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Abstract—The increasing numbers of distributed energy 

resources (DER) incur new challenges for the energy supply due 

to the volatilities and uncertainties of renewable energies. To 

utilize the benefits of DER, a combination with storage systems 

and intelligent controls are necessary. Commonly used control 

methods are based on Model Predictive Control (MPC) with 

forecast and optimization, which require computational 

capabilities at the DER on a level, on which the distribution 

system operator (DSO) has no access. This paper proposes a 

control algorithm based on data, which combines a model-based 

and an artificial intelligence (AI) based approach to utilize 

benefits from both methods while compensating for their 

drawbacks. Mixed-Integer Quadratic Programming (MIQP) is 

used to generate training and testing data for a decision tree 

(DT). The investigation of the optimal composition of the 

training data and the optimal architecture of the DT are the 

main focus of this paper. 

Keywords—battery energy storage system control, decision 

tree, mixed-integer quadratic programming, power smoothing 

I. INTRODUCTION 

 As a result of both European and German regulations, the 
number of renewable DER in Germany continues to rise. In 
the first quarter of 2024 58.4 % of the generated electricity 
originated from renewable sources [1]. In 2023, 12 % of gross 
electricity generation was from photovoltaics (PV) [2]. With 
the addition of an installed capacity of 14.6 GWp in 2023, the 
total installed photovoltaic capacity in Germany is about 
82 GWp, this corresponds to over 3.7 million systems, 
including smaller plug-in devices [2]. Moreover these DER 
are not only installed at higher grid levels, providing a 
top-down energy supply but also at the low-voltage level on a 
household scale, which the DSO is not able to influence. This 
change in the energy supply comes with both benefits and 
disadvantages. Due to the volatility of DER generation peaks 
can occur. Therefore the volatile energy generation of DER 
can result in line congestions, reverse power flows and voltage 
fluctuations. On the beneficial side, DER on the end-user scale 
allow a more efficient energy usage, which can target 
customer benefits, such as reduced energy bills, as well as grid 
services for the DSO, such as power smoothing. Thus, for an 
advantageous usage of DER and storage capacity and a 
combination of customer and DSO oriented control 
approaches, an intelligent control is necessary. 

 One way to implement such a control is by using a MPC 
approach. As the name suggests, these control methods use 
mathematical models of a system to predict the optimal 

operating state over a receding time horizon [3]. The method 
presented in [4] is an example for such a MPC based control. 
Here, the MPC method is used for an energy management 
strategy of a household containing a PV system, a battery 
energy storage system (BESS) and several controllable loads. 
Besides an optimal power distribution, a minimization of 
energy costs and an increased self-consumption is targeted, by 
computing setpoints for the controllable loads. For this, 
forecasts of the load and PV power are used. A different 
approach is taken in [5], where instead of an optimal power 
distribution at the household level, the MPC aims at an 
optimal power flow at the transformer level. A forecast of the 
loadflow at the transformer of a low-voltage grid and a linear 
optimization algorithm are used to determine the charging and 
discharging powers of distributed BESS at household level to 
minimize reverse power flows caused by high PV penetrations 
in a low-voltage grid.  

While MPC methods are well suited to maintain the 
comprehensibility of their results, they could be heavy in 
computation and require an intensive knowledge of the system 
[3]. For complex systems, the construction and calibration of 
accurate mathematical equations may be a laborious and even 
infeasible task, leading to an unavoidable degree of 
uncertainty in the forecasts [6]. Thus, other controls use AI to 
achieve an optimal operating state. Especially reinforcement 
learning (RL) approaches can be found throughout recent 
literature. In [7] a cost-oriented RL strategy is introduced. 
Through a multi-model RL framework and a switching 
strategy, an optimal model for the current operating conditions 
of a household BESS is selected from pre-trained RL agents 
in real-time. Other than in [7], where the RL agent is learning 
through its interactions with the real environment consisting 
of a PV system and a BESS, the approach in [8] uses action 
masking for training without a model of the environment. 

While AI methods can handle big and even abstract data sets, 
do not necessarily require an explicit model of the system and 
are overall lightweight computational methods once trained, 
they are not as intuitively understandable as MPCs. Their 
architecture and the reason behind their output often lack 
explainability. Due to this, methods of combining MPC and 
model-free controls are investigated in research as well. In [9] 
the performances of an MPC-based controller and a 
model-free, data driven controller for residential BESS in a 
PV-rich microgrid are compared. The objective of the controls 
is to control the charging and discharging of the BESS in such 
a way, that the power exchange with the grid follows an 
expected average net load, determined by the DSO. In [10] a 
neural network MPC is developed for PV power smoothing This work was supported by the German Federal Ministry of Education 

and Research (BMBF) under the German-French Joint Call for Proposals 

on “Artificial Intelligence”. 



 

 

with BESS. Instead of a mathematical model, the MPC uses a 
neural network to model the system.  

To gain the most benefit from an intelligent storage control, 
the combination of the advantages from both MPC and 
AI-based methods seems to be a promising approach. To 
leverage both the explainability from MPC and the low 
computational effort of a trained AI, the work in [11] uses 
MPC to generate day-ahead prediction profiles and a DT, 
which is pre-trained offline and fine-tuned online for the 
control of a BESS and a heating, ventilation and 
air-conditioning system of a building. The offline training is 
conducted with the results of the MPC, which is run with 
historical forecasts and measurements, while the fine-tuning 
takes place once the DT is applied to the actual system.  

 Based on the work in [11], this paper proposes a control 
algorithm that uses a lightweight DT, which is pre-trained 
with optimal results from an MPC method, for the control of 
a BESS at household level. The algorithm is opted at 
smoothing both the power imported from the grid and the 
power exported due to PV generation surplus. Thus, compared 
to a regular BESS control, the algorithm not only ensures a 
maximization of the self-consumption of PV power but is also 
able to reduce the effect of DER on the grid by mitigating 
power peaks. MIQP is used to generate training and testing 
data for the DT, based on historical measurement data of the 
load and PV power at one household. Once trained, the DT 
can be applied to a BESS to determine the optimal charging 
or discharging power based on measurements of the load, the 
state of charge (SOC) and the PV generation power. Thus, the 
proposed control algorithm is independent of forecasts and 
only relies on historical measurement data for the 
MIQP-based generation of the training set for the DT and on 
current measurement data as input for the control application 
on the real system. This paper builds upon the work presented 
in [11] and focuses on generating different data sets for 
training and testing a regular DT and evaluating the impact of 
different parameters on the DT’s performance. In contrast to 
[11], the MPC is only used for the generation of the training 
set and not for a first stage forecast within the control. The 
performance of the proposed method is assessed by comparing 
the results for the optimization variable of the MIQP with the 
results from the DT trained and tested with different data sets. 
Besides, the optimal number of leaves of the DT is 
determined. The objective is to keep the MIQP algorithm, the 
DT and the training and testing data sets as simple as possible 
to keep the computational effort at a minimum. The main 
contributions of this paper are: 

  The analysis of the influence of different training and 
testing data set compositions on the performance of the 
DT. 

  The determination of the optimal tree architecture, 
concerning the number of leaves. 

This paper is organized as follows. In section II the 
methodology of creating the MIQP algorithm as well as the 
DT and the different data sets is described. Section III presents 
the results of training and testing the DT with the different data 
sets. In section IV the results are concluded and an outlook on 
further research on the topic is given.  

II. METHODOLOGY 

The following section describes the overall composition of 
the proposed method, the MIQP algorithm and the generation 

of the different data sets. Furthermore the construction of the 
DT is described as well as its training and testing. In Fig. 1 an 
overview of the power flows regarded in this work is given. 

 
Fig. 1: Overview of power flows at the considered system 

The proposed control algorithm consists of two parts, a 
MIQP algorithm for the generation of the training and testing 
data sets and a DT for the actual control. The DT is applied to 
a BESS on household level to determine the charging or 
discharging power of the BESS based on the measurement 
data of the PV power, the load and the SOC. The charging and 
discharging of the BESS is opted at smoothing the power 
profile at the household connection point. The overall idea is 
to improve the integration of DER from the grid perspective, 
while reducing the energy exchanges and peak power for both 
import and export power from and to the upstream grid. To 
achieve this behavior, the DT is trained with an optimal 
charging and discharging power profile and varying data sets, 
which are further described in section II B. This optimal 
charging and discharging power profile is generated by an 
MIQP algorithm, which uses historical measurement data of 
the load and PV power of one household. The historical 
measurement data is based on the simbench load and 
PV profiles in [12] and covers one year.  

A. Mixed-Integer Quadratic Programming to generate the 

training data set  

The MIQP algorithm uses a historical PV power 

generation profile PPV
t  and a historical load profile Pload

t  of a 
single household to generate an optimal charging profile 

containing the charging powers Pch
t   and the discharging 

powers Pdisch
t  for one BESS. Besides the load and PV profiles, 

the optimization parameters include the charge and discharge 
efficiencies ηch  and η

disch
,  the maximum charging and 

discharging powers Pch, max  and Pdisch, max , the maximum 

utilizable storage capacity Emax  and the maximum and 
minimum SOCs SOCmax  and SOCmin.  The optimization 

variables include the power import from the grid Pimp
t , the 

power export to the grid Pexp
t , the charging and discharging 

powers Pch
t  and Pdisch

t  as well as the SOC SOCt. Moreover a 
binary variable ut  is used to differentiate between charging 
and discharging times. The time horizon T of the optimization 
covers six months with timesteps t of 15 minutes each. As the 
first half of the data set is used for training and the second half 
for testing the DT, the MIQP algorithm is run separately for 
the first and the second half of the year. The objective of the 

optimization is to smooth both the power import Pimp
t  and 

export Pexp
t at the household connection point. Thus the 

objective function minimizes the sum of the squared values of 

the power import Pimp
t  and export Pexp

t  at each timestep t, as 

shown in (1). The constraints define the power balance of the 
system and differentiate between charging and discharging 
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times as well as between a power import and an export from 
and to the grid. Furthermore the SOC of the BESS is defined. 
The constraints are presented in (2). 

Obj: min (∑ Pimp
t 2

t ϵ T

+∑ Pexp
t 2

t ϵ T

) (1) 
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SOC t ≤ SOCmax, ∀ t ϵ T

SOC t ≥ SOCmin, ∀ t ϵ T

SOC 0 = SOCstart

 (2) 

The optimization problem is formulated in Python and 
solved with Gurobi.  

B. Decision tree 

A DT algorithm is a non-linear and non-parametric 
supervised learning algorithm that aims to make predictions 
based on certain decision rules derived from a given data set 
[13]. The name of the algorithm is derived from its flowchart 
structure, which resembles a tree with nodes and leaves. The 
first stage of the algorithm is referred to as the DT induction, 
where the DT is built. The input data undergoes a recursive 
partitioning process, starting from a root node and proceeding 
to two "child" nodes. This split is traditionally conducted as a 
binary answer (true/false, yes/no) to a logical question. At 
each child node, a new logical test is applied, and the data is 
further split into new child nodes. If the logical test at a node 
is unable to further split the data, the subset is considered 
"pure" and forms a "leaf." The leaves contain the predictions 
associated with each partitioning of the input space. It has 
been observed, that shallow trees, or a limited number of 
partitioning, can often result in a more robust generalized 
model, as they are less susceptible to overfitting [14]. The 
general architecture of a DT is depicted in Fig. 2. 

 
Fig. 2. General architecture of DT 

To achieve a shallower tree, certain hyperparameters, 

such as the maximum depth of a tree, the minimum number 

of samples required in a leaf node, and so forth, can be 

adjusted. This simple underlying structure makes DTs easy to 

interpret and comprehend. Shallow trees are especially 

regarded highly for their simplicity and interpretability [15]. 

In this paper, a regular DT regression algorithm is used to 

determine the charging and discharging powers of a BESS. 

The target function therefore contains the BESS power 

profile, as shown in (3). The DT is both trained and tested for 

six months each. When applied to a real system, the DT 

receives inputs and generates outputs in 15 minute time 

intervals. 
 y = [P BESS

 t ] (3) 

Besides the optimal BESS power profile, which is 
obtained from the MIQP algorithm, the training data set is 
comprised of historical measurement data of the load and PV 
power in different forms. For these inputs, four different data 
sets are investigated. The first case Xbase serves as a baseline 
case, where only the measurement values of the PV generation 

power PPV
t , the load Pload

t  and the SOC SOC t  for each 
timestep are considered (4). In the second case Xsin, the input 

data is extended by a sine wave for the time index Tt, which 
is used to convey the circularity of the data (5). As one day is 
comprised of 96 timesteps of 15 minutes each, the sine wave 
has a period of 96 multiplied by two. In the third case Xflowdiff  
the PV and load profiles are exchanged for a profile, which 

contains the load profile subtracted by the PV profile Pflowdiff
t  

(6). The last case Xt-1 is an extension of Xsin, where in addition 
to the current measurement data of the PV power and the load, 

their previous values PPV
t-1  and Pload

t-1  are used (7). All cases are 
listed below. 

 Xbase = [PPV
t     Pload

t     SOC t] (4) 

 Xsin = [PPV
t     Pload

t     SOC t    Tt] (5) 

 Xflowdiff = [Pflowdiff
t     SOC t    Tt] (6) 

 Xt-1 = [PPV
t-1     Pload

t-1     PPV
t     Pload

t     SOC t    Tt] (7) 

For each of these cases, DTs with different architectures 
are trained using the results of the MIQP algorithm as well as 
the load and PV profiles. The architecture is considered by 
increasing the number of leaves from 10 to 1000. The DTs are 
set up using the sklearn package for DT regression models. 
The first six months of a data set are used for training, while 
the remaining six months are kept for testing the performance 
of the DT. 

III. RESULTS 

The performance of the differently trained DTs is assessed 
through a simulation of their individual application to a BESS 
after training with the results from the MIQP algorithm. For 
both the generation of the training data with the MIQP 
algorithm and the simulation of the application of the DT to a 
BESS at household level, a peak load of 3 kW and a peak PV 
power of 3 kWp is chosen from the simbench profiles as well 
as a utilizable capacity for the BESS of 6 kWh. The greater 
capacity compared to the peak power of the PV system is 
chosen so that the BESS can also effectively be used for PV 
power smoothing and thus combining customer-oriented 
services with DSO-oriented services. For the BESS 
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parameters, references are taken from the data sheets of 
leading German BESS manufacturers [16] [17]. The 
maximum charging and discharging powers are 4.6 kW, the 
charging and discharging efficiencies 97 %. The time horizon 
of training and testing covers six months for each case with 
timesteps of 15 minutes. At every timestep, the DT is tested 
with the input parameters at the respective step with an 
updated SOC depending on the previously determined power 

P BESS
 t . With the results from the simulation, the power 

exchange with the grid and the respective energy exchange is 
calculated. The performance of the DTs is evaluated on the 
basis of (1). As performance metric, the sum of squared 
energy exchanges with the grid over the considered time 
horizon of six months E2 is used. In Fig. 3 the squared energy 
exchange with the grid of each case is depicted for different 
numbers of leaves. 

 

Fig. 3. Comparison of performance of DTs with different input data and 

architectures 

Fig. 3 shows, that the performance for each DT case first 
significantly improves with an increasing number of leaves 
and then generally decreases for greater numbers of leaves 
with varying profiles. For Xbase this decrease happens at a 
number of leaves greater than 200. The best performance is 
achieved with Xt-1 at 200 leaves. In this case, the energy 
exchange is reduced from 403.31 kWh2 of the case with no 
BESS to 313.39 kWh2, which is a reduction of approx. 22 % 
compared to a reduction of 33 % with optimal management of 
the BESS, were the energy exchange is 269,84 kWh2. In Fig. 
4 timeseries examples for the power exchange with the grid, 
the BESS charging and discharging powers and the respective 
SOCs are given for the DT case Xt-1 with 200 leaves in 
comparison with the optimal BESS management with the 
MIQP. Besides, the power exchange with the grid in case of 
no BESS is depicted. A positive value describes a power 
export to the grid, a negative value a power import, 
accordingly a positive BESS power value describes a charging 
power and a negative value a discharging power. For this 
comparison, the day with the highest PV generation peak is 
chosen. It is evident, that in the case Xt-1 the charging and 
discharging powers follow the optimal profile closely with 
few deviations. However, the charging power is at all times 
slightly higher than in the optimal profile, which leads to 
overcharging of the BESS. After approx. 09:30 AM, the 
charging ceases entirely in case Xt-1. One reason for this can 

be derived from the initial SOC at the beginning of the 
considered day, which is considerably higher in Xt-1 than in 
case of optimal management. Overall, the simulation of the 
application of a pre-trained DT to a BESS shows promising 
results, which are to be further improved. 

 

Fig. 4. Timeseries profile for one day for different cases 

IV. CONCLUSION 

This paper proposes a method for a BESS control at 
household level, which utilizes the benefits of both 
model-based approaches and AI-based approaches. A MIQP 
algorithm is used to generate data sets out of historical 
measuring data of the load and PV generation power, which 
are used for training and testing different DTs. Such a DT can 
then be used to smooth the power profile at a household 
connection point by determining the appropriate charging 
state and power of a BESS based on measuring data of the PV 
generation power and the load. The influence of different 
training inputs and different DT architectures on the DT’s 
performance is investigated. For this, four cases are 
considered as input data for DTs. The results closest to the 
optimal results of the MIQP are achieved with case Xt-1, where 
the PV power, load and SOC at the current timestep as well as 
a sine wave as time index and the values of the load and PV 
power at the previous timestep are used as input values. 
However, while reducing the energy exchange with the grid, 
the DT algorithm does not achieve a smooth power profile. As 
further research, the influences of additional parameters on the 
DTs accuracy can be investigated. Such parameters can either 
refer to the data set generation, additional training inputs or 
the DTs architecture. Thus instead of the MIQP algorithm 
regarded in this paper, different MPC approaches with 
different optimization formulations can be analyzed 
concerning their influence on the DTs performance. Another 
parameter that could be investigated is time encoding method 
of the time index, which is included in the training data input. 
Lastly, the analysis can be carried out with different types of 
trees, like linear regression trees and with different training 
periods. 
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