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Abstract

The article investigates the �ne structure of free cocommutative
Hopf algebras, which are unshu�e Hopf algebras, that is enveloping
algebras of free Lie algebras (possibly up to completion), and of the
dual commutative cofree Hopf algebras, which are shu�e Hopf alge-
bras. We introduce and study in particular base changes related to
Lie idempotents families. The article also develops a categorical and
duality framework to address the non graded case that includes for ex-
ample quasi-shu�e Hopf algebras. Lastly, we survey various classical
examples. We develop in detail the one of �nite topologies that illus-
trates how one can take advantage of various extra algebraic structures
such as in�nitesimal bialgebras or double bialgebras structures in this
context.

1 Introduction

The purpose of the present article is to systematically develop the theory
of free cocommutative and the dual commutative cofree Hopf algebras. In
concrete terms, a free cocommutative Hopf algebra is a cocommutative Hopf
algebra H which is freely generated as an associative algebra by a subset S
of elements (the set of generators). We will also consider the case where H
is complete; H is then, up to isomorphism, the algebra of noncommutative
formal power series over S. When the elements of S are primitive, H iden-
ti�es with an unshu�e Hopf algebra. That is, it identi�es with the tensor
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algebra over S (resp. its completion) equipped with the unshu�e coproduct.
The Hopf algebra H is then the enveloping algebra of the free Lie algebra
generated by S, which is the central object of the modern theory of free Lie
algebras [36].

Dually, a commutative cofree Hopf algebras is a commutative Hopf al-
gebra H that has furthermore a basis indexed by words over a subset X
(the set of cogenerators, spanning linearly the vector space of primitive el-
ements) in such a way that the expression of the coproduct in that basis is
the deconcatenation coproduct of words. This notion of commutative cofree
Hopf algebras is equivalently encoded by the one of commutative B8-algebra
(a vector space equipped with a family of multilinear operations satisfying
ad hoc properties, to be recalled later in the article). When the B8 structure
is trivial (see De�nition 4.4), H identi�es with the shu�e Hopf algebra over
X, the dual notion to the one of enveloping algebra of the free Lie algebra
generated by X, and another fundamental object of the theory of free Lie
algebras [36].

The choice of a set S of generators in the free cocommutative case and
of a basis of words over a set of cogenerators is in general highly non canon-
ical and there is actually an in�nity of possible choices. The most classical
example of such phenomena in algebraic combinatorics, in the theory of free
Lie algebras and in the structure theory of Hopf algebras is probably pro-
vided by change of bases in the Hopf algebra of quasi-symmetric functions
or, dually, by change of bases in the Hopf algebra of descents in symmetric
groups (see Section 8). We will show later in the present article that there is
actually a very close connection between the structure theory of free cocom-
mutative and of commutative cofree Hopf algebras, and the one of descent
algebras. This extends the classical connection between the structure the-
ory of graded commutative or cocommutative Hopf algebras and the one of
descent algebras.

Various examples of the structures we investigate are provided by familiar
and fundamental objects in algebra, combinatorics and topology. Examples
of free cocommutative Hopf algebras include tensor algebras equipped with
the unshu�e coproduct, the Hopf algebra of descent classes in symmetric
groups and the isomorphic Hopf algebra of noncommutative symmetric func-
tions, the enveloping algebras of free preLie algebras, the free noncommuta-
tive shu�e (aka dendriform) algebras equipped with the canonical coproduct
(the one inherited from the Hopf monadic structure) and, more generally, all
enveloping algebras of free Lie algebras. Examples of commutative cofree
Hopf algebras include shu�e and quasi-shu�e Hopf algebras over a com-
mutative algebra, Hopf algebra structures constructed on �nite topologies,
quasi-orders, orders, the Hopf algebra of quasi-symmetric functions... Most
of these structures will be discussed below in the article. Details will then
be given on their de�nitions and properties.

Recall that the two notions of free cocommutative Hopf algebras and
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commutative cofree Hopf algebras are in perfect duality in the locally �nite
graded connected case (the two categories are anti-isomorphic; locally �nite
meaning here that each graded component is �nite-dimensional). Most of
the above examples correspond to this case. The situation is more complex
in the non graded case, of which a typical example are quasi-shu�e Hopf
algebras.

The article will accordingly consider largely separately the two cases and
be divided into two parts focusing for each on speci�c ideas. We thus in-
vestigate on one side free cocommutative, and commutative cofree graded
Hopf algebras H from the point of view of Lie idempotents. It is known in
this setting that free cocommutative Hopf algebras are always isomorphic
to enveloping algebras of free Lie algebras, that is tensor algebras equipped
with the unshu�e coproduct [34, Lemma 22]. The dual result was obtained
more recently by C. Bellingeri, E. Ferrucci and N. Tapia1 in the context
of the (Butcher)-Connes-Kreimer Hopf algebra of non planar trees and its
applications to the theory of branched rough paths: a graded commutative
cofree Hopf algebra is always isomorphic to the shu�e Hopf algebra over the
space its primitive elements [2, Remark 3.5].

We recover these results and augment them in several respects. Firstly,
we show that any family of Lie idempotents (Eulerian, Dynkin, Klyachko,
Zassenhaus... � there are in�nitely many of them) gives rise to a natural
Hopf algebra isomorphism between graded free cocommutative Hopf algebras
and unshu�e Hopf algebras. Dually, any such family gives rise to a natural
Hopf algebra isomorphism between commutative cofree graded Hopf algebras
and shu�e Hopf algebras. The isomorphisms introduced in [34, Lemma 22]
and [2, Remark 3.5] correspond to the particular case of the Eulerian family.

On another side, we consider the general (non graded) case. It includes in
particular quasi-shu�e Hopf algebras over a commutative algebra A, studied
in detail in [26, 15, 14]. Quasi-shu�e Hopf algebras provide a right framework
to investigate objects as di�erent as for example Multiple Zeta Values, Rota-
Baxter algebras (of weight non 0) or the Hopf algebra of quasi-symmetric
functions. The latter is indeed, up to isomorphism, the quasi-shu�e Hopf
algebra over the algebra of polynomials in one variable, or in additive no-
tation, over the nonnegative integers. In probability theory, quasi-shu�es
are associated to Itô to Stratonovich transformations for continuous semi-
martingales. There is an large literature on these topics, see e.g. the works
quoted above or [30, 8, 6, 7] also for further references.

In order to study free cocommutative and commutative cofree Hopf alge-
bras, we construct an adapted theoretical framework (graded-complete and

1We thank them warmly for pointing out to us the relevance of their article on branched
rough paths for the theory of commutative cofree Hopf algebras. Our initial project was
focusing on the general (non graded) case; their article was a key motivation to extend the
scope of the article and systematically study the �ne structure phenomena that appear in
the graded case.
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�ltered-graded structures, with an adapted notion of duality between them).
This framework accounts for example for the fact that in spite of commu-
tative cofree Hopf algebra not carrying a graded Hopf algebra structure in
general (more precisely, the existence of a grading is not part or a direct
consequence of their de�nition), its product has always a nice behavior with
respect to the �ltration induced by the cofree coalgebra structure. Similar
observations hold at the dual level, in spite of the situation being slightly
more complex as one has then to consider complete vector spaces.

Building on these de�nitions, we study free cocommutative Hopf alge-
bras and show that they are (up to completion) enveloping algebras of free
Lie algebras. The method is the same as in the graded case excepted for
two ingredients: one has to appeal to structure theorems for complete Hopf
algebras, and the only idempotent available is the suitable generalisation in
this framework of the Eulerian family. We turn then to the dual framework
and investigate �rstly isomorphisms between a commutative cofree Hopf al-
gebra H and a shu�e Hopf algebra using general Hopf algebra techniques
that were �rst developed to investigate the properties of Hopf algebra endo-
morphisms. We obtain a parametrisation of such isomorphisms by what we
call tangent-to-identity in�nitesimal endomorphisms of H. This extends the
study that we performed with Jean-Yves Thibon in [15] � in the language
of the present article, that article studied natural deformations of the shu�e
Hopf algebra and the quasi-shu�e Hopf algebra functors from commutative
algebras to commutative cofree Hopf algebras. We essentially drop here the
naturality requirement. We use then an idea that was implicitly used in sev-
eral of our earlier works and was developed systematically in [4], namely the
fact that classical structure theorems and key properties of graded connected
commutative or cocommutative Hopf algebras still hold under the assump-
tion that the Hopf algebra is unipotent (that is, that its identity map is
locally unipotent for the convolution product [4, Def. 4.1.2]). This allows to
extend the results in the commutative cofree graded case to the non graded
setting.

The article also includes a survey of various classes of Hopf algebras to
which these various results apply. Building on [10, 11] and previous con-
structions in joint works with C. Malvenuto [12, 13], we expand speci�cally
the case of the Hopf algebra of �nite topologies, showing how one can in that
particular case take advantage of a double bialgebra structure to approach
di�erently the construction of a set of cogenerators.

The article is organized as follows. We recall �rst in section 2 basic
de�nitions about coalgebras and introduce the notion of graded-complete
and �ltered-graded coalgebras that will prove useful later, when studying
Ho�man-type isomorphisms (between shu�e and quasi-shu�e Hopf alge-
bras). Section 3 considers cofree coalgebras in these categories. Section
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4 introduces B8-algebras and related notions, whereas section 5 discusses
graded B8 structures. The next sections introduce fundamental examples:
free Lie algebras and their enveloping algebras (section 6), shu�e and quasi-
shu�e Hopf algebras (section 7), the Hopf algebra of descents (section 8).
Section 9, on �nite topologies, illustrates how one can prove that a Hopf
algebra can be equipped with a commutative cofree or free cocommutative
structure when the existence of such a structure is non trivial. Section 10
investigates the structure of cofree commutative graded Hopf algebras and
the dual free cocommutative graded Hopf algebras using duality properties
and the theories of free Lie algebras and Lie idempotents. Section 11 studies
free cocommutative and cofree commutative Hopf algebras, extending the
results of the previous section to the non graded case (under some suitable
completion hypotheses). Finally, in section 12, we take advantage of the
�ne structure on �nite topologies to perform explicit computations illustrat-
ing the ideas developed in the article, using however a di�erent approach
to the generalized Eulerian idempotent relying on the existence of a double
bialgebra structure.

2 Filtered-graded coalgebras

Recall �rst some de�nitions and properties of coalgebras. Details and proofs
can be found in [4, Chap. 2]. All vector spaces are de�ned over a ground
�eld K of characteristic 0.

A graded vector space is a vector space decomposing as a direct sum
V �

À
nPN

Vn. It is reduced if V0 � 0. Given V,W two graded vector spaces,

a morphism of graded vector spaces from V to W is a morphism of vector
spaces ϕ : V Ñ W that respects the graduation (ϕpVnq � Wn for any
n P N). A graded vector space is locally �nite-dimensional if all the Vn are
�nite-dimensional vector spaces. The graded dual of a graded vector space
is the graded vector space V � �

À
nPN

V �
n , where V

�
n stands for the dual of

Vn. It is locally �nite-dimensional when V is such. The tensor product
of two graded vector spaces is de�ned by V bW �

À
nPN

pV bW qn, where

pV bW qn :�
À

p�q�n
Vp bWq. The ground �eld K identi�es with the graded

vector space, still written K, with only one non zero component, K0 � K. It
is the unit of the tensor product (V bK � V � V bK).

A graded coalgebra is a coalgebra in the tensor category of graded vector
spaces. That is, graded coalgebras and other graded structures are de�ned
as usual except for the fact that structure morphisms, for example the co-
product ∆ of a graded coalgebra C, have to be morphisms of graded vector
spaces, so that

∆ : Cn Ñ
à

p�q�n

Cp b Cq.
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The counit map from C to K, that we will write ε (or εC if we want to
emphasize what is the underlying coalgebra) is automatically a null map
except in degree 0. A graded coalgebra C is connected if C0 � K; for such a
coalgebra, ΓpCq � t1u, where ΓpCq stands for the set of group-like elements
in C, that is

ΓpCq :� tc P C, c �� 0 and ∆pcq � cb cu.

Let now pC,∆, εq be a coaugmented coalgebra with coaugmentation η :
KÑ C (a coaugmentation is a map of coalgebras from the ground �eld to C,
where the ground �eld is equipped with the identity coproduct: K � KbK).
In other terms, we �x a group-like element 1 P C, that is to say a nonzero
element 1 such that ∆p1q � 1 b 1. The coaugmentation is a section of the
projection ε to the ground �eld and one has the decomposition C � C̄ `K,
where C̄ :� Kerpεq. Notice that a graded connected coalgebra is canonically
coaugmented: its coaugmentation is the isomorphism between the ground
�eld and the degree 0 component of the coalgebra, and 1 is the unique
group-like element of C. In general, for a coaugmented coalgebra one can
de�ne the reduced coproduct from C̄ to C̄ b C̄ by

∆pcq :� ∆pcq � cb 1� 1b c;

the element c is called primitive if ∆pcq � 0, the vector space of primitive
elements is denoted PrimpCq.

The iterated reduced coproduct from C̄ to C̄bn�2 is then inductively
de�ned by

∆̄n�2 :� p∆̄b Idbn
C̄
q � ∆̄n�1, with ∆̄2 :� ∆̄.

Let Fn :� Ker p∆n�1q � C̄. Notice that ∆̄n�2 � p∆̄b Idbn
C̄
q � ∆̄n�1 implies

Fn � Fn�1.

De�nition 2.1. The coproduct ∆ and the coalgebra C are called conilpotent
if C̄ �

�
n¥1

Fn, that is if for every c P C̄ there exists an integer n ¥ 2 such

that ∆npcq � 0.

Lemma 2.2. When the coalgebra C is graded and connected, the coproduct
is automatically conilpotent.

Proof. Indeed, when C is graded connected, C̄0 � 0. As ∆̄k sends C̄n toà
i1�����ik�n,
i1,...,ik¥1

C̄i1 b � � � b C̄ik , the iterated coproduct ∆k, k ¥ 2, vanishes on Cn

for 1 ¤ n ¤ k � 1.

A �ltered vector space is a vector space V equipped with an increasing
�ltration by subspaces V p0q � V p1q � � � � � V pnq � � � � , such that V �
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�
nPN

V pnq. Given V,W two �ltered vector spaces, a morphism of �ltered

vector spaces from V to W is a morphism of vector spaces ϕ : V Ñ W
that respects the �ltration (ϕpV pnqq � W pnq for any n P N). The tensor
product of two �ltered vector spaces is de�ned by requiring pV bW qpnq :�°
i�j�n

V piqbW pjq. A graded vector space V is canonically �ltered by setting

V pnq :�
À
p¤n

Vp. In that case, we say that V is �ltered-graded. A morphism

of �ltered-graded vector spaces from V to W is, by de�nition, a family of
morphisms ϕ0 : V0 ÑW0, ϕn �

à
0 p¤n

ϕn,p : Vn Ñ
à

0 p¤n

Vp. Notice that, for

practical reasons, we deliberately omit the degree 0 component in the image.

A �ltered-graded algebra is an algebra A in the category of �ltered-graded
vector spaces such that furthermore A0 � K, the ground �eld. We will be
interested later on in Hopf algebras that are �ltered-graded as algebras and
graded as coalgebras, the typical example being the Hopf algebras of quasi-
shu�es over a commutative algebra.

De�nition 2.3. The category FgCoalg of �ltered-graded coalgebras is the
category whose objects are graded connected coalgebras and the set of mor-
phisms between two graded connected coalgebras C and D, the set of �ltered-
graded vector spaces morphisms of coalgebras from C to D.

That is, a morphism of �ltered-graded coalgebras from C to D is a mor-
phism ϕ of coalgebras such that ϕpC0q � K � D0 and ϕpCnq �

À
0 p¤n

Dp for

any n P N.
A standard example of �ltered-graded coalgebra morphism is provided

by the Ho�man isomorphism between the shu�e and quasi-shu�e Hopf al-
gebras, it will be discussed later on in the article.

A complete vector space pV is a vector space equipped with a decreasing
�ltration pV �zV p0q �zV p1q � � � � � zV pnq � . . .

such that pV � lim
Ð
pV {zV pnq.

In the present article, pV will always be obtained from a graded vector

space V as pV :�
±
nPN

Vn and zV piq :� ±
n¥i

Vn. We call such complete vector

spaces graded-complete vector spaces. A morphism of graded-complete vector
spaces from pV to xW is, by de�nition, a morphism of complete vector spaces
induced by ϕ0 : V0 ÑW0 and ϕn,m �: Vn ÑWm for m ¥ n ¥ 1.

The complete tensor product of two such spaces is then obtained aspV pbxW :�
±
nPN

� À
p�q�n

Vp bWq

�
�
±

p,qPN
VpbWq. A graded-complete coalgebra

pC is a coalgebra in the category of graded-complete vector spaces such that
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furthermore C0 � K. In particular its coproduct ∆ is entirely de�ned by the
knowledge of its restrictions

∆n,p,q : Cn Ñ Cp b Cq

with p� q ¥ n ¥ 1.

The dual notion to the one of graded-complete coalgebra pC is the one of
�ltered-graded algebra: write C� �

À
nPN

C�n for the graded dual of the graded

vector space C; C� is equipped with an associative algebra structure by the
maps µn,m �

°
1¤p¤n�m

µn,m,p with

µn,m,p :� ∆�
p,n,m : C�n b C�m Ñ C�p .

Recall, for completeness sake, that a bialgebra B is a unital algebra and
a counital coalgebra such that the product and the unit map are morphisms
of counital coalgebras. When the coalgebra structure is conilpotent or under
suitable completion hypotheses, as it is always the case in the present article,
the notions of bialgebra and Hopf algebra identify and we will use the two
terminologies indi�erently. Denoting π and∆ the product and the coproduct
of B, the convolution f � g of two linear endomorphisms f, g of B is de�ned
by f � g :� π � pf b gq �∆. The convolution product de�nes a unital algebra
structure on the vector space of linear endomorphisms of B with unit the
composition η � ε of the unit and counit maps. See [4] for a systematic
treatment.

The quasi-shu�e algebra over a commutative algebra is a �ltered-graded
algebra and its product map is a �ltered-graded morphism of coalgebras (see
Section 7. This motivates the following de�nition.

De�nition 2.4. A Hopf algebra pH, �,∆q is called a �ltered-graded Hopf
algebra if pH,∆q is a graded coalgebra and the product � : H bH Ñ H is a
�ltered-graded coalgebra morphism.

3 Cofree �ltered-graded coalgebras

Let now V be a vector space over K. We denote by T pV q :�
8À

n�0
V bn the

tensor gebra2 of V , and use the word notation for tensors (that is, v1 . . . vn
will stand for v1 b � � � b vn). We will use later a similar notation for the
tensor gebra over an alphabet X (the linear span of the set of words � or

2We use the terminology of [4] and call gebra a vector space that can be equipped with
several algebraic structures � this allows in particular to avoid calling �tensor algebra�
the vector space T pV q without equipping it with the algebra structure obtained from the
concatenation product of words.
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free monoid � over X). The tensor gebra is graded: the tensor degree of a
word w is its length ℓpwq, that is, the number of its letters.

When V is a graded vector space, T pV q is also equipped with the total
degree: degpv1 b � � � b vnq :� |v1| � � � � � |vn|, when the vi are homogeneous
elements and where |vi| stands for the degree of vi in V . To avoid ambiguities,
we will write T gpV q to denote the tensor gebra viewed as a graded vector
space when equipped with the total degree.

We equip the tensor gebra with the deconcatenation coproduct, that
makes it, together with the canonical projection ε to K � V b0, a graded
(counital, conilpotent, connected, coassociative) coalgebra (for both the ten-
sor and total degrees): for any v1, . . . , vn P V , with n ¥ 0,

∆pv1 . . . vnq �
ņ

i�0

v1 . . . vi b vi�1 . . . vn.

We write T�pV q :�
8À

n�1
V bn for T pV q. It is equipped with the (coas-

sociative but not counital) reduced deconcatenation coproduct: for any
v1, . . . , vn P V , with n ¥ 1,

∆pv1 . . . vnq �
n�1̧

i�1

v1 . . . vi b vi�1 . . . vn.

The following Lemma further justi�es the introduction of the category
of �ltered-graded coalgebras.

Lemma 3.1. Let C be graded connected coalgebra and ϕ be a morphism of
coalgebras from C to pT pV q,∆q. Then, ϕ is a morphism of �ltered graded

coalgebras. That is, ϕpCnq �
nÀ

k�1

V bk for n ¥ 1.

Proof. As ϕ is a coalgebra morphism between connected coalgebras, we have,
on C,

pϕb ϕq �∆ � ∆ � ϕ,

this implies that for any n P N,

ϕbn �∆n � ∆n � ϕ.

Therefore, ϕpKerp∆n�1qq � Kerp∆n�1q. It is an easy exercise to show that

in T pV q, Kerp∆n�1q �
nÀ

k�1

V bk. Moreover it holds for degree reasons that

Cn � Kerp∆n�1q. We get �nally ϕpCnq �
nÀ

k�1

V bk.

De�nition 3.2 (Cofree coalgebras). Let V be a reduced graded vector space.
A cofree �ltered-graded (resp. graded) coalgebra over V is a connected graded
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coalgebra C together with a �ltered-graded (resp. graded) vector space map π
from C̄ to V such that for each connected graded coalgebra D, any �ltered-
graded (resp. graded) vector space morphism ϕ from D̄ to V lifts uniquely to
a morphism Φ of coalgebras from D to C in FgCoalg (resp. in the category
of graded coalgebras), such that π � Φ|D̄ � ϕ. The space V is called the
cofreely cogenerating space of C; the map π is called the structure map.

As usual for cofree objects, any two cofree �ltered-graded (resp. cofree
graded) coalgebras over V are isomorphic (by a unique isomorphism, see
Lemma 3.4 below). This justi�es to call (slightly abusively) any cofree
�ltered-graded (resp. cofree graded) coalgebra over V , �the� cofree �ltered-
graded (resp. cofree graded) coalgebra over V .

Lemma 3.3. The tensor gebra T gpV q over a graded vector space V , equipped
with the deconcatenation coproduct ∆, the canonical projection πV from
T�pV q to V and the total graduation is a cofree �ltered-graded (resp. graded)
coalgebra over V . We call it the standard cofree �ltered-graded (resp. graded)
coalgebra over V . With our previous notation, the morphism Φ from D to
T gpV q is obtained as

ε�
¸
n¥1

ϕbn � ∆̄n.

In the formula, it is understood that if d P D decomposes as εpdq � pd�
εpdqq P K` D̄,

Φpdq � εpdq �
¸
n¥1

ϕbn � ∆̄npd� εpdqq.

Proof. Recall that pT pV q, V, πV q is a cofree conilpotent coalgebra; that the
formula for Φ holds in the cofree conilpotent case (see e.g. [4, Exercise
2.13.3, Remark 2.13.1]) and that graded connected coalgebras are conilpo-
tent. There is thus for any D as in De�nition 3.2 a coalgebra map from D to
C and it is enough to check that this map is �ltered-graded, (resp. graded).
This is immediate in both cases due to Formula

Φ � ε�
¸
n¥1

ϕbn � ∆̄n.

since the coproduct is a graded map from T gpV q to T gpV q b T gpV q and
since ϕ is a �ltered-graded (resp. graded) map from D to V . This concludes
the proof. Further insights on cofree objects and why some conilpotency
assumption is required to have a simple construction thereof can be found
e.g. in [4].

Remark 3.1. Notice that since V � PrimpT gpV qq, the graded vector space
of primitive elements of T gpV q, it holds for any cofree �ltered-graded (resp.
cofree graded, cofree conilpotent) coalgebra C over V that PrimpCq � V . In
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particular one can always choose V to be PrimpCq. Fix now a graded basis
pbiqiPJ of PrimpCq. The choice of a structure map π can be interpreted as
the choice of a basis of C since it induces an isomorphism C � T gpPrimpCqq,
where T gpPrimpCqq has the basis of words bj1 . . . bjk , jl P J, l � 1, . . . , k, k P
N. We will say that the choice of a cofree �ltered-graded (resp. cofree graded,
cofree conilpotent) coalgebra structure π : C Ñ PrimpV q determines a word
presentation of C and call the associated basis (resp. graded basis, resp.
basis) of C the π-basis.

Remark 3.2. The isomorphism C � T gpPrimpCqq is non canonical as it
depends heavily on the choice of π. This observation is made more precise
in the following Lemma and its proof. A slightly more involved version of
the same argument actually allowed us to classify natural endomorphisms
and automorphisms of the functor T viewed as a functor from commutative
algebras to coalgebras, see [15].

Lemma 3.4. Let C be a connected graded coalgebra. Cofree �ltered-graded
(resp. cofree graded) coalgebra structures on C, whenever they exist, are
parameterized by the surjections from C to PrimpCq that are maps of �ltered
(resp. graded) vector spaces and restrict to the identity map on PrimpCq.
All such structures are isomorphic: a cofree �ltered-graded (resp. graded)
coalgebra structure on a connected graded coalgebra C is thus unique up to
isomorphism.

Proof. Fixing a cofree �ltered-graded coalgebra structure on C amounts to
�xing an isomorphism of coalgebras between C and pT gpV q, πV q, the stan-
dard cofree �ltered-graded coalgebra over V :� PrimpCq. We can therefore
assume without restriction that C is T gpV q equipped with the structure map
πV . Any other cofree �ltered graded coalgebra structure on C is given by a
�ltered-graded surjection π from C to V that restricts to the identity map on
V . The map π is the structure map of the second cofree structure; by Def-
inition 3.2 it induces a �ltered-graded coalgebra endomorphism π̃ of T gpV q
obtained as:

v1 . . . vn ÞÝÑ
¸
k n

¸
w1...wk�v1...vn

πpw1q . . . πpwkq. (1)

It can be inverted, and the inverse isomorphism µ̃ such that µ̃ � π̃ � IdT gpV q

is entirely characterized by the identity

πV � µ̃ � π̃ � πV ,

that is, µpvq � v for v P V and, for k ¥ 2 and v1, . . . , vn P V ,

µpv1 . . . vnq � �
¸
k n

¸
w1...wk�v1...vn

µpπpw1q . . . πpwkqq. (2)

The formula implies, by an induction argument, that µ and µ̃ are �ltered-
graded.

The same arguments and formulas apply in the graded case.
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Remark 3.3. When one considers the particular case of natural endomor-
phisms of T viewed as a functor from commutative algebras to coalgebras,
the group of natural �ltered-graded automorphisms of T is isomorphic to the
group of tangent-to-identity formal power series. In that case, the identity
relating π and µ amounts to the calculation of the inverse in the group of
tangent-to-identity formal power series [15].

Remark 3.4. The category of �ltered-graded coalgebras thus appears to be
the natural framework to study Hopf algebras such as quasi-shu�e Hopf
algebras. See for example the discussion of natural endomorphisms of quasi-
shu�e Hopf algebras in [15, 26] for insights on the role of �ltered-graded
maps in that context: the surjections that appear in these article should
indeed be understood as �ltered-graded maps; they map a tensor of order n
to a tensor of lower or equal degree.

Let us �nally introduce cofree structures for Hopf algebras.

De�nition 3.5. Let pH, �,∆q be a conilpotent (resp. graded, resp. �ltered-
graded) Hopf algebra. A cofree structure on H is the data of a structure
map π : H̄ Ñ PrimpHq making the triple pH,∆, πq a cofree conilpotent
(resp. graded, resp. �ltered-graded) coalgebra over PrimpHq. We will say
that pH, �,∆, πq (or simply pH,πq when the underlying Hopf algebra structure
is obvious) is a cofree (resp. cofree graded, resp. cofree �ltered-graded)Hopf
algebra.

4 B8-algebras

The notion of B8-algebra was �rst introduced by Getzler and Jones in [17]
for cochain complexes. Their de�nition extends to other tensor categories,
we consider in this section B8-algebras in the category of vector spaces. We
survey here the fundamental de�nitions and properties and refer to [9] for
further insights and applications.

A B8-algebra structure on a vector space V describes in algebraic terms
a Hopf algebra structure on the cofree conilpotent coalgebra pT pV q,∆, πV q
(see Proposition 4.7 below). The tensor product of two graded connected
coalgebras is a graded connected coalgebra; T pV q is graded by the tensor
degree and connected, and T pV q b T pV q is thus a connected graded coalge-
bra. By Lemma 3.1, the algebra product π, which is a map of coalgebras,
necessarily respects the �ltrations: πpTnpV q b TmpV qq �

à
k¤n�m

TkpV q. In

particular, structure results obtained in the previous section for coalgebras
in FgCoalg apply to the Hopf algebras T pV q associated to B8-algebras as
described below.

Lemma 4.1. Let � : T pV q b T pV q ÝÑ T pV q be a coalgebra map. It is
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entirely characterized by the map x�,�y : T pV q b T pV q ÝÑ V de�ned by

xv1 . . . vk, vk�1 . . . vk�ly � πV pv1 . . . vk � vk�1 . . . vk�lq,

where πV : T pV q ÝÑ V is the canonical surjection.

Then, 1 � 1 � 1 and for any words w,w1 P T�pV q,

w � w1 �
8̧

k�1

¸
w�w1...wk,
w1�w11...w

1
k

xw1, w
1
1y . . . xwk, w

1
ky. (3)

Note that in the sum, the words wi or w
1
j can be empty (in what case wi and

w1j stand for 1 in the terms xwi, w
1
iy or xwj , w

1
jy).

Moreover,

w � 1 �
8̧

k�1

¸
w�w1...wk

xw1, 1y . . . xwk, 1y. (4)

1 � w1 �
8̧

k�1

¸
w1�w11...w

1
k

x1, w11y . . . x1, w
1
ky. (5)

Proof. As � is a coalgebra map, it maps 1b1, the unique group-like element
in T pV q b T pV q, to 1, the unique group-like element in T pV q. The Lemma
follows then from Lemma 3.3: � is entirely characterized by x�,�y :� πV �
�, and applying the formula expressing � in terms of x�,�y yields to Eqs
(3,4,5).

Lemma 4.2. With the same notation, the product � is unital, with unit 1
if, and only if,

x�, 1y � x1,�y � πV .

Proof. The assertion follows directly from the de�nitions of πV , x�,�y and
Eqs (4,5).

We assume from now on that the product � is unital, with unit 1.

Lemma 4.3. With the same notation,

1. the product � is associative if, and only if, for any w,w1, w2 P T�pV q,

xw,w1 � w2y � xw � w1, w2y.

2. It is commutative if, and only if, for any w,w1 P T�pV q,

xw,w1y � xw1, wy.

13



Proof. As the product is a map of coalgebra, so are the maps ��pIdb�q and
� � p�b Idq from T pV qb3 to T pV q. They are therefore entirely characterized
by the composition with πV and associativity follows from

πV � p� � pIdb �qq � πV � p� � p� b Idqq.

The second assertion is proved similarly, noticing that the twist map wbw1 Ñ
w1 b w is a morphism of coalgebras.

De�nition 4.4. A B8-structure on V is a map x�,�y : T pV qbT pV q ÝÑ V ,
such that:

� For any word v1 . . . vn P T pV q,

x1, v1 . . . vny � xv1 . . . vn, 1y �

#
v1 if n � 1,

0 otherwise.

� For any words w,w1, w2 P T�pV q,

xw,w1 � w2y � xw � w1, w2y,

where � is de�ned by

w � w1 �
8̧

k�1

¸
w�w1...wk,
w1�w11...w

1
k

xw1, w
1
1y . . . xwk, w

1
ky. (6)

We shall say that x�,�y is commutative if for any w,w1 P T�pV q, xw,w
1y �

xw1, wy. We shall say that x�,�y is trivial if furthermore for any w,w1 P
T�pV q, xw,w

1y � 0.

Remark 4.1. Equation (6) can be rewritten in this way: for any v1, . . . , vk�l P
V ,

v1 . . . vk � vk�1 . . . vk�l �
k�ļ

n�1

¸
σ:rk�ls↠rns,
σp1q¤...¤σpkq,

σpk�1q¤...¤σpk�lq

xvσ�1p1qy . . . xvσ�1pnqy,

with the following notation: if I � ti1, . . . , iqu � rns, with i1   . . .   ip ¤
k   ip�1   . . .   iq,

vI � vi1 . . . vip b vip�1 . . . viq .

In particular we get the Lemma:
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Lemma 4.5. The B8-algebra structure is trivial if and only if the product
� is the shu�e product3, � � �, with

v1 . . . vk � vk�1 . . . vk�l �
¸

σ:rk�ls↠rk�ls,
σp1q ... σpkq,

σpk�1q ... σpk�lq

vσ�1p1q . . . vσ�1pnq.

See Section 7 for another classical de�nition of the shu�e product. In that
case, the Hopf algebra pT pV q,�,∆q is called the shu�e Hopf algebra over
V .

De�nition 4.6. A B8-algebra (resp. commutative) is a vector space V
equipped with a B8-structure (resp. commutative).

Proposition 4.7. Let P pV q be the set of products � on T pV q making the
triple pT pV q, �,∆q a bialgebra and by B8pV q the set of B8-algebra structures
on V . The following map is a bijection:

Θ :

"
P pV q ÝÑ B8pV q

� ÞÝÑ πV � �.

Denoting by P cpV q the set of commutative products on T pV q making the
triple pT pV q, �,∆q a bialgebra and by Bc

8pV q of commutative B8-algebra
structures on V , Θ induces a bijection from P cpV q to Bc

8pV q.

Proof. As 1 is the unique group-like of T pV q, it is necessarily the unit for
the product �. By Lemmas 4.1, 4.2 and 4.3, Θ is well-de�ned. If � P P pV q,
then it is a coalgebra morphism from T pV qbT pV q to T pV q. By Lemma 3.3,
Θ is injective.

Conversely, let x�,�y in B8pV q. The product � associated to it by (3)
is a coalgebra map. It is associative by Lemma 4.3 and has 1 for a unit:
� P P pV q, and Θp�q � x�,�y. Thus, Θ is a bijection.

By the last item of Lemma 4.3, ΘpP cpV qq � Bc
8pV q.

De�nition 4.8. The bialgebra pT pV q, �,∆q associated to a B8-algebra struc-
ture x�,�y on V is called the B8-enveloping algebra of pV, x�,�yq.

Remark 4.2. All these notions dualize when V is �nite-dimensional, so that
T pV q is locally �nite. The dual of a B8-algebra structure on V is then
obtained as a family of linear maps

V � Ñ pV �qbn b pV �qbm

3Shu�e and quasi-shu�e products can be commutative (as usually the case in Lie
theory) or not (as usually in classical algebraic topology where shu�e products appear
in relation to cartesian products of simplices). In the present article they will be always
commutative, excepted in the example of quasi-shu�e Hopf algebras over an associative al-
gebra (see Section 7) where the quasi-shu�e product is noncommutative when the algebra
is noncommutative.
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making the completion of T pV �q a graded-complete coalgebra and a com-
plete Hopf algebra when equipped with the concatenation product. The cor-
responding notion of B8-coalgebra would be obtained by dualizing the B8-
algebra axioms and would naturally describe complete Hopf algebra struc-
tures on algebras of noncommutative formal power series. We will show later
on that such Hopf algebras, when cocommutative, are always isomorphic to
Hopf algebra structures on algebras of formal power series where the co-
product is the canonical one (the one making the generators of the algebra
primitive elements).

5 Graded B8-algebras

Let us consider now the notion of B8-algebra in the category of graded
vector spaces. Most of the classical examples of B8-algebras have such a
structure, which is by the way closer to the topological notion of B8-algebra
(that is, the one in the category of chain complexes). We assume therefore
in this section that V is a graded vector space. For brevity we do not repeat
all de�nitions in the previous section: they have to be adapted as follows:

� replacing everywhere T pV q (graded by the tensor degree) by T gpV q
(the same vector space, graded by the total degree),

� requiring that all maps be maps of graded vector spaces,

� requiring in particular that the product � resp. the structure map
x�,�y be maps of graded coalgebras resp. of graded vector spaces.

Using the point of view of De�nition 4.8, let H � pT gpV q, �,∆q be the
B8-enveloping algebra of pV, x�,�yq in the category of graded vector spaces.
It is equipped with a graded connected Hopf algebra structure and we say
that T gpV q is then the graded B8-enveloping algebra of the graded B8-
algebra V . For simplicity, we will abusively also say that pT gpV q, �,∆q is a
graded B8-algebra.

De�nition 5.1. When the B8 structure is trivial, that is when xw,w1y � 0
for words both of length greater or equal 1, the product � is the shu�e product
�, H � pT gpV q,�,∆q is the graded shu�e Hopf algebra over V , and we say
that it is a standard graded B8-algebra.

Remark 5.1. A direct inspection of the formulas de�ning B8-enveloping al-
gebras shows that, given a vector space V , pT pV q, �,∆q is a graded Hopf
algebra for the tensor degree on T pV q if and only if the B8-algebra struc-
ture is trivial (that is, xw,w1y � 0 for w,w1 P T�pV q and the product is the
shu�e product). Equivalently, if V is graded and concentrated in degree 1
(V � V1), there is a unique graded B8-algebra structure on V : the trivial
one.
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Let now H � pT gpV q, �,∆q be a locally �nite graded commutative B8-
enveloping algebra (recall that locally �nite means that the graded com-
ponents Hn are �nite-dimensional). The graded dual cocommutative Hopf
algebra H� �

À
nPN

H�
n is a free associative algebra generated by the graded

dual of V , denoted V � :�
À
n¥1

V �
n . That is, up to a canonical isomorphism,

H� � T gpV �q, the tensor algebra over V � equipped with the concatena-
tion product. More generally, if pH, �,∆, πq is a locally �nite cofree graded
commutative Hopf algebra, H� � T gpPrimpHq�q equipped with the concate-
nation product. The following de�nition characterizes such Hopf algebras.

De�nition 5.2. A localy �nite graded connected cocommutative Hopf algebra
H freely generated as an associative algebra by a graded subspace W is called
a free-Lie-type Hopf algebra. When W � PrimpHq (that is, when H is
primitively generated by W ), we say that H is a standard free-Lie-type Hopf
algebra.

The reasons for this terminological choice will become clear later on:
we will show that a free-Lie-type Hopf algebra is always isomorphic to the
enveloping algebra of a free Lie algebra.

Recall already that when H is a standard free-Lie type Hopf algebra, by
standard results in the theory of free Lie algebras it is automatically canon-
ically isomorphic to the enveloping algebra of the free Lie algebra generated
by W . In that case, the graded dual Hopf algebra is (up to a canonical iso-
morphism) the shu�e Hopf algebra over W �, so that standard free Lie-type
Hopf algebras and standard graded B8-algebras are in duality. On these
topics and in particular for details on the duality between enveloping alge-
bras of free Lie algebras (also called unshu�e Hopf algebras later on) and
shu�e Hopf algebras, see [36].

6 Free Lie algebras

Let us consider now one of the simplest possible non trivial example of a free
cocommutative graded Hopf algebra: the free graded associative algebra
A � Qxx, yy on two generators, x of degree 1 and y of degree 2 (so that, for
example, the word xyxy2 is of degree 8). It is the enveloping algebra of the
free Lie algebra over x and y (using the rewriting trick ra, bs � ab � ba to
expand iterated commutators in the free Lie algebra into sums of words). It is
then natural to equip A with a standard free-Lie type Hopf algebra structure
by requiring x and y to be primitive elements (as A is a free associative
algebra, this choice entirely determines the Hopf algebra structure on A).

Consider now the graded dual of A, denoted A� and write x� and y� for
the elements dual to x and y in the basis of words. In general, if y1 . . . yn
is a word in the letters x and y we will write y�1 . . . y

�
n for the corresponding
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element in the dual in the basis of words over x and y. Writing V for
the linear span of x� and y� with the graduation |x�| � 1, |y�| � 2, A�

identi�es to T gpV q equipped with the deconcatenation product. That is,
A� identi�es with the cofree graded coalgebra T gpV q over V with structure
map πV mapping y�1 . . . y

�
n to 0 if n ¥ 2 and mapping y�1 to y�1 , where

yi P tx, yu, i � 1 . . . n.

Dualizing the coproduct of A to obtain a product that we denote �,
T gpV q becomes a standard graded B8-algebra and identi�es as a Hopf alge-
bra to the shu�e Hopf algebra over x� and y� (see Remark 4.1 and Section
7). In particular,

x� � x� � x� � x� � 2x�x�.

See [36] for details on these constructions and de�nitions. The corresponding
B8-algebra structure on V , obtained through the projection πV , is trivial.

Consider now the change of variables t :� x, z :� y�x2 (it is convenient
to notationally distinguish x and t). One can rewrite A � Qxt, zy but A
is not a standard free Lie-type Hopf algebra any more with respect to the
linear span of t and z, as z is not primitive: ∆pzq � 2t b t. Let us use the
same notation as above: if y1 . . . yn is a word in the letters t and z we will
write y�1 . . . y

�
n for the corresponding element in the dual basis to the basis

of words over t and z. For example, as

t � x, z � y � x2, zt � yx� x3,

t2 � x2, tz � xy � x3,

t3 � x3,

we obtain that

x� � t�, y� � z�, y�x� � z�t�,

x�x� � t�t� � z�, x�y� � t�z�,

x�x�x� � t�t�t� � t�z� � z�t�.

Take care that with this notation x� � t� and y� � z� but pt�qn �� px�qn

in general. The coalgebra A� identi�es now to T pW q, where W is the linear
span of z� and t�, equipped with the deconcatenation product (the cofree
coalgebra over W with structure map πW , mapping y�1 . . . y

�
n to 0 if n ¥ 2

and maps y�1 to y�1 , where y1, . . . , yn belong now to tt, zu).

The two graded vector spaces V and W identify, but we distinguish
them notationally as the two cofree graded coalgebras T gpV q and T gpW q
do not. This is the case in particular because the two projections πV and
πW are di�erent: for example, πW px

�q � x�, πW py
�q � z�, πW px

�x�q � z�

whereas πV px
�q � x�, πV py

�q � y�,πV px
�x�q � 0. Conversely, πV pt

�q �
x�, πV pz

�q � y�, πV pt
�t�q � �y�. Both πV and πW are the null map on all

words of degree greater or equal 3.
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We also get
t� � t� � 2t�t� � 2z�

as

  t� � t�|tt ¡�  t� b t�|∆pttq ¡�  t� b t�|ttb 1� 2tb t� 1b tt ¡� 2

and

  t� � t�|z ¡�  t� b t�|∆pzq ¡�  t� b t�|z b 1� 2tb t� 1b z ¡� 2.

One obtains thus using πW another graded commutative B8-algebra struc-
ture x�,�y1 onW which however is not as a Hopf algebra the shu�e algebra
over t� and z�. We indeed obtain that xt�, t�y1 � 2z�, and x�,�y1 is 0 on
all other pairs of words in t� and z�. This illustrates the general idea that a
cofree graded commutative Hopf algebra structure on a graded vector space
H is actually obtained as a graded connected commutative Hopf algebra
structure plus the choice of a basis of words making it a cofree coalgebra
over the corresponding letters (up to the choice of a basis of PrimpHq).
There are in�nitely many such choices (the basis of PrimpHq being �xed),
as our example implies.

The change of basis in A from words in x, y to words in t, z is obtained
simply by substituting t for x and z � tt for y (and conversely x for t and
y � xx for z). The change of basis in A� from words in x�, y� to words in
t�, z� is slightly more delicate but follows directly from Lemma 3.3: it is
given by

y�1 . . . y
�
n ÞÝÑ

¸
kPN�

πbk
W �∆kpy

�
1 . . . y

�
nq

(with the yi in tx, yu) and the inverse map by

y�1 . . . y
�
n ÞÝÑ

¸
kPN�

πbk
V �∆kpy

�
1 . . . y

�
nq

(with the yi in tt, zu). For example, using this rule,

x�y�x�x�y� � πb4
W px� b y� b x�x� b y�q � πb5

W px� b y� b x� b x� b y�q

� t�z�z�z� � t�z�t�t�z�.

7 Shu�e and quasi-shu�e Hopf algebra

Let � be an associative, not necessarily unitary, product on a vector space V .
We extend it to a B8-structure on V by putting, for any words w,w1 P T pV q,

xw,w1y �

$''''''&''''''%

0 if w � w1 � 1,

w1 if w � 1 and ℓpw1q � 1,

w if ℓpwq � 1 and w1 � 1,

w � w1 if ℓpwq � ℓpwq1 � 1,

0 otherwise,
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where ℓpwq stands for the length of the word w. The associated product on
T pV q is called the quasi-shu�e product ]. It makes T pV q a Hopf algebra
called the quasi-shu�e Hopf algebra over V . It is commutative, if, and only
if, � is commutative. In the particular case where � � 0, we obtain the shu�e
product � (see also Remark 4.1).

The quasi-shu�e product is classically inductively (and equivalently) de-
�ned by the equations v ] 1 � 1] v � v and

v1 . . . vk ] vk�1 . . . vk�l :� v1pv2 . . . vk ] vk�1 . . . vk�lq

� vk�1pv1 . . . vk ] vk�2 . . . vk�lq

� pv1 � vk�1qpv2 . . . vk ] vk�2 . . . vk�lq,

which restricts to

v1 . . . vk � vk�1 . . . vk�l :� v1pv2 . . . vk � vk�1 . . . vk�lq

� vk�1pv1 . . . vk � vk�2 . . . vk�lq,

for the shu�e product. See also e.g. [15] for details on shu�e and quasi-
shu�e algebras and their relationships, to be generalized below in the present
article.

As already mentioned, in a joint article with J.-Y. Thibon, we investi-
gated and classi�ed more generally natural deformations of the shu�e Hopf
algebra structure pT pAq,�,∆q which can be de�ned on the space of tensors
over a commutative algebra A (where natural means functorial) [15]. These
deformations, of which the quasi-shu�e Hopf algebra over A is the most
important example, are parameterized by formal power series. The logarith-
mic and exponential series describe the isomorphism between pT pAq,�,∆q
and pT pAq,],∆q. To each such non trivial deformation corresponds a com-
mutative B8-algebra structure on A. We refer the reader to our article for
de�nitions and details.

Commutative quasi-shu�e algebras are at the moment the most impor-
tant example of commutative B8-algebras. They can be used to encode
certain relations between multi-zeta values and generalizations of them, see
[22, 21] for a review on this topic. They play a prominent role in the study
of Rota-Baxter algebras [18, 19, 5]. They are used not only in combinatorics
and algebra as they have for example applications also in stochastics, where
they allow to better understand the equivalence between Itô and Stratonovich
integrals, resp. solutions of stochastic di�erential equations (Itô calculus be-
ing encoded by quasi-shu�e algebras and Stratonovich's by shu�e algebras)
[6, 7].

Assume now that V �
À
n¥1

Vn is a graded vector space and let � be an as-

sociative, commutative and graded product on V . The standard example is
the case where V is the semigroup ring of a positively graded commutative
semigroup. Direct inspection shows that pT gpV q,],∆q is a cofree graded
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commutative Hopf algebra, making V a graded commutative B8-algebra.
We refer to Ho�man's [20] for details on graded quasi-shu�e algebras and
their relationship with graded shu�e algebras. Both structures were used re-
cently in [2] to investigate Itô to Stratonovich transformations in the context
of branched rough paths.

8 The gebra of descents

Let us �rst introduce brie�y the context of the following results. Together
with section 6 they will serve as a benchmark for our later developments on
graded commutative cofree Hopf algebras.

A classical and fundamental theorem by C. Malvenuto in the theory
of free Lie algebras, symmetric group representations and symmetric func-
tions asserts that the dual of the Hopf algebra of descents in symmetric
groups, whose de�nition is recalled below, is isomorphic to the Hopf algebra
of quasi-symmetric functions [24, 25]. There are several ways to understand
this isomorphism, but one of them is particularly important for our later
purposes.

The Hopf algebra of descents Desc is naturally graded, cocommutative.
As an algebra it is a free associative algebra over various sets of integer-
graded generators. The exponential map actually allows to move between
families of primitive generators to families of group-like generators. When
dualizing, choosing a family of primitive generators amounts to considering
the dual as equipped with a shu�e Hopf algebra structure, in the sense that
the formulas for the product in the corresponding basis are the usual for-
mulas for shu�e products. Choosing group-like generators instead amounts
to equip the dual with a speci�c graded commutative cofree Hopf algebra
structure: up to isomorphism, the one of the quasi-shu�e algebra over the
semigroup algebra over the positive integers. A change of basis in Desc and
its graded dual appears therefore as a prototype example for Ho�man's iso-
morphisms between shu�e and quasi-shu�e Hopf algebras, but there is more
to be learned from that example, as we show now.

Let us explain the technical content of these ideas more precisely and
recall the de�nition of the Hopf algebra of descents and some of its key
properties, relevant to the present article. The reader is referred to [4, Chap.
5], from which the following de�nitions and properties are taken, for more
details.

De�nition 8.1 (Descent sets of permutations). A permutation σ in the n-th
symmetric group Sn is said to have a descent in position i   n if and only if
σpiq ¡ σpi� 1q. The set of descents of a permutation is denoted descpσq:

descpσq :� ti   n, σpiq ¡ σpi� 1qu.
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To each subset S � S1 \ tnu of rns containing n are associated two
elements in the group algebra QrSns:

De�S :�
¸
σPSn

descpσq�S1

σ , DeS :�
¸
σPSn

descpσq�S1

σ.

The DeS (resp. the De�S), S � S1 \ tnu � rns are linearly independent in
QrSns. They have the same linear span, written Desc.

Let nowX � tx1, . . . , xn, . . . u be a countable alphabet and pT pXq, �,∆�q
the tensor gebra over X equipped with a graded connected cocommutative
Hopf algebra structure by the concatenation product � and the unshu�e
coproduct ∆� (the coproduct dual to the shu�e product of words:

∆�py1 . . . ynq :�
¸

I
²

J�rns

yI b yJ

where, if I � ti1, . . . , iku, yI :� yi1 . . . yik). Permutations in Sn act on TnpXq
on the right by permutation of the letters of words of length n (σpy1 . . . ynq �
yσp1q . . . yσpnq where yi P X, i ¤ n). The convolution product � of linear
endomorphisms of T pXq, f � g :� � � pf b gq � ∆�) induces then a graded
algebra structure on the direct sum of linear spans of the symmetric groupsÀ
nPN

QrSns that restricts to a graded algebra structure on Desc (elements in

Sn being of degree n). This is the standard way to connect the combinatorics
of descents with the theory of free Lie algebras [36].

From the action of Desc on T pXq (by a process that holds actually more
generally for all graded connected cocommutative Hopf algebras), one can
derive the existence of a graded cocommutative Hopf algebra structure on
Desc and one gets the Theorem:

Theorem 8.2. The descent algebra Desc is a graded cocommutative Hopf
algebra, freely generated as a unital associative algebra by any of the following
families:

� The identity permutations 1n in the groups Sn, n ¥ 1, that form a
group-like family � that is to say, for any n P N,

∆�p1nq �
ņ

k�0

1k b 1n�k,

� The Dynkin operators

Dynn �
n�1̧

i�0

p�1qiDe�t1,...,iuYtnu,

which are primitive elements,
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� Solomon's Eulerian idempotents

Soln :� e1n �
¸

S�rn�1s

p�1q|S|

n

�
n� 1

|S|


�1

De�SYtnu,

which are primitive elements.

The Theorem implies that the family of Dynkin operators and the family
of Eulerian idempotents de�ne a standard free-Lie type Hopf algebra struc-
ture on Desc: they are primitive elements and freely generate Desc as an
associative algebra. The graded dual Hopf algebra Desc� is a shu�e Hopf
algebra in the corresponding dual basis of words.

This is a general phenomenon: any family of Lie idempotents (elements
in the descent algebra that project the tensor algebra onto the free Lie al-
gebra) would de�ne a unshu�e Hopf algebra structure on Desc, and there
are in�nitely many of them. On Lie idempotents and their generalization to
arbitrary connected cocommutative Hopf algebras, see [31, 32, 33].

On the other hand, the family of the identity elements in symmetric
groups de�nes a non standard free-Lie type Hopf algebra structure on Desc.
Dualizing, one gets a graded commutative B8-algebra structure on the space
PrimpDesc�q whose associated Hopf algebra is not a shu�e Hopf algebra over
the cogenerating vector spaceW �, whereW is the linear span of the identity
elements in symmetric groups and W � its graded dual. The graded dual of
Desc is indeed the quasi-shu�e Hopf algebra over W � and identi�es with
the Hopf algebra of quasi-symmetric functions � see [24, 25].

Choosing a family of generators of Desc that would not be primitive
nor group-like would lead to a graded commutative B8-algebra structure
on PrimpDesc�q whose associated Hopf algebra would not be a shu�e Hopf
algebra nor a quasi-shu�e Hopf algebra in the corresponding basis. This
follows easily from the same references and can be checked directly.

9 The B8-algebra structure on �nite topologies

Let us detail now a particularly meaningful example: �nite topologies (see
[13]). The example illustrates how, in a non trivial situation, one can prove
that a commutative Hopf algebra can be equipped with a cofree coalgebra
structure. This also illustrates on a concrete example the notion of Schur-
Weyl categories of bialgebras, about which we refer again to [13].

Notice that the following developments do not require the assumption
that structures are graded (the Hopf algebra of �nite topologies is canoni-
cally graded, but same method would hold,mutatis mutandis, for a general
conilpotent Hopf algebra).

Let E be a �nite set. A topology on E is a set T of subsets of E such
that:
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� H , E P T .

� If A,B P T , then AYB P T and AXB P T .

By Alexandro�'s theorem [1], given a �nite set E, the set of topologies on
E is in one-to-one correspondence with quasi-orders on E, that is to say
transitive and re�exive relations on E: given such a relation ¤ on E, the
topology T¤ associated to ¤ is the set of subsets O � E such that

@x, y P E, x P O and x ¤ y ùñ y P O.

Conversely, if T is a topology on a �nite set E, it gives rise to a quasi-order
on E de�ned by

@x, y P E, x ¤T y ðñ any O P T containing x also contains y.

If ¤ is a quasi-order on E, we de�ne an equivalence relation on E by

x �¤ y ðñ x ¤ y and y ¤ x.

Thus, E{ �¤ inherits an order ¤, de�ned by

x¤y ðñ x ¤ y.

We will further on abbreviate �¤T to �T .
In the sequel, we shall represent isoclasses of �nite topologies by the

Hasse graphs of pE{ �T ,¤T q, with indices representing the cardinalities of
the classes of �¤T , when these cardinalities are not equal to 1. Here are
�nite topologies of cardinality ¤ 4:

1; ; , , 2 ; , , , ,
2

, 2 , 2 , 3 ,

, , , , , , , , , , , , , , , ,

2,
2

,
2

,2 , 2 ,
2

,

2

, 2 ,
2

, 2 , 2 ,
3

, 3 , 3 , 2
2

, 2 2 , 4 .

By convention, the edges in these graphs are oriented upwards.

The Hopf algebra HT of quasi-orders, or of �nite topologies [12, 13] has
for basis the set of (isoclasses) of �nite topologies. Its product, that we
will write m further on, is given by the disjoint union: if T and T 1 are two
topologies on respective sets E and E1, then TT 1 is a topology on the set
E \ E1, with

TT 1 � tO \O1 | O P T, O1 P T u.
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The Hasse graph of TT 1 is the disjoint union of the Hasse graphs of T and T 1.
This product is commutative, and its unit is the unique topology denoted 1
on H. The coproduct ∆ is de�ned on any �nite topology T on a set E by

∆pT q �
¸
OPT

T|EzO b T|O.

Example 9.1.

∆p q � b 1� 1b ,

∆p q � b 1� 1b � b ,

∆p q � b 1� 1b � b � b � b ,

∆p q � b 1� 1b � b � b � b ,

∆p q � b 1� 1b � b � b .

The Hopf algebra HT is equipped with an extra structure, the ordinal
sum [38, 3]: if T and T 1 are two topologies on respective �nite sets E and
E1, then T Ó T 1 is a topology on E \ E1 de�ned by

T Ó T 1 � T 1 Y tO \ E1 | O P T u.

The Hasse graph of T Ó T 1 is obtained by adding an edge from any maximal
vertex of the Hasse graph of T to any minimal vertex of the Hasse graph of
T 1. For example,

Ó � , Ó � , Ó � , Ó � , Ó � .

The product Ó is linearly extended to HT , making it an associative al-
gebra, which unit is again 1. Moreover, by de�nition of T Ó T 1, for any
x, y P HT ,

∆px Ó yq � pxb 1q Ó ∆pyq �∆pxq Ó p1b yq � xb y.

Recall that an in�nitesimal bialgebra in the sense of [23] is an associative
unital algebra with product Ó and a coassociative counital coalgebra with
coproduct ∆ and coaugmentation the unit of Ó such that furthermore the
previous identity is satis�ed. The triple pHT , Ó,∆q is thus an in�nitesimal
bialgebra.

Let us survey some of the properties of these bialgebras with a view to-
wards applications to B8 structures. Complementary insights can be found
in [13]. The main example of such objects are the tensor gebras T pV q, with
the concatenation product that we write from now on mconc and the decon-
catenation coproduct∆. In fact, in the conilpotent case, these are the unique
examples:
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Proposition 9.1. Let H � pH, Ó,∆q be an in�nitesimal bialgebra. The
following map is an injective map of in�nitesimal bialgebra:

Θ :

"
pT pPrimpHqq,mconc,∆q ÝÑ pH, Ó,∆q

v1 . . . vk ÞÝÑ v1 Ó . . . Ó vk.

It is an isomorphism if and only if, the coalgebra pH,∆q is conilpotent.

Proof. The map Θ is obviously an algebra map. An easy induction on k
proves that for any v1, . . . , vk P PrimpHq, in H,

∆pv1 Ó . . . Ó vkq �
ķ

i�0

v1 Ó . . . Ó vi b vi�1 Ó . . . Ó vk,

so Θ is a coalgebra morphism.
Let us assume that Θ is not injective. Let us consider w P KerpΘq, non

zero. There exists n ¥ 1 such that w P
nà

k�1

PrimpHqbk. Let us choose w such

that n is minimal. Then the restriction of Θ to
n�1à
k�1

PrimpHqbk is injective.

Moreover,

0 � ∆ �Θpwq

� pΘbΘq �∆pwq

� Θpwq b 1� 1bΘpwq � pΘbΘq∆pwq

� pΘbΘq∆pwq.

Observing that

∆pwq P

�
n�1à
k�1

PrimpHqbk

�b2

,

we obtain that ∆pwq � 0, so ∆pwq � wb1�1bw and �nally w P PrimpHq.
Therefore, Θpwq � w � 0, which is a contradiction. So Θ is injective.

If Θ is surjective, then the coalgebras pT pPrimpHqq,∆q and pH,∆q are
isomorphic, so H is conilpotent. Let us assume that H is conilpotent and
let us prove that Θ is surjective. Let x P Ker∆n in H, with n ¥ 2, and let
us prove that x P ImpΘq by induction on n.

If n � 2, then x P PrimpHq and x � Θpxq. Let us assume the result
at rank n and let x P Ker∆n�1. Then, as ∆ is coassociative, ∆npxq P
Kerp∆qbn � PrimpHqbn. Let us put

∆npxq �
ķ

i�1

vi,1 b . . .b vi,n.
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Then, if w �
ķ

i�1

vi,1 . . . vi,n, ∆n �Θpwq � ∆npxq, so the induction hypothesis

applies to x�Θpwq. Therefore, x�Θpwq P ImpΘq and �nally x P ImpΘq.

Proposition 9.2. Let pH, Ó,∆q be a conilpotent in�nitesimal bialgebra. Then

H̄ � PrimpHq ` H̄ Ó H̄,

and the projection π on PrimpHq in this direct sum is given by

π �
8̧

k�1

p�1qk�1 Ópk�1q �∆
pk�1q

.

Proof. By Proposition 9.1, it is enough to prove it for H � pT pV q,mconc,∆q.
Let n ¥ 1 and w P V bn.

πpwq �
¸
k¥1

¸
w�w1...wk,
w1,...,wk�1

p�1qk�1w

�

���¸
k¥1

¸
w�w1...wk,
w1,...,wk�1

p�1qk�1

��w
�

�� ¸
I�rn�1s

p�1q|I|

�w
� δn,1w.

Here, I represents the places where the word w is cut, where i P rn � 1s
re�ects a cut between the letter i and i�1 of w. Therefore, π is a projection
on V � PrimpT pV qq, which vanishes on T pV q� Ó T pV q� �

à
n¥2

V bn.

Remark 9.1. By Takeuchi's formula [39], π � ε is in fact the opposite of the
antipode of pH, Ó,∆q, where by antipode is meant the convolution inverse
of the identity map for the convolution product on linear endomorphisms
induced by the coproduct ∆ and the productÓ. This also follows more ab-
stractly from the implicit de�nition of π acting on H � pT pV q,mconc,∆q by
the equation Id� ε � π � Id or, equivalently, p�π � εq � Id � ε.

Therefore, if pH,m,∆q is a commutative Hopf algebra, with an extra
product Ó such that pH, Ó,∆q is an in�nitesimal bialgebra, it is cofree as a
coalgebra, where one can use the map π as projector onto PrimpHq. This is
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the case for HT . For example,

πp q � , πp q � 0, πp q � � 2 ,

πp q � 0, πp q � 0, πp q � 0,

πp q � � � � ,

πp q � � 3 � 3 � 6 .

This projection induces a commutative B8 structure on PrimpHT q, given
by

xx1 b . . .b xk, y1 b . . .b yly � πppx1 Ó . . . Ó xkqpy1 Ó . . . Ó ylqq,

where x1, . . . , xk, y1, . . . , yl P PrimpHT q. For example,

x , y � πp q � � 2 ,

x b , y � x , b y � πp q � � � � ,

x � 2 , y � x , � 2 y � πp � 2 q � � 2 � � � 4 .

10 Free cocommutative graded Hopf algebras and

their duals

Recall the Poincaré-Birkho�-Witt (PBW) theorem (we refer again to [4]
for details on the materials that follow). Let L be a graded and reduced
Lie algebra (reduced meaning that it has no component in degree 0). Its
enveloping algebraH is a graded connected cocommutative Hopf algebra and
there is a canonical morphism ι from the space SpLq of symmetric tensors
over L to H. This map is a coalgebra isomorphism and the decomposition
of SpLq according to tensor degrees induces a decomposition of the graded
components of the enveloping algebra: Hn �

À
k¤n

Hn X ιpSkpLqq, where we

write SkpLq for the space of symmetric tensors in Lbk.

The gebra of tensors T pXq over a set X is, when equipped with the con-
catenation product and the unshu�e coproduct ∆�, the enveloping algebra
of the free Lie algebra overX. One of the key properties of the Eulerian idem-
potents is that they project T pXq to the free Lie algebra over X according to
the decomposition of T pXq induced by the Poincaré-Birkho�-Witt theorem
(this is actually how Solomon de�ned them originally).

This idea was generalized to arbitrary graded connected cocommutative
or commutative Hopf algebras H in [29, Th. I,5,6 and Th. I,6,4], see also
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[27, 28, 4]. In the cocommutative case, this leads to the de�nition of gener-
alized Eulerian idempotents that project on the graded components of prim-
itive part of the Hopf algebra in agreement with the Poincaré-Birkho�-Witt
decomposition. We will still write e1n for the generalized Eulerian idempo-
tent, acting on Hn as a projector from Hn to Hn X PrimpHq. Notice that
these generalized idempotents cannot be constructed in general as elements
of the symmetric group algebras. In particular they are not directly gov-
erned by the statistics of descents in symmetric groups � the very reason
for the name �Eulerian idempotents� used in the classical case. This is the
reason why they should be preferably called �canonical idempotents� � we
use below the two terminologies indi�erently.

Lemma 10.1. Given x P Hn, where H is a graded connected cocommutative
Hopf algebra, the PBW theorem induces a unique decomposition x � e1npxq�
y, where e1npxq is a primitive element in Hn and y P

À
k¡1

Hn X ιpSkpLqq. In

particular, it follows from the de�nition of ι, the PBW isomorphism, that y
can be expanded as a sum of products of elements in

À
k n

Hk.

More generally, one can show [4, Th. 5.2.1] that any primitive element ψn

in the n-th graded component of the descent algebra (ψn P PrimnpDescq :�
PrimpDescq XDescn) de�nes a projector from Hn onto PrimpHq XHn pro-
vided the coe�cient of 1n P Sn in the expansion of ψn, viewed as an element
of the group algebra of Sn, is 1 in the basis of permutations. We call a
family pψnqnPN� of such projectors a Lie idempotent family. The Dynkin
idempotents Dynn{n and the Klyachko idempotents provide, together with
the Eulerian idempotents, classical examples of such families. There are in-
�nitely many as any convex combination of Lie idempotent families is a Lie
idempotent family � this follows from their characterization in terms of the
coe�cients of 1n P Sn in their expansion.

It is easy to show using the structure properties of the Hopf algebra
of descents that Lemma 10.1 generalizes to these families pψnqnPN� in the
following way: given x P Hn, x � ψnpxq � y, where ψnpxq is a primitive
element in Hn and y can be expanded as a sum of products of elements inÀ
k n

Hk.

Theorem 10.2 (Structure theorem for free-Lie-type Hopf algebras). Let H
be a free-Lie-type Hopf algebra with freely generating subspace W . Then,
for any Lie idempotent family pψnqnPN� , H is a standard free-Lie-type Hopf
algebra (an unshu�e Hopf algebra) over the freely generating subspace W 1 :�À
nPN�

ψnpWnq. In particular, a free-Lie-type Hopf algebra is always naturally

the enveloping algebra of a free Lie algebra over a generating subspace W 1,
and any Lie idempotent family gives rise to such a subspace.
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Proof. Indeed, W freely generates H as a free associative algebra. Let us
choose a graded basis pb1, . . . , bn, . . .q, ordered in such a way that |bi�1| ¥ |bi|.
By Lemma 10.1, bi � ψnpbiq � r, where r belongs to the free associative
algebra generated by the bj , j   i�1. By a standard triangularity argument,
ψnpbiq is freely independent from the bj , j   i and from the ψnpbjq, j   i,
and the ψnpbiq freely generate H. The Lemma follows.

The theorem can be recast in categorical terms. Let V a graded vector
space together with an isomorphism ϕ : V ÑW . We write ϕn for the degree
n component of the isomorphism. The data pH,W q of a free-Lie type Hopf
algebra are equivalent to the data pH,V, ϕq of a graded cocommutative Hopf
algebra structure on H together with the linear injection (still written) ϕ
from V into H that induces an algebra isomorphism T pV q � H. We call
pH,V, ϕq a presentation of the free-Lie type Hopf algebra pH,W q.

Theorem 10.3 (Structure theorem 10.2, categorical formulation). Let pH,V, ϕq
be a presentation of a free-Lie type Hopf algebra H. Then, for any Lie idem-
potent family pψnqnPN�, pH,V,

À
nPN�

ψn � ϕnq is a presentation of a standard

free-Lie-type Hopf algebra structure on H.

By duality (hereafter in this section all duals are graded duals and all
graded vector spaces are locally �nite), we immediately get:

Theorem 10.4 (Structure theorem for cofree graded commutative Hopf
algebras). Let H� be a cofree graded commutative Hopf algebra with structure
map ϕ� : H� Ñ PrimpH�q. Then, for any Lie idempotent family pψnqnPN�,
the structure map π :�

°
nPN�

ϕ�n � ψ
�
n equips H� with another, isomorphic,

cofree coalgebra structure over PrimpH�q. Furthermore, the structure map
π induces a Hopf algebra isomorphism with the shu�e Hopf algebra H� �
pT gpPrimpH�qq,�,∆q.

The last sentence follows from Theorem 10.2 and the fact that the graded
dual Hopf algebra of pT gpPrimpH�qq,�,∆q is the enveloping algebra of the
free Lie algebra over the dual of PrimpH�q.

The theorem can be re-expressed in the language of B8-algebras.

Theorem 10.5 (Structure theorem for graded commutative B8-algebras).
Let V � be a graded commutative B8-algebra and pT gpV �q, �,∆q the associ-
ated cofree graded commutative Hopf algebra. Let pψnqnPN� be a Lie idem-
potent family. Then, the structure map

°
nPN�

πV � ψ�n from T gpV �q to V �

induces a Hopf algebra isomorphism pT gpV �q, �,∆q � pT gpV �q,�,∆q.

When the Lie idempotent family is the Eulerian family, Theorem 10.2
was obtained in [34] (Lemma 22) and Theorem 10.5 by Bellingeri, Ferrucci
and Tapia in [2] (Remark 3.5). This case is important as the Eulerian family
is the only family of classical Lie idempotents that generalizes in the non
graded case, see the next Section 11.
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11 Free cocommutative complete Hopf algebras and

their duals

Recall from [35, 16] and [4, Sect. 4.6] that Cartier's structure theorem for
graded connected cocommutative Hopf algebras still holds in the complete
case. For a complete commutative Hopf algebra H � lim

Ð
H{Hpnq, where

Hpnq denotes the n-component of the decreasing �ltration of H and where
it is assumed that Hp0q{Hp1q � K, it holds that there is a Hopf algebra
isomorphism

H � ÛpPrimpHqq,

where Û denotes the enveloping algebra functor for complete Lie algebras.
Moreover, e1 � log�pIdHq is well-de�ned and maps H onto PrimpHq [4,
Lemma 4.6.1].

Let us assume furthermore that H is a graded-complete Hopf algebra,
that is (by de�nition, and in the context of the present article) a complete
Hopf algebra such that

1. H �
±
nPN

Hn with H0 � K, the ground �eld (so that Hpnq �
±

m¥n
Hn);

2. the associative product on
±
nPN

Hn is obtained as the completion of a

graded algebra structure on
À
nPN

Hn;

3. as a coalgebra, H is graded-complete, that is, the coproduct ∆ is ob-
tained from maps:

∆n : Hn Ñ
¹

p�q¥n

Hp bHq.

In this setting, e1 maps Hn to
±
p¥n

Hp.

We say that such aH is free if, as an algebra,
À
nPN

Hn is a free graded asso-

ciative algebra over a �nite or in�nite (but countable) set S � ts1, . . . , sn, . . . u
of graded generators, where we assume that these generators are degree-
ordered (|si�1| ¥ |si|) and that there is a �nite number of generators in each
degree. Thus, H � Kxxs1, . . . , sn, . . . yy, the algebra of noncommutative for-
mal power series over S. We say that such a H is standard if furthermore
the generators si are primitive elements, so that, in that case, H identi�es
with the completion of the enveloping algebra of the free Lie algebra over
the si.

Theorem 11.1. Let H � Kxxs1, . . . , sn, . . . yy be a free cocommutative graded-
complete Hopf algebra, then H is canonically isomorphic to the standard free
cocommutative graded-complete Hopf algebra Kxxe1ps1q, . . . , e

1psnq, . . . yy.
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Proof. Indeed, for si P Hni , e
1psiq decomposes as si � r

p1q
i � r

p2q
i , where

|r
p1q
i | � ni and r

p1q
i P Kxxs1, . . . , si�1yy and r

p2q
i P

±
nPN

Hni�n�1. Therefore,

by a standard triangularity argument, the e1psiq are freely independent and
generateH as a complete algebra. The Theorem follows as they are primitive
elements.

These results dualize as follows. Let us restate �rst the characterization
of shu�e Hopf algebras (Lemma 4.5).

Lemma 11.2. Let pH, �,∆, πq be a cofree commutative Hopf algebra. Then,
H is a shu�e algebra in the π basis if and only if π vanishes on H̄ � H̄, the
square of the augmentation ideal of H̄.

In particular, any surjection γ : H Ñ PrimpHq that acts as the identity
map on PrimpHq and vanishes on H̄ � H̄ de�nes a shu�e algebra structure
on H in the γ basis.

Recall (details can be found in [4, Sections 2.10 and 3.3]) that to a com-
mutative Hopf algebra H are classically associated a group and a Lie algebra:
the group is the set of algebra maps from H to the ground �eld K equipped
with the restriction of the convolution product on the algebra EndpHq of
linear endomorphisms of H. The Lie algebra is the vector space of linear
forms on H̄ that vanish on H̄ � H̄ or, equivalently, of linear forms on H that
vanish on K�H̄ �H̄. These linear forms are usually called in�nitesimal char-
acters, their bracket is obtained as the bracket associated to the convolution
product. This construction generalizes from linear forms to linear endomor-
phisms of H. A linear endomorphism of H that vanishes on K � H̄ � H̄ is
called an in�nitesimal endomorphism of H.

De�nition 11.3. An in�nitesimal endomorphism ϕ of H is called tangent
to identity if and only if its restriction to PrimpHq is the identity map.

We state the following Corollary of Lemma 11.2 as a Theorem in view of
its meaningfulness for the theory.

Theorem 11.4. Let pH, �,∆, πq be a cofree commutative Hopf algebra and ϕ
be a tangent to identity in�nitesimal endomorphism of H. By Lemma 11.2,
H is a shu�e Hopf algebra in the π � ϕ basis.

When restated in the language of B8-algebras, the Theorem reads:

Theorem 11.5. Let x�,�y be a commutative B8 structure on V with asso-
ciated Hopf algebra pT pV q, �,∆q. Let ϕ a tangent to identity endomorphism
of T pV q and let ω̃ be the coalgebra automorphism of pT pV q,∆q induced by
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ω :� πV � ϕ:

ω̃ :

$''''&''''%
T pV q ÝÑ T pV q

1 ÞÝÑ 1,

w P T�pV q ÞÝÑ
8̧

k�1

¸
w�w1...wk,
w1,...,wk�H

ωpw1q . . . ωpwkq.

Then ω̃ is a Hopf algebra isomorphism from pT pV q, �,∆q to pT pV q,�,∆q.

The calculation of the inverse isomorphism follows from the computation
of the inverse of a cofree coalgebra isomorphism in Eq. (2).

Proposition 11.6. Let notation be as in Theorem 11.5. Let us de�ne in-
ductively ζ (by induction on the length of tensors) by

ζ :

$''''&''''%
T�pV q ÝÑ V
v P V ÞÝÑ v,

w P TnpV q, n ¥ 2 ÞÝÑ ζpwq � �
ņ

k�2

¸
w�w1...wk,
w1,...,wk�H

ω̃�pζpw1q . . . ζpwkqq.

Let us then de�ne

ζ̃ :

$''''&''''%
T pV q ÝÑ T pV q

1 ÞÝÑ 1,

w P T�pV q ÞÝÑ
8̧

k�1

¸
w�w1...wk,
w1,...,wk�H

ζpw1q . . . ζpwkq.

Then ζ̃ is the Hopf algebra isomorphism from to pT pV q,�,∆q to pT pV q, �,∆q
inverse to ω̃ as de�ned in Theorem 11.5.

In the graded case we saw that any Lie idempotent family de�nes a shu�e
Hopf algebra structure on a cofree graded commutative Hopf algebra. In the
non graded case, the key idea to construct a universal tangent to identity
endomorphism will be to use the extension of the de�nition of the Eulerian
idempotents from the original case of the tensor Hopf algebra to the case
where the Hopf algebra H is commutative and unipotent (being unipotent is
a weaker hypothesis than being graded connected; it always holds when the
Hopf algebra is conilpotent as a coalgebra). We have already used in previous
works on quasi-shu�e algebras this fact that the constructions and proofs
of structure results on graded connected cocommutative or commutative
Hopf algebras in [29, 27, 28] can be extended to a broader setting as they
actually only require the Hopf algebras to be unipotent � this observation
was developed systematically in [4, Chap. 4], to which we refer for details
and proofs. See in particular [4, Thm 4.4.1].
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When these results are applied to a cofree commutative Hopf algebra H,
the canonical (or generalized Eulerian) idempotent is thus de�ned on H̄ by

e�phq �
8̧

k�1

p�1qk�1

k
mk � ∆̄kphq,

where we write mk for the iterated product (from H̄bk to H). As in the
graded case it projects onto a (canonically constructed) vector subspace
QpHq of H that freely generates H as a commutative algebra. The pro-
jection is orthogonal to the square of H̄, the augmentation ideal of H and
acts as the identity on PrimpHq. It is a tangent to identity in�nitesimal
endomorphism of H.

The reader can �nd an explicit computation of e� for quasi-shu�e Hopf
algebras in terms of surjections in [26].

When applied to commutative B8-algebras, these results imply the The-
orem:

Theorem 11.7. Let � P P cpV q. The canonical idempotent e� is de�ned by
e�p1q � 0 and for any non-empty word w of length n,

e�pwq �
ņ

k�1

¸
w�w1...wk,
w1,...,wk�H

p�1qk�1

k
w1 � . . . � wk.

Then e� is a projector, vanishing on T�pV q � T�pV q, and for any v P V ,
e�pvq � v: it is a tangent to identity in�nitesimal endomorphism of T pV q.
Moreover, the image of e� freely generates pT pV q, �q as a commutative alge-
bra.

Furthermore, as the product of a B8-algebra is a morphism of �ltered
graded coalgebras,

e�pTnpV qq �
nà

k�1

TkpV q.

Proposition 11.8. Let � P P cpV q. We set ϖ� :� πV � e� and call ϖ the
canonical commutative B8 idempotent. It acts as the identity map on V and
sends any non-empty word w to

ϖ�pwq �
8̧

k�1

¸
w�w1...wk,
w1,...,wk�H

p�1qk�1

k
xw1, w2 � . . . � wky.

Proof. The map ϖ� is indeed an idempotent since πV is an idempotent and
e� � πV � πV . The explicit formula follows from the formula for e� in
Theorem 11.7 and the observation that, since xw,w1y � πV pw � w

1q,

πV pw1 � w2 � . . . � wkq � πV pw1 � pw2 � . . . � wkqq � xw1, w2 � . . . � wky.
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Example 11.1. Let v1, v2, v3 P V .

ϖ�pv1q � v1,

ϖ�pv1v2q � �
1

2
xv1, v2y,

ϖ�pv1v2v3q � �
1

2
pxv1v2, v3y � xv1, v2v3yq �

1

3
xv1, v2v3 � v3v2 � xv2, v3yy.

Proposition 11.9. When pH,πq is a cofree commutative Hopf algebra, de-
�ne similarly the idempotent ϖ� :� π � e� and call it the canonical π-
idempotent. The Hopf algebra H is then a shu�e Hopf algebra in the ϖ
basis.

Proof. The Proposition follows from the fact that e� is a tangent to identity
in�nitesimal endomorphism and from Theorem 11.4.

In the language of B8-algebras, the Proposition reads:

Proposition 11.10. Let notation be as in Proposition 11.5 but set ϖ :�
πV � e�. Then, ϖ̃ is a Hopf algebra isomorphism from pT pV q, �,∆q to
pT pV q,�,∆q.

Remark 11.1. In the quasi-shu�e case � � ], and the isomorphism and
its inverse are known as Ho�man logarithm and exponential [20]. The log-
arithmic and exponential series also encode the isomorphism as a natural
coalgebra automorphism, as we already explained [15]. They are thus given
by

ϖ�pv1 . . . vnq �
p�1qn�1

n
v1 � . . . � vn.

ζpwq �
1

n!
v1 � . . . � vn,

for any v1, . . . , vn P V , with n ¥ 1, and where we used the notation of
Proposition 11.6 for the inverse.

This can be recovered as follows. Given two non empty words w and
w1, xw,w1y vanishes in the quasi-shu�e case excepted when w and w1 are
both of length 1. Therefore, using also that the quasi-shu�e product of two
words of length p and q is a linear combination of words of length at least
maxpp, qq, we get

ϖ�pv1 . . . vnq �
p�1qn�1

n
xv1, v2 ] . . .] vny.

�
p�1qn�1

n
xv1, v2 � . . . � vny

�
p�1qn�1

n
v1 � v2 � . . . � vn.
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One can also check, using for example the identity of coe�cients resulting
from the formal power series expansion of the identity log � exppxq � x, that
Ho�man's formula for the inverse map

ζpwq �
1

n!
v1 � . . . � vn,

indeed solves

ζpwq � �
ņ

k�2

¸
w�w1...wk,
w1,...,wk�H

p�1qk�1

k
ζpw1q � . . . � ζpwkq,

A similar analysis of the Ho�man isomorphism was performed in [2], in the
particular case where the commutative algebra V underlying the construction
of the quasi-shu�e Hopf algebra is the algebra of symmetric tensors over a
vector space. See also our [15, 14] where more advanced insights on the
Ho�man isomorphism and more generally on deformations of shu�e Hopf
algebras can be found.

We conclude this section with a remark on the naturality of the con-
structions presented in the article. Morphisms of commutative B8-algebras
are de�ned in the obvious way: given pV, x�,�yV q and pW, x�,�yW q two
commutative B8-algebras, a linear map f from V to W is a commutative
B8 morphism if and only if, for any v1, . . . , vp�q in V ,

xF pv1 � � � vpq, F pvp�1 � � � vp�qqyW � fpxv1 b � � � b vp, vp�1 b � � � b vp�qyV q,

where F is de�ned by F pv1 � � � viq :� fpv1q b � � � b fpviq.
We put �V � Θ�1px�,�yV q and �W � Θ�1px�,�yW q and let the reader

check that if f is a commutative B8 morphism from V toW , F is a bialgebra
morphism from pT pV q, �V ,∆q to pT pW q, �W ,∆q.

Proposition 11.11. Let pV, x�,�yV q and pW, x�,�yW q be two commutative
B8-algebras. Let f : V ÝÑW be a morphism of B8-algebras. The following
diagram is commutative:

pT pV q, �V ,∆q
F //

H�V

��

pT pW q, �W ,∆q

H�W

��
pT pV q,�,∆q

F
// pT pW q,�,∆q

In other terms, the commutative B8/shu�e isomorphism is functorial.

Proof. The Proposition directly follows from the de�nition of the maps H�,
ϖ and e�, from the de�nition of a commutative B8 morphism, and the fact
that F is a morphism of bialgebras (so that its action commutes in particular
with taking products or computing coproducts).
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12 Finite topologies: the double bialgebra struc-

ture

In this last section, we take advantage of the fact that the rich combinatorics
of �nite topologies allows to perform an alternative calculation of the canon-
ical (or generalized Eulerian) idempotents to concretely illustrate the results
previously obtained.

The Hopf algebra HT introduced in section 9 also has a second coproduct
δ, de�ned with the help of the following notions [10, 9]. Let us consider a
�nite topology T , on a set E, associated to the quasi-order ¤T . Let � be an
equivalence relation on E.

1. T |� is the topology associated to the quasi-order ¤T |� de�ned on E
by

@x, y P E, x ¤T |� y ðñ x ¤T y and x � y.

2. T { � is the topology associated to the quasi-order ¤T {� de�ned as the
transitive closure of the relation de�ned on E by

@x, y P E, xRy ðñ x ¤T y or x � y.

3. We shall say that �P EcpT q if:

� The connected components of T |� are the equivalence classes of
�.

� The relation �T {� associated to the quasi-order ¤T {� is �.

The coproduct δ sends any �nite topology T to

δpT q �
¸

�PEcpT q

T { � bT |� .

For example,

δp q � b ,

δp q � b � 2 b ,

δp q � b � 2 2 b � 3 b ,

δp q � b � 2 b ��
2

b � 3 b ,

δp q � b � 2
2

b � 3 b .

The counit εδ of this coproduct sends any �nite topology T to 1 if T is
discrete (that is to say if ¤T��T ) and to 0 otherwise. Then pHT ,m,∆, δq
is a double bialgebra, that is to say:
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1. pHT ,m, δq is a commutative bialgebra.

2. pHT ,m,∆q is a commutative bialgebra in the category of right pHT ,m, δq-
comodules with the coaction δ, or in a more detailed version:

� ∆ : HT ÝÑ HT bHT is a comodule morphism, that is to say

p∆b Idq � δ � m1,3,24 � pδ b δq �∆,

where m1,3,24ph1 b h2 b h3 b h4q :� h1 b h3 bmph3 b h4q.

� The counit ε∆ : HT ÝÑ K is a comodule morphism, that is to
say

@x P HT , pε∆ b Idq � δpxq � ε∆pxq1.

For conilpotent double bialgebras, it is possible to obtain the generalized
Eulerian idempotent from a single in�nitesimal character λ:

Proposition 12.1. Let pH,m,∆, δq be a double bialgebra, such that pH,∆q
is conilpotent. We consider the map λ : H ÝÑ K, de�ned by λp1q � 0 and
for any x P H�,

λpxq �
8̧

k�1

p�1qk�1

k
εbk
δ �∆kpxq.

Then the generalized Eulerian idempotent of pH,m,∆q, written e, is given
by

e � pλb Idq � δ.

Proof. See [11, Section 4].

In the case of �nite topologies, it is possible to inductively compute this
in�nitesimal character:

Proposition 12.2. Let T be a �nite topology, associated to the quasi-order
¤T on the set E. We denote by minpT q the set of classes of �T which are
minimal for the order ¤T . We de�ne ΥpT q P ZrX,X�1s by the following:

ΥpT q �

$'&'%
1

X
if T � 1,¸

H�I�minpT q

XΥpT|EzIq otherwise.

Then, for any nonempty �nite topology T , ΥpT q P ZrXs and

λpT q �

» 0

�1
ΥpT qptqdt.
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Proof. Let T be a nonempty �nite topology, associated to the quasi-order
¤T . Then

λpT q �
8̧

k�1

p�1qk�1

k

¸
f :E↠rks,

x¤T yùñfpxq¤fpyq

εδpT|f�1p1qq . . . εδpT|f�1pkqq

�
8̧

k�1

¸
f :E↠rks,

x T yùñfpxq fpyq,
x�T yùñfpxq�fpyq

p�1qk�1

k
.

We then put, for any �nite topology T on a set E,

ΥpT q �
8̧

k�0

¸
f :E↠rks,

x T yùñfpxq fpyq,
x�T yùñfpxq�fpyq

Xk�1, (7)

Note that by convention, Υp1q �
1

X
. Then, for T non empty,

λpT q �

» 0

�1
ΥpT qptqdt.

Let now f : E ↠ rks be such that for any x, y P E such that x  T y, then
fpxq   fpyq and for any z, t P E such that z �T t, then fpzq � fptq. Then
f�1p1q is a nonempty subset of minpT q, and we obtain that

ΥpT q �
¸

H�I�minpT q

8̧

k�1

¸
f :EzIÝÑt2,...,ku,

x T yùñfpxq fpyq
x�T yùñfpxq�fpyq

Xk�2�1

�
¸

H�I�minpT q

XΥpP|EzIq,

which allows to compute ΥpT q by induction on the number of vertices.

Example 12.1.

Υp q � 1, Υp q � 2X � 1, Υp q � 6X2 � 6X � 1,

Υp q � X, Υp q � Υp q � 2X2 �X, Υp q � X2,

Υp q � 3X2 � 2X,

and consequently

λp q � 1, λp q � 0, λp q � 0,

λp q � �
1

2
, λp q � λp q �

1

6
, λp q � �

1

3
,

λp q � 0,
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which �nally gives, for e and for the canonical π-idempotent:

ep q � , π � ep q � ,

ep q � �
1

2
, π � ep q � �

1

2
,

ep q �
1

6
� � , π � ep q �

1

6
� �

1

2
�

1

2
,

ep q �
1

6
� � , π � ep q �

1

6
� �

1

2
�

1

2
,

ep q �
1

3
� � , π � ep q �

1

3
� � .

Here are the values of λ on connected posets of order 4 (it is zero on non
connected posets):

T , , , , , ,

λpT q 0 �
1

12
�
1

6
�
1

4

Here are a few examples of order 5:

λp q � �
1

30
, λ

� �
�

1

12
, λ

� �
�

3

20
.

Let us now give two families of examples.

Proposition 12.3. 1. For any n ¥ 1, the nth ladder is the �nite topology
associated to the poset prns,¤q:

l1 � , l2 � , l3 � , l4 � , l5 � . . .

If n ¥ 1, then Υplnq � Xn�1 and λplnq �
p�1qn�1

n
.

2. For any n ¥ 1, we write

Υp nq �
n�1̧

k�0

sn,kX
k.

Then sn,k is the number of surjective maps from rns to rk � 1s. In
particular, sn,n�1 � n! and sn,0 � 1.
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Proof. We use the de�nition of Υ given by (7). For ln, indexing the vertices
from the root to the leaf, the unique surjective map to be taken in account
in the sum de�ning Υplnq is Idrns. For n, all surjective maps have to be
taken into account.

Remark 12.1. The numbers sn,k are related to the Stirling numbers of the
second kind S2pn, kq through the relation

sn,k � pk � 1q!S2pn, k � 1q,

see the OEIS [37], Entry A019538 for more details. Here are the �rst values
of sn,k:

nzk 0 1 2 3 4 5 6

1 1

2 1 2

3 1 6 6

4 1 14 36 24

5 1 30 150 240 120

6 1 62 540 1560 1800 720

7 1 126 1806 8400 16800 15120 5040

Corollary 12.4. For any n ¥ 2, let us denote by cn the nth corolla, that is
to say the �nite topology on rns given by

tI | I � rn� 1su Y trnsu.

Graphically,

c2 � , c3 � , c4 � , c5 � . . .

Then, for any n ¥ 2,

λpcnq �
n�2̧

k�0

sn�1,k
p�1qk�1

k � 2
.

Proof. As cn has a unique minimal element,

Υpcnq � XΥp n�1q �
n�2̧

k�0

sn�1,kX
k�1.

The results then follows by integration between �1 and 0.

Example 12.2. This gives

n 2 3 4 5 6 7 8 9 10 11

λpcnq �
1

2

1

6
0 �

1

30
0 �

617

6
0 �

1

30
0

5

66
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Moreover, due to the form of δplnq and δpcnq, we let the reader check
that

Corollary 12.5. For any n ¥ 2,

eplnq �
ņ

k�1

¸
n�i1�...�ik,
i1,...,ik¥1

p�1qk�1

k
li1 . . . lik

�
¸

1i1�...�nin�n

p�1qi1�...�in�1pi1 � . . .� in � 1q!

i1! . . . in!
li11 . . . l

in
n ,

epcnq �
n�1̧

i�0

�
n� 1

i



λpcn�iq

n�i�1ci�1,

where by convention c1 � .

Example 12.3. This gives

epl1q � l1,

epl2q � l2 �
1

2
l21,

epl3q � l3 � l2l1 �
1

3
l31,

epl4q � l4 � l3l1 �
1

2
l22 � l2l

2
1 �

1

4
l41,

epl5q � l5 � l4l1 � l3l2 � l3l
1
1 � l22l1 � l2l

3
1 �

1

5
l51,

epc2q � c2 �
1

2
c21,

epc3q � c3 � c2c1 �
1

6
c31,

epc4q � c4 �
3

2
c3c1 �

1

2
c2c

2
1 � c4,

epc5q � c5 � 2c4c1 � c3c
2
1 �

1

30
c51.
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