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Abstract

Geographic variability of the classes of interest, differences in sensor characteristics and changes in atmospheric conditions during 
image acquisition, among other factors, make it challenging to use a pre-trained deep learning classifier on new remote sensing data 
without a substantial drop in classification accuracy. This phenomenon occurs due to the so-called domain shift problem. Deep 
domain adaptation techniques have been used to mitigate the problem and thus avoid the time-consuming and costly collection 
of new labeled samples. Most recent domain adaptation approaches rely on single-source and single-target domains, refraining 
from exploiting other data distributions that are usually available. This work introduces a new unsupervised multi-target domain 
adaptation in the context of a change detection application, namely deforestation detection. The proposed approach addresses the 
substantial class imbalance typical of such application by applying unsupervised algorithms for selecting pseudo-labels in the target 
domain that will later serve as additional training references. We report results of experiments to evaluate the proposed method in 
four distinct sites of two Brazilian biomes using Sentinel-2 images. The results indicate that the proposed unsupervised domain 
adaptation method is a promising solution to reduce the effects of domain shift and to deal with the scarcity of labeled training data.

1. Introduction

In the last decades, significant technological progress has
facilitated access to a vast amount of remote sensing (RS)
data. Such an increase in data availability has allowed to
better explore a number of applications concerned with human
activities, ecosystems, and their interactions. In the context of
RS, change detection (CD) has emerged as a prominent area
of interest due to its capacity to identify changes in land cover,
land use, and environmental conditions.

The target application of this work is bi-temporal deforestation
detection within the Brazilian tropical forests, a problem
that is of paramount importance since deforestation is one
of the primary contributors to climate change (Cabral et al.,
2024). Specifically, in this work we automatically analyse
pairs of co-registered satellite images covering sites of different
Brazilian biomes to identify the occurrence of deforestation
between two epochs, at the pixel level.

In that regard, the National Institute for Space Research
(INPE) conducts systematic annual assessments to detect
deforestation through the Program for Deforestation
Monitoring in the Brazilian Amazon and other Biomes
(PRODES)1. Despite delivering highly accurate deforestation
mapping, the methodology employed in PRODES relies on
visual photo-interpretation. Considering the total cost and time
involved in such a human intensive procedure, automating it
would offer obvious advantages.

Several deep learning (DL) methods have been proposed for
CD, delivering high success rates in many RS tasks, including
deforestation detection (Ramachandran et al., 2024, Dalagnol
et al., 2023). Even though such methods produce good results

1 http://terrabrasilis.dpi.inpe.br/map/deforestation

when the training data is characterized by a distribution that
is similar to that of the test data, their performances decrease
substantially when there is a significant difference between the
training and test data distributions (Tasar et al., 2020, Soto Vega
et al., 2021). That phenomenon is regarded as domain shift
(DS). In the context of deforestation detection, a domain may
correspond to a dataset from a particular geographic location.
In this case, DS is mostly related with inherent inter- and
intra-class variability, which may be associated with particular
forest types and deforestation practices. A number of domain
adaptation (DA) techniques have been proposed to mitigate the
DS problem (Tuia et al., 2016, Wittich and Rottensteiner, 2021)
in various applications.

Existing DA approaches typically address adaptation issues in
one of two scenarios: (semi) supervised DA and unsupervised
DA. The first considers that besides having labeled instances
from the source domain, there is a small portion of labeled
instances from the target domain available for training or
adapting a classifier. On the contrary, unsupervised DA (uDA)
does not use any labels from the target domain, but instead
exploits the similarity of the domain data distributions. In
the present work, we pursue the uDA scheme, which is more
demanding due to the lack of label correspondences between
source and target (Gholami et al., 2020, Yang et al., 2020).

Most uDA research focuses on single-source and single-target
domain strategies. However, in several real-world applications,
and specially in RS, unlabeled data may come from different
domains with different properties, but with content related
to a common task. In that regard, an ideal uDA strategy
for large-scale classification should be able to learn from
multiple labeled source domains and properly process multiple
unlabeled target domains, even when all domains have different
data distributions (Tasar et al., 2020).

Another important factor to be considered in the deforestation
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detection application is the high level of class imbalance, since
usually a minor portion of the areas of interest correspond
to deforestation. In the uDA methods, this is an important
problem, since labeled training samples are only available
for the source domain. Therefore, the absence of labels
in the target domains can cause DA methods to be biased
towards the majority class (i.e., no-deforestation). That would
be the effect of randomly selecting target samples to take
part in the DA procedure. An alternative is to use some
pseudo-labeling strategy to assign (semi) labels to unlabeled
data in an unsupervised way. However, this can result in many
incorrect (noisy) pseudo-labels and low-confidence outcomes.

In order to tackle the above mentioned issues, this work
proposes an unsupervised, multi-target domain adaptation
method for deforestation mapping. Our method adapts the
so-called Multi-Target DA Information-Theoretic-Approach
(MTDA-ITA) (Gholami et al., 2020), which was initially
proposed for image classification, to perform change detection
through semantic segmentation. The main contributions of this
work are the following:

• An unsupervised multi-target deep domain adaptation
method based on fully convolutional neural networks,
which exploits the spatial context in the image data to
improve classification accuracy.

• An unsupervised strategy for balancing target domain
samples in the domain adaptation training procedure to
deal with severe class imbalance.

• An evaluation of the proposed method on a deforestation
mapping application, in which the domains consist of pairs
of remote sensing images covering four distinct sites in
two biomes of the Brazilian rain forest.

2. Related work

In this section, we first present an overview of recent work
addressing the task of deforestation detection. Afterwards, we
summarize publications which describe domain adaptation in
the context of multi-target scenarios.

Several DL-based approaches to quantify deforestation
processes with bi-temporal images have been proposed, most of
them following an encoder-decoder architectures (Md Jelas et
al., 2024). For instance, various Fully Convolutional Networks
(FCN) were evaluated in (Ortega et al., 2021, Torres et al.,
2021). The authors conducted a comparative analysis of various
FCN architectures, assessing their performance across multiple
sites within the Amazon region. For the experiments data
from PRODES project and image pairs from different RS
sensors including Sentinel-1, -2, and Landsat-8 were used.
Similarly, (Andrade et al., 2022) evaluated a DeepLabv3+
model variant to detect deforestation in the Amazon forest
using Landsat-8 image pairs. Although, the reported results
showed satisfactory classification performance, the methods
were evaluated under optimal conditions where the training and
test data distribution present similar characteristics, potentially
limiting their generalization capability to other regions or
datasets (Md Jelas et al., 2024). Considering the complexity
of the Amazon forest, when these models are used on datasets
with temporal and spatial variations, a substantial decrease
in classification performance may be observed, as is reported
in (Soto Vega et al., 2021). Therefore, to successfully apply DL

approaches in real-world applications, the Domain Shift (DS)
issue must be addressed (Sun et al., 2016).

According to the recent literature, Domain Adaptation (DA)
represents the set of techniques used to mitigate the DS
problem (Tuia et al., 2016), and these techniques have
been extensively explored in the RS field. Regarding uDA
methods, they are commonly divided into discrepancy-based
approaches and adversarial-based techniques (Peng et al.,
2022). The former group tries to find domain-invariant features
to minimize the domain shift by using statistical measures (e.g.,
MMD-based metric) (Long et al., 2015, Sun and Saenko, 2016,
Long et al., 2017, Zhu et al., 2020) The latter is inspired
by generative adversarial nets (GAN) (Goodfellow et al.,
2014), and learns domain-invariant features through adversarial
learning. Following the structure of GANs, these methods
comprise a generator and a discriminator networks. Here the
task of the generator is to produce samples similar to the source
domain to encourage domain confusion to the discriminator
network (Wittich and Rottensteiner, 2021, Tzeng et al., 2017,
Ganin et al., 2016). Although the methods discussed above
reported promising results, they are primarily concentrate on
employing a single source domain and rarely address the
transfer of information across multiple distributions (Li et al.,
2023).

Regarding multi-target DA methods, Multi-teacher Multi-target
DA (MT-MTDA) (Nguyen-Meidine et al., 2021) was proposed
to transfer information via knowledge distillation. In this
approach, each target domain is associated to a special so
called teacher network, and the information is transferred to
a single common network called student. Instead of learning
domain-adapted features directly, each teacher instructs the
student on how to perform uDA for a particular target.
In (Gholami et al., 2020), an information-theoretic approach for
DA was also introduced. The method tries to separate shared
and private information across domains and learns to maximize
mutual information between domain labels and domain-specific
features while minimizing mutual information between domain
labels and shared features. Although the previous methods
report satisfactory results, all of them are focused on the image
classification task. In the context of semantic segmentation,
Isobe et al. (Isobe et al., 2021), introduced an unsupervised
multi-target DA relying on a collaborative learning framework.
In this scheme, different expert models are trained with
data available from all domains, and the individual results
are exchanged following a collaborative learning strategy
by optimizing the Kullback-Leibler (KL)-divergence among
multiple expert distributions. The result is used to teach
a student model, which is able to perform suitably well
across multiple-target domains. Similarly, Saporta et al.
(Saporta et al., 2021) proposed a method based on two
adversarial frameworks, a multi-discriminator to align the target
domains, and multi-target knowledge transfer employing a
multi-teacher/single-student distillation scheme. In a more
complex scenario, Tasar et al. (Tasar et al., 2020) introduced
DAugNet, which is an unsupervised, multi-source, multi-target,
life-long DA method. This approach is composed of a
data augmentor and a classifier. During training, the data
augmentor applies a style transfer to all domains to generate
more diversified data, and therefore train a more robust
classifier. However, one drawback of this method is that the
pre-processing and the DA stages have to be trained in a
sequential order, preventing an end-to-end training.

Few DA methods have been proposed in the context of
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CD (Deng et al., 2019, Chen et al., 2020, Saha et al.,
2020), most of them focusing on urban changes. In the
particular case of deforestation detection, works based on the
DANN (Soto Vega et al., 2022), ADDA (Noa et al., 2021) and
CycleGAN (Soto Vega et al., 2021) approaches are available,
but all of them for single-target DA only. In CD applications
such as deforestation detection, in which a high-class imbalance
usually occurs, DA methods tend to be biased towards the
majority class, disregarding minority classes, thus presenting
poor adaptation performance (Zou et al., 2018). In that
regard, Soto, et al. (Soto Vega et al., 2022) introduced
an unsupervised technique for balancing the target domain
samples during the adaptation procedure. The technique
relies on pseudo-labels produced through unsupervised Change
Vector Analysis (CVA). An important aspect of that attempt is
that the pseudo-labels are noisy in the sense that they may be
wrong at some pixels.

3. Methodology

The method presented in this work is designed to tackle the
problem of deforestation detection in a multi-domain context,
where source and target domains may significantly differ
with respect to environmental conditions and deforestation
practices. The main goal of our approach is to provide robust
unsupervised domain adaptation in the context of deforestation
detection, operating on a source domain with enough labeled
training samples and multiple target domains without any
labeled training samples.

Following (Gholami et al., 2020), let’s consider a labeled
source domain DS =

{(
xS
i ,y

S
i

)}nS

i=1
, where xs

i indicates
the i-th sample and ysi is its corresponding label, nS is the
number of labeled samples in the source domain, and m

unlabeled target domains DTm =
{{

xT
i

}nT

i=1

}M

m=1
, where

xTm
i is the i-th sample, and nTm is the number of unlabeled

samples in the m-th target domain. For our application, xi

corresponds to two co-registered images denoted as xit0
and

xit1
, acquired on dates t0 and t1 that define the time interval

within which we want to detect deforested regions. The images
are concatenated along the spectral dimension, producing a
tensor xi ∈ RH×W×2B , where H and W denote the spatial
dimensions, andB the number spectral bands from each image.
yS
i denotes the class label map of xS

i , in which each pixel
location takes a value from the set {0, 1}, where 1 means
Deforestation (DF), and 0 means No-deforestation (NDF). di

represents the one-hot representations of the domain labels for
xi. The latent space representation of an input sample xi, either
from the source or from a target domain, is denoted as zsi in
the shared latent space, and zpi in the private latent space. In
addition, x̂i represents the reconstruction of the input xi.

Figure 1 shows the method’s components. They comprise

– a shared encoder Es, with parameters θs, that captures the
common features zsi across domains, formally,

zsi = Es (xi; θs) (1)

– a private encoder Ep, with parameters θp, for learning
domain-specific features zpi , formally,

zpi = Ep (xi; θp) (2)

– a decoder F , with parameters ϕ, which produces a
reconstruction x̂i of the input xi from zsi and zpi ,
formally,

x̂i = F (zsi , zpi ;ϕ) (3)

– a domain classifier D, with parameters ψ that aims to
predict at its output d̂i the domain label from zi, where
zi corresponds either to zsi or zpi , formally,

d̂i = D (zi;ψ) (4)

– a classifier C, with parameters γ, whose task is to infer at
its output the class label map relying only on zsi , formally,

ŷi = C (zsi ; γ) (5)

Figure 1. Structure of the proposed multi-target, deforestation
detection DA method. The encoders shared Es and private Ep

capture the common and domain-specific features, respectively.
The decoder F attempts to recreate the input sample from the
shared and private features. The domain classifier D learns to

predict the domain labels whether from shared or private
features. The classifier C learns to predict the class label from

the shared features.

For training, the model relies on a loss function that combines
the following terms:

– Decoder loss LF : refers to the difference between the
input xi and its reconstruction x̂i at the output, formally:

LF =
λr

N

N∑
i=1

∥xi − x̂i∥1 (6)

where λr denotes the weight of the reconstruction loss.

– Domain classifier loss LD: is composed of the sum of
the cross entropy of the domain classifier output having as
input the shared and the private features, formally:

LD = −λds

N

N∑
i=1

d⊤
i ln

(
d̂si

)
− λdp

N

N∑
i=1

d⊤
i ln

(
d̂pi

)
(7)

where λds and λdp denote the weight of the multi-domain
separation loss using the shared and private features,
respectively.
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– Label classifier loss LC: refers to the cross entropy of the
classifier outcome computed only upon the source domain
samples, formally:

LC = − 1

Ns

Ns∑
i=1

y⊤
i ln (ŷi) (8)

– Shared encoder loss LS : is made up of three terms: the
decoder loss, the classifier loss, and the part of the domain
classifier loss referring to shared features, formally:

LS =
λr

N

N∑
i=1

∥xi − x̂i∥1 −
λc

Ns

Ns∑
i=1

y⊤
i ln (ŷi)+

λds

N

N∑
i=1

d⊤
i ln

(
d̂si

) (9)

where λc denotes the weight of the classification loss.
Note, that the domain classifier output occurs in LS with
opposite sign, implementing adversarial training

– Private encoder loss LP : is composed of two terms,
the decoder loss and the domain classifier loss using the
privated features, formally:

LP =
λr

N

N∑
i=1

∥xi − x̂i∥1 −
λdp

N

N∑
i=1

d⊤
i ln

(
d̂pi

)
(10)

3.1 Training

The training process estimates the parameter values θ̂s, θ̂p, γ̂, ψ̂,
and ϕ̂ by iteratively updating each component of the method.
Agorithm 1 summarizes the DA process. Here, batches (BS

and BT
m ) are sampled from the labeled training data of the

source domain denoted as (LS) and of the m unlabeled target
domains denoted as UT

m. To ensure that training samples of the
target domains have pixels belonging to classes DF and ND, we
generated pseudo-labels with unsupervised algorithms, denoted
as ỹT

j containing a value for each pixel location either 0 or 1
for classes DF and NDF, respectively. It is worth mentioning
that only the parameters γ of C are determined by conventional
supervised training using LS .

3.2 Pseudo-label generation

One key idea refers to the strategy for training sample
selection from the target domains DT . We extended the
strategy presented in (Li et al., 2021), where an ensemble
of algorithms is employed instead of relying on a single
unsupervised algorithm. Therefore, for a sample to qualify
for the training set of the target domains in the DA models,
the pseudo-labels assigned to that sample have to meet some
consistency criterion.

Different consistency criteria can be considered. One
possibility, which we explored in the experimental analysis,
imposes unanimity among all ensemble members. We used
two unsupervised algorithms to build up the ensemble whose
outcomes were further subjected to a consistency criterion to
obtain the pseudo-label maps for the target domains.

The first algorithm is CVA (Malila, 1980). It computes the
magnitude M(h,w) and direction α of change between the

Algorithm 1: Unsupervised multi-target domain adaptation
algorithm
Input:

– LS // labelled training data from source domain

– UT
M // unlabelled training data from M-target domains

– {θs, θp, γ, ϕ, ψ} // initial random weights of θ̂s, θ̂p, γ̂,

ϕ̂, and ψ̂

– {λr, λds, λdp, λc} // model hyper-parameters

– β // set of optimizer parameters

Output: {θs, θp, γ, ϕ, ψ} // optimal model parameters

1 while StopCriterion == False do
2 BS ← batch from LS// labeled data from DS

3 BT
M ← batch from UT

M// unlabeled data from DTM

4 θs ← by minimizing LS using BS and BT
M // Eq. 9

5 θp ← by minimizing LP using BS and BT
M // Eq. 10

6 ϕ← by minimizing LF using BS and BT
M // Eq. 6

7 ψ ← by minimizing LD using BS and BT
M// Eq. 7

8 γ ← by minimizing LC using BS // Eq. 8

9 End while

Figure 2. Training process of the unsupervised multi-target
domain adaptation method. The parameter values θ̂s, θ̂p, γ̂, ψ̂,
and ϕ̂ are iteratively updated to optimize the adaptation across

multiple target domains.

image pair xT
t0 and xT

t1 at each pixel position (h,w). To
obtain the binary changed maps we used the Otsu algorithm to
find the optimal thresholds Tmg and Tph using the normalized
histograms fromM and α.

Next, we formed a set ỹcva with the pseudo labels at each pixel
position (h,w) that meet one of the following conditions,

ỹcva =

{
DF, if (M(h,w) ≥ Tmg) and (α(h,w) ≥ Tph)

NDF, otherwise
(11)

The second algorithm is SSIM (Wang et al., 2004). This
measure was initially introduced for assessing image similarity.
However, it can estimate whether a pair of pixels has changed
or not in CD tasks, through statistical similarity measures for a
image pair xT

t0 and xT
t1 by computing:

SSIMdif (h,w) = 1− SSIM(h,w)

for all pixel positions. Similar to CVA, the threshold Tssim
was computed by the Otsu algorithm using the normalized
histogram from SSIMdif : Again, we formed a set ỹssim with
the pseudo labels at each pixel position (h,w) that met one of
the following conditions,

ỹssim =

{
DF, if (SSIMdif (h,w) ≥ Tssim)

NDF, otherwise
(12)

Lastly, the final pseudo-label map ỹT is produced by applying
the consistency criterion, which was defined as the unanimity
among all ensemble outputs and follows the criterion expressed
below:

ỹT = ỹcva and ỹssim
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3.3 Network architectures

Tables 2, 3, 4, and 5 present detailed architectures of the shared
Es, private Ep encoders, decoder F , domain classifier D, and
the FCN classifier C, respectively. The input for Es and Ep

comprises patches with dimensions H ×W × 2B, where H ,
W , and 2B represent the height, width, and number of bands
of each sample, respectively, and the outputs are tensors with
dimension 32 × 32 × 64. These tensors are concatenated and
fed into F , which produces an output matching the dimensions
of the input training samples H × W × 2B. Additionally,
the outputs of Es and Ep are input to D, which generates
domain predictions with dimensions 1×ND, where ND is the
number of domains. Lastly, C takes the output of Es as input
and generates label map predictions with dimensions 128 ×
128 × CL, where CL corresponds to the number of classes,
specifically, DF and NDF . In addition, Table 6 describes
the network architecture used for the classifier selected as a
baseline, where the DA method was not applied, which follows
an encoder-decoder structure.

Layer Layer type H/W Depth
1 Input layer 128 2B
2 Conv(7), stride 1, IN, ReLu 128 16
3 Conv(3), stride 2, IN, ReLu 64 32
4 Conv(3), stride 2, IN, ReLu 32 64
5-10 Residual block, IN, ReLu 32 64

Table 1. Architecture of shared Es and private Ep encoders.

Layer Residual block H/W Depth
1 Input layer 32 64
2 Conv(3), stride 1 32 64
3 Conv(3), stride 1 32 64
4 Add(3, 1) 32 64

Table 2. Architecture of residual block of Es and Ep

Layer Layer type H/W Depth
1 Input layer 32 128
2 Conv(3), stride 1, IN, ReLu 32 64
3 Residual block2, IN, ReLu 32 64
4 Upsample 64 32
5 Upsample 128 16
6 Conv(1), stride 1, TanH 128 2B

Table 3. Architecture of the decoder F .

Layer Layer type H/W Depth
1 Input layer 32 64
2 Conv(3), stride 1, IN, ReLu 32 4
3 Conv(3), stride 1, IN, ReLu 32 8
4 Conv(3), stride 1, IN, ReLu 32 16
5 Conv(3), stride 1, IN, ReLu 32 32
6 Flatten
7 Dense, Softmax 1/ND

Table 4. Architecture of the domain classifier D.

Layer Layer type H/W Depth
Encoder 1 Input layer 32 64

2 Conv(3), stride 1, ReLu 32 64
3 Conv(3), stride 2, ReLu 16 128
4 Conv(3), stride 2, ReLu 8 128

Decoder 5 Upsample, 16 256
6 Upsample, 32 128
7 Upsample 64 32
8 Upsample 128 16
9 Conv(1), Softmax 128 CL

Table 5. Architecture of the FCN classifier C.

Layer Layer type H/W Depth
Encoder 1 Input layer 128 2CH

2 Conv(7), stride 1, ReLu 128 16
3 Conv(3), stride 2, ReLu 64 32
4 Conv(3), stride 2, ReLu 32 64
5 Conv(3), stride 2, ReLu 16 128
6 Conv(3), stride 2, ReLu 8 128

Decoder 7 Upsample 16 128
8 Upsample 32 64
9 Upsample 64 32
10 Upsample 128 16
11 Conv(1), Softmax 128 CL

Table 6. Architecture of the FCN classifier (baseline).

4. Experiments

In this section, we provide a detailed overview of the
experiments conducted to illustrate the potential of the
developed method and subsequently an analysis of the results.
Initially, we introduce the dataset used for training and
evaluation of the classifier. Next, we describe the experimental
setup, and finally, we report and discuss the obtained results.

4.1 Study areas

This study relied on Sentinel-2 data from four sites within the
Amazon and Cerrado Brazilian Biomes. The sites are located
in the Brazilian states Pará (PA), Mato Grosso (MT), Rondônia
(RO), and Maranhão (MA). The images were downloaded and
preprocessed to Level-1C using the Google Earth Engine (GEE)
platform (Gorelick et al., 2017). We used all bands with spatial
resolutions of 10m and 20m. The 20m bands were resampled
to 10m using the nearest neighbor technique.

15.0°S 15.0°S

0.0° 0.0°

75.0°W

75.0°W

60.0°W

60.0°W

45.0°W

45.0°W

Amazon biome
Cerrado biome
Domains

Brazil

RO

MT

N

PA

MA

Figure 3. Geographical location of the study areas.

The reference change maps used in the experiments consider
the deforestation that occurred between the epochs t0 and
t1, in our case corresponding to the years 2020 and 2021,
which are reported in the PRODES deforestation mapping
program (INPE, 2021). That information is freely available
and was downloaded from thethe PRODES database of the
Brazilian National Institute for Space Research (INPE) site.
This project measures the annual deforestation rate from
August 1st of each year, during the dry season (June to
September), when the cloud cover is at a minimum. It is worth
mentioning that PRODES only contains information regarding
primary deforestation, i.e. areas previously identified as
deforested are omitted from the annual manual labeling process.
Since there is uncertainty about these regions which may or
may not face another regrowth and deforestation cycle, those
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Domains PA MT RO MA
Biome Amazon Amazon Amazon Cerrado

Vegetation Dense ombrophyll Dense and open
ombrophyll Open ombrophyll Seasonal deciduous

and semidecidous
Dimensions (px) 9200× 17730 9544× 19430 11384× 19365 10000× 19295

Date t0 July 15, 2020 August 2, 2020 July 29, 2020
August 01, 2020

August 2, 2020
August 10, 2020

Date t1
July 25, 2021

August 4, 2021 July 23, 2021 July 19, 2021
July 22, 2021 August 20, 2021

DF (%) 1.86 0.95 1.30 1.30
ND (%) 56.40 59.62 58.13 58.58
PD (%) 41.74 39.43 40.57 40.12

Table 7. Detailed information of each domain: vegetation pattern, image acquisition dates, and class distributions

areas cannot be used to train a model for deforestation detection
as the reference labels are unknown. To address this issue, a
third label, Past Deforestation (PD), is assigned to areas in a
label map that were labelled as DF at any point in time earlier
than t0. Such areas do not contain significant information for
bi-temporal deforestation classification between epochs t0 and
t1 and they are disregarded in the training procedure (INPE,
2021). Table 7 shows details of each domain including
vegetation pattern, dimensions, acquisition dates of the images,
and percentages of class distribution. Note that image data
for some epochs are mosaics of two Sentinel-2 scenes. It is
important to observe the high imbalance in class distribution
across all domains, particularly for the Deforestation (DF)
class, where percentages are lower than 2%. This significant
class imbalance poses challenges for model training and
highlights the necessity for techniques that can handle such
disparities effectively.

4.2 Experimental setup

First, the images from the different sites, acquired at t0 and t1,
were stacked along the spectral dimension. Then, the values
in each pixel position of each band were normalized, in the
range of [−1, 1]. Each image pair was divided into twenty
(20) tiles, 40% (8 tiles), were used for training, 10% (2 tiles)
for validation, and 50% (10 tiles) for testing. To compose the
training and validation sets, patches with dimension 128× 128
pixels, and stride equal to 64, were extracted from each image
tile and used as the input to the encoder networks. In each
experiment, we selected one DS and three target DT .

As mentioned, all pixels labeled as past-deforestation according
to PRODES were ignored both in training and in testing. Simple
data augmentation operations were employed for the training
patches: rotation (30◦, 90◦), and flipping (horizontal, vertical)
transformations. During training, the Adam optimizer was used
with learning rate γ and momentum β1 equal to 0.0002 and 0.5,
respectively. The batch size was 16. An early stopping strategy
with patience equal to 10 was employed. The loss function
weights λr and λc were both set to 0.5, and λds was set to 1
in all experiments. For λdp we used two different values [1, 0],
as reported later.

In accordance with the PRODES methodology, we ignored
pixels within a two pixel wide buffer at the inner and
outer borders of all polygons identified as deforestation
in the reference data. Those pixels were ignored for
training, validation, and test. The same was done for all
past-deforestation pixels, and areas (pixel clusters) smaller than
625 pixels (6,25 ha) for the Amazon regions and 100 pixels (1
ha) for the Cerrado region.

4.3 Evaluation of the cross-classification baselines

Train on Test on
PA MT RO MA

PA 77.51 54.64 83.70 15.33
MT 73.51 63.01 83.24 32.23
RO 63.48 53.18 84.88 18.42
MA 62.73 52.16 78.43 75.77

Table 8. F1-scores [%] for the class DF for intra- and
cross-domain scenarios, without any adaptation procedure. Bold
values along the diagonal represent the classification accuracy of

the model trained and evaluated on the same domain, while
values outside the diagonal report the evaluation results on

different domains.

Before presenting the DA results, we report the
cross-classification baselines (without DA). It is important to
show the accuracies (in terms of F1-Scores) obtained by using
solely the classification branch of the proposed DA model,
trained and tested on the same domain, and tested on different
domains. These results are presented in Table 8, which also
can give an insight into the the domain discrepancies presented
in each domain combination. Notice that the best scores for
the baseline were obtained when the MA site was the source.
However, when the MA site was a target domain, the scores
were low, indicating that these were the most challenging
among the tested scenarios. In particular, the MA region
presents higher complexity in the forested areas due to the
more prominent inter-annual variability (Soto Vega et al.,
2021).

4.4 Evaluation of the multi-target adaptation

In the following experiments, we defined one source domain
and three target domains. We again used the F1-score as a
metric for classification accuracy. For selecting the training
samples of the source domain, we used the references from
PRODES, and for the target domains, we evaluated four
different sample selection strategies:

– random, using 1000 patches from the training and
validation image tiles randomly selected.

– CVA, using pseudo-labels determined with the CVA
algorithm.

– SSIM, using pseudo-labels determined with the SSIM
algorithm.

– ensemble, using the combination of the CVA and SSIM
outcomes, following the consistency criterion described in
Section 3.2.
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(a) F1-scores when PA is defined as DS (b) F1-scores when MT is defined as DS

(c) F1-scores when RO is defined as DS (d) F1-scores when MA is defined as DS

Figure 4. F1-scores [%] for the class DF on DT using the multi-target DA method when λdp = 1.

For the last three strategies, we selected training and validation
patches containing at least 2% of deforestation pixels. The
same selection criterion was used for the source domain, but
relying on ground-truth (PRODES) labels. Furthermore, the
aforementioned scenarios were evaluated with two values of
λdp in Equations 7 and 10, i.e., 1, and 0, in order to investigate
the effect of considering private features in domain classifier
during training.

Figures 4 and 5 present the results in terms of the average
F1-scores after five runs using the DA method defining λdp = 1
and λdp = 0, respectively. Each figure reports the classification
accuracy for the class DF for all domain combinations using
one source and three target domains. The first bar corresponds
to our baseline, where no adaptation procedure was applied (see
Table 8). These results correspond to the worst scenarios since
the training and testing sets come from different distributions.
The next four greenish bars represent the results of the
multi-DA method with the four unsupervised strategies to select

the training samples from the target domains. Furthermore,
for a more comprehensive analysis and comparison of the
multi-target results, we evaluated the DA method within the
single-source-single target framework using the pseudo-labels
from the ensemble strategy , represented by the final purplish
bar.

When we set λdp to 1, the domain classifier D weights equally
the shared and private features in trying to discriminate between
domains. It can be seen that when DA was employed, the
scores improved in almost all cases, especially when using the
ensemble strategy. Here, the DA method tends to yield the best
overall performances across different scenarios, suggesting that
a combination of techniques for selecting the target samples
is beneficial for effective adaptation procedure. In addition, it
is possible to notice that he multi-target DA outperformed the
single-source results, meaning that the use of multiple targets
improved the generalization capability of the model. However,
in the domain combinations where MA was defined as a source
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(a) F1-scores when PA is defined as DS (b) F1-scores when MT is defined as DS

(c) F1-scores when RO is defined as DS (d) F1-scores when MA is defined as DS

Figure 5. F1-scores [%] for the class DF on DT using the multi-target DA method when λdp = 0.

domain, the model produced lower classification metrics. Only
with the ensemble strategy, metrics close to the baseline were
achieved.

When we set λdp to 0, the domain classifier disregarded the
private features and relied only on the shared features for
domain classification. Notice that, in principle, the task of the
domain classifier becomes more challenging, as private features
should convey specific information from the different domains.
Again we notice that we obtained the best results using the
pseudo-label map from the ensemble strategy in all cases,
again outperforming the method in the single-source-target
scheme. Interestingly, in the most challenging scenarios in
which MA was a target domain, the performance increased
substantially compared to the previous settings. Those results
seem to indicate that by not considering the private features in
the domain classifier, the DA method found a better common
representation shared between domains, improving the overall
performance of the model.

Finally, Figure 6 shows the average deforestation probability
maps generated with the DA method using the four different
strategies to balance the target samples and varying the λdp

values. Those maps correspond to the MA→PA domain
combination. The first row shows the RBG composition
of a subset of the target domain images; the respective
ground-truth; and the baseline result. The last two rows show
the outputs associated with the different λdp configurations
and balancing strategies. Blue, red and black colors in the
reference mask represent no-deforestation, deforestation and
past-deforestation, respectively. The figure shows that when
no DA was employed, the output was a noisy probability map
with many false positives and negatives. The same can be said
when the random target sample selection strategy was used. By
reducing the λdp we obtained more confident outcomes and
better defined polygons. In the best case, when λdp was set
to zero and the ensemble strategy was employed to balance the
target samples, the DA method presented the best segmentation
output.
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Img t0 Img t1 Reference No Domain Adaptation

Random dp = 1 CVA dp = 1 SSIM dp = 1 Ensemble dp = 1

Random dp = 0 CVA dp = 0 SSIM dp = 0 Ensemble dp = 0
Past-def.

0 - No def.

0.2

0.4

0.6

0.8

1 - Def.

Figure 6. Deforestation probability maps of a snip from a test
tile of MA→PA domain combination. The first row shows the
RGB compositions of the target domain images; the reference
map; and the baseline result. The next two rows represent the

output from the four unsupervised strategies to balance the target
samples with two different values of λdp. Blue and red colors

represent lower and higher probability of belonging to the
deforestation class, respectively. Black regions correspond to

past-deforestation.

5. Conclusion

In this paper we introduced an unsupervised multi-target
Domain Adaptation (DA) method based on fully convolutional
models for deforestation detection. Two encoders map the input
into two latent feature spaces; a shared one, which captures
the common features across domains, and a private one,
which learns domain-specific features. Three decoders account
for the pixel-wise classification, the input reconstruction,
and the discrimination between source and target domains,
respectively. The whole scheme adopts adversarial learning for
training. We also explored unsupervised algorithms to produce
pseudo-labels for the target domains, aiming to mitigate the
problems brought by the high class imbalance, characteristic of
that application, to DA approaches. Additionally, we evaluated
the performance of the proposed method and its variants in four
test sites/domains with different forest covers and deforestation
patterns. In most cases, the ensemble balancing scheme
outperformed the baselines which did not employ any DA.
Furthermore, experimental results demonstrated that domain
discrimination improved when it relied only on shared features.
This means that at least in our experiments, private features
disturbed adversarial learning and prevented finding proper
common feature representations. In future work, we plan to
extend the method to a multi-source scheme, and to investigate
the potential of the method in applications in which the label
space is not binary, e.g., land cover and land use classification.
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