double
bialgebra structure.

2 Filtered-graded coalgebras

Recall first some definitions and properties of coalgebras. Details and proofs
can be found in [4, Chap. 2]. All vector spaces are defined over a ground
field K of characteristic 0.

A graded vector space is a vector space decomposing as a direct sum
V=@ Vp. Itis reduced if Vo = 0. Given V, W two graded vector spaces,

neN
a morphism of graded vector spaces from V to W is a morphism of vector

spaces ¢ : V. — W that respects the graduation (¢(V,) < W, for any
n € N). A graded vector space is locally finite-dimensional if all the V,, are
finite-dimensional vector spaces. The graded dual of a graded vector space
is the graded vector space V* = @ V,*, where V;* stands for the dual of

neN
Vin- Tt is locally finite-dimensional when V is such. The tensor product
of two graded vector spaces is defined by V@ W = @(V ® W), where

neN
VW), = @ V,®W,. The ground field K identifies with the graded
p+q=n
vector space, still written K, with only one non zero component, Ky = K. It

is the unit of the tensor product (V@K =V =V ® K).

A graded coalgebra is a coalgebra in the tensor category of graded vector
spaces. That is, graded coalgebras and other graded structures are defined
as usual except for the fact that structure morphisms, for example the co-
product A of a graded coalgebra C', have to be morphisms of graded vector
spaces, so that

A:Cp—> P C,RC,.

p+q=n



The counit map from C to K, that we will write ¢ (or e¢ if we want to
emphasize what is the underlying coalgebra) is automatically a null map
except in degree 0. A graded coalgebra C'is connected if Cy = K; for such a
coalgebra, I'(C) = {1}, where I'(C) stands for the set of group-like elements
in C, that is

I'(C):={ceC, c#+0and Alc) = c®c}.

Let now (C,A,¢) be a coaugmented coalgebra with coaugmentation 7 :
K — C (a coaugmentation is a map of coalgebras from the ground field to C,
where the ground field is equipped with the identity coproduct: K = KQK).
In other terms, we fix a group-like element 1 € C', that is to say a nonzero
element 1 such that A(1) = 1 ® 1. The coaugmentation is a section of the
projection € to the ground field and one has the decomposition C' = C @K,
where C' := Ker(g). Notice that a graded connected coalgebra is canonically
coaugmented: its coaugmentation is the isomorphism between the ground
field and the degree 0 component of the coalgebra, and 1 is the unique
group-like element of C'. In general, for a coaugmented coalgebra one can
define the reduced coproduct from C to C ® C by

Alc) = Ale) —c®1 - 1®c;

the element c is called primitive if A(c) = 0, the vector space of primitive
elements is denoted Prim(C).

The iterated reduced coproduct from C to C®"*2 is then inductively
defined by

Apio = (A@Id%n) o Api1, with Ag := A.

Let F,, := Ker (A1) c C. Notice that A, .o = (A ®Id%>") o A4 implies
Fn - Fn+1-

Definition 2.1. The coproduct A and the coalgebra C' are called conilpotent
if C = | Fn, that is if for every c € C there exists an integer n > 2 such

n=1

that A, (c) = 0.

Lemma 2.2. When the coalgebra C is graded and connected, the coproduct
1s automatically conilpotent.

Proof. Indeed, when C is graded connected, Cy = 0. As Ay sends C, to
6—) Ci, ®-+-®C;,, the iterated coproduct Ay, k > 2, vanishes on C,,

11+ i =n,
11,5yl 21
forl<n<k-1. O

A filtered vector space is a vector space V equipped with an increasing
filtration by subspaces V(0) ¢ V(1) < --- < V(n) < ---, such that V =



U V(n). Given V,W two filtered vector spaces, a morphism of filtered

neN
vector spaces from V' to W is a morphism of vector spaces ¢ : V — W

that respects the filtration (¢(V(n)) < W(n) for any n € N). The tensor
product of two filtered vector spaces is defined by requiring (V ® W)(n) :=

> V(i)®W (j). A graded vector space V is canonically filtered by setting
i+j=n
V(n) := @ V,. In that case, we say that V is filtered-graded. A morphism
<n
of ﬁltereg—graded vector spaces from V' to W is, by definition, a family of
morphisms ¢g : Vo — Wy, ¢, = @ e (—B Vp. Notice that, for
0<p<n O<p<n
practical reasons, we deliberately omit the degree 0 component in the image.
A filtered-graded algebra is an algebra A in the category of filtered-graded
vector spaces such that furthermore Ay = K, the ground field. We will be
interested later on in Hopf algebras that are filtered-graded as algebras and
graded as coalgebras, the typical example being the Hopf algebras of quasi-
shuftles over a commutative algebra.

Definition 2.3. The category FgCoalg of filiered-graded coalgebras is the
category whose objects are graded connected coalgebras and the set of mor-
phisms between two graded connected coalgebras C and D, the set of filtered-
graded vector spaces morphisms of coalgebras from C to D.

That is, a morphism of filtered-graded coalgebras from C' to D is a mor-
phism ¢ of coalgebras such that ¢(Co) = K = Dy and ¢(C,) € @ D, for

O0<p<n
any n € N.

A standard example of filtered-graded coalgebra morphism is provided
by the Hoffman isomorphism between the shuffle and quasi-shuffle Hopf al-
gebras, it will be discussed later on in the article.

A complete vector space V is a vector space equipped with a decreasing
filtration

~ — — ——

V=V0)oV(1)o---2oV(n)o...

such that V = lim ‘A//V/(;)

In the present article, V will always be obtained from a graded vector

e

space V as V := |[ V,, and V(i) := || Vs. We call such complete vector

neN nzxzi
spaces graded-complete vector spaces. A morphism of graded-complete vector

spaces from V to W is, by definition, a morphism of complete vector spaces
induced by ¢ : Vo = Wy and ¢y =: Vs, = Wy, for m = n > 1.
The complete tensor product of two such spaces is then obtained as

‘7@)1//[\/ =11 P V,@W,| = [1 V,@W,. A graded-complete coalgebra
neN \ p+qg=n p,qeN

Cisa coalgebra in the category of graded-complete vector spaces such that



furthermore Cy = K. In particular its coproduct A is entirely defined by the
knowledge of its restrictions

Appqg:Cn—C,R0,

withp+g=n>=1.
The dual notion to the one of graded-complete coalgebra C is the one of
filtered-graded algebra: write C* = @ C} for the graded dual of the graded

neN
vector space C'; C* is equipped with an associative algebra structure by the
maps tnm = Z Hnm,p with
1<psn+m

“.— * . * * ES
Pnmp = Dppm t Cp @CH, — Cp.

Recall, for completeness sake, that a bialgebra B is a unital algebra and
a counital coalgebra such that the product and the unit map are morphisms
of counital coalgebras. When the coalgebra structure is conilpotent or under
suitable completion hypotheses, as it is always the case in the present article,
the notions of bialgebra and Hopf algebra identify and we will use the two
terminologies indifferently. Denoting m and A the product and the coproduct
of B, the convolution f * g of two linear endomorphisms f, g of B is defined
by fxg:=mo(f®g)oA. The convolution product defines a unital algebra
structure on the vector space of linear endomorphisms of B with unit the
composition 1 o £ of the unit and counit maps. See [4] for a systematic
treatment.

The quasi-shuffle algebra over a commutative algebra is a filtered-graded
algebra and its product map is a filtered-graded morphism of coalgebras (see
Section [7l This motivates the following definition.

Definition 2.4. A Hopf algebra (H,*, A) is called a filtered-graded Hopf
algebra if (H,A) is a graded coalgebra and the product = : H® H — H is a
filtered-graded coalgebra morphism.

3 Cofree filtered-graded coalgebras

Q0
Let now V be a vector space over K. We denote by T(V) := @ V®" the

n=0
tensor gebraﬂ of V, and use the word notation for tensors (that is, v ... v,
will stand for v1 ® --- ® v,). We will use later a similar notation for the
tensor gebra over an alphabet X (the linear span of the set of words — or

2We use the terminology of [4] and call gebra a vector space that can be equipped with
several algebraic structures — this allows in particular to avoid calling “tensor algebra”
the vector space T'(V') without equipping it with the algebra structure obtained from the
concatenation product of words.



free monoid — over X). The tensor gebra is graded: the tensor degree of a
word w is its length £(w), that is, the number of its letters.

When V is a graded vector space, T (V) is also equipped with the total
degree: deg(vi ® -+-®uvy) := |v1] + - -+ + |vp|, when the v; are homogeneous
elements and where |v;| stands for the degree of v; in V. To avoid ambiguities,
we will write TY9(V) to denote the tensor gebra viewed as a graded vector
space when equipped with the total degree.

We equip the tensor gebra with the deconcatenation coproduct, that
makes it, together with the canonical projection € to K = V®0 a graded
(counital, conilpotent, connected, coassociative) coalgebra (for both the ten-
sor and total degrees): for any vy,...,v, € V, with n > 0,

n
Avy...vp) :Z’Ul...’ui@vi“...vn.
=0

0}

We write T (V) :== @ V® for T(V). It is equipped with the (coas-
n=1

sociative but not counital) reduced deconcatenation coproduct: for any

Vi,...,0p €V, withn > 1,

n—1

Alvy...vp) = Zvl...vi(@vi“...vn.

i=1

The following Lemma further justifies the introduction of the category
of filtered-graded coalgebras.

Lemma 3.1. Let C be graded connected coalgebra and ¢ be a morphism of
coalgebras from C to (T(V),A). Then, ¢ is a morphism of filtered graded

coalgebras. That is, p(Cp) € @ VO forn > 1.
k=1

Proof. As ¢ is a coalgebra morphism between connected coalgebras, we have,
on C, -
(0®¢)oA=Acg,

this implies that for any n € N,
B oA, = A, 00,

Therefore, ¢(Ker(A,11)) € Ker(A,41). It is an easy exercise to show that

n

in T(V), Ker(A,11) = @ V®. Moreover it holds for degree reasons that

k=1
n

Cy, € Ker(A,41). We get finally ¢(C,,) € @ V®F. O
k=1

Definition 3.2 (Cofree coalgebras). Let V' be a reduced graded vector space.

A cofree filtered-graded (resp. graded) coalgebra over V is a connected graded



coalgebra C' together with a filtered-graded (resp. graded) vector space map w
from C to V such that for each connected graded coalgebra D, any filtered-
graded (resp. graded) vector space morphism ¢ from D to V lifts uniquely to
a morphism ® of coalgebras from D to C in FgCoalg (resp. in the category
of graded coalgebras), such that 7 o Qp = ¢. The space V is called the
cofreely cogenerating space of C; the map w is called the structure map.

As usual for cofree objects, any two cofree filtered-graded (resp. cofree
graded) coalgebras over V are isomorphic (by a unique isomorphism, see
Lemma below). This justifies to call (slightly abusively) any cofree
filtered-graded (resp. cofree graded) coalgebra over V', “the” cofree filtered-
graded (resp. cofree graded) coalgebra over V.

Lemma 3.3. The tensor gebra TI(V') over a graded vector space V', equipped
with the deconcatenation coproduct A, the canonical projection mwy from
T+ (V) to V and the total graduation is a cofree filtered-graded (resp. graded)
coalgebra over V.. We call it the standard cofree filtered-graded (resp. graded)
coalgebra over V.. With our previous notation, the morphism ® from D to
T9(V) is obtained as
e+ Z 2o A,,.
nz=1

In the formula, it is understood that if d € D decomposes as €(d) + (d —

e(d)) e K@ D,

O(d) = e(d) + > 6" 0 Ay (d — e(d)).

nzl

Proof. Recall that (T(V),V,my) is a cofree conilpotent coalgebra; that the
formula for ® holds in the cofree conilpotent case (see e.g. [4, Exercise
2.13.3, Remark 2.13.1]) and that graded connected coalgebras are conilpo-
tent. There is thus for any D as in Definition a coalgebra map from D to
C and it is enough to check that this map is filtered-graded, (resp. graded).
This is immediate in both cases due to Formula

<I>=6+Z¢®"0An.

nz1

since the coproduct is a graded map from TY9(V) to T9(V) ® T9(V) and
since ¢ is a filtered-graded (resp. graded) map from D to V. This concludes
the proof. Further insights on cofree objects and why some conilpotency

assumption is required to have a simple construction thereof can be found
e.g. in [4]. O

Remark 3.1. Notice that since V' = Prim(T9(V')), the graded vector space
of primitive elements of T9(V'), it holds for any cofree filtered-graded (resp.
cofree graded, cofree conilpotent) coalgebra C over V that Prim(C) = V. In

10



particular one can always choose V' to be Prim(C). Fix now a graded basis
(b;)ieg of Prim(C). The choice of a structure map 7 can be interpreted as
the choice of a basis of C since it induces an isomorphism C = TY9(Prim(C)),
where T9(Prim(C')) has the basis of words b, ... b, ie J,l=1,...,k, ke
N. We will say that the choice of a cofree filtered-graded (resp. cofree graded,
cofree conilpotent) coalgebra structure 7 : C' — Prim(V') determines a word
presentation of C and call the associated basis (resp. graded basis, resp.

basis) of C' the w-basis.

Remark 3.2. The isomorphism C = T9(Prim(C)) is non canonical as it
depends heavily on the choice of w. This observation is made more precise
in the following Lemma and its proof. A slightly more involved version of
the same argument actually allowed us to classify natural endomorphisms
and automorphisms of the functor T' viewed as a functor from commutative
algebras to coalgebras, see [13].

Lemma 3.4. Let C be a connected graded coalgebra. Cofree filtered-graded
(resp. cofree graded) coalgebra structures on C, whenever they ezist, are
parameterized by the surjections from C to Prim(C) that are maps of filtered
(resp. graded) vector spaces and restrict to the identity map on Prim(C).
All such structures are isomorphic: a cofree filtered-graded (resp. graded)
coalgebra structure on a connected graded coalgebra C is thus unique up to
1somorphism.

Proof. Fixing a cofree filtered-graded coalgebra structure on C' amounts to
fixing an isomorphism of coalgebras between C' and (T9(V), my), the stan-
dard cofree filtered-graded coalgebra over V' := Prim(C). We can therefore
assume without restriction that C'is T9(V') equipped with the structure map
7wy . Any other cofree filtered graded coalgebra structure on C is given by a
filtered-graded surjection 7 from C' to V that restricts to the identity map on
V. The map = is the structure map of the second cofree structure; by Def-
inition it induces a filtered-graded coalgebra endomorphism 7 of 79(V)
obtained as:

ViU Y > m(wy) ... w(wg). (1)
k<n wi.. Wp=v1...Un
It can be inverted, and the inverse isomorphism £ such that o7 = Idpy(y)
is entirely characterized by the identity
Ty ofio® = m,
that is, u(v) = v for v e V and, for k > 2 and vq,...,v, €V,
p(or .. vp) = — > p(m(wy) ... w(wy)). (2)
k<n wWi...WE="01...Un,

The formula implies, by an induction argument, that p and g are filtered-
graded.
The same arguments and formulas apply in the graded case. O
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Remark 3.3. When one considers the particular case of natural endomor-
phisms of T viewed as a functor from commutative algebras to coalgebras,
the group of natural filtered-graded automorphisms of 7" is isomorphic to the
group of tangent-to-identity formal power series. In that case, the identity
relating m and g amounts to the calculation of the inverse in the group of
tangent-to-identity formal power series [15].

Remark 3.4. The category of filtered-graded coalgebras thus appears to be
the natural framework to study Hopf algebras such as quasi-shuffle Hopf
algebras. See for example the discussion of natural endomorphisms of quasi-
shuffle Hopf algebras in [I5] [26] for insights on the role of filtered-graded
maps in that context: the surjections that appear in these article should
indeed be understood as filtered-graded maps; they map a tensor of order n
to a tensor of lower or equal degree.

Let us finally introduce cofree structures for Hopf algebras.

Definition 3.5. Let (H,=#,A) be a conilpotent (resp. graded, resp. filtered-
graded) Hopf algebra. A cofree structure on H is the data of a structure
map m : H — Prim(H) making the triple (H,A,7) a cofree conilpotent
(resp. graded, resp. filtered-graded) coalgebra over Prim(H). We will say
that (H, =, A, ) (or simply (H, 7) when the underlying Hopf algebra structure
is obvious) is a cofree (resp. cofree graded, resp. cofree filtered-graded)Hopf
algebra.

4 B,-algebras

The notion of By-algebra was first introduced by Getzler and Jones in [17]
for cochain complexes. Their definition extends to other tensor categories,
we consider in this section By-algebras in the category of vector spaces. We
survey here the fundamental definitions and properties and refer to [9] for
further insights and applications.

A By-algebra structure on a vector space V' describes in algebraic terms
a Hopf algebra structure on the cofree conilpotent coalgebra (T(V'), A, my)
(see Proposition below). The tensor product of two graded connected
coalgebras is a graded connected coalgebra; T(V) is graded by the tensor
degree and connected, and T(V) ® T(V) is thus a connected graded coalge-
bra. By Lemma [3.1] the algebra product m, which is a map of coalgebras,
necessarily respects the filtrations: 7(T,,(V) @ Tn(V)) € @ Ti(V). In

k<n+m
particular, structure results obtained in the previous section for coalgebras

in FgCoalg apply to the Hopf algebras T'(V') associated to By-algebras as
described below.

Lemma 4.1. Let = : T(V) @ T(V) — T(V) be a coalgebra map. It is
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entirely characterized by the map (—,—) : T(V)®T(V) — V defined by

(UL« Uy Vg1 -+ Vkgt) = TV (V1 Uk % Uy 1+ Uyt

where Ty : T(V) — V is the canonical surjection.
Then, 1«1 =1 and for any words w,w' € T (V),

wrw' =Y DT Cwywhy . (wg, wh). (3)
k

—1 W=w1...Wk,
I 7
w'=wy...w),

Note that in the sum, the words w; or w3 can be empty (in what case w; and
w; stand for 1 in the terms (w;, w;) or {wj, w;)).
Moreover,

wrl=Y" > (w,1).. (wy, 1. (4)

k=1 wW=wi...Wg

Lew' = > Y duwly.. . (Lw). (5)

— ! 7
k=1 w'=w!..w)

Proof. As * is a coalgebra map, it maps 1 ®1, the unique group-like element
in T(V)®T(V), to 1, the unique group-like element in 7(V'). The Lemma
follows then from Lemma [3.3} = is entirely characterized by (—, —) := my o
%, and applying the formula expressing * in terms of (—, —) yields to Eqgs

BHBE)- O

Lemma 4.2. With the same notation, the product = is unital, with unit 1
if, and only if,

<_> 1> = <17 _> =Tv.

Proof. The assertion follows directly from the definitions of 7y, (—, —) and

Egs (). O
We assume from now on that the product * is unital, with unit 1.
Lemma 4.3. With the same notation,

1. the product * is associative if, and only if, for any w,w’ ,w" € T (V),

(w,w' = w"y = (w = w', w".

2. It is commutative if, and only if, for any w,w' € T4 (V),
(w,w"y = {w', w).

13



Proof. As the product is a map of coalgebra, so are the maps *o (Id®*) and
x0 (x* @Id) from T(V)®3 to T (V). They are therefore entirely characterized
by the composition with 7, and associativity follows from

my o (k0 (Id®=*)) = my o (x o (x ®1d)).

The second assertion is proved similarly, noticing that the twist map w@uw' —
w’ ® w is a morphism of coalgebras. O

Definition 4.4. A By, -structure on'V is a map {(—,—) : T(V)QT (V) — V,
such that:

e For any word vy ...v, € T(V),

v ifn=1,
<1,v1...vn>=<v1...vn,1>:{ L

0 otherwise.

e For any words w,w',w" € T (V),
<w’w/ * w//> = (w w/7w1/>,

where x is defined by

wrw = Z 2 (wy, why .. g, wi ). (6)

k=1 W=W1...Wk,
VR 7
w'=wy...w),

We shall say that {—, —) is commutative if for any w,w’ € T (V), {w,w") =
(w',wy. We shall say that {(—,—) is trivial if furthermore for any w,w' €
T (V), <w7wl> =0.

Remark 4.1. Equation (6]) can be rewritten in this way: for any v1,...,v54 €
v,

k+l

V]...V*Vky1...V4] = Z 2 <’Uo.—1(1)>. .. <va—1(n)>7

n=1 o:[k+1]—[n],
o(1)<...<o(k),
o(k+1)<..<o(k+1)

with the following notation: if I = {i1,...,iq} S [n], with 41 < ... < i) <
k<ipi <...<ig,
V[ = Vg ...v¢p®vip+1...vi

q°

In particular we get the Lemma:
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Lemma 4.5. The Bo-algebra structure is trivial if and only if the product
* 18 the shuffle producﬂ * = LW, with

V]...0*Vfy1...V] = Z 0071(1) ...1}071(”).
o[k ] [k+1],
o(l)<...<o(k),
o(k+1)<..<o(k+1)
See Section [7] for another classical definition of the shuffle product. In that
case, the Hopf algebra (T(V),w, A) is called the shuffle Hopf algebra over
V.

Definition 4.6. A By-algebra (resp. commutative) is a vector space V
equipped with a By -structure (resp. commutative).

Proposition 4.7. Let P(V) be the set of products = on T(V) making the
triple (T'(V'), =, A) a bialgebra and by By (V') the set of By -algebra structures
on V. The following map is a bijection:

o { P(V) — Ba(V)

* > Ty O %,

Denoting by P(V') the set of commutative products on T(V') making the
triple (T'(V'),*,A) a bialgebra and by BS (V) of commutative Bo-algebra
structures on 'V, © induces a bijection from P¢(V') to B, (V).

Proof. As 1 is the unique group-like of T'(V'), it is necessarily the unit for
the product *. By Lemmas [.1] and 1.3} © is well-defined. If = € P(V),
then it is a coalgebra morphism from T'(V)®T' (V) to T(V'). By Lemma [3.3]
O is injective.

Conversely, let (—, —) in By (V). The product * associated to it by
is a coalgebra map. It is associative by Lemma [4.3| and has 1 for a unit:
x € P(V), and O(x) = (—, —). Thus, © is a bijection.

By the last item of Lemma [4.3] ©(P¢(V)) = BS(V). O

Definition 4.8. The bialgebra (T'(V'), x, A) associated to a By,-algebra struc-
ture {(—, —) on V is called the By -enveloping algebra of (V,{—,—)).

Remark 4.2. All these notions dualize when V is finite-dimensional, so that
T(V) is locally finite. The dual of a By-algebra structure on V' is then
obtained as a family of linear maps

V* (V*)®n ® (V*)®m

3Shuffle and quasi-shuffle products can be commutative (as usually the case in Lie
theory) or not (as usually in classical algebraic topology where shuffle products appear
in relation to cartesian products of simplices). In the present article they will be always
commutative, excepted in the example of quasi-shuffle Hopf algebras over an associative al-
gebra (see Section where the quasi-shuffle product is noncommutative when the algebra
is noncommutative.
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making the completion of T(V*) a graded-complete coalgebra and a com-
plete Hopf algebra when equipped with the concatenation product. The cor-
responding notion of By-coalgebra would be obtained by dualizing the By-
algebra axioms and would naturally describe complete Hopf algebra struc-
tures on algebras of noncommutative formal power series. We will show later
on that such Hopf algebras, when cocommutative, are always isomorphic to
Hopf algebra structures on algebras of formal power series where the co-
product is the canonical one (the one making the generators of the algebra
primitive elements).

5 Graded B.-algebras

Let us consider now the notion of By-algebra in the category of graded
vector spaces. Most of the classical examples of Bg-algebras have such a
structure, which is by the way closer to the topological notion of By-algebra
(that is, the one in the category of chain complexes). We assume therefore
in this section that V is a graded vector space. For brevity we do not repeat
all definitions in the previous section: they have to be adapted as follows:

e replacing everywhere T'(V) (graded by the tensor degree) by T9(V)
(the same vector space, graded by the total degree),

e requiring that all maps be maps of graded vector spaces,

e requiring in particular that the product * resp. the structure map
{—, =) be maps of graded coalgebras resp. of graded vector spaces.

Using the point of view of Definition [1.8] let H = (T9(V), *,A) be the
By-enveloping algebra of (V,{—, —)) in the category of graded vector spaces.
It is equipped with a graded connected Hopf algebra structure and we say
that T9(V') is then the graded By-enveloping algebra of the graded Bg-
algebra V. For simplicity, we will abusively also say that (T9(V),*,A) is a
graded By-algebra.

Definition 5.1. When the By, structure is trivial, that is when (w,w’y =0
for words both of length greater or equal 1, the product = is the shuffle product
W, H=(T9(V),w, A) is the graded shuffle Hopf algebra over V, and we say
that it is o standard graded B -algebra.

Remark 5.1. A direct inspection of the formulas defining Bg,-enveloping al-
gebras shows that, given a vector space V, (T'(V),*, A) is a graded Hopf
algebra for the tensor degree on T(V) if and only if the By-algebra struc-
ture is trivial (that is, (w,w’)y = 0 for w,w’ € T} (V') and the product is the
shuffle product). Equivalently, if V' is graded and concentrated in degree 1
(V = V1), there is a unique graded By-algebra structure on V: the trivial
one.
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Let now H = (T9(V),*, A) be a locally finite graded commutative Bgy-
enveloping algebra (recall that locally finite means that the graded com-
ponents H,, are finite-dimensional). The graded dual cocommutative Hopf
algebra H* = P H; is a free associative algebra generated by the graded

neN
dual of V| denoted V* := @ V,*. That is, up to a canonical isomorphism,
nz=1

H* = T9(V*), the tensor algebra over V* equipped with the concatena-
tion product. More generally, if (H,x, A, ) is a locally finite cofree graded
commutative Hopf algebra, H* =~ T9(Prim(H)*) equipped with the concate-
nation product. The following definition characterizes such Hopf algebras.

Definition 5.2. A localy finite graded connected cocommutative Hopf algebra
H freely generated as an associative algebra by a graded subspace W is called
a free-Lie-type Hopf algebra. When W < Prim(H) (that is, when H is
primitively generated by W), we say that H is a standard free-Lie-type Hopf
algebra.

The reasons for this terminological choice will become clear later on:
we will show that a free-Lie-type Hopf algebra is always isomorphic to the
enveloping algebra of a free Lie algebra.

Recall already that when H is a standard free-Lie type Hopf algebra, by
standard results in the theory of free Lie algebras it is automatically canon-
ically isomorphic to the enveloping algebra of the free Lie algebra generated
by W. In that case, the graded dual Hopf algebra is (up to a canonical iso-
morphism) the shuffle Hopf algebra over W*, so that standard free Lie-type
Hopf algebras and standard graded Bg-algebras are in duality. On these
topics and in particular for details on the duality between enveloping alge-
bras of free Lie algebras (also called unshuffle Hopf algebras later on) and
shuffle Hopf algebras, see [36].

6 Free Lie algebras

Let us consider now one of the simplest possible non trivial example of a free
cocommutative graded Hopf algebra: the free graded associative algebra
A = Q{x,y) on two generators, x of degree 1 and y of degree 2 (so that, for
example, the word zyzy? is of degree 8). It is the enveloping algebra of the
free Lie algebra over x and y (using the rewriting trick [a,b] = ab — ba to
expand iterated commutators in the free Lie algebra into sums of words). It is
then natural to equip A with a standard free-Lie type Hopf algebra structure
by requiring = and y to be primitive elements (as A is a free associative
algebra, this choice entirely determines the Hopf algebra structure on A).
Consider now the graded dual of A, denoted A* and write z* and y* for
the elements dual to  and y in the basis of words. In general, if y; ...y,
is a word in the letters x and y we will write yj ...y, for the corresponding
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element in the dual in the basis of words over z and y. Writing V for
the linear span of z* and y* with the graduation |z*| = 1, |y*| = 2, A*
identifies to TY9(V) equipped with the deconcatenation product. That is,
A* identifies with the cofree graded coalgebra T9(V) over V with structure
map my mapping yi...ys to 0 if n > 2 and mapping yf to yf, where
yie{x,y}, i=1...n.

Dualizing the coproduct of A to obtain a product that we denote X,
T9(V) becomes a standard graded By-algebra and identifies as a Hopf alge-
bra to the shuffle Hopf algebra over z* and y* (see Remark and Section
. In particular,

¥ x 2* =" Wt = 22" 2",

See [36] for details on these constructions and definitions. The corresponding
By-algebra structure on V', obtained through the projection my, is trivial.

Consider now the change of variables ¢ := z, z := y+ 22 (it is convenient
to notationally distinguish z and t). One can rewrite A = Q(t,z) but A
is not a standard free Lie-type Hopf algebra any more with respect to the
linear span of t and z, as z is not primitive: A(z) = 2t ® t. Let us use the
same notation as above: if y; ...y, is a word in the letters ¢t and z we will
write y; ...y» for the corresponding element in the dual basis to the basis
of words over ¢ and z. For example, as

t=ux, z=y+x2, zt:yaz+x3,
t? :xQ, tz:xy+:c3,
3 =a3

we obtain that

x* — t*7 y* — Z*, y*l‘* — Z*t*,

x*x* — t*t* _"_ Z*7 x*y* — t*Z*,

it =t T 4 MR

Take care that with this notation z* = ¢t* and y* = z* but (¢*)" F («*)"
in general. The coalgebra A* identifies now to T'(W), where W is the linear
span of z* and t*, equipped with the deconcatenation product (the cofree
coalgebra over W with structure map my,, mapping yi...y; to 0 if n > 2
and maps yf to yi, where yi,...,y, belong now to {t, z}).

The two graded vector spaces V and W identify, but we distinguish
them notationally as the two cofree graded coalgebras T9(V) and T9(W)
do not. This is the case in particular because the two projections 7y and
mw are different: for example, my (x*) = z*, 7w (v*) = 2%, mw(x*x*) = 2*
whereas 7y (z*) = 2%, my(y*) = y*,my(z¥2*) = 0. Conversely, my (t*) =
x*, my(z*) = y*, my(t*t*) = —y*. Both my and my are the null map on all
words of degree greater or equal 3.

18



We also get
5 x tf = 2t7* + 227
as
<t* Xttt >=< t* QtF|A(t) >=< t* Qt* |t @1 +2A Rt + 1 @1t >= 2
and
<t Xtz >=<t"@t*|A(2) >=<t*" Rtz R1+2t Rt +1® 2z >= 2.

One obtains thus using myy another graded commutative By-algebra struc-
ture {(—, —) on W which however is not as a Hopf algebra the shuffle algebra
over t* and z*. We indeed obtain that {(t* t*) = 22* and (—,—) is 0 on
all other pairs of words in t* and z*. This illustrates the general idea that a
cofree graded commutative Hopf algebra structure on a graded vector space
H is actually obtained as a graded connected commutative Hopf algebra
structure plus the choice of a basis of words making it a cofree coalgebra
over the corresponding letters (up to the choice of a basis of Prim(H)).
There are infinitely many such choices (the basis of Prim(H) being fixed),
as our example implies.

The change of basis in A from words in z,y to words in ¢, z is obtained
simply by substituting ¢ for x and z — ¢t for y (and conversely x for ¢ and
y + zx for z). The change of basis in A* from words in z*, y* to words in
t*, z* is slightly more delicate but follows directly from Lemma it is
given by

Yy F> Z 71' O Ak: y;)
keN*
(with the y; in {x,y}) and the inverse map by

LY — Z ™ Mo Ar(yf .. yt)
keN*
(with the y; in {¢, z}) For example using this rule,
=¥ 2R T

7 Shuffle and quasi-shuffle Hopf algebra

Let - be an associative, not necessarily unitary, product on a vector space V.
We extend it to a By-structure on V' by putting, for any words w,w’ € T'(V),

Oifw=uw"=1,

w' if w=1and {(w) =1,
(w,w'y = { wif f(w) =1 and w' =1,
w-w' if L(w) = l(w) =

0 otherwise,
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where ¢(w) stands for the length of the word w. The associated product on
T(V) is called the quasi-shuffle product w. It makes T'(V') a Hopf algebra
called the quasi-shuffle Hopf algebra over V. It is commutative, if, and only
if, - is commutative. In the particular case where - = 0, we obtain the shuffle
product W (see also Remark [4.1]).

The quasi-shuffle product is classically inductively (and equivalently) de-
fined by the equations v w1 1 = 1w v = v and

V... VpHVgy1...Vy] = vl(vg...vk [l UkJrl---karl)
+ Uk+1(?}1 e U H Vg2 .. .Uk+l)

+ (V1 - V1) (V2 VR VR 2 Ok,

which restricts to

V]V WOkt e Vg i=01(V2 o Uk W Uty - Ukyg)

+ Uk+1(U1 U W Ugge . -Uk-i-l),

for the shuffle product. See also e.g. [15] for details on shuffle and quasi-
shuffle algebras and their relationships, to be generalized below in the present
article.

As already mentioned, in a joint article with J.-Y. Thibon, we investi-
gated and classified more generally natural deformations of the shuffle Hopf
algebra structure (T'(A), W, A) which can be defined on the space of tensors
over a commutative algebra A (where natural means functorial) [15]. These
deformations, of which the quasi-shuffle Hopf algebra over A is the most
important example, are parameterized by formal power series. The logarith-
mic and exponential series describe the isomorphism between (T'(A), W, A)
and (T'(A),w,A). To each such non trivial deformation corresponds a com-
mutative By-algebra structure on A. We refer the reader to our article for
definitions and details.

Commutative quasi-shuffle algebras are at the moment the most impor-
tant example of commutative Bg-algebras. They can be used to encode
certain relations between multi-zeta values and generalizations of them, see
[22] 21] for a review on this topic. They play a prominent role in the study
of Rota-Baxter algebras [18, 19, [5]. They are used not only in combinatorics
and algebra as they have for example applications also in stochastics, where
they allow to better understand the equivalence between It6 and Stratonovich
integrals, resp. solutions of stochastic differential equations (It6 calculus be-
ing encoded by quasi-shuffle algebras and Stratonovich’s by shuffle algebras)
6, [7].

Assume now that V = @ V,, is a graded vector space and let - be an as-

nzl
sociative, commutative and graded product on V. The standard example is

the case where V is the semigroup ring of a positively graded commutative
semigroup. Direct inspection shows that (79(V), w,A) is a cofree graded
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commutative Hopf algebra, making V' a graded commutative By-algebra.
We refer to Hoffman’s [20] for details on graded quasi-shuffle algebras and
their relationship with graded shuffle algebras. Both structures were used re-
cently in [2] to investigate It6 to Stratonovich transformations in the context
of branched rough paths.

8 The gebra of descents

Let us first introduce briefly the context of the following results. Together
with section [f] they will serve as a benchmark for our later developments on
graded commutative cofree Hopf algebras.

A classical and fundamental theorem by C. Malvenuto in the theory
of free Lie algebras, symmetric group representations and symmetric func-
tions asserts that the dual of the Hopf algebra of descents in symmetric
groups, whose definition is recalled below, is isomorphic to the Hopf algebra
of quasi-symmetric functions [24], 25]. There are several ways to understand
this isomorphism, but one of them is particularly important for our later
purposes.

The Hopf algebra of descents Desc is naturally graded, cocommutative.
As an algebra it is a free associative algebra over various sets of integer-
graded generators. The exponential map actually allows to move between
families of primitive generators to families of group-like generators. When
dualizing, choosing a family of primitive generators amounts to considering
the dual as equipped with a shuffie Hopf algebra structure, in the sense that
the formulas for the product in the corresponding basis are the usual for-
mulas for shuffle products. Choosing group-like generators instead amounts
to equip the dual with a specific graded commutative cofree Hopf algebra
structure: up to isomorphism, the one of the quasi-shuffle algebra over the
semigroup algebra over the positive integers. A change of basis in Desc and
its graded dual appears therefore as a prototype example for Hoffman’s iso-
morphisms between shuffle and quasi-shuffle Hopf algebras, but there is more
to be learned from that example, as we show now.

Let us explain the technical content of these ideas more precisely and
recall the definition of the Hopf algebra of descents and some of its key
properties, relevant to the present article. The reader is referred to [4, Chap.
5], from which the following definitions and properties are taken, for more
details.

Definition 8.1 (Descent sets of permutations). A permutation o in the n-th
symmetric group Sy, is said to have a descent in position i < n if and only if
o(i) > o(i +1). The set of descents of a permutation is denoted desc(o):

desc(o) :={i <n,o(i) >o(i +1)}.
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To each subset S = S’ u {n} of [n] containing n are associated two
elements in the group algebra Q[S,]:

De_g := Z o, Deg = Z o.

oeSn o€ESn
desc(o)=5" desc(o)c S’
The Deg (resp. the De_g), S = S’ u{n} c [n] are linearly independent in
Q[Sr]. They have the same linear span, written Desc.

Let now X = {x1,...,2Zy,...} be acountable alphabet and (T(X), -, Ay)
the tensor gebra over X equipped with a graded connected cocommutative
Hopf algebra structure by the concatenation product - and the unshuffe
coproduct A, (the coproduct dual to the shuffle product of words:

Auyr--yn) = Y, y®uyy
111J=[n]

where, if I = {i1,...,%},yr :== yi, - .- Yi,). Permutations in .S,, act on 7, (X)
on the right by permutation of the letters of words of length n (o(y1 ... yn) =
Yo(1) - - - Yo(n) Where y; € X, i < n). The convolution product * of linear
endomorphisms of T(X), f g := -0 (f ® g) o Ay) induces then a graded
algebra structure on the direct sum of linear spans of the symmetric groups

@ Q[S,] that restricts to a graded algebra structure on Desc (elements in
neN
Sy, being of degree n). This is the standard way to connect the combinatorics

of descents with the theory of free Lie algebras [36].

From the action of Desc on T'(X) (by a process that holds actually more
generally for all graded connected cocommutative Hopf algebras), one can
derive the existence of a graded cocommutative Hopf algebra structure on
Desc and one gets the Theorem:

Theorem 8.2. The descent algebra Desc is a graded cocommutative Hopf
algebra, freely generated as a unital associative algebra by any of the following
families:

e The identity permutations 1, in the groups S,, n = 1, that form a
group-like family — that is to say, for any n € N,

Am(ln) = 2 1k: ®1n—k7

k=0
o The Dynkin operators
n—1 .
Dynn, = Y (=1)'De_g1._ijoin}
=0

which are primitive elements,
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e Solomon’s Eulerian idempotents

1 (—1)|S‘ n—1\7"
SOln = en = Z —_— |S| De:SU{n};

Sc[n—1] "
which are primitive elements.

The Theorem implies that the family of Dynkin operators and the family
of Eulerian idempotents define a standard free-Lie type Hopf algebra struc-
ture on Desc: they are primitive elements and freely generate Desc as an
associative algebra. The graded dual Hopf algebra Desc* is a shuffle Hopf
algebra in the corresponding dual basis of words.

This is a general phenomenon: any family of Lie idempotents (elements
in the descent algebra that project the tensor algebra onto the free Lie al-
gebra) would define a unshuffle Hopf algebra structure on Desc, and there
are infinitely many of them. On Lie idempotents and their generalization to
arbitrary connected cocommutative Hopf algebras, see [31], 32] [33].

On the other hand, the family of the identity elements in symmetric
groups defines a non standard free-Lie type Hopf algebra structure on Desc.
Dualizing, one gets a graded commutative By-algebra structure on the space
Prim(Desc™) whose associated Hopf algebra is not a shuffle Hopf algebra over
the cogenerating vector space W*, where W is the linear span of the identity
elements in symmetric groups and W* its graded dual. The graded dual of
Desc is indeed the quasi-shuffle Hopf algebra over W* and identifies with
the Hopf algebra of quasi-symmetric functions — see [24] 25].

Choosing a family of generators of Desc that would not be primitive
nor group-like would lead to a graded commutative By-algebra structure
on Prim(Desc*) whose associated Hopf algebra would not be a shuffle Hopf
algebra nor a quasi-shufle Hopf algebra in the corresponding basis. This
follows easily from the same references and can be checked directly.

9 The By-algebra structure on finite topologies

Let us detail now a particularly meaningful example: finite topologies (see
[13]). The example illustrates how, in a non trivial situation, one can prove
that a commutative Hopf algebra can be equipped with a cofree coalgebra
structure. This also illustrates on a concrete example the notion of Schur-
Weyl categories of bialgebras, about which we refer again to [13].

Notice that the following developments do not require the assumption
that structures are graded (the Hopf algebra of finite topologies is canoni-
cally graded, but same method would hold,mutatis mutandis, for a general
conilpotent Hopf algebra).

Let E be a finite set. A topology on E is a set T of subsets of E such
that:
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e I, EcT.
e fABeT, then AuBeT and AnBeT.

By Alexandroff’s theorem [I], given a finite set E, the set of topologies on
FE is in one-to-one correspondence with quasi-orders on F, that is to say
transitive and reflexive relations on E: given such a relation < on F, the
topology T« associated to < is the set of subsets O € FE such that

Vo, y e F, reQandz<y=yeO.

Conversely, if T' is a topology on a finite set F, it gives rise to a quasi-order
on FE defined by

Ve,ye E, x <7y <= any O €T containing x also contains y.
If < is a quasi-order on E, we define an equivalence relation on F by
r~gy<<=>z<yandy <.
Thus, E/ ~< inherits an order <, defined by
I<y < x <.

We will further on abbreviate ~«,.

In the sequel, we shall represent isoclasses of finite topologies by the
Hasse graphs of (F/ ~p, <7), with indices representing the cardinalities of
the classes of ~<,, when these cardinalities are not equal to 1. Here are
finite topologies of cardinality < 4:

to ~7p.

L e L N AL L

) ) Y

\V,K/,Y,[ A AUKO V. AL L

2
2 2
VA AeA BB Lt e Pl B
By convention, the edges in these graphs are oriented upwards.

The Hopf algebra Hp of quasi-orders, or of finite topologies [12), [13] has
for basis the set of (isoclasses) of finite topologies. Its product, that we
will write m further on, is given by the disjoint union: if 7" and 7" are two
topologies on respective sets E and E’, then TT’ is a topology on the set
E U E' with

TT ={OuO0"|OeT, O'eT}.
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The Hasse graph of T'T” is the disjoint union of the Hasse graphs of T and T".
This product is commutative, and its unit is the unique topology denoted 1
on . The coproduct A is defined on any finite topology T on a set E by

A(T) = 2 Tipo ®To-
OeT

Ezample 9.1.

AD)=.®1+1®.,
Ah=lel+10!l+.®.,
Vel+1ogV+Io.+l.+.®..,
AR1+19 A +.@l+.01+..®.,

A

)
)
)
A(N)

(V) =
(N =
A(}):}®1+1®{+.®I+I®..

The Hopf algebra Hr is equipped with an extra structure, the ordinal
sum [38, B]: if T and 7" are two topologies on respective finite sets E and
E' then T | T' is a topology on E L E’ defined by

T|T =T'U{OuE'|OeT}.

The Hasse graph of T' | T" is obtained by adding an edge from any maximal
vertex of the Hasse graph of T to any minimal vertex of the Hasse graph of
T'. For example,

le=1, .¢I={ e =V, I¢.={ e o= AL

) )

The product | is linearly extended to Hp, making it an associative al-
gebra, which unit is again 1. Moreover, by definition of T' | T’, for any
x,y € Hp,

Alzly) =) 1AW +AR) | (1®y) —zQy.

Recall that an infinitesimal bialgebra in the sense of [23] is an associative
unital algebra with product | and a coassociative counital coalgebra with
coproduct A and coaugmentation the unit of | such that furthermore the
previous identity is satisfied. The triple (Hp, |, A) is thus an infinitesimal
bialgebra.

Let us survey some of the properties of these bialgebras with a view to-
wards applications to By, structures. Complementary insights can be found
in [I3]. The main example of such objects are the tensor gebras T'(V'), with
the concatenation product that we write from now on Mmcone and the decon-
catenation coproduct A. In fact, in the conilpotent case, these are the unique
examples:
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Proposition 9.1. Let H = (H,|,A) be an infinitesimal bialgebra. The
following map is an injective map of infinitesimal bialgebra:

@{ (T(Prim(H))7mconCaA) — (H,l,A)
' V1...0p FH— vll...ivk.

It is an isomorphism if and only if, the coalgebra (H,A) is conilpotent.

Proof. The map O is obviously an algebra map. An easy induction on k
proves that for any vy,...,vx € Prim(H), in H,

k
A(ml...lvk):Zvll...lvi@)viﬂl...lvk,
=0

S0 O is a coalgebra morphism.
Let us assume that O is not injective. Let us consider w € Ker(0), non

n
zero. There exists n = 1 such that w e @ Prim(H)®k. Let us choose w such

k=1
n—1
that n is minimal. Then the restriction of © to P Prim(H)®" is injective.
k=1

Moreover,

0=A0c0O(w)
= (0®0O)oA(w)
=0(w)®1+1®6(w)+ (0®6)A(w)
= (0 ®O)A(w).

Observing that
n—1 ®2
Aw) € ((—D Pm’m(H)@)k) ,
k=1

we obtain that A(w) = 0, so A(w) = w®1 +1®w and finally w € Prim(H).
Therefore, ©(w) = w = 0, which is a contradiction. So O is injective.

If © is surjective, then the coalgebras (T'(Prim(H)),A) and (H,A) are
isomorphic, so H is conilpotent. Let us assume that H is conilpotent and
let us prove that © is surjective. Let x € KerA,, in H, with n > 2, and let
us prove that z € Im(©) by induction on n.

If n =2, then z € Prim(H) and = = ©(x). Let us assume the result

at rank n and let * € KerA,y;. Then, as A is coassociative, A,(x) €
Ker(A)®" = Prim(H)®". Let us put

k
Zn(az) = Z Vi1 ®... ®Ui,n'

=1
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k
Then, if w = Z Vil Vin, A00(w) = Ay(x), so the induction hypothesis
i—1
applies to  —O(w). Therefore, x —O(w) € Im(O) and finally x € Im(©). O

Proposition 9.2. Let (H, |, A) be a conilpotent infinitesimal bialgebra. Then
H=Prim(H)®H | H,

and the projection m on Prim(H) in this direct sum is given by
es}
S Z(_l)k-i-l l(k—l) oA
k=1

Proof. By Proposition , it is enough to prove it for H = (T'(V'), Mmeone, A).
Let n > 1 and w e VO,

Z 2 (_1)k+1w

k=1 W=WwW1... W,
wl,...,wk;él

_ Z Z (_1)k+1 w

k=1 W=w1...Wk,
W1,y Wi #1

- 2 ) e

Ic[n—1]

m(w)

= (Sn,lw.

Here, I represents the places where the word w is cut, where i € [n — 1]
reflects a cut between the letter 4 and ¢ + 1 of w. Therefore, 7 is a projection
on V = Prim(T(V)), which vanishes on T(V); | T(V), = P V& O

nz=2

Remark 9.1. By Takeuchi’s formula [39], 7 + £ is in fact the opposite of the
antipode of (H, |, A), where by antipode is meant the convolution inverse
of the identity map for the convolution product on linear endomorphisms
induced by the coproduct A and the product|. This also follows more ab-
stractly from the implicit definition of 7 acting on H = (T(V'), Meone, A) by
the equation Id — e = 7 * Id or, equivalently, (—m —¢) = Id = €.

Therefore, if (H,m,A) is a commutative Hopf algebra, with an extra
product | such that (H, |,A) is an infinitesimal bialgebra, it is cofree as a
coalgebra, where one can use the map 7 as projector onto Prim(H). This is
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the case for Hp. For example,

cdy =1V -A+l
T(ees) = eee =3V —3A +6{.

This projection induces a commutative By structure on Prim(Hr), given
by

@1®...Qupy1®...Quy =m((zr L ... La)y L. Lw)),

where z1,..., 2k, y1,. ..,y € Prim(Hr). For example,

(o) =1(ss) = oo —21,
(@@ maly ==V ALl
(oo =2l ) =(oyee 2D =m(eee —210) = 000 =21, —V—/\+4{.

10 Free cocommutative graded Hopf algebras and
their duals

Recall the Poincaré-Birkhoff-Witt (PBW) theorem (we refer again to [4]
for details on the materials that follow). Let L be a graded and reduced
Lie algebra (reduced meaning that it has no component in degree 0). Its
enveloping algebra H is a graded connected cocommutative Hopf algebra and
there is a canonical morphism ¢ from the space S(L) of symmetric tensors
over L to H. This map is a coalgebra isomorphism and the decomposition
of S(L) according to tensor degrees induces a decomposition of the graded
components of the enveloping algebra: H,, = @ H, n «(S*(L)), where we

k<n
write S¥(L) for the space of symmetric tensors in L®*.

The gebra of tensors T'(X) over a set X is, when equipped with the con-
catenation product and the unshuffle coproduct Ay, the enveloping algebra
of the free Lie algebra over X. One of the key properties of the Eulerian idem-
potents is that they project T'(X) to the free Lie algebra over X according to
the decomposition of T'(X) induced by the Poincaré-Birkhoff-Witt theorem
(this is actually how Solomon defined them originally).

This idea was generalized to arbitrary graded connected cocommutative
or commutative Hopf algebras H in |29, Th. 15,6 and Th. 1,6,4], see also

28



[27, 28, [4]. In the cocommutative case, this leads to the definition of gener-
alized FEulerian idempotents that project on the graded components of prim-
itive part of the Hopf algebra in agreement with the Poincaré-Birkhoff-Witt
decomposition. We will still write el for the generalized Eulerian idempo-
tent, acting on H, as a projector from H, to H, n Prim(H). Notice that
these generalized idempotents cannot be constructed in general as elements
of the symmetric group algebras. In particular they are not directly gov-
erned by the statistics of descents in symmetric groups — the very reason
for the name “Eulerian idempotents” used in the classical case. This is the
reason why they should be preferably called “canonical idempotents” — we
use below the two terminologies indifferently.

Lemma 10.1. Given x € H,,, where H is a graded connected cocommutative
Hopf algebra, the PBW theorem induces a unique decomposition x = el (z) +

y, where el (x) is a primitive element in H, and y € @ H, n (S*(L)). In
k>1
particular, it follows from the definition of v, the PBW isomorphism, that y

can be expanded as a sum of products of elements in @ Hy.
k<n

More generally, one can show [4, Th. 5.2.1] that any primitive element 1,
in the n-th graded component of the descent algebra (¢, € Primy(Desc) :=
Prim(Desc) n Descy,) defines a projector from H,, onto Prim(H) n H,, pro-
vided the coefficient of 1,, € S), in the expansion of ¥, viewed as an element
of the group algebra of Sy, is 1 in the basis of permutations. We call a
family (1 )nen+ of such projectors a Lie idempotent family. The Dynkin
idempotents Dyn,,/n and the Klyachko idempotents provide, together with
the Eulerian idempotents, classical examples of such families. There are in-
finitely many as any convex combination of Lie idempotent families is a Lie
idempotent family — this follows from their characterization in terms of the
coefficients of 1,, € S, in their expansion.

It is easy to show using the structure properties of the Hopf algebra
of descents that Lemma generalizes to these families (¢, )nen* in the
following way: given z € H,, z = ¥,(x) + y, where ¢, (x) is a primitive
element in H,, and y can be expanded as a sum of products of elements in

@ H,.

k<n

Theorem 10.2 (Structure theorem for free-Lie-type Hopf algebras). Let H
be a free-Lie-type Hopf algebra with freely generating subspace W. Then,
for any Lie idempotent family (¢n)nen=, H is a standard free-Lie-type Hopf
algebra (an unshuffle Hopf algebra) over the freely generating subspace W' :=
@ vn(Wy). In particular, a free-Lie-type Hopf algebra is always naturally

neN*
the enveloping algebra of a free Lie algebra over a generating subspace W',

and any Lie idempotent family gives rise to such a subspace.
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Proof. Indeed, W freely generates H as a free associative algebra. Let us
choose a graded basis (b1, ..., by, ...), ordered in such a way that |b;41| = |b;].
By Lemma [10.1] b; = 9, (b;) + 7, where r belongs to the free associative
algebra generated by the b;, j <i—1. By a standard triangularity argument,
Yn(b;) is freely independent from the b;, j < ¢ and from the 1, (b;), j < 1,
and the 1, (b;) freely generate H. The Lemma follows. O

The theorem can be recast in categorical terms. Let V a graded vector
space together with an isomorphism ¢ : V- — W. We write ¢,, for the degree
n component of the isomorphism. The data (H, W) of a free-Lie type Hopf
algebra are equivalent to the data (H,V, ¢) of a graded cocommutative Hopf
algebra structure on H together with the linear injection (still written) ¢
from V into H that induces an algebra isomorphism T'(V) =~ H. We call
(H,V,¢) a presentation of the free-Lie type Hopf algebra (H, W).

Theorem 10.3 (Structure theorem categorical formulation). Let (H,V, ¢)
be a presentation of a free-Lie type Hopf algebra H. Then, for any Lie idem-
potent family (Vn)nenx, (H,V, @ 1n 0 ¢p) is a presentation of a standard
neN*
free-Lie-type Hopf algebra structure on H.
By duality (hereafter in this section all duals are graded duals and all
graded vector spaces are locally finite), we immediately get:

Theorem 10.4 (Structure theorem for cofree graded commutative Hopf
algebras). Let H* be a cofree graded commutative Hopf algebra with structure
map ¢* : H* — Prim(H*). Then, for any Lie idempotent family ({n)nenx,

the structure map m™ := > ¢k o ¥ equips H* with another, isomorphic,
neN*
cofree coalgebra structure over Prim(H™). Furthermore, the structure map

7 induces a Hopf algebra isomorphism with the shuffle Hopf algebra H* =
(T9(Prim(H*)),w, A).

The last sentence follows from Theorem and the fact that the graded
dual Hopf algebra of (TY9(Prim(H™*)), 1, A) is the enveloping algebra of the
free Lie algebra over the dual of Prim(H™*).

The theorem can be re-expressed in the language of By-algebras.

Theorem 10.5 (Structure theorem for graded commutative By,-algebras).
Let V* be a graded commutative By -algebra and (T9(V*),x, A) the associ-
ated cofree graded commutative Hopf algebra. Let (Y )nenx be a Lie idem-
potent family. Then, the structure map >, my o ¥ from TI(V*) to V*
neN*
induces a Hopf algebra isomorphism (T9(V*), %, A) = (T9(V*),w, A).
When the Lie idempotent family is the Eulerian family, Theorem
was obtained in [34] (Lemma 22) and Theorem by Bellingeri, Ferrucci
and Tapia in [2] (Remark 3.5). This case is important as the Eulerian family
is the only family of classical Lie idempotents that generalizes in the non
graded case, see the next Section
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11 Free cocommutative complete Hopf algebras and
their duals

Recall from [35], [16] and [4, Sect. 4.6] that Cartier’s structure theorem for
graded connected cocommutative Hopf algebras still holds in the complete
case. For a complete commutative Hopf algebra H = lim H/H (n), where

H(n) denotes the n-component of the decreasing filtration of H and where
it is assumed that H(0)/H(1) =~ K, it holds that there is a Hopf algebra
isomorphism

H =~ U(Prim(H)),

where U denotes the enveloping algebra functor for complete Lie algebras.
Moreover, el = log*(Idy) is well-defined and maps H onto Prim(H) [4,
Lemma 4.6.1].

Let us assume furthermore that H is a graded-complete Hopf algebra,
that is (by definition, and in the context of the present article) a complete
Hopf algebra such that

1. H =[] H, with Hy = K the ground field (so that H(n) = []| H.);

neN mz=n

2. the associative product on || H, is obtained as the completion of a
neN
graded algebra structure on @ Hy;

neN

3. as a coalgebra, H is graded-complete, that is, the coproduct A is ob-
tained from maps:

An:Hy— ] H®H,

p+g=n
In this setting, e! maps H,, to [] H,.
p=n
We say that such a H is free if, as an algebra, @ H, is a free graded asso-
neN
ciative algebra over a finite or infinite (but countable) set S = {s1,...,Sn,...}

of graded generators, where we assume that these generators are degree-
ordered (|s;+1] = |si|) and that there is a finite number of generators in each
degree. Thus, H = K{{s1,...,5n,...)), the algebra of noncommutative for-
mal power series over S. We say that such a H is standard if furthermore
the generators s; are primitive elements, so that, in that case, H identifies
with the completion of the enveloping algebra of the free Lie algebra over
the Si-

Theorem 11.1. Let H = K{{(s1,...,Sn,... ) be a free cocommutative graded-
complete Hopf algebra, then H is canonically isomorphic to the standard free
cocommutative graded-complete Hopf algebra K{{e'(s1),...,e*(sn),... ).
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) (2)

Proof. Indeed, for s; € Hy,, e'(s;) decomposes as s; + r; 7 +r;”, where

|r§1)| = n; and rgl) € K{(s1,...,8-1))y and 7“1(2) € || Hn;4n+1. Therefore,
neN

by a standard triangularity argument, the e'(s;) are freely independent and

generate H as a complete algebra. The Theorem follows as they are primitive

elements. m

These results dualize as follows. Let us restate first the characterization
of shuffie Hopf algebras (Lemma [4.5)).

Lemma 11.2. Let (H,*, A, ) be a cofree commutative Hopf algebra. Then,
H is a shuffle algebra in the m basis if and only if © vanishes on H = H, the
square of the augmentation ideal of H.

In particular, any surjection v : H — Prim(H) that acts as the identity
map on Prim(H) and vanishes on H * H defines a shuffle algebra structure
on H in the v basis.

Recall (details can be found in [4, Sections 2.10 and 3.3|) that to a com-
mutative Hopf algebra H are classically associated a group and a Lie algebra:
the group is the set of algebra maps from H to the ground field K equipped
with the restriction of the convolution product on the algebra End(H) of
linear endomorphisms of H. The Lie algebra is the vector space of linear
forms on H that vanish on H % H or, equivalently, of linear forms on H that
vanish on K+ H # H. These linear forms are usually called infinitesimal char-
acters, their bracket is obtained as the bracket associated to the convolution
product. This construction generalizes from linear forms to linear endomor-
phisms of H. A linear endomorphism of H that vanishes on K + H = H is
called an infinitesimal endomorphism of H.

Definition 11.3. An infinitesimal endomorphism ¢ of H is called tangent
to identity if and only if its restriction to Prim(H) is the identity map.

We state the following Corollary of Lemma[11.2/as a Theorem in view of
its meaningfulness for the theory.

Theorem 11.4. Let (H,*, A, m) be a cofree commutative Hopf algebra and ¢
be a tangent to identity infinitesimal endomorphism of H. By Lemma|11.
H is a shuffle Hopf algebra in the wo ¢ basis.

When restated in the language of By-algebras, the Theorem reads:
Theorem 11.5. Let (—, —) be a commutative By, structure on V with asso-

ciated Hopf algebra (T'(V'),*,A). Let ¢ a tangent to identity endomorphism
of T(V) and let @ be the coalgebra automorphism of (T (V),A) induced by
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W =Ty o ¢:

0
weT (V) — Z Z w(wy) ... w(wg).
k=1 W=W1... Wk,
Wy WEF
Then @ is a Hopf algebra isomorphism from (T'(V'),*, A) to (T'(V),w, A).

The calculation of the inverse isomorphism follows from the computation
of the inverse of a cofree coalgebra isomorphism in Eq. (2).

Proposition 11.6. Let notation be as in Theorem [11.5. Let us define in-
ductively ¢ (by induction on the length of tensors) by

T.(V) — V

veV +— v,

weT,(V), n22 — (w)==> > @u(C(w)...C(wp)).

w1, ,w.k:#@
Let us then define
(V) — T(V)
~ 1 +— 1,
oo
weT (V) — ) C(wy) ... Clwg).
k=1 W=wW1...Wk,
W1, W FE D

Then C is the Hopf algebra isomorphism from to (T(V),w,A) to (T'(V), =, A)
tnverse to @ as defined in Theorem [11.5

In the graded case we saw that any Lie idempotent family defines a shuffle
Hopf algebra structure on a cofree graded commutative Hopf algebra. In the
non graded case, the key idea to construct a universal tangent to identity
endomorphism will be to use the extension of the definition of the Eulerian
idempotents from the original case of the tensor Hopf algebra to the case
where the Hopf algebra H is commutative and unipotent (being unipotent is
a weaker hypothesis than being graded connected; it always holds when the
Hopf algebra is conilpotent as a coalgebra). We have already used in previous
works on quasi-shuffle algebras this fact that the constructions and proofs
of structure results on graded connected cocommutative or commutative
Hopf algebras in [29, 27, 28] can be extended to a broader setting as they
actually only require the Hopf algebras to be unipotent — this observation
was developed systematically in [4, Chap. 4], to which we refer for details
and proofs. See in particular [4, Thm 4.4.1].
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When these results are applied to a cofree commutative Hopf algebra H,
the canonical (or generalized Eulerian) idempotent is thus defined on H by

0 k=1 -
NOED I S W0}
k=1

where we write my, for the iterated product (from H®F to H). As in the
graded case it projects onto a (canonically constructed) vector subspace
Q(H) of H that freely generates H as a commutative algebra. The pro-
jection is orthogonal to the square of H, the augmentation ideal of H and
acts as the identity on Prim(H). It is a tangent to identity infinitesimal
endomorphism of H.

The reader can find an explicit computation of e, for quasi-shuffle Hopf
algebras in terms of surjections in [26].

When applied to commutative By,-algebras, these results imply the The-
orem:

Theorem 11.7. Let = € P°(V)). The canonical idempotent e, is defined by
ex(1) = 0 and for any non-empty word w of length n,

n _1)k—1
e*(w)zz 2 (iiwl*...*wk.
k=1

W=w1... W,
Wi, W FE D

Then ey is a projector, vanishing on T (V) = T (V), and for any v € V,
ex(v) = v: it is a tangent to identity infinitesimal endomorphism of T(V).
Moreover, the image of e, freely generates (T'(V'), *) as a commutative alge-
bra.

Furthermore, as the product of a By-algebra is a morphism of filtered
graded coalgebras,

ex(Th(V)) € é Ti(V).
k=1

Proposition 11.8. Let = € P4(V). We set wy := my o ey and call w the
canonical commutative By, idempotent. It acts as the identity map on'V and
sends any non-empty word w to

S (=)t
me(w)=> > Wy w),
k=1 W=wW1...Wg,

W W FE D

Proof. The map w, is indeed an idempotent since my is an idempotent and
ey omy = wmy. The explicit formula follows from the formula for e, in
Theorem and the observation that, since (w,w") = 7y (w * w'),

my(wy xwe # .2 wg) = wy(wy * (wg * ...k wg)) = (wy, wg *...xwgy. O
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Example 11.1. Let v1,v9,v3 € V.

W 4 (Ul) = 1,

1
@ (v1v2) = —5@17@2%
1 1
wy (v1v2v3) = D) ((v1va, v3) + (v1, v23)) + §<U1,U2vs + v3vg + (v2,v3)).

Proposition 11.9. When (H, ) is a cofree commutative Hopf algebra, de-
fine similarly the idempotent w, = W o e, and call it the canonical -
tdempotent. The Hopf algebra H is then a shuffle Hopf algebra in the w
basis.

Proof. The Proposition follows from the fact that e, is a tangent to identity
infinitesimal endomorphism and from Theorem [L1.4] O

In the language of By-algebras, the Proposition reads:

Proposition 11.10. Let notation be as in Proposition but set w :=
my o ex. Then, ©w is a Hopf algebra isomorphism from (T(V),x, A) to
(T(V),w, A).

Remark 11.1. In the quasi-shuffle case * = w, and the isomorphism and
its inverse are known as Hoffman logarithm and exponential [20]. The log-
arithmic and exponential series also encode the isomorphism as a natural
coalgebra automorphism, as we already explained [I5]. They are thus given
by

-1 n—1
wy(V1...0p) = Lvl-...-vn.
n
1
C(w) = —UL" - U
n!
for any vi,...,v, € V, with n > 1, and where we used the notation of

Proposition for the inverse.

This can be recovered as follows. Given two non empty words w and
w', {w,w") vanishes in the quasi-shuffle case excepted when w and w’ are
both of length 1. Therefore, using also that the quasi-shuffle product of two
words of length p and ¢ is a linear combination of words of length at least
max(p, q), we get

-1 n—1
wa(v1...0p) = (71@1,1)2 B L. B U ).
-1 n—1
:7( " <1)1,U2'...'7}n>
(_1 n—1
:TUI'U2"--"Un-

35



One can also check, using for example the identity of coefficients resulting
from the formal power series expansion of the identity logoexp(z) = x, that
Hoffman’s formula for the inverse map

C(w) = UL Uy
indeed solves
S (!
((w)=—2 Z TC(wl)'---'C(wk),
k=92 W=W1...Wk,
W1, W F

A similar analysis of the Hoffman isomorphism was performed in [2], in the
particular case where the commutative algebra V' underlying the construction
of the quasi-shuffle Hopf algebra is the algebra of symmetric tensors over a
vector space. See also our [I5, [14] where more advanced insights on the
Hoffman isomorphism and more generally on deformations of shuffle Hopf
algebras can be found.

We conclude this section with a remark on the naturality of the con-
structions presented in the article. Morphisms of commutative Bg-algebras
are defined in the obvious way: given (V,{(—, —)v) and (W,{—, —)w) two
commutative By-algebras, a linear map f from V to W is a commutative
By morphism if and only if, for any v1,...,vp4e in V,

(F(v1-+-0p), F(Upt1 -+ Uprg)w = F{01 @+ @ Up, Up11 ® - - @ Upr )V )

where F'is defined by F(vy---v;) := f(v1) ® -+ ® f(vi).

We put #y = O 1({(—, =)y) and #y = O 1({(—, —dw) and let the reader
check that if f is a commutative By morphism from V to W, F'is a bialgebra
morphism from (T'(V), v, A) to (T(W), xw, A).

Proposition 11.11. Let (V,{—, —)v) and (W,{—, —)w) be two commutative
Boo-algebras. Let f 'V — W be a morphism of By -algebras. The following
diagram is commutative:

(T(V), %y, A) —= (T(W), s, A)

H*V\L \LH*W

(T(V)v LU, A) T> (T(W), LLI, A)

In other terms, the commultative By /shuffle isomorphism is functorial.

Proof. The Proposition directly follows from the definition of the maps H,,
w and ey, from the definition of a commutative By morphism, and the fact
that F'is a morphism of bialgebras (so that its action commutes in particular
with taking products or computing coproducts). O
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12 Finite topologies: the double bialgebra struc-
ture

In this last section, we take advantage of the fact that the rich combinatorics
of finite topologies allows to perform an alternative calculation of the canon-
ical (or generalized Eulerian) idempotents to concretely illustrate the results
previously obtained.

The Hopf algebra Hp introduced in section [9also has a second coproduct
J, defined with the help of the following notions [10, 9]. Let us consider a
finite topology T, on a set F, associated to the quasi-order <p. Let ~ be an
equivalence relation on FE.

1. T |~ is the topology associated to the quasi-order <7~ defined on F
by

Ve,y e F, TSy r<ryandz~y.

2. T/ ~ is the topology associated to the quasi-order <7/~ defined as the
transitive closure of the relation defined on E by

Ve,y e L, TRy<=zc<ryorz~y.

3. We shall say that ~e E.(T) if:

e The connected components of T' |~ are the equivalence classes of

e The relation ~T associated to the quasi-order <7/~ 18 ~.

The coproduct § sends any finite topology T to

S(T)= > T/~@QT|~.
~eE(T)

For example,
o) = e ® o,
S(H=1®..+el,
(V) =V@...+2Le.l+s0V,
(5({):}®...+Iz®.1++12®.1+.3®{,
5(/\):A®...+212®.I+.3®/\.

The counit €5 of this coproduct sends any finite topology 1" to 1 if T is
discrete (that is to say if <p=~7) and to 0 otherwise. Then (Hp, m, A, ?)
is a double bialgebra, that is to say:
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1. (Hr,m,d) is a commutative bialgebra.

2. (Hp,m,A)is a commutative bialgebra in the category of right (Hp, m, 6)-
comodules with the coaction 4, or in a more detailed version:

e A: Hr — Hp ® Hr is a comodule morphism, that is to say
(A®Id)od =mi3210(0®3) 0 A,

where m1 324(h1 ® ho ® hs @ ha) := h1 ® hs @ m(h3 @ ha).
e The counit ep : Hr — K is a comodule morphism, that is to
say

Vo e Hr, (ea®Id) o d(z) = ea(x)l.

For conilpotent double bialgebras, it is possible to obtain the generalized
Eulerian idempotent from a single infinitesimal character A:

Proposition 12.1. Let (H,m,A, ) be a double bialgebra, such that (H,A)
is conilpotent. We consider the map A\ : H — K, defined by A(1) = 0 and
forany x e Hy,

O qyk—1 o
AMzx) = 2 ( 1]{); 55®k o Ag(x).
k=1

Then the generalized Eulerian idempotent of (H,m,A), written e, is given
by
e=(A®Id)ood.

Proof. See [11], Section 4]. O

In the case of finite topologies, it is possible to inductively compute this
infinitesimal character:

Proposition 12.2. Let T be a finite topology, associated to the quasi-order
<7 on the set E. We denote by min(T') the set of classes of ~p which are
minimal for the order <p. We define Y(T) € Z[X, X 1] by the following:

1
— T =1,
Y1)y ={*
Z XY(Tip\1) otherwise.
S ICmin(T)

Then, for any nonempty finite topology T, Y(T') € Z[X] and



Proof. Let T be a nonempty finite topology, associated to the quasi-order
<p. Then

o (_l)kfl
NT) =) 2 el sl am)
k=1 fE—[k],
r<ry=f(z)<f(y)

D
k=1 fE—[k], k

z<py=f(z)<f(y),

z~ry=f(z)=f(y)
We then put, for any finite topology 7" on a set F,

o0
T(T) =), > X (7)
k=0 fE—[k],
r<py=f(z)<f(y),

z~ry==f(x)=f(y)

1
Note that by convention, Y(1) = < Then, for T non empty,

0
MT) = L T(T)(t)dt.

Let now f : E — [k] be such that for any z,y € E such that  <r y, then
f(z) < f(y) and for any z,t € E such that z ~p t, then f(z) = f(¢). Then
f~1(1) is a nonempty subset of min(T), and we obtain that

T(T) _ Z i Z ka2+l

golcmin(T) k=1 f:E\I—{2,...k},
z<py=f(x)<f(y)
r~ry= f(z)=f(y)

= ), XY@,

@EICmin(T)
which allows to compute Y (7") by induction on the number of vertices. [J
Ezxample 12.1.
T(.) =1, T(eo) =2X 41, T(ees) =6X%246X +1,

T(l) = X, T(V)="T(AN)=2X?%+X, T({):Xz,
T(.1) =3X? +2X,

and consequently

M) = 1, Mes) =0, Mees) = 0,
M=-2 av=aay =1 sy =1,
A1) =0,
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which finally gives, for e and for the canonical w-idempotent:

e(s) = o, moe(s) =,
e =13, roe(l)=1-1...
1 1 1 1
e(V)=6...—I.—|—V, WOB(V)=6000—10+§V+§A,
1 1 1 1
6(/\):6..._1.+A’ woe(/\)zé...—I.+§v+§/\,
e({):;...—I.—i—{, Woe({):;.. —I.—i—{.

Here are the values of A\ on connected posets of order 4 (it is zero on non
connected posets):

v alv Y Aol

1 1 1
AT S — _=
@ 12 6 1

Here are a few examples of order 5:

Let us now give two families of examples.

Proposition 12.3. 1. For anyn > 1, the n' ladder is the finite topology
associated to the poset ([n], <):

—o—o

11:'7 l2:I7 l3

. (_1>n+1
If n>1, then Y(I,,) = X" " and \(l,) = —
2. For anyn = 1, we write
n—1
Y™ =D sppXh.
k=0

Then sy is the number of surjective maps from [n] to [k + 1]. In
particular, sp,—1 = n! and s, = 1.

40



Proof. We use the definition of T given by . For l,,, indexing the vertices
from the root to the leaf, the unique surjective map to be taken in account
in the sum defining Y(l,) is Id,). For .", all surjective maps have to be
taken into account. O

Remark 12.1. The numbers s, ; are related to the Stirling numbers of the
second kind Sa(n, k) through the relation

spk = (k+1)152(n, k + 1),

see the OEIS [37], Entry A019538 for more details. Here are the first values
of Sn, k-

m\kfof 1 ]2 | 3] 4[5 [6 |
11

2 1] 2

3 [[1] 6] 6

4 |[1]14] 36 | 24

5 | 1] 30 | 150 | 240 | 120

6 || 1] 62 | 540 | 1560 | 1800 | 720

7 | 1] 126 1806 | 8400 | 16800 | 15120 | 5040

Corollary 12.4. For any n > 2, let us denote by ¢, the n'™ corolla, that is
to say the finite topology on [n| given by

{1 1<[n=1]} o {lnl}-

Graphically,
CQZI, ngv, C4=\V, Cy = V
Then, for any n = 2,
n—2 k+1
(1)
Aep) = nelk—————.
(¢n) };)8 R 2

Proof. As ¢, has a unique minimal element,

n—2
T(en) = XT("7) = D s e XM
k=0

The results then follows by integration between —1 and 0. O

Erample 12.2. This gives
L on | 23]4] 5 [6] 7 [8] 9 [10]11]
111 1 617 1 5

Ae) | == 210 == S 2
)l =5 1519 7301° %5 1% 30| ° |66
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Moreover, due to the form of 6(l,,) and 0(cy,), we let the reader check
that

Corollary 12.5. For any n = 2,

k=1n=i1+... 4+,
81 ye st =1

(—1)ittintliG 4 44, — 1)

- 2, il it

Ly
1i1+...4+nip=n n

SIS ("7 e 0,

=0 L

| .
71 in
il

n

where by convention c; = ..

Ezxample 12.3. This gives
6([1) = ll,
1,
e(lg) = l2 — ill’
1
mgzg—bh+yi
1, 9 1y
6(14) =4+ l3l1 + 512 + lgll — le,

1
e(ls) = ls — laly — l3lo + U317 + 131 — Io1F + gl{’,

1

e(cy) = co — 50%,
1 3
e(c3) = c3 — cacq + it
L 5

e(cy) = ¢4 — —c3c1 + —cacy + 4,

2 2

1

e(cs) = ¢5 — 2¢401 + 030% — %C?
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